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Abstract—In typical embedded applications, the precise exe-
cution time of the program does not matter, and it is sufficient
to meet a real-time deadline. However, modern applications in
information security have become much more time-sensitive,
due to the risk of timing side-channel leakage. The timing of
such programs needs to be data-independent and precise. We
describe a parallel synchronous software model, which executes
as N parallel threads on a processor with word-length N.
Each thread is a single-bit synchronous machine with precise,
contention-free timing, while each of the N threads still executes
as an independent machine. The resulting software supports
fine-grained parallel execution. In contrast to earlier work to
obtain precise and repeatable timing in software, our solution
does not require modifications to the processor architecture nor
specialized instruction scheduling techniques. In addition, all
threads run in parallel and without contention, which eliminates
the problem of thread scheduling. We use hardware (HDL)
semantics to describe a thread as a single-bit synchronous
machine. Using logic synthesis and code generation, we derive a
parallel synchronous implementation of this design. We illustrate
the synchronous parallel programming model with practical
examples from cryptography and other applications with precise
timing requirements.

Index Terms—repeatable-time programming, data-
independent timing, bitslicing, automatic code generation

I. INTRODUCTION

Producing software with precise, repeatable timing is a
challenging task. First, the software application itself may
have data-dependent processing complexity, such as with data-
dependent loops. Second, the execution time of the application
on the processor may be affected by the memory hierarchy
and the run-time state of the processor. Third, the timing of the
execution may be affected by resource contention when several
parallel threads share the same processor resource. Among
these three problems, the second and the third are most difficult
because they are outside of the control of the programmer. In
cryptographic applications, data-dependent timing variations
may be exploited as timing side-channel leakage, either di-
rectly as an effect of data-dependent control flow, or indirectly
as an effect of contention on shared processor resources. To
avoid timing side-channels, we need data-independent timing.

In this contribution, we propose a programming model that
yields these timing characteristics. We contrast our proposal
with earlier work towards precise software timing for embed-
ded applications, PRET [1], [2]. A fundamental idea of PRET
is to use instruction scheduling to avoid resource contention
in the processor in the pipeline. By spacing the instructions of
timing-critical threads several cycles apart, stall-free execution
is achieved in the pipeline. As a consequence, the timing of
individual threads is repeatable regardless of the processor
state. To ensure overall processor utilization, PRET combines
multiple timing-critical threads with time-interleaving and a
customized instruction scheduling technique [2].
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Our insight in this paper is that such time-sensitive threads
can also be combined spatially within a processor word, in-
stead of temporally using interleaved instruction streams. The
advantage of spatially combining the threads (instead of using
time-based interleaving) is that we don’t need to adapt the
processor for interleaved instruction execution. To implement
a spatial arrangement of threads, we organize each thread as
a single-bit program, and execute the overall application as a
vectorized version of the single-bit program. We emphasize
that the proposed model goes beyond software bit-slicing [3],
which is strictly functional and ignores the control flow and
the state within each slice.

To simplify the development of single-bit programs, we
adopt a synchronous execution model. A single-bit program is
captured as a synchronous Finite State Machine with Datapath
(FSMD), and the execution of this program follows a sequen-
tial schedule of the bit-operations that define the FSMD. The
vectorized form of the single-bit program is then achieved with
bitwise instructions over the processor word. The vectorized
form is a parallel synchronous program. Since each thread
has its own state, each thread executes as an independent
FSMD. However, the instruction count for one iteration of
the overall program is constant and repeatable, and therefore
the execution time of these FSMD threads becomes repeatable
too. A prototype implementation of a synthesis tool starts from
a Verilog input specification and generates C code with inline
assembly optimized for an embedded target. We demonstrate
several useful examples of parallel synchronous programming
(PSP).

The outline of this contribution is as follows. Section II
develops the cardinal components of parallel synchronous
programming. Section III discusses an example and proposes
a code generation methodology. Section IV describes experi-
mental results. Section V concludes the paper.

II. PRELIMINARIES

We develop a software execution model that leads to
repeatable, data-independent timing. We first define what is
meant by repeatable and data-independent timing in software.
We then describe software bitslicing, which can offer such
timing characteristics for functions (i.e. straight-line stateless
programs). Next, we explain how to extend the semantics of
software bitslicing from straight-line programs to synchronous
FSMD. The result is a Parallel Synchronous Program (PSP).

A. Desired Timing Properties

Programs written as PSP aim for repeatable timing as well
as data-independent timing. The former is useful in real-time
embedded software design, while the latter is useful for secure
systems design. We motivate and differentiate each property.

Edwards et al. make a distinction between repeatable timing
and predictable timing [4]. Repeatable timing means that
every correct execution of a program uses the same timing.
Repeatable timing is desired as a property of the program, not
of the program running on a specific processor. Repeatable
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timing is needed in the context of real-time applications when
timing jitter is a concern. For example, when a physical sensor
must be read from software at a specific sample rate, then the
software needs to have repeatable timing. Jitter is typically
caused by resource contention and interrupts.

A second relevant domain for PSP is that of secure software.
In recent years, a rich collection of attacks have been found to
exploit the implementation characteristics of secure software
rather than the program logic itself. The best known of these
are side-channel attacks and micro-architectural attacks, which
rely on precise execution time measurement [5]. To thwart
these attacks, software with (secret-)data-independent timing
is needed. This is hard because modern micro-architectures
are rife with architectural contention and context-dependent
timing. Even if there are no obvious dependencies in the
program logic, there may still be hidden dependencies in
the micro-architecture. The cryptographic community is well
aware of the risk of timing-based side-channel leakage, leading
to the design of so-called constant-time software that avoids
data-dependencies in the program execution time [6]. The
resulting programs are not literally constant-time, but rather
they adopt data-independent control flow and memory access
patterns.

We argue that software written as a Parallel Synchronous
Program (PSP) provides repeatable timing as well as data-
independent timing. PSP achieves these properties by combin-
ing two concepts: software bitslicing and synchronous FSMD.
The following subsections introduce both.
B. Bitslicing

Software bitslicing was originally proposed for high
throughput software implementations [3]. In this model of
programming, a program is expanded into 1-bit (Boolean)
operations as follows. A k−bit variable with bits bk−1...b1b0
is distributed over k registers Rk−1...R1R0, such that register
Ri holds bit bi. An N−bit processor operates as an N−way
SIMD processor, processing N instances of the k−bit variable
in parallel, and storing these instances in k registers. Bitsliced
programs are Boolean programs written with bit-wise logic
operations. The rationale of bitslicing is that it guarantees
full utilization of the processor word-length. The absence of
control flow ensures that each iteration through a bitslice
function uses the same amount of instructions. In addition,
the absence of state (memory) in a bitslice function eliminates
cache timing effects. For this reason, bitslicing is often applied
in the context of developing programs that are constant-time
(in the cryptographic sense). However, software bitslicing is
insufficient as a general-purpose methodology for software.
Because bitslice functions do not have control flow, control
operations are typically emulated using non-bitsliced logic
surrounding bitsliced expressions. This prevents individual
slices from operating as independent threads of control. Bit-
slice programming essentially applies only to functions. The
management of the program state resides outside of the bitslice
logic.
C. Synchronous FSMD

We next describe how to introduce control flow and state
into software bitslicing. A Boolean (1-bit) program does not
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while true do
wait for clock tick;
outputs = eval(inputs, current state);
next state = update(inputs, current state);
current state = next state;

end

Fig. 1: Basic structure of a synchronous program
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the absence of state (memory) in a bitslice function eliminates
cache timing effects. For this reason, bitslicing is often applied
in the context of developing programs that are constant-time
(in the cryptographic sense). However, software bitslicing is
insufficient as a general-purpose methodology for software.
Because bitslice functions do not have control flow, control
operations are typically emulated using non-bitsliced logic
surrounding bitsliced expressions. This prevents individual
slices from operating as independent threads of control. Bit-
slice programming essentially applies only to functions. The
management of the program state resides outside of the bitslice
logic.
C. Synchronous FSMD

We next describe how to introduce control flow and state
into software bitslicing. A Boolean (1-bit) program does not
offer the concept of an address space or control flow in-
structions. Therefore, we propose introducing the control flow
through the intermediary of a synchronous FSMD. FSMDs
are common in digital hardware design, and they are routinely
applied in register-transfer-level designs. An FSMD is a syn-
chronous model of computation combining a datapath and a
finite-state controller. Computations are done on the datapath
under control of the FSM [7]. Each synchronous clock cycle,
the FSM computes a single state transition and selects one
or more operations in the datapath. The execution of datapath
operations depends on the current state of the FSM, and the
state transition conditions in the FSM depend on the current
state of the datapath. Conditional control flow is expressed
using dataflow-like semantics: the datapath will compute both
the true and false case of the control condition, and the correct
result will be selected using multiplexing.

To map a synchronous FSMD into software, we adopt a
synchronous execution model as shown in Figure 1. Every
loop in this program corresponds to a single clock cycle
of the synchronous FSMD model. The software awaits the
occurrence of a clock tick to read all inputs and evaluate all
outputs concurrently [8]. The eval() function in Figure 1
computes the FSM next-state as well as the datapath next-
state. The update() function adjusts the current state of the
FSM and the datapath to the next. State update is handled
synchronously: each state variable in the synchronous FSMD
is split into two copies, the current state and the next state.
This avoids race conditions, and ensures that the program will
always compute the same result regardless of the scheduling
of eval() and update(). The PSP is implemented as N
parallel copies of the program of Figure 1, where every thread
is tied to the same global clock tick, and each thread is a 1-bit
program expressed as a synchronous FSMD.

III. SYNTHESIS OF PARALLEL SYNCHRONOUS SOFTWARE

We next demonstrate how to create PSP. We first describe
the example PSP design of a parallel greatest common divisor
program, and next discuss a design flow that synthesizes PSP
software from a synchronous FSMD description.

a) Example: Figure 2a shows the outline of a 4-bit GCD
module. We express the functionality of the GCD algorithm
as an FSMD model. After a start control pulse, the module
reads two 4-bit inputs a and b, and repeatedly subtracts

Fig. 1: Basic structure of a synchronous program
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chronous model of computation combining a datapath and a
finite-state controller. Computations are done on the datapath
under control of the FSM [7]. Each synchronous clock cycle,
the FSM computes a single state transition and selects one
or more operations in the datapath. The execution of datapath
operations depends on the current state of the FSM, and the
state transition conditions in the FSM depend on the current
state of the datapath. Conditional control flow is expressed
using dataflow-like semantics: the datapath will compute both
the true and false case of the control condition, and the correct
result will be selected using multiplexing.

To map a synchronous FSMD into software, we adopt a
synchronous execution model as shown in Figure 1. Every
loop in this program corresponds to a single clock cycle
of the synchronous FSMD model. The software awaits the
occurrence of a clock tick to read all inputs and evaluate all
outputs concurrently [8]. The eval() function in Figure 1
computes the FSM next-state as well as the datapath next-
state. The update() function adjusts the current state of the
FSM and the datapath to the next. State update is handled
synchronously: each state variable in the synchronous FSMD
is split into two copies, the current state and the next state.
This avoids race conditions, and ensures that the program will
always compute the same result regardless of the scheduling
of eval() and update(). The PSP is implemented as N
parallel copies of the program of Figure 1, where every thread
is tied to the same global clock tick, and each thread is a 1-bit
program expressed as a synchronous FSMD.

III. SYNTHESIS OF PARALLEL SYNCHRONOUS SOFTWARE

We next demonstrate how to create PSP. We first describe
the example PSP design of a parallel greatest common divisor
program, and next discuss a design flow that synthesizes PSP
software from a synchronous FSMD description.

a) Example: Figure 2a shows the outline of a 4-bit GCD
module. We express the functionality of the GCD algorithm
as an FSMD model. After a start control pulse, the module
reads two 4-bit inputs a and b, and repeatedly subtracts
the smaller value from the larger value until they are equal.
A done pulse is generated to indicate completion of the
algorithm. A two-state control FSM drives the loading of two
4-bit registers a and b and their iterative computation.

A PSP version of the GCD algorithm for a 32-bit processor
executes 32 parallel copies of the GCD. We create this
software by converting the FSMD to a gate-level netlist using
logic synthesis. We target a generic technology with a logically
complete set of primitive functions (such as AND, OR and
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Fig. 2: GCD (a) Interface and (b) FSMD model

NOT) as well as a storage element such as a flip-flop (Figure
2b). The outcome of the logic synthesis is a netlist in terms
of logic elements. We then rewrite the netlist as a sequential
function by leveling the netlist according to data dependencies
from input to output. The logic cells are replaced by bit-
wise operations, and the flip-flops are replaced by static
(or global) variables. The resulting function declaration is as
follows.

gcd_PSP(int a[4], int b[4], // data input
int q[4], // data output
int start, // control in
int* done); // status out

Each invocation of this function corresponds to a single
synchronous iteration (one clock cycle of the synchronous
FSMD). An important difference between the circuit of Fig-
ure 2a and the PSP function in Figure 2b is the degree
of parallelism; The circuit in Figure 2 computes a single
GCD whereas the gcd_PSP function is a software design
that computes 32 concurrent GCD algorithms independently,
each with their own start and done bits. The inputs and
outputs of gdc_PSP are in bitsliced form. For example, a[2]
contains the second bit of 32 different inputs. Hence, a call to
gcd_PSP needs to transpose the input and output arguments.

b) An Automated Flow: We implemented a software
synthesis flow for PSP that starts from an FSMD description
in a Verilog program. An open-source Verilog synthesis tool
[9] converts the FSMD into a netlist in terms of generic
target technology for Boolean logic and a state element. The
target library for logic synthesis is adjusted in function of the
targeted processor. Table I demonstrates a sample mapping for
several embedded processors. The state elements (flip-flop) are
mapped to static variables.

The netlist is then converted to software as follows. The
netlist is topologically sorted, from the primary inputs and
flip-flop outputs to the primary outputs and the flip-flop inputs.
Next, each primitive gate is converted to a bitwise operation
which is either emulated in C or else added through inline
assembly. We rely on the C compiler to create a sequential
schedule for the gate netlist that will minimize the register
pressure on the processor. The following section applies the

TABLE I: Instructions targeted by PSP synthesis
processor suitable instructions for PSP

ARM Cortex-M4 AND, BIC, EOR, MOV, MVN, ORN, ORR
RISC-V AND, OR, XOR
MSP430 AND, BIC, BIS, XOR
AVR AND, COM, EOR, OR

TABLE II: Evaluated encryption ciphers and comparison of
performance of the PSP and normal implementations of them

cipher properties speed
(cycles/byte)

cipher block size key size rounds type PSP normal speedup
SIMON 128 128 68 Feistel 744.48 1315.63 1.7×
PRESENT 64 80 31 SPN 399.61 1069.06 2.6×
LED 64 64 32 SPN - - -
Midori 64 128 16 SPN 236.90 2233.38 9.4×

automated flow on several examples.
IV. EXPERIMENTAL RESULTS

We analyze our flow and the resulting performance us-
ing several examples. We target the 48 MHz ARM Cortex-
M4F processor, which comes with the Texas Instruments
MSP432P401R Launchpad and implements the ARMv7E-M
architecture. Table III summarizes our results. The numbers
reported on this table are compiled with size optimization
(-Os).

The first two examples, GCD and PWM, illustrate the
general-purpose nature of PSP as well as its real-time char-
acteristics. For these examples, Table III lists the number of
processor clock cycles per synchronous cycle. Computing 32
parallel GCD’s thus takes 382 clock cycles per synchronous
cycle, i.e., per iteration of the GCD while-loop.

The Pulse Width Modulator (PWM) generates pulses with
a fixed period while having different duty cycles. The PSP
version of this function in a 32-bit architecture can generate
32 pulses with varying cycles of duty at the same time. Our
implementation demonstrates a PWM with 8-bit resolution.
The synchronous cycle of our PWM uses 239 ARM cycles,
which provides a minimum pulse width of 239

48MHz = 4.98µs
and a period of 28 × 239

48MHz = 1, 275µs or 784Hz.
The second group of examples are taken from cryptography

[10]–[13]. Their characteristics are summarized in Table II.
SIMON 128/128 is a block cipher with the Feistel structure
and consists of 68 calls to the same round encryption routine.
We used two different realizations of SIMON, the first one
with a bit-parallel data-path and the second one with a
bit-serial data-path [14]. In traditional hardware design, bit-
serial methodologies are used to minimize area footprint at
the expense of throughput. In the PSP execution model of
software, we expect the lower gate-count of a bit-serial input
specification to translate to fewer bit-wise operations in the
program, and hence to a smaller code footprint. Further, we
expect the bit-serial PSP design to have a lower throughput
due to the lower computational effort done per synchronous
clock cycle.

The first part of Table III shows that the models are small
enough to fit on a simple embedded architecture. Furthermore,
we observe, similar to their hardware designs, the bit-serial
implementation of SIMON is 20% smaller than its bit-parallel
counterpart in code size, whereas the bit-parallel version is
40× faster and has a higher throughput than the bit-serial ver-
sion. The second part of Table III shows the overhead of data
movements. The overhead values reported are calculated as the
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TABLE III: Evaluation of parallel synchronous examples on 48MHz Cortex-M4F processor

performance and cost instructions breakdown

example number of cycles
(32 parallel runs)

throughput
(Kbps)

code size
(Kb) AND ORR BIC EOR ORN MVN MOV STR LDR overhead

GCD 382 - 11.88 28 34 6 9 7 8 21 28 73 54.46%
PWM 239 - 11.82 29 20 11 6 2 8 0 23 39 44.93%
SIMON bit-parallel 381,175 515.79 23.40 907 470 180 367 27 4 18 1033 2002 60.96%
SIMON bit-serial 15,370,190 12.79 18.81 854 313 23 16 19 13 7 593 686 50.95%
PRESENT 102,301 960.93 17.79 226 282 60 119 70 32 24 454 861 62.92%
LED 139,949 702.43 20.29 379 301 80 395 60 60 138 556 1258 60.49%
Midori 60,646 1620.95 18.28 336 265 60 242 124 78 91 438 930 56.90%
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Fig. 3: Runtime of normal and PSP implementations of the
GCD algorithm on 1000 random inputs.
number of move instructions (MOV, STR, LDR) divided by the
total number of instructions. Moving the data takes about 45-
60% of the entire instructions, which is expected for a straight-
line program. For comparison, the data-moving overhead for a
regular (non-bitsliced) implementation of SIMON on NEON
in the SUPERCOP benchmark [15] is 34%.

We compare our PSP designs of cryptographic ciphers
with their available normal implementations in Table II. In
the CRYPTREC lightweight project [16], SIMON-128/128
and Midori-64 ciphers are implemented in software for the
RL78 16-bit microcontroller. The throughputs of the PSP
implementation of these ciphers in this work are respectively
almost 1.7× and 9.4× higher. PRESENT-80 is evaluated in
the FELICS [17] project on ARM Cortex-M3. Even though
the implementation of PRESENT-80 in FELICS uses pre-
computed keys, still the runtime of our PSP implementation
of this cipher plus its key generation is approximately 2.6×
smaller. Furthermore, to show the repeatable-timing property
of PSP, we compare the runtime of the PSP and non-PSP
implementations of GCD calculator for 1000 random inputs.
As shown in Figure 3, the PSP implementation has a quantized
runtime (with steps of length the runtime of one PSP function)
whereas the runtime of the normal GCD function varies with
an average of 580.475 and a standard deviation of 1969.29
clock cycles.

V. CONCLUSION

We presented parallel synchronous programming as a high-
throughput, fixed-time model of programming, which is ben-
eficial in safety-critical applications. We introduced an auto-
mated method for PSP code generation that can be imple-
mented without any dependency on commercial tools. The
PSP generation can be customized for the target processor
to have a better performance by defining custom libraries.
Finally, through examples and discussions, we demonstrated
the potential of parallel synchronous software.
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