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Reconstructing the phylogenetic relationships that unite all line-

ages (the tree of life) is a grand challenge. The paucity of homologous

character data across disparately related lineages currently renders

direct phylogenetic inference untenable. To reconstruct a compre-

hensive tree of life, we therefore synthesized published phylogenies,

together with taxonomic classifications for taxa never incorporated

into a phylogeny. We present a draft tree containing 2.3 million tips—

the Open Tree of Life. Realization of this tree required the assembly

of two additional community resources: (i) a comprehensive global

reference taxonomy and (ii) a database of published phylogenetic

trees mapped to this taxonomy. Our open source framework facili-

tates community comment and contribution, enabling the tree to be

continuously updated when new phylogenetic and taxonomic data

become digitally available. Although data coverage and phylogenetic

conflict across the Open Tree of Life illuminate gaps in both the un-

derlying data available for phylogenetic reconstruction and the pub-

lication of trees as digital objects, the tree provides a compelling

starting point for community contribution. This comprehensive tree

will fuel fundamental research on the nature of biological diversity,

ultimately providing up-to-date phylogenies for downstream applica-

tions in comparative biology, ecology, conservation biology, climate

change, agriculture, and genomics.

phylogeny | taxonomy | tree of life | biodiversity | synthesis

The realization that all organisms on Earth are related by
common descent (1) was one of the most profound insights in

scientific history. The goal of reconstructing the tree of life is one
of the most daunting challenges in biology. The scope of the
problem is immense: there are ∼1.8 million named species, and
most species have yet to be described (2–4). Despite decades of
effort and thousands of phylogenetic studies on diverse clades,
we lack a comprehensive tree of life, or even a summary of our
current knowledge. One reason for this shortcoming is lack of
data. GenBank contains DNA sequences for ∼411,000 species,
only 22% of estimated named species. Although some gene re-
gions (e.g., rbcL, 16S, COI) have been widely sequenced across
some lineages, they are insufficient for resolving relationships
across the entire tree (5). Most recognized species have never
been included in a phylogenetic analysis because no appropriate
molecular or morphological data have been collected.
There is extensive publication of new phylogenies, data, and

inference methods, but little attention to synthesis. We therefore
focus on constructing, to our knowledge, the first comprehensive
tree of life through the integration of published phylogenies with
taxonomic information. Phylogenies by systematists with exper-
tise in particular taxa likely represent the best estimates of re-
lationships for individual clades. By focusing on trees instead of
raw data, we avoid issues of dataset assembly (6). However, most

published phylogenies are available only as journal figures, rather
than in electronic formats that can be integrated into databases and
synthesis methods (7–9). Although there are efforts to digitize
trees from figures (10), we focus instead on synthesis of pub-
lished, digitally available phylogenies.
When source phylogenies are absent or sparsely sampled,

taxonomic hierarchies provide structure and completeness (11,
12). Given the limits of data availability, synthesizing phylogeny
and taxonomic classification is the only way to construct a tree of
life that includes all recognized species. One obstacle has been
the absence of a complete, phylogenetically informed taxonomy
that spans traditional taxonomic codes (13). We therefore as-
sembled a comprehensive global reference taxonomy via align-
ment and merging of multiple openly available taxonomic
resources. The Open Tree Taxonomy (OTT) is open, extensible,
and updatable, and reflects the overall phylogeny of life. With
the continued updating of phylogenetic information from

Significance

Scientists have used gene sequences and morphological data to

construct tens of thousands of evolutionary trees that describe the

evolutionary history of animals, plants, and microbes. This study is

the first, to our knowledge, to apply an efficient and automated

process for assembling published trees into a complete tree of life.

This tree and the underlying data are available to browse and

download from the Internet, facilitating subsequent analyses that

require evolutionary trees. The tree can be easily updated with

newly published data. Our analysis of coverage not only reveals

gaps in sampling and naming biodiversity but also further dem-

onstrates that most published phylogenies are not available in

digital formats that can be summarized into a tree of life.
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published studies, this framework is poised to update taxonomy
in a phylogenetically informed manner far more rapidly than has
occurred historically (see Fig. S1 for workflow).
We used recently developed graph methods (14) to synthesize

a tree of life of over 2.3 million operational taxonomic units
(OTUs) from the reference taxonomy and curated phylogenies.
Taxonomies contribute to the structure only where we do not
have phylogenetic trees. Advantages of graph methods include
easy storage of topological conflict among underlying source
trees in a single database, the construction of alternative syn-
thetic trees, and the ability to continuously update the tree with
new phylogenetic and/or taxonomic information. Importantly,
our methodology also highlights the current state of knowledge
for any given clade and reveals those portions of the tree that
most require additional study. Although a massive undertaking
in its own right, this draft tree of life represents only a first step.
Through feedback, addition of new data, and development of
new methods, the broader community can improve this tree.

Results

Open Tree Taxonomy. To align phylogenies from different sources,
the tips, which may represent different taxonomic levels, must be
mapped to a common taxonomic framework (14). For synthe-
sizing phylogenetic data, taxonomy also provides completeness
and structure where phylogenetic studies have not sampled all
known lineages (true of most clades). Available taxonomies
differ in completeness and how closely the hierarchy matches
known evolutionary relationships. The Open Tree Taxonomy
(OTT) is an automated synthesis of available taxonomies, max-
imizing the number of taxa and preferring input taxonomies that
better align to phylogenetic hypotheses in various clades (Mate-
rials and Methods). It contains taxa with traditional Linnaean
names and unnamed taxa known only from sequence data. OTT
ver. 2.8 has 2,722,024 OTUs without descendants and includes
382,564 higher taxa; 585,081 of the names are classified as non-
phylogenetic units (e.g., incertae sedis) and were therefore not in-
cluded in the synthesis pipeline. The taxonomy is available for
download and through online services, including a taxonomic
name resolution service for aligning other trees with our taxon-
omy (see Data and Software Availability, below).

Input Phylogenies. We built a user interface for collection and
curation of potential trees for synthesis (https://tree.opentreeoflife.
org/curator). The complete database contains 6,810 trees from
3,062 studies. At the time of publication, 484 studies in our
database are incorporated into the draft tree of life. Our goal is
to generate a best estimate of phylogenetic knowledge; based
on our tests, we give several reasons not to use all available
trees for synthesis. First, including trees that are incorrect does

not improve the synthetic estimate. In each major clade, expert
curators selected and ranked input trees for inclusion based on
date of publication, underlying data, and methods of inference
(see Materials and Methods for details). These rankings generally
reflect community consensus about phylogenetic hypotheses.
Second, including trees that merely confirm, or are subsets of,
other analyses only increases computational difficulty without
significantly improving the synthetic tree. For example, although
we have many framework phylogenies spanning angiosperms, we
did not include older trees where a newer tree extends the same
underlying data. Third, inclusion of trees requires a minimum
level of curation; where most OTU labels have been mapped to
the taxonomic database, the root is correctly identified, and an
ingroup clade has been identified. This information is not in the
input file and requires manual curation from the associated
publication. Not all trees are sufficiently well-curated; at this point,
we have focused curation efforts on trees that will most improve
the synthetic tree. The full set of trees in the database is important
for other questions such as estimating conflict or studying the
history of inference in a clade, highlighting the importance of
continued deposition and curation of trees into public data re-
positories. See Dataset S1 for a list of input trees and metadata
and see Fig. S2 for size and scope of input trees.

A Draft Tree of Life. We constructed a tree alignment graph (14),
the graph of life, by loading the Open Tree Taxonomy and the
484 rooted phylogenies into a neo4j database. The graph of life
contains 2,339,460 leaf nodes (after excluding nonphylogenetic
units from OTT), plus 229,801 internal nodes. It preserves con-
flict among phylogenies and between phylogenies and the tax-
onomy. To create the synthetic tree, we traversed the graph,
resolving conflict based on the rank of inputs, and labeled ac-
cepted branches that trace a synthetic tree summarizing the
source information. This method allows for clear communication
of how conflicts are resolved through ranking, and of the source
trees and/or taxonomies that support a particular resolution. The
synthetic tree contains phylogenetic structure where we have
published trees, and taxonomic structure where we do not. See
the Supporting Information, including Figs. S3–S6, for details.
The tree is available to browse and download, and online services
allow extraction of subtrees given lists of species (see Data and
Software Availability, below).
Coverage.Of the 2,339,460 tips in the synthetic tree of life, 37,525
are represented in at least one input phylogeny, with an addi-
tional 4,254 nonterminal taxa represented as tips in phylogenetic
inputs (Fig. 1). In Bacteria, Fungi, Nematoda, and Insecta, there
is a large gap between the estimated number of species and
what exists in taxonomic and sequence databases (Fig. 2). In
contrast, Chordata and Embryophyta are nearly fully sampled in
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databases and in OTT (Fig. 2). Poorly sampled clades require
more data collection and deposition and, in some cases, formal
taxonomic codification and identification to be incorporated
in taxonomic databases. Most tips in the synthetic tree are not
represented by phylogenetic analyses. The limited number of
input trees highlights the need for both new sequencing efforts,
additional phylogenetic studies, and the deposition of published
tree files into data repositories.
Resolution and conflicts. The tree of life that we provide is only one
representation of the Open Tree of Life data. Analysis of the full
graph database (the graph of life) allows us to examine conflict
between the synthetic tree of life, taxonomy, and source phy-
logenies. Fig. 3 depicts the types of alternate resolutions that
exist in the graph. We recovered 153,109 clades in the tree of life,
of which 129,778 (84.8%) are shared between the tree of life and
the Open Tree Taxonomy. There are 23,331 clades either that
conflict with the taxonomy (4,610 clades; 3.0%) or where the
taxonomy is agnostic to the presence of the clade (18,721 clades;
12.2%). The average number of children for each node in the
taxonomy is 19.4, indicating a poor degree of resolution com-
pared with an average of 2.1 in the input trees. When we combine
the taxonomy and phylogenies into the synthetic tree, the reso-
lution improves to an average of 16.0 children per internal node.
See the Supporting Information, including Fig. S7, for details.
Alignment of nodes between the synthetic tree and taxonomy

reveals how well taxonomy reflects current phylogenetic knowl-
edge. Strong alignment is found in Primates and Mammalia
whereas our analyses reveal a wide gulf between taxonomy and
phylogeny in Fungi, Viridiplantae (green plants), Bacteria, and
various microbial eukaryotes (Table 1).
Comparison with supertree approaches. There were no supertree
methods that scale to phylogenetic reconstruction of the entire
tree of life, meaning that our graph synthesis method was the
only option for tree of life-scale analyses. To compare our
method against existing supertree methods, we used a hybrid
MultiLevelSupertree (MLS) (15) plus synthesis approach (Ma-
terials and Methods). The total number of internal nodes in the

MLS tree is 151,458, compared with 155,830 in the graph syn-
thesis tree, although the average number of children is the same
(16.0 children per node). If we compare the source phylogenies
against the MLS supertree and the draft synthetic tree, the
synthesis method is better at capturing the signal in the inputs.
The average topological error (normalized Robinson–Foulds
distance, where 0 = share all clades and 100 = share no clades)
(16) of the MLS vs. input trees is 31, compared with 15 for the
graph synthesis tree. See the Supporting Information for details.

Discussion

Using graph database methods, we combine published phyloge-
netic data and the Open Tree Taxonomy to produce a first-draft
tree of life with 2.3 million tips—the Open Tree of Life. This tree
is comprehensive in terms of named species, but it is far from
complete in terms of biodiversity or phylogenetic knowledge. It
does not aim to infer novel phylogenetic relationships, but instead
is a summary of published and digitally available phylogenetic
knowledge. To our knowledge, this study represents the first
time a comprehensive tree of life has been available for any
analyses that require a phylogeny, even if the species of interest
have not been analyzed together in a single, published phylogeny.
As a result of data availability, data quality, and conflict reso-

lution, there are many areas where relationships in the tree do not
match current phylogenetic thinking (e.g., relationships within
Fabaceae, Compositae, Arthropoda). This draft tree of life rep-
resents an initial step. The next step in this community-driven
process is for experts to contribute trees and annotate areas of the
tree they know best.

Limitations on Coverage. Many microbial eukaryotes, Bacteria,
and Archaea are not present in openly available taxonomic da-
tabases and therefore were not incorporated into the Open Tree
Taxonomy and the synthetic tree. Most tips in the synthetic tree
(98%) come from taxonomy only, reflecting both the need to
incorporate more species into phylogenies and the need to make
published phylogenies available. We obtained trees from digital
repositories and also by contacting authors directly, but our
overall success rate was only 16% (9). Many published re-
lationships are not represented in the synthetic tree because this
knowledge exists only as journal images. Our infrastructure al-
lows for the synthetic tree to be easily and continuously updated via
updated taxonomies and newly published phylogenies. The latter
are dependent on authors making tree files available in repositories,
such as TreeBASE (17) and Dryad (datadryad.org) or through di-
rect upload to Open Tree of Life (https://tree.opentreeoflife.org/
curator), and on having sufficient metadata for trees. We hope this
synthetic approach will provide incentive for the community to
change the way we view phylogenies—as resources to be cataloged
in open repositories rather than simply as static images.

Conflicts in the Tree of Life. The synthetic tree of life is a bi-
furcating phylogeny (with “soft” polytomies reflecting un-
certainty), but some relationships are more accurately described
using reticulating networks. The Open Tree of Life contains
areas with conflict (Fig. 3). For example, the monophyly of
Archaea is contentious—some data-store trees indicate that
eukaryotes are embedded within Archaea (18, 19) rather than a
separate clade. Similarly, multiple resolutions of early diverging
animal (20–23) and Eukaryotic (24–28) lineages have been
proposed. Reticulations help visualize competing hypotheses,
gene tree/species tree conflicts, and underlying processes, such
as horizontal gene transfer (HGT), recombination, and hy-
bridization, which have had major impacts throughout the tree of
life [e.g., hybridization in diverse clades of green plants (29) and
animal lineages (30), including our own (31), and HGT in bac-
teria and archaea (32–34)]. The graphical synthesis approach
used here naturally allows for storage of conflict and non–tree-
like structure, enabling downstream visualization, analysis, and
annotation of conflict (Fig. 3) and highlighting the need for ad-
ditional work in this area.
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Resolving conflict is a challenge in supertree methods, including
our graph method. The number of input trees that support a
synthetic edge may be considered a reasonable criterion for re-
solving conflict, but the datasets used to construct each source tree
may have overlapping data, making them nonindependent. The
number of taxa or gene regions involved cannot be used alone
without other information to assess the quality of the particular
analysis. Better methods for resolving conflict require additional
metadata about the underlying data and phylogenetic inference
methods.

Selection of Input Trees. We used only a subset of trees in the
database for synthesis, filtering out trees that are redundant, are
erroneous, or have insufficient metadata. Our current synthesis
method relies on manual ranking of input trees by expert cura-
tors within major clades. The potential to automate this ranking,
and to use metadata to resolve conflict, depends on the avail-
ability of machine-readable metadata for trees; such data cur-
rently must be entered manually by curators after reading the

publication. Additional metadata would allow a comparison of
synthesis trees based on, for example, morphological versus
molecular data, the inference method, or the number of un-
derlying genes. Manual curation is time-consuming and labor-
intensive; scalability would improve greatly by having standardized
metadata (35) encoded in the files output by inference packages
(e.g., in NeXML files) (36).

Source Trees as a Community Resource. The availability of well-
curated trees allows for many analyses other than synthesis, such
as calculating the increase in information content for a clade
over time or by a particular project or laboratory, comparing
trees constructed by different approaches, or recording the re-
duction in conflict in clades over time. These analyses require
that tips be mapped to a common taxonomy to compare across
trees. Our database contains thousands of trees mapped to existing
taxonomies through the Open Tree Taxonomy. The data curation
interface is publicly available (https://tree.opentreeoflife.org/curator)

Fig. 3. Conflict in the tree of life. Although the

Open Tree of Life contains only one resolution at

any given node, the underlying graph database

contains conflict between trees and taxonomy

(noting that these figures are conceptual, not a di-

rect visualization of the graph). These two examples

highlight ongoing conflict near the base of Eukar-

yota (A) and Metazoa (B). Images courtesy of Phy-

loPic (phylopic.org).

Table 1. Alignment between taxonomy and phylogeny in various clades of the tree of life

Clade Tips Internal nodes

Nodes supported by

Taxonomy Trees Trees + taxonomy

Bacteria 260,323 11,028 8,454 (76.7%) 2,184 (19.8%) 390 (3.5%)

Cyanobacteria 10,581 788 678 (86.0%) 83 (10.5%) 27 (3.4%)

Ciliates 1,497 657 654 (99.5%) 1 (0.2%) 2 (0.3%)

Nematoda 31,287 3,504 3,431 (97.9%) 54 (1.5%) 19 (0.5%)

Chlorophytes 13,100 1,267 1,239 (97.8%) 20 (1.6%) 8 (0.6%)

Rhodophytes 12,214 1,292 1,278 (98.9%) 14 (1.1%) 0

Fungi 296,667 8,646 8,243 (95.3%) 383 (4.4%) 20 (0.2%)

Insecta 941,753 88,666 85,936 (96.9%) 2,205 (2.5%) 525 (0.6%)

Chordata 88,434 27,315 13,374 (49.0%) 11,689 (42.8%) 2,250 (8.2%)

Primates 681 501 129 (25.7%) 294 (58.7%) 78 (15.6%)

Mammals 9,539 4,433 1,645 (37.1%) 2,194 (49.5%) 594 (13.4%)

Embryophytes 284,447 32,211 22,400 (69.5%) 8,533 (26.5%) 1,271 (3.9%)
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as is the underlying data store (https://github.com/opentreeoflife/
phylesystem).

Dark Parts of the Tree. Hyperdiverse, poorly understood groups,
including Fungi, microbial eukaryotes, Bacteria, and Archaea,
are not yet well-represented in input taxonomies. Our effort also
highlights where major research is needed to achieve a better
understanding of existing biodiversity. Metagenomic studies
routinely reveal numerous OTUs that cannot be assigned to
named species (37, 38). For Archaea and Bacteria, there are
additional challenges created by their immense diversity, lack of
clarity regarding species concepts, and rampant horizontal gene
transfer (HGT) (32, 39, 40). The operational unit is often strains
(not species), which are not regulated by any taxonomic code;
strain collections are not available to download, making it dif-
ficult to map taxa between trees and taxonomy and estimate
named biodiversity. Open databases such as BioProject at the
National Center for Biotechnology Information (NCBI) (www.
ncbi.nlm.nih.gov/bioproject) have the potential to better catalog
biodiversity that does not fit into traditional taxonomic workflows.

Materials and Methods
Input Data: Taxonomy. No single taxonomy both is complete and has a

backbone well-informed by phylogenetic studies. We therefore constructed

the Open Tree Taxonomy (OTT), by merging Index Fungorum (41), SILVA (42,

43), NCBI (44), Global Biodiversity Information Facility (GBIF) (45), Interim

Register of Marine and Nonmarine Genera (IRMNG) (46), and two clade-

specific resources (47, 48), using a fully documented, repeatable process that

includes both generalized merge steps and user-defined patches (Support-

ing Information). OTT (ver. 2.8.5) consists of 2,722,024 well-named entities

and 1,360,819 synonyms, with an additional 585,081 entities having nonbiological

or taxonomically incomplete names (“environmental samples” or “incertae

sedis”), that are not included in the synthetic phylogeny.

Input Data: Phylogenetic Trees. We designed and developed a user interface

that saves phylogenetic trees directly into a GitHub repository (49) and used

this interface to import and curate trees. We obtained published trees from

TreeBASE (17) and Dryad and by direct appeal to authors. The data retrieved

are by no means a complete representation of phylogenetic knowledge

because we obtained digital phylogeny files for only 16% of recently pub-

lished trees (9). Even when available (as newick, NEXUS, or NeXML files or

via TreeBASE import), trees require significant curation to be usable for

synthesis. We mapped taxon labels (which often include laboratory codes or

abbreviations) to taxonomic entities in OTT. We rooted (or rerooted) trees to

match figures from papers. Because relationships among outgroup taxa

were often problematic, we identified the ingroup/focal clade for the study.

For studies with multiple trees, we tagged the tree that best matched the

conclusions of the study as “preferred.” Then, within major taxonomic

groups (eukaryotic microbial clades, animals, plants, and fungi), we ranked

preferred trees to generate prioritized lists. In the absence of structured

metadata about the phylogenetic methods and data used to infer the input

trees, rankings were assembled by authors with expertise in specific clades

and were based on date of publication, taxon sampling, the number of

genes/characters in the alignment, whether the specific genomic regions are

known to be problematic, support values, and phylogenetic reliability

(agreement or disagreement with well-established relationships) (see Table

2 for details). In general, rankings reflect community consensus about phy-

logenetic hypotheses. As we collect more metadata—such as that described

by the Minimum Information for a Phylogenetic Analysis (MIAPA) (35), ei-

ther by manual entry into the system or by upload of tree files with struc-

tured, machine-readable metadata—automated filtering/weighting trees

based on metadata will be possible.

Synthesis. The goal of the supertree (or “synthesis”) operation is to sum-

marize the ranked input trees and taxonomy (with the taxonomy given the

lowest rank). We used an algorithmic approach to produce the synthetic tree

rather than a search through tree space for an optimal tree. Given a set of

edges labeled with the ranks of supporting trees, the algorithm is a greedy

heuristic that tries to maximize the sum of the ranks of the included edges.

We summarize the major steps of the method here and provide details in

the Supporting Information.

The first steps include preprocessing the inputs. We pruned nonbiological

or taxonomically incomplete names from OTT and pruned outgroups and

unmapped taxa from input trees. Removal of outgroups reduces errors from

unexpected relationships among outgroup taxa. Finally, we found uncontested

nodes across the taxonomy plus input trees and broke the inputs at these nodes

into a set of subproblems. This divide-and-conquer approach shortened running

time and reduced memory requirements.

We then built a tree alignment graph (14, 50), which we refer to as the

graph of life. Tree alignment graphs allow for representation of both con-

gruence and conflict in the same data structure, allow for nonoverlapping

taxon sets in the inputs (as well as tips mapped to higher taxa), and are

computationally tractable at the scale of 2.3 million tips and hundreds of

Table 2. Tree metadata, based on the MIAPA checklist (https://github.com/miapa/miapa)

Item Description Typically included in tree files Use by Open Tree of Life

Topology The topology itself, plus the

type of tree (e.g., gene tree vs.

species tree,

type of consensus tree)

Topology, but not tree type Yes, topology; tree type used

by curators as criteria to

rank trees

Root Whether the tree is rooted, and the

location of the root

Tree in file often rooted

arbitrarily; different from

in manuscript figures

Yes, requires manual checking

by curator to match against

manuscript

OTU labels Labels on tips of tree should include

(or be mappable to) a meaningful

online identifier

Yes, but often do not map to

online databases

Tip labels mapped through

combination of automated

and manual processes

Branch lengths The length of each branch of the tree,

and the units of measurement

Branch length sometimes included;

units generally not present

Imported into database

when present, but not

included on synthetic tree

Branch support Support values (e.g., bootstrap

proportions or Bayesian

posterior probabilities)

Often in files, but support

type often not specified

Not in algorithm,

but curators do examine

branch support

Character matrix The data used to infer the tree,

including data type and source

(e.g., GenBank accession or specimen)

Sometimes included with

tree file, but often without

sufficient metadata

Number and type of

genes used by curators as

criteria to rank trees

Alignment method Method used to align sequence data No No

Inference method Method used to infer tree from data Usually no Inference method used by

curators as criteria to

rank trees

Wenote whether themetadata is generally available in the tree file (as opposed to in the text of the article, if at all) and how the data are used by Open Tree of Life.

12768 | www.pnas.org/cgi/doi/10.1073/pnas.1423041112 Hinchliff et al.

https://github.com/opentreeoflife/phylesystem
https://github.com/opentreeoflife/phylesystem
http://www.ncbi.nlm.nih.gov/bioproject
http://www.ncbi.nlm.nih.gov/bioproject
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423041112/-/DCSupplemental/pnas.201423041SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423041112/-/DCSupplemental/pnas.201423041SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1423041112/-/DCSupplemental/pnas.201423041SI.pdf?targetid=nameddest=STXT
https://github.com/miapa/miapa
www.pnas.org/cgi/doi/10.1073/pnas.1423041112


input trees. We loaded the taxonomy nodes and edges into the graph, and

then each subproblem, creating new nodes and edges and mapping tree

nodes onto compatible taxonomy nodes. We also created new nodes and

edges that reflect potential paths between the inputs.

Once the graph was complete, generating the synthetic tree involved

traversing the graph and preferring edges that originate from high-ranked

inputs. We always preferred phylogeny edges over taxonomy edges. Given

additional digitized metadata about trees, this system allows for custom

synthesis procedures based on preference for inference methods, data types,

or other factors.

As a comparison with this rank-based analysis, we also created a synthetic

tree using MultiLevelSupertrees (MLS) (15), a supertree method where the

tips in the source trees can represent different taxonomic hierarchies. We

built MLS supertrees for the largest clades that were computationally fea-

sible and then used these nonoverlapping trees as input into the graph

database and conducted synthesis. Due to the lack of taxon overlap between

each MLS tree, there was no topological conflict, and creating the final MLS

supertree simply involved traversing the graph and preferring phylogeny

over taxonomy.

Data and Software Availability. The current version of the tree of life is

available for browse, comment, and download at https://tree.opentreeoflife.org.

All software is open source and available at https://github.com/opentreeoflife.

The tree data store is available at https://github.com/opentreeoflife/phylesystem.

Where not limited by preexisting terms of use, all data are published with

a CC0 copyright waiver. The Open Tree of Life taxonomy, the synthetic

tree and processed inputs are available from Dryad (dx.doi.org/10.5061/

dryad.8j60q).

ACKNOWLEDGMENTS. We thank Paul Kirk (Index Fungorum), Tony Rees
(Interim Register of Marine and Nonmarine Genera), and Markus Doering
(Global Biodiversity Information Facility) for taxonomy data and advice
on taxonomy synthesis; Mark Holder for discussion, feedback, and soft-
ware development; Joseph Brown for data collection and curation, soft-
ware development, data analysis, and writing; Pam Soltis for helpful
comments on the manuscript; authors who made their tree files available
in TreeBASE or Dryad and tree files that were not otherwise available;
curators who imported trees and added metadata. This work was sup-
ported by National Science Foundation Assembling, Visualizing, and An-
alyzing the Tree of Life Grant 1208809.

1. Darwin C (1859) The Origin of Species: By Means of Natural Selection, Or the

Preservation of Favoured Races in the Struggle for Life (Cambridge Univ Press,

Cambridge, UK).

2. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) Howmany species are there

on Earth and in the ocean? PLoS Biol 9(8):e1001127.

3. Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using

rates of species description and estimates of taxonomic effort. Syst Biol 61(5):871–883.

4. Dykhuizen D (2005) Species numbers in bacteria. Proc Calif Acad Sci 56(6, Suppl 1):

62–71.

5. Sanderson MJ (2008) Phylogenetic signal in the eukaryotic tree of life. Science

321(5885):121–123.

6. Sanderson MJ, McMahon MM, Steel M (2010) Phylogenomics with incomplete taxon

coverage: The limits to inference. BMC Evol Biol 10(1):155.

7. Stoltzfus A, et al. (2012) Sharing and re-use of phylogenetic trees (and associated

data) to facilitate synthesis. BMC Res Notes 5:574.

8. Magee AF, May MR, Moore BR (2014) The dawn of open access to phylogenetic data.

PLoS One 9(10):e110268.

9. Drew BT, et al. (2013) Lost branches on the tree of life. PLoS Biol 11(9):e1001636.

10. Murray-Rust P, Smith-Unna R, Mounce R (2014) AMI-diagram: Mining facts from

images. D-Lib 20(11/12). Available at www.dlib.org/dlib/november14/murray-rust/

11murray-rust.html.

11. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of

birds in space and time. Nature 491(7424):444–448.

12. Bininda-Emonds OR, Sanderson MJ (2001) Assessment of the accuracy of matrix repre-

sentation with parsimony analysis supertree construction. Syst Biol 50(4):565–579.

13. Polaszek A (2010) Systema Naturae 250: The Linnaean Ark (CRC, Boca Raton, FL).

14. Smith SA, Brown JW, Hinchliff CE (2013) Analyzing and synthesizing phylogenies

using tree alignment graphs. PLOS Comput Biol 9(9):e1003223.

15. Berry V, Bininda-Emonds ORP, Semple C (2013) Amalgamating source trees with

different taxonomic levels. Syst Biol 62(2):231–249.

16. Kupczok A, Schmidt HA, von Haeseler A (2010) Accuracy of phylogeny reconstruction

methods combining overlapping gene data sets. Algorithms Mol Biol 5:37.

17. Sanderson MJ, Donoghue MJ, Piel W, Eriksson T (1994) TreeBASE: A prototype da-

tabase of phylogenetic analyses and an interactive tool for browsing the phylogeny

of life. Am J Bot 81(6):183.

18. Williams TA, Foster PG, Nye TMW, Cox CJ, Martin Embley T (2012) A congruent phylo-

genomic signal places eukaryotes within the Archaea. Proc Biol Sci 279(1749):4870–4879.

19. Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: A new ribosome structure

indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA

81(12):3786–3790.

20. Dunn CW, et al. (2008) Broad phylogenomic sampling improves resolution of the

animal tree of life. Nature 452(7188):745–749.

21. Ryan JF, et al.; NISC Comparative Sequencing Program (2013) The genome of the

ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science

342(6164):1242592.

22. Pick KS, et al. (2010) Improved phylogenomic taxon sampling noticeably affects

nonbilaterian relationships. Mol Biol Evol 27(9):1983–1987.

23. Philippe H, et al. (2009) Phylogenomics revives traditional views on deep animal re-

lationships. Curr Biol 19(8):706–712.

24. Burki F, et al. (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One

2(8):e790.

25. Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eu-

karyotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA

108(33):13624–13629.

26. Katz LA, Grant JR, Parfrey LW, Gordon Burleigh J (2012) Turning the crown upside

down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol 61(4):653–660.

27. Derelle R, Lang BF (2012) Rooting the eukaryotic tree with mitochondrial and bac-

terial proteins. Mol Biol Evol 29(4):1277–1289.

28. He D, et al. (2014) An alternative root for the eukaryote tree of life. Curr Biol 24(4):

465–470.

29. Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution in

plants. Am J Bot 91(10):1700–1708.

30. Dowling TE, Secor CL (1997) The role of hybridization and introgression in the di-

versification of animals. Annu Rev Ecol Syst 28:593–619.

31. Winder IC, Winder NP (2014) Reticulate evolution and the human past: An anthro-

pological perspective. Ann Hum Biol 41(4):300–311.

32. Syvanen M (2012) Evolutionary implications of horizontal gene transfer. Annu Rev

Genet 46:341–358.

33. Nelson-Sathi S, et al. (2015) Origins of major archaeal clades correspond to gene ac-

quisitions from bacteria. Nature 517(7532):77–80.

34. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science

284(5423):2124–2129.

35. Leebens-Mack J, et al. (2006) Taking the first steps towards a standard for reporting

on phylogenies: Minimum Information About a Phylogenetic Analysis (MIAPA).

OMICS 10(2):231–237.

36. Vos RA, et al. (2012) NeXML: Rich, extensible, and verifiable representation of com-

parative data and metadata. Syst Biol 61(4):675–689.

37. Lee CK, et al. (2012) Groundtruthing next-gen sequencing for microbial ecology-

biases and errors in community structure estimates from PCR amplicon py-

rosequencing. PLoS One 7(9):e44224.

38. Hibbett DS, et al. (2011) Progress in molecular and morphological taxon discovery in

Fungi and options for formal classification of environmental sequences. Fungal Biol

Rev 25(1):38–47.

39. Gilbert C, Cordaux R (2013) Horizontal transfer and evolution of prokaryote trans-

posable elements in eukaryotes. Genome Biol Evol 5(5):822–832.

40. Qiu H, Yoon HS, Bhattacharya D (2013) Algal endosymbionts as vectors of horizontal

gene transfer in photosynthetic eukaryotes. Front Plant Sci 4:366.

41. Index Fungorum. Available at www.indexfungorum.org/. Accessed April 1, 2014.

42. Quast C, et al. (2013) The SILVA ribosomal RNA gene database project: Improved data

processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596.

43. Yilmaz P, et al. (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic

frameworks. Nucleic Acids Res 42(Database issue):D643–D648.

44. Sayers EW, et al. (2009) Database resources of the National Center for Biotechnology

Information. Nucleic Acids Res 37(Database issue):D5–D15.

45. GBIF (2013) The Global Biodiversity Information Facility: GBIF backbone taxonomy.

46. Interim Register of Marine and Nonmarine Genera (IRMNG). Available at www.cmar.

csiro.au/datacentre/irmng/. Accessed January 31, 2014.

47. Hibbett DS, et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycol

Res 111(Pt 5):509–547.

48. Schäferhoff B, et al. (2010) Towards resolving Lamiales relationships: Insights from

rapidly evolving chloroplast sequences. BMC Evol Biol 10:352.

49. McTavish EJ, et al. (2015) Phylesystem: A git-based data store for community-curated

phylogenetic estimates. Bioinformatics 2015:btv276.

50. Chaudhary R, Fernandez-Baca D, Gordon Burleigh J (2015) Constructing and

employing tree alignment graphs for phylogenetic synthesis. arXiv:1503.03877

[cs.DS].

51. Bansal MS, Burleigh JG, Eulenstein O, Fernández-Baca D (2010) Robinson-Foulds su-

pertrees. Algorithms Mol Biol 5:18.

52. Semple C (2003) Reconstructing minimal rooted trees. Discrete Appl Math 127(3):

489–503.

53. Guillemot S, Berry V (2007) Finding a Largest Subset of Rooted Triples Identifying a

Tree Is an NP-Hard Task (LIRMM, Montpellier, France). Research Report LIRMM-RR-

07010.

54. Wilkinson M, Pisani D, Cotton JA, Corfe I (2005) Measuring support and finding un-

supported relationships in supertrees. Syst Biol 54(5):823–831.

55. Semple C, Steel A (2003) Phylogenetics (Oxford Univ Press, Oxford).

Hinchliff et al. PNAS | October 13, 2015 | vol. 112 | no. 41 | 12769

E
V
O
LU

T
IO
N

https://tree.opentreeoflife.org/
https://github.com/opentreeoflife
https://github.com/opentreeoflife/phylesystem
http://dx.doi.org/10.5061/dryad.8j60q
http://dx.doi.org/10.5061/dryad.8j60q
http://www.dlib.org/dlib/november14/murray-rust/11murray-rust.html
http://www.dlib.org/dlib/november14/murray-rust/11murray-rust.html
http://www.indexfungorum.org/
http://www.cmar.csiro.au/datacentre/irmng/
http://www.cmar.csiro.au/datacentre/irmng/
http://arXiv:1503.03877

	Synthesis of Phylogeny and Taxonomy Into a Comprehensive Tree of Life
	Recommended Citation
	Authors

	tmp.1503326539.pdf.tfSVQ

