
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Kleijn J, Koutny M, Pietkiewicz-Koutny M. Synthesis of Petri Nets with Whole-

place Operations and Localities. In: International Colloquium on Theoretical

Aspects of Computing (ICTAC). 2016, Taipei, Taiwan: Springer.

Copyright:

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46750-4_7

DOI link to article:

Date deposited:

06/12/2016

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=227712
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=227712
http://dx.doi.org/10.1007/978-3-319-46750-4_7

Synthesis of Petri Nets with
Whole-place Operations and Localities

Jetty Kleijn1, Maciej Koutny2, and Marta Pietkiewicz-Koutny2

1 LIACS, Leiden University, PO Box 9512, 2300 RA, The Netherlands
2 School of Computing Science, Newcastle University, NE1 7RU, UK

Abstract. Synthesising systems from behavioural specifications is an
attractive way of constructing implementations which are correct-by-
design and thus requiring no costly validation efforts. In this paper, sys-
tems are modelled by Petri nets and the behavioural specifications are
provided in the form of step transition systems, where arcs are labelled
by multisets of executed actions. We focus on the problem of synthesis-
ing Petri nets with whole-place operations and localities (wpol-nets),
which are a class of Petri nets powerful enough to express a wide range
of system behaviours, including inhibition of actions, resetting of local
states, and locally maximal executions.
The synthesis problem was solved for several specific net classes and later
a general approach was developed within the framework of τ -nets. In this
paper, we follow the synthesis techniques introduced for τ -nets that are
based on the notion of a region of a transition system, which we suitably
adapt to work for wpol-nets.
Keywords: concurrency, theory of regions, transition system, synthesis
problem, Petri net, step semantics, locality, whole-place operations net

1 Introduction

The starting point of a scientific investigation that aims at describing and ana-
lysing a dynamic system or an experiment is very often a record of a series of
observations as depicted, for example, by a graph like that in Figure 1(a). The
observation graph captures important information about the system, e.g., the
fact that it can be in three different states in which the quantity of some crucial
resource ξ has been measured to be equal to 2, 1, or 0 units. Other relevant
information is that the moves between these three states result from executions
of three distinct actions: A, B, and C. Moreover, these actions can sometimes be
performed simultaneously (for example, B and C), as well as individually (for
example, A).

Suppose now that one would like to construct a formal system model match-
ing the observations depicted by the graph in Figure 1(a). Such a model could
then be used for further analyses of the real-life system using suitable techniques
and tools. Since the observation graph conveys a mix of state and action infor-
mation, a natural way of proceeding might be to develop a Petri net model,
as Petri nets deal explicitly with both state and action based issues and are

2 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

ξ = 2 ξ = 1

ξ = 0

B&C

B
A

A

(a)

2
init

1

0

{b, c}

{b}
{a}

{a}

(b)

Fig. 1. A record of real-life observations of a system (a); and its step transition system
representation (b).

able to express different relationships between actions and/or states: causality,
simultaneity, and competing for resources.

To construct a Petri net model for the observation graph in Figure 1(a), we
first convert it into a slightly more formal representation in terms of a transition
system as shown in Figure 1(b) where the actions A, B, and C are respectively
represented by net-transitions a, b, and c, the arcs are labelled by sets of executed
net-transitions, and the nodes are labelled by integers representing the volume
of the crucial resource ξ. Moreover, one node is designated as the initial state.
A key idea is that the quantity of the crucial resource can be represented by
a specific place (local state) p1 in a Petri net model to be constructed, and
the overall aim of the synthesis process is to build a Petri net whose reachability
graph is isomorphic to the graph in Figure 1(b), and the tokens assigned to place
p1 in different markings (global states) are as specified by the integers labelling
the nodes.

It is natural to aim at a model as simple as possible, and so one might attempt
to synthesise from Figure 1(b) a Place/Transition net (pt-net). since these are
the simplest Petri net model allowing one to represent integer-valued quantities.
However, such an attempt would fail, as the transition system in Figure 1(b)
does not represent the behaviour of any pt-net. The first reason is that to be
so it should have contained two more arcs, labelled by {b} and {c}, outgoing
from the initial state. Another problem is that it contains two {a}-labelled arcs
coming to the same (initial) state from two distinct states. Since pt-nets are
backward-deterministic, they would never produce this kind of behaviour.

The Petri net model we will use to construct a suitable formal model for
behavioural descriptions like that in Figure 1(b), will be nets with whole-place
operations (i.e., the weight of an arc may depend on the current total number of
tokens in a subset of places) and localities (wpol-nets). Grouping net-transitions
in different localities and introducing an execution semantics that allows only
maximal multisets of enabled net-transitions to ‘fire’ within a given locality
helps to overcome the first problem mentioned above. Allowing the weights of
connections between places and transitions to depend on the current marking
and, in consequence, introducing whole-place operations addresses the second
problem concerning the backward non-deterministic behaviour.

Synthesis of Petri Nets with Whole-place Operations and Localities 3

The synthesis of a wpol-net from a transition system specification will be
based on the notion of a region of a transition system [10, 3, 2] suitably adapted to
wpol-nets and their locally maximal execution semantics, a special kind of step
firing policy (see [13, 7]). This paper shows for the first time how to synthesise a
net, whose execution depends dynamically on the current marking (distribution
of ‘resources’), under an additional constraint in the form of a step firing policy.

Synthesising systems from behavioural specifications is an attractive way of
constructing implementations which are correct-by-design and thus requiring
no costly validation efforts. The synthesis problem was solved for many spe-
cific classes of nets, e.g., [15, 14, 4, 17, 8, 5, 16]. Later, a general approach was
developed within the framework of τ -nets that takes a net-type as a parame-
ter [3]. In this paper, we focus on the problem of synthesising wpol-nets from
behavioural specifications provided by step transition systems. wpol-nets are
nets with whole-place operations (wpo-nets) extended with transition localities.
wpo-nets in turn are derived from transfer/reset nets [9] and affine nets [11],
extending pt-nets with whole-place operations [1]. A solution to the synthesis
problem for wpo-nets was outlined in [12], and we use some of the ideas intro-
duced there in this paper, at the same time dealing with the additional constraint
of the locally maximal execution semantics.

The paper is organised as follows. The next section recalls some basic notions
concerning transition systems, pt-nets, and τ -nets. Section 3 introduces wpo-
nets and wpol-nets, and Sections 4 and 5 present a solution to the synthesis
problem for wpol-nets, treating them as a special kind of τ -nets. The paper
ends with a brief conclusion that outlines some directions for future work.

2 Preliminaries

An abelian monoid is a set S with a commutative and associative binary oper-
ation +, and and an identity element 0. The result of composing n copies of
s ∈ S is denoted by n · s. and so 0 = 0 · s. Two examples of abelian monoids
are: (i) SPT = N× N, where N are all non-negative integers, with the pointwise
arithmetic addition operation and 0 = (0, 0) and (ii) the free abelian monoid
〈T 〉 generated by a set T . SPT will represent (weighted) arcs between places and
transitions in pt-nets, whereas 〈T 〉 will represent steps (multisets of transitions)
of nets with transition set T . The free abelian monoid 〈T 〉 can be seen as the set
of all finite multisets over T , e.g., aab = aba = baa = {a, a, b}. We use α, β, γ, . . .
to range over the elements of 〈T 〉. For t ∈ T and α ∈ 〈T 〉, α(t) denotes the
multiplicity of t in α, and so α =

∑
t∈T α(t) · t. Then t ∈ α whenever α(t) > 0,

and α ≤ β whenever α(t) ≤ β(t) for all t ∈ T . The size of α is |α| =
∑
t∈T α(t).

Transition systems. A (deterministic) transition system 〈Q,S, δ〉 over an abelian
monoid S consists of a set of states Q and a partial transition function3 δ :
Q× S→ Q such that δ(q,0) = q for all q ∈ Q. An initialised transition system
〈Q,S, δ, q0〉 is a transition system with an initial state q0 ∈ Q such that each

3 Transition functions are not related to (Petri) net-transitions.

4 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

p1

(a)

t1 t2
2

M0

t1 , t2 {t2 , t2 , t2}
{t1 , t2}, {t2 , t2}

t1 , t2 t2

{t2, t2}
(b)

Fig. 2. A pt-net (a); and its concurrent reachability graph (b).

state q ∈ Q is reachable, i.e., there are s1, . . . , sn and q1, . . . , qn = q (n ≥ 0) with
δ(qi−1, si) = qi, for 1 ≤ i ≤ n. For every state q of a transition system TS , we
denote by enbTS (q) the set of all s which are enabled at q, i.e., δ(q, s) is defined.
TS is bounded if enbTS (q) is finite for every state q of TS . Moreover, such a TS
is finite if it has finitely many states. In diagrams, 0-labelled arcs are omitted
and singleton steps written without brackets.

Initialised transition systems T over free abelian monoids — called step tran-
sition systems or concurrent reachability graphs — represent behaviours of Petri
nets. Net-types are non-initialised transition systems τ over abelian monoids
used to define various classes of nets.

Let T = 〈Q, 〈T 〉, δ, q0〉 and T ′ = 〈Q′, 〈T 〉, δ′, q′0〉 be step transition systems.
T and T ′ are isomorphic, T ∼= T ′, if there is a bijection f with f(q0) = q′0 and
δ(q, α) = q′ ⇔ δ′(f(q), α) = f(q′), for all q, q′ ∈ Q and α ∈ 〈T 〉.

Place/Transition nets. A Place/Transition net (pt-net, for short) is a tuple
N = 〈P, T,W,M0〉, where P and T are disjoint sets of places and transitions,
W : (P × T) ∪ (T × P) → N is a weight function, and M0 is an initial marking
belonging to the set of markings defined as mappings from P to N. We use
the standard conventions concerning the graphical representation of pt-nets, as
illustrated in Figure 2(a).

For all p ∈ P and α ∈ 〈T 〉, we denote W (p, α) =
∑
t∈T α(t) ·W (p, t) and

W (α, p) =
∑
t∈T α(t) · W (t, p). Then a step α ∈ 〈T 〉 is enabled and may be

fired at a marking M if, for every p ∈ P , M(p) ≥ W (p, α). We denote this by
α ∈ enbN (M). Firing such a step leads to the marking M ′, for every p ∈ P
defined by M ′(p) = M(p) − W (p, α) + W (α, p). We denote this by M [α〉M ′.
The concurrent reachability graph CRG(N) of N is the step transition system
formed by firing inductively from M0 all possible enabled steps, i.e., CRG(N) =
〈[M0〉, 〈T 〉, δ,M0〉 where

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . .Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi}

is the set of reachable markings and δ(M,α) = M ′ iff M [α〉M ′. Figure 2(b)
shows the concurrent reachability graph of the pt-net in Figure 2(a).

Synthesis of Petri Nets with Whole-place Operations and Localities 5

Petri nets defined by net-types. A net-type τ = 〈Q,S, ∆〉 is a parameter in the
definition of τ -nets. It specifies the values (markings) that can be stored in places
(Q), the operations and tests (inscriptions on the arcs) that a net-transition may
perform on these values (S), and the enabling condition and the newly generated
values for steps of transitions (∆).

A τ -net is a tuple N = 〈P, T, F,M0〉, where P and T are respectively disjoint
sets of places and transitions, F : (P × T)→ S is a flow mapping, and M0 is an
initial marking belonging to the set of markings defined as mappings from P to
Q. N is finite if both P and T are finite.

For all p ∈ P and α ∈ 〈T 〉, we denote F (p, α) =
∑
t∈T α(t) · F (p, t). Then

a step α ∈ 〈T 〉 is enabled at a marking M if, for every p ∈ P , F (p, α) ∈
enbτ (M(p)). We denote this by α ∈ enbN (M). Firing such a step produces the
marking M ′, for every p ∈ P defined by M ′(p) = ∆(M(p), F (p, α)). We denote
this by M [α〉M ′, and then define the concurrent reachability graph CRG(N) of
N as the step transition system formed by firing inductively from M0 all possible
enabled steps.

As in [3, 7], it is possible to encode a pt-net N = 〈P, T,W,M0〉 as a τ -
net without affecting its concurrent reachability graph, It is enough to take
F (p, t) = (W (p, t),W (t, p)). Thus F (p, t) = (i, o) means that i is the weight of
the arc from p to t, and o the weight of the arc in the opposite direction. With
this encoding, N becomes a τPT -net where τPT = 〈N,SPT , ∆PT 〉 is an infinite
net-type over SPT defined earlier, with ∆PT given by ∆PT (n, (i, o)) = n− i+ o
provided that n ≥ i (see Figure 5(a)).

3 Nets with whole-place operations

Assuming an ordering of places, markings can be represented as vectors. The
i-th component of a vector x is denoted by x(i). For x = (x1, . . . , xn) and y =
(y1, . . . , yn), (x, 1) = (x1, . . . , xn, 1) and x⊗y = x1 · y1 + · · ·+xn · yn. Moreover,
⊗ will also denote the multiplication of two-dimensional arrays.

A net with whole-place operations (wpo-net) is a tuple N = 〈P, T,W,m0〉,
where P = {p1, . . . , pn} is a finite set of ordered places, T is a finite set of
transitions disjoint with P , W : (P×T)∪(T×P)→ Nn+1 is a whole-place weight
function, and m0 is an initial marking belonging to the set Nn of markings.

For p ∈ P and α ∈ 〈T 〉, W (p, α) =
∑
t∈T α(t) · W (p, t) and W (α, p) =∑

t∈T α(t) ·W (t, p). Then α is enabled at a marking m if, for every p ∈ P ,

m(p) ≥ (m, 1)⊗W (p, α) . (1)

We denote this by α ∈ enbN (m). An enabled α can be fired leading to a new
marking such that, for every p ∈ P ,

m′(p) = m(p) + (m, 1)⊗ (W (α, p)−W (p, α)) . (2)

We denote this by m[α〉m′, and define the concurrent reachability graph CRG(N)
of N as one built by firing inductively from m0 all possible enabled steps.

6 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

(a)
p1

p4

p3p2

t1 t2p3 p1
2 ·p2

(b)
m0 m1 m2 m3 m4 m5

t2 t1 t2 t1 t2

(c)


W (p1, t1)
W (p2, t1)
W (p3, t1)
W (p4, t1)

 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1



W (t1, p1)
W (t1, p2)
W (t1, p3)
W (t1, p4)

 =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



W (p1, t2)
W (p2, t2)
W (p3, t2)
W (p4, t2)

 =


0 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 0 1



W (t2, p1)
W (t2, p2)
W (t2, p3)
W (t2, p4)

 =


0 0 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 0 0



Fig. 3. A wpo-net generating the first six Fibonacci numbers (a); its concurrent reach-
ability graph (b); and the weight function (c).

It is convenient to specify the weight function using arc annotations which
are linear expressions involving the pi’s. For example, if n = 3 then W (p3, t) =
(3, 0, 1, 5) can be written down as 3 · p1 + p3 + 5. A place pj (1 ≤ j ≤ n) is
a whole-place if W (p, t)(j) > 0 or W (t, p)(j) > 0, for some p ∈ P and t ∈ T .
In such a case we also write pj p. Note that it may happen that p = pj ;
for example, if W (p1, t) = p1. This is useful, e.g., for simulating inhibitor arcs
(see W (p2, t2) = 2 · p2 in Figure 3(a)). In diagrams, arcs with ‘0’ annotation are
dropped, and ‘1’ annotations are not shown.

Figure 3 shows a modified example, taken from [9], of a wpo-net for the
generation of the first six Fibonacci numbers. Its markings are as follows: m0 =
(1, 0, 0, 5), m1 = (1, 1,1, 4), m2 = (2, 0, 1, 3), m3 = (2, 1,3, 2), m4 = (5, 0, 3, 1),
and m5 = (5, 1,8, 0). Hence, the markings of places p1 and p3, in alterna-
tion, represent the first six Fibonacci numbers (written above in bold). As
W (t1, p1)(3) = 1 > 0, W (t2, p3)(1) = 1 > 0 and W (p2, t2)(2) = 2 > 0, the
net has three whole-places, p1, p2 and p3 with p3 p1, p1 p3 and p2 p2.
Moreover, p4, acting as a simple counting place, is a non-whole-place.

A wpo-net with localities (or wpol-net) is a tuple N = 〈P, T,W,m0, `〉 such
that N ′ = 〈P, T,W,m0〉 is a wpo-net, and ` : T → {1, 2, . . . , l}, where l ≥ 1, is
the locality mapping of N and {1, 2, . . . , l} are the localities of N . In diagrams,
nodes representing transitions assigned the same locality are shaded in the same
way, as illustratated in Figure 4(a) for transitions b and c. Finally N inherits
the notations introduced for N ′.

Synthesis of Petri Nets with Whole-place Operations and Localities 7

p4p3

p2 p1

(a)

a b

c

p1

2

M0

M1

M2{b, c} b

a

a

(b)

M0 {b, c} b

bcb

b

c

c
a

a

a

{b, c}

(c)

Fig. 4. A wpol-net (a); its concurrent reachability graph (b); and the concurrent reach-
ability graph of the underlying wpo-net (c).

wpol-nets are executed under the locally maximal step firing policy. A step
α ∈ 〈T 〉 is resource enabled at a marking m if, for every p ∈ P , the inequality (1)
is satisfied. Such a step is then control enabled if there is no t ∈ T such that
there exists a transition t′ ∈ α with `(t) = `(t′) and the step t + α is resource
enabled at m. A control enabled step α can be then fired leading to the marking
m′, for every p ∈ P given by the formula (2).

In general (see [7]), a step firing policy is given by a control disabled steps
mapping cds : 2〈T 〉 → 2〈T 〉\{0} that, for a set of resource enabled steps at
some reachable marking, returns the set of steps disabled by this policy at that
marking. For the locally maximal step firing policy this mapping will be denoted
by cds lmax and we will identify this policy with its cds lmax mapping:4

cds lmax(X) = {α ∈ X \ {0} | ∃β ∈ X : `(β) ⊆ `(α) ∧ α ≤ β ∧ α 6= β} .

Step firing policies are a means of controlling and constraining the potentially
huge number of execution paths generated by a concurrent system. The concur-
rent reachability graph of a net executed under a step firing policy contains only
the control enabled steps (see Figure 4(b, c)).

4 Synthesis of WPOL-nets

The net synthesis problem we consider here aims to devise a procedure which
constructs a wpol-net with a concurrent reachability graph (reflecting the use

4 Control disabled steps mappings are defined in [7] in the context of τ -nets, and this
is how cds lmax will be used in Section 4.

8 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

of the locally maximal step firing policy) that is isomorphic to a given step
transition system T = 〈Q, 〈T 〉, δ, q0〉.

The synthesis problem was first investigated in the literature for individual
classes of Petri nets, and later a general approach was developed for τ -nets,
where each class of nets is represented by its own net-type τ . The key aspect
of any solution to the synthesis problems is to discover all the necessary net
places from T and their connections with transitions of T from τ . All necessary
information needed to construct a place in a net that realises T is encapsulated
in the notion of a region, which depends on parameter τ . Before we give the
definition of a region relevant to our problem, we need to realise that for nets
with whole-place operations, discovering places for the net to be constructed
is more complicated than in previously considered synthesis problems (except
for [12]), as the markings of places dynamically depend on the markings of
other places. Therefore, instead of discovering individual places of the net to be
constructed, one needs a procedure to discover clusters of related places, each
cluster containing places that depend only on one another. We will therefore
re-define wpol-nets as nets containing clusters of — at most k — related places
(k-wpol-nets) and express them as τ -nets, so that we can synthesise them as
τ -nets, using the general framework of net synthesis theory.

4.1 k-WPOL-nets and their net-type

wpol-nets allow arc weights to depend on the current marking of all places. This
may be too generous, e.g., in the case of systems where places are distributed
among different neighbourhoods, forming the scopes where their markings can
influence the token game. One way of capturing this is to restrict the number of
places which can influence arc weights.

A k-restricted wpol-net (k-wpol-net, k ≥ 1) is a wpol-net N for which
there is a partition P1]· · ·]Pr of the set of places such that each Pi has at most
k places and, for all p ∈ Pi and p′ /∈ Pi, p 6 p′ 6 p. In other words, the places
can be partitioned into clusters of bounded size so that there is no exchange of
whole-place marking information between different clusters.

Although k-wpol-nets (as well as wpol-nets) are not τ -nets in the sense
of the original definition as the change of a marking of a place does not only
depend on its marking and the connections to the transitions, they still fit the
ideas behind the definition of τ -nets. All we need to do is to define a suitably
extended net-type capturing the behaviour of sets of k places rather than the
behaviour of single places. More precisely, for each k ≥ 1, the k-wpol-net-type
is a transition system 5:

τk = 〈Nk, (Nk+1)k × (Nk+1)k, ∆k〉

where
∆k : Nk × ((Nk+1)k × (Nk+1)k)→ Nk

5 As will be explained later, the same net-type can be defined for a given kind of nets
to be executed without any specific policy or with some policy. Therefore, we can
re-use here the τkwpo net-type introduced in [12], which coincides with τk.

Synthesis of Petri Nets with Whole-place Operations and Localities 9

(a)

0 1 2

(0 , 2)

(2 , 0)

(0 , 1)

(1 , 0)

(0 , 1)

(1 , 0)

(1 , 2)

(2 , 1)

(b)

(0 , 3)

(1 , 3) (2 , 3) (3 , 3)

(4 , 3)(2 , 4)

(2 , 2)

A B

CD E

F

A =

 0 0
0 0
1 0

 ,
 0 0

0 0
0 0

 B =

 0 0
0 0
0 0

 ,
 0 0

0 0
1 0

 C =

 0 0
0 0
0 0

 ,
 0 0

0 0
0 1


D =

 1 0
0 0
0 0

 ,
 0 0

0 0
0 0

 E =

 0 0
0 0
0 0

 ,
 1 0

0 0
0 0

 F =

 0 0
0 0
0 1

 ,
 0 0

0 0
0 0



Fig. 5. Fragments of two infinite net-types: τpt (a); and τ2 (b).

is a partial function such that ∆k(x, (X,Y)) is defined if x ≥ (x, 1)⊗X and, if
that is the case,

∆k(x, (X,Y)) = x + (x, 1)⊗ (Y −X) .

Note that here we treat tuples of vectors in (Nk+1)k as (k + 1)× k arrays.

Having defined a net-type τk, a τk-net is a tuple N = 〈P, T, F,M0, `〉, where
P = {P1, . . . , Pr} is a set of disjoint sets of implicitly ordered places comprising
exactly k places each, T is a set of transitions being different from the places in
the sets of P, F : (P × T) → (Nk+1)k × (Nk+1)k is a flow mapping, M0 is an
initial marking belonging to the set of markings defined as mappings from P to
Nk, and ` is a locality mapping for the transitions in T .

For all Pi ∈ P and α ∈ 〈T 〉, we set F (Pi, α) =
∑
t∈T α(t) · F (Pi, t). Then a

step α ∈ 〈T 〉 is resource enabled at a marking M if, for every Pi ∈ P, F (Pi, α) ∈
enbτk(M(Pi)). We denote this by α ∈ enbN (M). Firing such a step (for now
we ignore the firing policy) produces the marking M ′, for every Pi ∈ P, defined
by M ′(Pi) = ∆k(M(Pi), F (Pi, α)). We denote this by M [α〉M ′, and then define
the concurrent reachability graph CRG(N) of N as the step transition system
formed by firing inductively from M0 all possible enabled steps.

10 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

However, we want to execute N under the locally maximal step firing policy.
The related control disabled steps mapping cds lmax, when applied to N , would
control disable at each marking M all the resource enabled steps that belong to
cds lmax(enbN (M)). That is,

enbN ,cdslmax
(M) = enbN (M) \ cds lmax(enbN (M)) (3)

is the set of steps enabled at a reachable marking M under cds lmax. We then use
CRGcdslmax

(N) to denote the induced reachable restriction of CRG(N), which
may be finite even for an infinite CRG(N).

4.2 Synthesising k-WPOL-nets as τk-nets

First we need to express a k-wpol-net N = 〈P, T,W,m0, `〉, with set of places
P = {p1, . . . , pn} and clusters P1, . . . , Pr, as a τk-net. Suppose that each set Pi
in the partition has exactly k places. (If any of the sets Pi has m < k places,
we can always add to it k − m fresh dummy empty places disconnected from
the original transitions and places.) We then define N̂ = 〈P, T, F,M0, `〉 so that
P = {P1, . . . , Pr} and, for all Pi ∈ P and t ∈ T : (i) F (Pi, t) = (X,Y) where X
and Y are arrays respectively obtained from the arrays [W (p1, t), . . . ,W (pn, t)]
and [W (t, p1), . . . ,W (t, pn)], where W (·, ·) are column vectors, by deleting the
rows and columns corresponding to the places in P \ Pi; and (ii) M0(Pi) is
obtained from m0 by deleting the entries corresponding to the places in P \ Pi.

It is straightforward to check that the concurrent reachability graphs of N
and N̂ are isomorphic (when we execute both nets under the cds lmax policy or
ignore the policy in both nets). Conversely, one can transform any τk-net into
an equivalent k-wpol-net, and trivially each wpol-net is a |P |-wpol-net.

We can turn the wpo-net of Figure 3(a) into a wpol-net with locality map-
ping ` such that `(t1) = 1 and `(t2) = 2. The result can be represented as

a τ2-net N̂ = 〈{P1, P2}, {t1, t2}, F,M0, `〉, P1 = {p1, p3} and P2 = {p2, p4},
M0(P1) = (1, 0), M0(P2) = (0, 5) and:

F (P1, t1) =

0 0
0 0
0 0

 ,
0 0

1 0
0 0

 F (P1, t2) =

0 0
0 0
0 0

 ,
0 1

0 0
0 0



F (P2, t1) =

0 0
0 0
1 1

 ,
0 0

0 0
0 0

 F (P2, t2) =

2 0
0 0
0 1

 ,
0 0

0 0
1 0


The above discussion implies that k-wpol-net synthesis can be reduced to

the following two problems of τk-net synthesis.

Problem 1 (feasibility) Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transition
system, k be a positive integer, and ` be a locality mapping for T .
Provide necessary and sufficient conditions for T to be realised by some τk-net,
N̂ , executed under the cds lmax policy defined by ` (T ∼= CRGcdslmax

(N̂)).

Synthesis of Petri Nets with Whole-place Operations and Localities 11

Problem 2 (effective construction) Let T = 〈Q, 〈T 〉, δ, q0〉 be a finite step
transition system, k be a positive integer, and ` be a locality mapping for T .
Decide whether there is a finite τk-net realising T when executed under the
cds lmax policy defined by `. Moreover, if the answer is positive construct such a
τk-net.

To address Problem 1, we define a τk-region of T = 〈Q, 〈T 〉, δ, q0〉 as a pair:

〈σ : Q→ Nk, η : T → (Nk+1)k × (Nk+1)k〉

such that, for all q ∈ Q and α ∈ enbT (q),

η(α) ∈ enbτk(σ(q)) and ∆k(σ(q), η(α)) = σ(δ(q, α)) ,

where η(α) =
∑
t∈T α(t) · η(t). Moreover, for every state q of Q, we denote by

enbT ,τk(q) the set of all steps α such that η(α) ∈ enbτk(σ(q)), for all τk-regions
〈σ, η〉 of T . Hence for every state q of T , we have

enbT (q) ⊆ enbT ,τk(q). (4)

In the context of the synthesis problem, a τk-region represents a cluster
of places whose local states (in τk) are consistent with the global states (in
T). Then, to deliver a realisation of T , one needs to find enough τk-regions to

construct a τk-net N̂ satisfying T ∼= CRGcdslmax
(N̂). The need for the existence

of such τk-regions is dictated by the following two regional axioms:

Axiom 1 (state separation) For any pair of states q 6= r of T , there is a
τk-region 〈σ, η〉 of T such that σ(q) 6= σ(r).

Axiom 2 (forward closure) For every state q of T , enbT (q) = enbT ,τk(q) \
cds lmax(enbT ,τk(q)).

The above axioms provide a full characterisation of realisable transition sys-
tems. The first axiom links the states of T with markings of the net to be
constructed, making sure that a difference between two states of T is reflected
in a different number of tokens held in the two markings of the net representing
the said states. The second axiom means that, for every state q and every step
α in 〈T 〉 \ enbT (q), we have either of the following:

1. There is a τk-region 〈σ, η〉 of T such that η(α) /∈ enbτk(σ(q)) (the step α is
not region enabled) or

2. α ∈ cds lmax(enbT ,τk(q)) (the step α is not control enabled, meaning that it
is rejected by the cds lmax policy).

Note that when a τk-net under cds lmax realises T , every cluster of places of the
net still determines a corresponding τk-region of the transition system, without
taking cds lmax into account. This is why the same kind of regions would be used
if we are asked to synthesise a wpo-net (rather than a wpol-net).

Before we prove the main result of the paper that gives the solution to Prob-
lem 1, we need two auxiliary results. The first one presents an important property
enjoyed by control disabled steps mappings, and in particular by cds lmax.

12 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

Proposition 1. Let X be a finite set of resource enabled steps at some reachable
marking of some τk-net and Y be its subset (Y ⊆ X). Then:

X \ cds lmax(X) ⊆ Y =⇒ cds lmax(X) ∩ Y ⊆ cds lmax(Y).

Proof. Let α ∈ cds lmax(X) ∩ Y . We need to show that α ∈ cds lmax(Y). From
α ∈ cds lmax(X) it follows that there is β ∈ X such that `(β) ⊆ `(α) and α < β.
We now consider two cases:

Case 1: β ∈ Y . Then α ∈ cds lmax(Y).
Case 2: β ∈ X \ Y . Then, by X \ cds lmax(X) ⊆ Y , we have that β ∈

cds lmax(X). Hence, there is γ ∈ X such that `(γ) ⊆ `(β) and β < γ. If γ ∈ Y we
can continue as in case 1, with γ replacing β and obtain α ∈ cds lmax(Y) due to
the transitivity of ⊆ and <. Otherwise, we continue as in case 2 with γ replacing
β and so γ ∈ cds lmax(X). Then we can repeat the same argument. Now, because
X is a finite set, one must find sooner or later in this iteration some step φ ∈ Y
such that case 1 holds with φ replacing β, and so α ∈ cds lmax(Y). ut

The second auxiliary result associates a region of a step transition system
T with a particular cluster of places of the net to be synthesised from T . The
mappings σ and η hold all the information about the associated cluster of places,
their connections to transitions in the net and their markings for every state of
the net. In fact, for the mapping σ, if we know η, it is enough to know its value
for the initial state q0 to uniquely compute the values for the remaining states
of T .

Proposition 2. Let T ∼= CRGcdslmax
(N̂) for a τk-net N̂ = 〈P, T, F,M0, `〉.

Then, for each cluster Pi ∈ P (i = 1, . . . , r), there is exactly one τk-region 〈σ, η〉
of T such that σ(q0) = M0(Pi) and η(α) = F (Pi, α) for all steps α ∈ 〈T 〉.

Proof. All step transition systems we consider in this paper are deterministic.
Observe that both δ and ∆k are functions rather than relations. Also observe
that T is reachable (i.e., each of its states is reachable from the initial one).
Hence, σ(q0) and η : 〈T 〉 → (Nk+1)k × (Nk+1)k determine at most one map
σ : Q → Nk such that ∆k(σ(q), η(α)) = σ(δ(q, α)) whenever α ∈ enbT (q), and
therefore they determine at most one τk-region of T .

We now define the map σ. Let Pi ∈ P (i = 1, . . . , r). By assumption

T ∼= CRGcdslmax
(N̂), and CRGcdslmax

(N̂) is a sub-graph of CRG(N̂). Let
σ : Q → Nk be defined as follows: σ(q) = f(q)(Pi), where f(q) is the image

of q through the isomorphism ∼= (f(q) is a marking of N̂). Then, for every

α ∈ enbT (q), we have, from T ∼= CRGcdslmax
(N̂), that α is resource enabled at

f(q) in N̂ , and hence F (Pi, α) ∈ enbτk(f(q)(Pi)) and the marking of Pi after α
is fired is f(δ(q, α))(Pi) = ∆k(f(q)(Pi), F (Pi, α)). Therefore, we have, for σ de-
fined as above and η(α) = F (Pi, α) (as stated in the assumptions), that η(α) ∈
enbτk(σ(q)) and σ(δ(q, α)) = ∆k(σ(q), η(α)). Hence 〈σ, η〉, with σ defined as
above, is a τk-region of T associated with Pi. Also, σ(q0) = f(q0)(Pi) = M0(Pi)
as ∼= is an isomorphism preserving the initial states. Therefore, the result holds.

ut

Synthesis of Petri Nets with Whole-place Operations and Localities 13

Theorem 1. Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transition system and
cds lmax be the locally maximal step firing policy associated with a locality map-
ping ` defined for T .

Then T can be realised by a τk-net (k ≥ 1) under cds lmax iff Axioms 1 and 2
are satisfied.

Proof. (=⇒) T can be realised by the τk-net N̂ under cds lmax. That means that

T ∼= CRGcdslmax
(N̂). Let f : Q→ (P → Nk) be a bijection linking the states of

T with the reachable markings of N̂ . First, we prove that:

enbT ,τk(q) ⊆ enbN̂ (f(q)). (5)

Let α 6∈ enbN̂ (f(q)). Then there is a cluster Pi ∈ P (1 ≤ i ≤ r) in N̂ such
that F (Pi, α) 6∈ enbτk(f(q)(Pi)). Let 〈σ, η〉 be the τk-region of T induced by Pi
according to Proposition 2. Then σ(q) = f(q)(Pi) and η(α) = F (Pi, α). Hence,
η(α) 6∈ enbτk(σ(q)) and so α 6∈ enbT ,τk(q).

To show Axiom 1 let q 6= r in Q. As T ∼= CRGcdslmax
(N̂), we have f(q) 6=

f(r), and therefore f(q)(Pi) 6= f(r)(Pi), for some 1 ≤ i ≤ r. Let 〈σ, η〉 be the τk-
region of T induced by Pi according to Proposition 2. Then σ(q) = f(q)(Pi) 6=
f(r)(Pi) = σ(r). Hence, σ(q) 6= σ(r).

To show Axiom 2, we first show that, for all α ∈ 〈T 〉 and q ∈ Q:

α 6∈ enbT (q) =⇒ α 6∈ enbT ,τk(q) \ cds lmax(enbT ,τk(q)). (6)

Let q ∈ Q and α 6∈ enbT (q). From (3) and T ∼= CRGcdslmax
(N̂), either:

(i) α 6∈ enbN̂ (f(q)) or

(ii) α ∈ enbN̂ (f(q)) ∩ cds lmax(enbN̂ (f(q))).

If (i) holds then, by (5), we have α 6∈ enbT ,τk(q) and so (6) holds. In (ii) two cases
are possible. If α 6∈ enbT ,τk(q) we have (6); otherwise α ∈ enbT ,τk(q) and we set
the following: X = enbN̂ (f(q)) and Y = enbT ,τk(q). By (5), we have Y ⊆ X.

Moreover, by (3,4) and T ∼= CRGcdslmax
(N̂), we have X \ cds lmax(X) ⊆ Y .

Hence, by Proposition 1 and the fact that T is bounded, α ∈ cds lmax(X)∩ Y ⊆
cds lmax(enbT ,τk(q)), and so (6) holds.

To finish the proof of Axiom 2, we show that, for all q ∈ Q:

enbT (q) ⊆ enbT ,τk(q) \ cds lmax(enbT ,τk(q)). (7)

By isomorphism T ∼= CRGcdslmax
(N̂) and (3), we have enbT (q) = enbN̂ (f(q)) \

cds lmax(enbN̂ (f(q))). Hence enbT (q) ∩ cds lmax(enbN̂ (f(q))) = ∅. Thus, by (5)
and cds lmax(Y) ⊆ cds lmax(X) (for Y ⊆ X), enbT (q)∩cds lmax(enbT ,τk(q)) = ∅.
Moreover, by (4), which always holds, we can conclude that (7) holds.

(⇐=) Let R be the set of all τk-regions of T . Let N̂ = 〈P, T, F,M0, `〉 be a
τk-net defined as follows: P = R, M0(Pi) = σ(q0) and F (Pi, t) = η(t) for any
Pi = 〈σ, η〉 ∈ P and t ∈ T . We will show that if T satisfies Axioms 1 and 2 then

T ∼= CRGcdslmax
(N̂).

14 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

We denote byRMcdslmax
the set of all reachable markings in CRGcdslmax

(N̂)

and by M
α−−→ M ′ the directed arcs in this graph. We now define a relation

∼ ⊆ Q × RMcdslmax
as the smallest relation that includes q0 ∼ M0 and such

that

q ∼M , δ(q, α) = q′ and M
α−−→M ′ implies q′ ∼M ′.

We prove first that ∼ is a partial bijection between Q and RMcdslmax
. By con-

struction of N̂ , M0(Pi) = σ(q0) for every Pi = 〈σ, η〉 of N̂ . Now let q ∼ M

with δ(q, α) = q′ and M
α−−→ M ′, and assume for the sake of an induction

that M(Pi) = σ(q) for every Pi = 〈σ, η〉 of N̂ . As 〈σ, η〉 is a τk-region of

T , σ(δ(q, α)) = ∆k(σ(q), η(α)). As Pi = 〈σ, η〉 is a cluster of places in N̂

and F (Pi, t) = η(t) for all t ∈ T by construction of N̂ , we have σ(δ(q, α)) =

∆k(M(Pi), F (Pi, α)). From M
α−−→M ′, we have M ′(Pi) = ∆k(M(Pi), F (Pi, α)).

As a result, M ′(Pi) = σ(δ(q, α)) = σ(q′) and we have q′ ∼ M ′. So, q ∼ M im-

plies M(Pi) = σ(q) for all Pi = 〈σ, η〉 of N̂ . Furthermore, from Axiom 1, q 6= r
implies σ(q) 6= σ(r) for some τk-region 〈σ, η〉 of T . Therefore, the relation ∼ is
a partial bijection between Q and RMcdslmax

.
Next, we show that the following implication is satisfied:

q ∼M =⇒ enbT ,τk(q) = enbN̂ (M). (8)

Let α ∈ enbT ,τk(q). This means that η(α) ∈ enbτk(σ(q)), for all τk-regions

〈σ, η〉 of T . It was shown above that, for every cluster of places Pi = 〈σ, η〉 of N̂ ,

M(Pi) = σ(q), where q ∼M . Furthermore, by construction of N̂ , F (Pi, t) = η(t),
for all t ∈ T , and Pi = 〈σ, η〉. Hence, η(α) = F (Pi, α). Therefore, F (Pi, α) ∈
enbτk(M(Pi)), for every cluster of places Pi of N̂ . This in turn means that α is

resource enabled at M in N̂ : α ∈ enbN̂ (M).
To show the reverse inclusion, let α ∈ enbN̂ (M). Then, by the fact that α is

resource enabled at M , in N̂ , we have F (Pi, α) ∈ enbτk(M(Pi)), for every cluster

Pi of N̂ . From the construction of N̂ , it follows that F (Pi, t) = η(t) for all t ∈ T
and Pi = 〈σ, η〉, hence η(α) ∈ enbτk(M(Pi)). For every cluster Pi = 〈σ, η〉 of N̂ ,
M(Pi) = σ(q) when q ∼ M . So, η(α) ∈ enbτk(σ(q)) for every τk-region of T .
Hence, α ∈ enbT ,τk(q).

We now observe that q ∼ M implies enbT (q) = enbN̂ ,cdslmax
(M), which

follows from (8), Axiom 2, and (3). Hence ∼ is a bijection between Q and

RMcdslmax
, and so T ∼= CRGcdslmax

(N̂). ut

To solve Problem 2 using the feasibility result provided by Theorem 1 one
needs to find an effective representation of the τk-regions of T . Similarly as
in [12], one can define a system of equations and inequalities encoding the
conditions that must be satisfied by τk-regions. Let Q = {q0, q1, . . . , qm} and
T = {t1, . . . , tn}. The encoding employs the following variables:

– x0,x1, . . . ,xm are k-vectors of non-negative integer variables which encode
the mapping σ; and

Synthesis of Petri Nets with Whole-place Operations and Localities 15

– X1, . . . ,Xn and Y1, . . . ,Yn are (k + 1) × k arrays of non-negative integer
variables which encode the mapping η.

We then define the homogeneous system ST :{
xs − (xs, 1)⊗

∑n
i=1 α(ti) ·Xi ≥ 0 for all δ(qs, α) = qr

xr − xs − (xs, 1)⊗
∑n
i=1 α(ti) · (Yi −Xi) = 0 in T .

(9)

Then the non-negative integer solutions of ST are in a one-to-one correspondence
with the τk-regions of T . Therefore, Axioms 1 and 2 can be checked using the
solutions of ST .

In the case of pt-net synthesis, a similar procedure has been shown to be
effective since the homogeneous system considered there was linear and one could
always find a sufficiently representative finite basis for all the solutions. Here,
however, the situation is much harder as the system ST is quadratic. In practice,
one would often want to impose bounds on the allowed range of the whole-place
coefficients used in arc annotations. Then Problem 2 has a solution since one
could replace ST by finitely many linear systems that can be dealt with using the
techniques developed for pt-nets. However, one can consider a modified version
of Problem 2 without bounding the whole-place coefficients and still obtain a
solution, as described in the next section.

5 Synthesis with known whole-places

We will now outline how one can develop a fully satisfactory procedure for syn-
thesis problems like that discussed in the introduction.

Problem 3 (effective construction with known whole-places) Let T =
〈Q, 〈T 〉, δ, q0〉 be a finite step transition system, m be a positive integer, and κ
be a mapping assigning tuples in Nm to Q. Decide whether there is a wpol-net
N with implicitly ordered places p1, . . . , pm, . . . , pn realising T such that:

1. each whole-place pi of N satisfies i ≤ m, and
2. for every state q ∈ Q, it is the case that κ(q) = (µ(q)(1), . . . , µ(q)(m)), where

µ is a bijection from Q to the reachable markings of N establishing the iso-
morphism between T and the concurrent reachability graph of N .

Moreover, if the answer is positive, construct such a wpol-net N .

Figure 1(b) defines an instance of the above problem with m = 1. We will now
describe how the above problem can be solved using results from the last section.

Since T is finite, there are only finitely many semantically distinct ways in
which one can assign localities to the transitions in T . We can explore them all
one-by-one, and below we assume that ` is a fixed locality mapping for T . Note
that for the the example in Figure 1(b), we must have `(b) = `(c) since otherwise
the initial state would have to enable also a step α with b ∈ α and c /∈ α. Hence
here one only needs to consider two locality assignments.

16 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

We next discuss the coefficients on the arcs adjacent to p1, . . . , pm. Suppose
first that i, j ≤ m and W (pi, t) = v1 · p1 + · · · + vm · pm + v0 in a net solving
Problem 3, and µ is a corresponding bijection. We consider two cases:

– κ(q)(j) > 0, for some δ(q, α) = q′ with t ∈ α. Then, since α is enabled at
µ(q), it must be the case that κ(q)(i) ≥ vj · κ(q)(j) · α(t), and so

vj ≤ min

{
κ(q)(i)

κ(q)(j) · α(t)

∣∣∣∣ δ(q, α) = q′ and t ∈ α
}
.

Hence, the range of possible values for vj is finite.
– κ(q)(j) = 0, for each δ(q, α) = q′ with t ∈ α. Then we can assume vj =

1 + max{κ(q)(i) | q ∈ Q}. This does not ‘contradict’ any of the arcs in T
and, at the same time, ensures a maximal disabling power of coefficient vj .

Suppose next that i, j ≤ m and W (t, pi) = v1 · p1 + · · ·+ vm · pm + v0. We again
consider two cases:

– κ(q)(j) > 0, for some δ(q, α) = q′ with t ∈ α. Then, since executing α at µ(q)
leads to µ(q′), it must be the case that κ(q′)(i) ≥ vj · κ(q)(j) · α(t), and so

vj ≤ min

{
κ(q′)(i)

κ(q)(j) · α(t)

∣∣∣∣ δ(q, α) = q′ and t ∈ α
}
.

Hence, the range of possible values for vj is again finite.
– κ(q)(j) = 0, for each δ(q, α) = q′ with t ∈ α. Then we set vj = 0.

Note that for the example in Figure 1(b), all coefficients vj satisfy 0 ≤ vj ≤ 1.
Moreover, as {b, c} is an enabled step, it is not possible to have both W (p1, b) =
p1 + v and W (p1, c) = p1 + w.

As a result, we need to take into account only finitely many assignments
of values to the whole-place coefficients of arcs between the transitions in T
and p1, . . . , pm. We can consider them one-by-one and, after filtering out those
inconsistent with κ, carry out independent searches for a solution. Therefore,
below we assume that such whole-place coefficients are fixed, and proceed further
unless the net constructed so far is a solution (the initial marking is κ(q0)).

Having fixed transition localities and whole-place coefficients involving the
potential whole-places, we can proceed with the main part of the decision proce-
dure, i.e., the construction of additional non-whole-places that can use p1, . . . , pm
in their arc annotations.

First, we derive the system ST as in (9) with k = m+ 1, implicitly assuming
that the first m components correspond to p1, . . . , pm, and the k-th component
corresponds to a generic non-whole-place p being constructed. We then delete all
equations and inequalities which concern p1, . . . , pm, i.e., those beginning with

x
(i)
s , for 1 ≤ i ≤ m. We finally replace by concrete values all those variables which

are ‘fixed’ by the mapping κ, and the fact that p must be a non-whole-place.
The homogeneous system S ′T obtained in this way is linear.

Synthesis of Petri Nets with Whole-place Operations and Localities 17

Assume some arbitrary ordering of the variables of S ′T . Using the results
from [6], one can find a finite set p1, . . . ,pr of non-negative integer solutions of
S ′T such that each non-negative integer solution p of S ′T is a linear combination
p =

∑r
l=1 al ·pl with non-negative rational coefficients al. For every non-negative

integer solution p of S ′T , let ψ(p) be a corresponding τk-region.
The pl’s are fixed and some of them turned into new places if Problem 3 has

a solution under the fixed localities and coefficients. This, in turn, is the case if
we can verify Axioms 1 and 2. Clearly, if r = 0 then the problem is not feasible
for the current fixed parameters. Otherwise, we proceed as follows.

To check state separation (Axiom 1), let qi and qj be a pair of distinct states
of T . If κ(qi) 6= κ(qj), then we are done. Suppose then that κ(qi) = κ(qj), and ρ
is a τk-region separating qi and qj . Then there is a solution p =

∑r
l=1 al ·pl such

that ρ = ψ(p). This means that p assigns different values to qi and qj . Hence,
since the coefficients al are non-negative, there must be pl which also assigns
different values to qi and qj . Therefore, ψ(pl) separates qi and qj . We therefore
only need to check the pl’s in order to establish the separation of qi and qj . If a
suitable pl is found, we add a non-whole-place p corresponding to the last place
of ψ(pl) to the net being constructed.

Checking forward closure (Axiom 2) is carried out for each state qi, and
considers steps α ∈ 〈T 〉 that are not enabled at qi in T . Moreover, one does not
need to consider α 6= 0 in the following cases:

– α is already disabled by the whole-places, or |α| > max , where max is
the maximum size of steps labelling arcs in T . In the latter case, one can
always add a standard pt-net place which is connected with each transition
by an incoming and outgoing arc of weight 1, and is initially marked with
max tokens. Such a non-whole-place disables all steps with more than max
transitions, and does not disable any other steps.

– There is β 6= α enabled at qi such that `(β) ⊆ `(α) and α ≤ β.

In all other cases, α is not τk-region enabled at qi iff ψ(p) disables α, for
some solution p =

∑r
l=1 al ·pl. Hence, since the coefficients al are non-negative,

α is not τk-region enabled at qi iff there is pl such that ψ(pl) disables α. We
therefore only need to check the pl’s in order to establish the disabling of α. If a
suitable pl is found, we add a non-whole-place p corresponding to the last place
of ψ(pl) to the net being constructed.

Finally, if one can validate all cases of state separation and forward closure,
the resulting net is a solution to Problem 3, and otherwise there is no solution.

6 Conclusions

Among the possible directions for future work, we single out two challenges.
The first one is the development of a synthesis approach for wpo-nets executed
under more general step firing policies, e.g., those based on linear rewards of
steps, where the reward for firing a single transition is either fixed or it depends
on the current net marking [7]. The second task, more specific to k-wpol-nets,

18 J.Kleijn, M.Koutny and M.Pietkiewicz-Koutny

is to investigate the relationship between the locality mapping and the grouping
of the places into clusters.

Acknowledgements

We would like to thank the anonymous reviewers for useful comments and sug-
gestions.

References

1. Abdulla, P.A., Delzanno, G., Van Begin, L.: A Language-Based Comparison of
Extensions of Petri Nets with and without Whole-Place Operations. Lecture Notes
in Computer Science 5457, Springer (2009) 71–82

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. An EATCS Series. Springer (2015)

3. Badouel, E., Darondeau, P.: Theory of Regions. Lecture Notes in Computer Science
1491, Springer (1998) 529–586

4. Bernardinello, L., De Michelis, G., Petruni, K., Vigna, S.: On the Synchronic Struc-
ture of Transition Systems. In: Structures in Concurrency Theory, J.Desel (ed.)
(1995) 69–84

5. Busi, N., Pinna, G.M.: Synthesis of Nets with Inhibitor Arcs. Lecture Notes in
Computer Science 1243, Springer (1997) 151–165

6. Chernikova, N.: Algorithm for Finding a General Formula for the Non-negative
Solutions of a System of Linear Inequalities. USSR Computational Mathematics
and Mathematical Physics 5 (1965) 228–233

7. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of
Nets with Step Firing Policies. Fundamenta Informaticae 94 (2009) 275–303

8. Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Informatica 33
(1996) 297–315

9. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and
Undecidability. Lecture Notes in Computer Science 1443, Springer (1998) 63–115

10. Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures; Part I: Basic Notions and the
Representation Problem, and Part II: State Spaces of Concurrent Systems. Acta
Informatica 27 (1990) 315–368

11. Finkel, A., McKenzie, P., Picaronny, C.: A Well-structured Framework for
Analysing Petri Net Extensions. Information and Computation 195 (2004) 1–29

12. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Applying Regions.
Theoretical Computer Science (2016)

13. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Petri Nets with Localities. Sci.
Ann. Comp. Sci. 19 (2009) 1–23

14. Mukund, M.: Petri Nets and Step Transition Systems. International Journal of
Foundations of Computer Science 3 (1992) 443–478

15. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary Transition Systems.
Theoretical Computer Science 96 (1992) 3–33

16. Pietkiewicz-Koutny, M.: Transition Systems of Elementary Net Systems with In-
hibitor Arcs. Lecture Notes in Computer Science 1248, Springer (1997) 310–327

17. Schmitt, V.: Flip-Flop Nets. Lecture Notes in Computer Science 1046, Springer
(1996) 517–528

