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Abstract

A facial composite system is described for use in criminal investigations
which has distinct advantages over current methods. Unlike traditional fea-
ture based methods, our approach uses both local and global facial mod-
els, allowing a witness to evolve plausible, photo-realistic face images in an
intuitive way. The basic method combines random sampling from a facial
appearance model (AM) with an evolutionary algorithm (EA) to drive the
search procedure to convergence. Three variants of the evolutionary algo-
rithm have been explored and their performance measured using a computer
simulation of a human witness (virtual witness). Further system functional-
ity, provided by local appearance models and transformations of the appear-
ance space which respectively allow both local features and semantic facial
attributes to be manipulated, is presented. Preliminary examples of compos-
ites generated with our system are presented which demonstrate the potential
superiority of the evolutionary approach to composite generation.

1 Introduction

Facial composites are widely used in criminal investigations as a means to generate a
likeness to a suspected perpetrator of a crime. Current commercial systems for producing
composites such as EFit [15] and ProFit [1] rely on the ability of a witness to recall in-
dividual facial features, select the best choice from a large sample of examples and then
place them in the appropriate spatial configuration. There are two major drawbacks to this
approach. Firstly, many authors working in the field of psychology as early as the late 70s
demonstrated the shortcomings of recall as a means of identification [10, 13, 9, 3] and it
has been suggested that the requirement for the witness to recall (as distinct from recog-
nise) the face is the weakest link in the composite process [18]. Secondly, a considerable
body of evidence now suggests that the task of face recognition and synthesis does not
lend itself to simple decomposition into features and is partly, a global process [6, 11, 2]
relying as much on the inherent spatial/textural relations between all the features in the
face. In 1987, Sirovich and Kirby [16] demonstrated that a principal components analysis
(PCA) on a suitably normalized set of faces produced a highly efficient representation of
a human face as a linear superposition of global principal components or ”eigenfaces”.
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This paper instigated a significant amount of research such that PCA is now a standard
technique in face recognition and both 2-D and 3-D face modelling research [5]. Much
less explored is the possibility of using PCA in facial synthesis/composite production.
Brunelli and Mich [7] employed ”feature” principal components in their composite gen-
erator but the problems associated with eyewitness recall were inherently neglected. Han-
cock [12] describes a facial composite system based on recognition, which circumvents
the recall problem. In this work, global facial characteristics of shape and texture are
modelled independently using PCA. A more elegant solution is to perform a further PCA,
which combines both shape and texture models into a single unified appearance model
[8]. A single set of normally distributed appearance parameters then enables the gener-
ation of plausible faces. In this paper, we propose a novel approach to the synthesis of
facial composites which combines two key components - I) an appearance model of the
human face providing both a highly compact representation of any individual face and a
tractable statistical model of human facial variation II) A steady-state, evolutionary algo-
rithm which drives the process of composite production to convergence (i.e. best match
to target face).

In the next section, we briefly describe the theoretical basis and construction of the
facial appearance model. Evolutionary search strategies for achieving convergence on the
target face are then discussed in section 3. In section 4, we briefly describe the basis of
enhancements to our global evolutionary method in which local features and semantic
attributes of a facial composite can be altered without undermining the global nature of
the evolutionary search. Section 5 discusses the basis of a computer-generated ”ideal
witness” designed to optimise the performance of the EA. Finally, we give a summary of
the results achieved in preliminary human trials and discuss current developments.

2 Statistical Model of Facial Appearance (Search Space)

An appearance model was constructed that captures both shape and texture properties of
the human face. Here we give a brief overview of the procedure. For a full mathematical
account the reader is referred to [8].The model was formed from a training set of example
face images. The set contained equal numbers of male and female faces in the age range
20-70. Each training example was labelled with 150 landmark points to describe the
face shape. 79 key landmarks were placed by hand and the remaining 71 points were
estimated using a polynomial curve fitting algorithm. After labelling, the shapes were
aligned using procrustes analysis. Subsequently, principal component analysis (PCA)
was used to generate a model that defines the modes of shape variation. Modes of texture
variation were also modelled using PCA. To obtain a true correspondence between pixels,
each face image was first warped to the mean face shape prior to PCA using a piece-wise
affine linear transformation. The shape model and texture model were combined into a
single, unified shape-texture model (or appearance model) using further PCA. The key
result of this procedure is that each training example can be expressed in terms of the
appearance model using an N element vector of parameters, c = [c1 c2 c3 . . . cN]T each
element of which can influence the global facial appearance. The relationship between
the appearance parameters, the face shape, x = [x1 y1 x2 y2 . . . xM yM]T , and face texture, g
is given by,



x = x̄+ Qsc (1)

g = ḡ+ Qgc (2)

Where ḡ is the mean face texture, x̄ the mean face shape and Qs,Qg are matrices that
describe modes of variation in the training set.

The parameter vectors for all training examples in N dimensional space generated in
this way obey a multivariate normal distribution. The generation of plausible faces is
ensured by allowing the value of the appearance parameter, c j to vary within the range
−3σ j < µ j < +3σ j (where σ j is the standard deviation of c j and µ j the mean of cj

over the training set.) For practical applications the number of dimensions of this space
can be reduced by truncating the parameter vectors to t elements such that t < N and
c = [c1 c2 c3 . . .ct ]T . This gives a compact search space within which, in principle, any
given face can be represented as a unique vector of parameters. For the generation of
facial composites the dimensionality of the search space should be low to minimize the
duration of the search whilst retaining enough variance to construct a good likeness to any
given face. New examples of faces can be generated by randomly sampling for the vector
of appearance parameters from the multivariate, normal distribution. As can be seen from
Figure 1, these faces are completely plausible in appearance.

Figure 1: New examples of faces generated from the appearance model

3 Evolutionary Search Methods

Producing a composite face can be regarded as a search for a target face within a mul-
tidimensional ‘face-space’ where the Cartesian axes of the space correspond to the ap-
pearance parameters. It is crucial to recognize that the optimum search strategy for this
task (in its practical implementation) must be an algorithm that is a suitable compromise
between human usability and speed of convergence(i.e. the required number of faces
seen and rated by the user before a satisfactory composite is achieved). To some degree,
these are conflicting goals. Thus, a particular interactive search strategy, which can be
demonstrated to converge in fewer iterations based on computer simulated studies, will
be unusable if the input/decision required from the human user at each iteration is too
difficult or time-consuming (e.g. the numerical rating of a large number of faces for their
similarity to the target face). Alternatively, if the information input/decision from the hu-
man user at each iteration is restricted to a very simple task (selection of the best face from



only two examples), we may expect that convergence will be correspondingly longer. Ac-
cordingly, we have explored and successfully developed three evolutionary approaches to
conducting the search, each of which requires a different input from the user. The key
elements in each approach are described below

Scale Rating (SR) algorithm- In this approach we employ an elitist genetic algorithm,
applying the operations of selection, crossover and mutation between an elite member of
the population (the stallion) and another member. At each iteration the offspring produced
are rated on a simple numerical scale of 0-10 by the user for their perceived similarity to
the target face. To encourage consistency and avoid fitness scaling problems which might
induce premature convergence to an incorrect solution, the current stallion (i.e. best like-
ness generated so far) and its assigned score is made visible at all times to the user. The
process of assigning numerical ratings to the faces displayed and replacing the stallion as
appropriate is continued until the user considers the best possible reconstruction has been
achieved.

SMM (Select-Multiply-Mutate) algorithm- In a similar fashion to the SR algorithm
described above, this algorithm also employs an elitist strategy. However, in this case,
the user is required at each iteration to select the best likeness from a small group (5 is
typical) which are simultaneously displayed (select), this likeness is then cloned a num-
ber of times (multiply) and all but one is randomly mutated to produce a new generation
(mutate). The best likeness is then selected from this new generation and so on. The basic
SMMalgorithm is depicted in the flow chart in Figure 2

Follow-The-Leader (FTL) algorithm- This strategy is the easiest algorithm for the hu-
man operator. At each step of the iterative process, a new face is displayed alongside the
current best likeness (the stallion) and the user is simply asked to make a choice between
the two faces. The new face presented at each iteration is the result of breeding the stallion
with a new member. In this variation of the EA the recent evolutionary history is a factor
in determining future offspring. For instance the recent evolutionary history may suggest
that the process is following a well defined direction (as opposed to a random totally ran-
dom path) through the search space. If so a preference will be made for this direction at
subsequent iterations, accelerating the search process along a more efficient path through
the appearance space and reducing the number of iterations required for convergence.

The performance of these algorithms in extensive trials employing a simulated, virtual
witness is discussed in section 5.

4 Enhancing Functionality - Interactive Face
Modification Techniques

4.1 Local Feature Manipulation

There is a substantial body of psychological literature to suggest that the process of human
face recognition involves both local (isolated facial features), and global (facial features
in a configurational context) information [17, 4]. Accordingly, a truly effective facial
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Figure 2: SMMAlgorithm flowchart

composite system should be sufficiently flexible to operate in both the global and local
modes. Global facial change is naturally effected by our core, evolutionary approach in
which the modification of any of the appearance model parameters produces a change in
the entire facial appearance. To achieve a similar effect on isolated facial features, we have
built analogous feature appearance models in which the shape and texture of the features
can be represented and manipulated from a compact parametric form. In this way, we
make provision for the user to manipulate isolated facial features (e.g. change the width
of the nose, or fullness of the lips) but then seamlessly resume the global evolutionary
procedure which can be accelerated by such interventions. Figure 3 shows the effect of
using a local feature appearance model of the nose in conjunction with a global model to
ensure globally plausible face shapes.

Figure 3: Image sequence showing a change in nasal width



4.2 Facial Attribute Manipulation

There are many semantic attributes that are commonly ascribed to a human face. Simple
examples are attractive, kind, masculine, honestand so on. Some attributes have a more
objective nature (e.g. a masculine/feminine face) in the sense that a sample population
will exhibit much closer agreement in their perception whereas others are more subjective
and generate more disagreement (e.g. an honest face ). There is evidence to suggest
that the human ability to define/recognise subjective facial attributes may be based on
hormonal and other underlying biological factors. It would therefore seem plausible that a
powerful, complementary way to navigate our appearance search space is along directions
that are known to be associated with attributes, allowing facial synthesis to proceed along
perceptually more salient directions. These directions can be defined by weighting the
appearance model parameters of a sample of faces according to the degree to which they
are considered to possess the given attribute. Our preliminary implementation of this
method is now briefly described.

A survey was first conducted in which 40 subjects were asked to assign a score, s k(i),
between one and five to each of the training images based on the degree to which a given
face exhibited a particular attribute (thus a highly masculine face would be given a score
of sk(i) = 5). For each subject participant a new vector dk can be defined as a weighted
combination of the appearance model parameters.

dk = Ask (3)

Where A is matrix in which each column is a vector of appearance model parameters
corresponding to one of N training examples

A = [c1 c2 c3 . . . cN] (4)

The vector dk defines a direction in appearance space that the kth subject perceives to
be most closely associated with the attribute of interest. Averaging over all such vectors
for all 40 scorers gives the consensus as to the direction, d̄, which best defines the attribute.
Changing an attribute of a given face is simply achieved by adding a small quantity of the
vector d̄ to the vector of appearance parameters c according to Equation 5. Changes in
perceived gender characteristics and race using this method are shown in Figure 4 and
Figure 5

Figure 4: Moving in appearance space to modify gender

ć = c+∆d̄ (5)



Figure 5: Moving in appearance space to modify racial appearance

5 System Optimization and Testing

5.1 Simulated Witness and Witness Trials

The behaviour of evolutionary algorithms can be strongly affected by a number of pa-
rameters such as probability of crossover and mutation, selection method and genotype
length. Ultimately, it is anticipated that the system described in this paper will be subject
to psychological evaluation and testing with human subjects. As such evaluation is time-
consuming and costly, we developed a virtual witness program in which the computer
simulated the role of the human witness, responding to the stimulus according to a dis-
tance metric between it and the target face. The aim of this was to study and optimize the
convergence properties of our algorithms in order that human trials can then be conducted
effectively using a properly tuned system. The idealvirtual witness assigns a fitness score
to a facial phenotype according to Equation 6 for the SMM and FTL algorithms and to
Equation 7 for the SR algorithm, where ρ is the correlation coefficient and ε is the eu-
clidean distance between the vector of appearance parameters of the given face and the
vector of the actual (known) target.

f = ε ×
(
101−ρ2

)

100
(6)

f = (1+ρ)2 ; fN =
(1+ρ)2

4
(7)

A non-ideal virtual witness has also been developed that aims to mimic the imperfect
scoring of a typical human witness. This has been achieved by introducing a random
error to the fitness function as shown in Equation 8, where α is sampled from a zero
mean normal distribution with standard deviation σ (where σ lies in the range 0.2 to
0.5). The non-ideal virtual witness si intended to asses the robustness of the evolutionary
approach in human trials and the number of iterations that will be required to obtain a
good likeness to a target face.

fN =
(1+ρ)2

4
× (1+α ) (8)

Extensive simulations were carried out to optimize the free variables of the algorithms.
The number of iterations to obtain a quasi-perfect composite was reduced dramatically,
from typical values of several thousand to average values of 150 iterations for the SMM



algorithm and 350 iterations for the FTL algorithm. An example of typical composite
generated in 160 iterations using the SMM algorithm is shown in Figure 6

(a) (b) (c) (d) (e)

Figure 6: SMM ideal witness search process: a) Starting face, b)and c) are intermediate
points in the evolutionary process, d) final generated composite, e) actual target face

6 Human Trials and Discussion

We have demonstrated that it is possible to produce a good likeness to a target face using
an evolutionary search algorithm to navigate through an appearance space. The concept
of virtual witness’ was introduced as a tool for testing and optimizing evolutionary algo-
rithms. Preliminary human trials suggest that convergence is possible in a viable number
of iterations. Two such examples generated by a human operator are given in Figure 7
and Figure 8.

(a) (b) (c) (d) (e)

Figure 7: SMM human trial: a) Starting face, b)and c) are intermediate points in the
evolutionary process, d) final generated composite after 27 iterations (162 faces viewed),
e) actual target face

In Figure 7 the target face remained visible to the human operator while generating the
composite. An acceptable convergence was obtained in approximately 20 minutes which
is faster than current systems. Figure 8 shows a likeness generated from memory of the
current British Prime Minister, Tony Blair. In the final facial composite shown in Figure
8e, hair has been added from a database of hair styles since hair is not modelled well by
the appearance model. Current developments include the incorporation of a database of
facial appendages such as facial hair, scars and glasses as well as a comprehensive set of
images for building appearance models based on gender and ethnic origin.



(a) (b) (c) (d) (e)

Figure 8: SMM human trial for famous target face: a) Starting face, b)and c) are interme-
diate points in the evolutionary process, d) final generated composite after 23 iterations
(138 faces viewed), e) addition of hair to facial composite

The approach that we have taken to facial composite generation has potential appli-
cations outside criminal investigations in fields such as plastic surgery [14] and entertain-
ment.
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