
Autom Softw Eng (2018) 25:785–831

https://doi.org/10.1007/s10515-018-0235-8

Synthesis of probabilistic models for quality-of-service

software engineering

Simos Gerasimou1
· Radu Calinescu1

·

Giordano Tamburrelli2

Received: 20 December 2017 / Accepted: 25 April 2018 / Published online: 17 May 2018

© The Author(s) 2018

Abstract An increasingly used method for the engineering of software systems with

strict quality-of-service (QoS) requirements involves the synthesis and verification

of probabilistic models for many alternative architectures and instantiations of sys-

tem parameters. Using manual trial-and-error or simple heuristics for this task often

produces suboptimal models, while the exhaustive synthesis of all possible models

is typically intractable. The EvoChecker search-based software engineering approach

presented in our paper addresses these limitations by employing evolutionary algo-

rithms to automate the model synthesis process and to significantly improve its

outcome. EvoChecker can be used to synthesise the Pareto-optimal set of probabilistic

models associated with the QoS requirements of a system under design, and to support

the selection of a suitable system architecture and configuration. EvoChecker can also

be used at runtime, to drive the efficient reconfiguration of a self-adaptive software

system. We evaluate EvoChecker on several variants of three systems from different

application domains, and show its effectiveness and applicability.

Keywords Search-based software engineering · Probabilistic model checking ·

Evolutionary algorithms · QoS requirements

B Simos Gerasimou

simos.gerasimou@york.ac.uk

Radu Calinescu

radu.calinescu@york.ac.uk

Giordano Tamburrelli

tambug@gmail.com

1 Department of Computer Science, University of York, York, UK

2 lastminute.com, Chiasso, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-018-0235-8&domain=pdf
http://orcid.org/0000-0002-2706-5272


786 Autom Softw Eng (2018) 25:785–831

1 Introduction

Software systems used in application domains including healthcare, finance and manu-

facturing must comply with strict reliability, performance and other quality-of-service

(QoS) requirements. The software engineers developing these systems must use rig-

orous techniques and processes at all stages of the software development life cycle.

In this way, the engineers can continually assess the correctness of a system under

development (SUD) and confirm its compliance with the required levels of reliability

and performance.

Probabilistic model checking (PMC) is a formal verification technique that can

assist in establishing the compliance of a SUD with QoS requirements through math-

ematical reasoning and rigorous analysis (Baier and Katoen 2008; Clarke et al. 1999).

PMC supports the analysis of reliability, timeliness, performance and other QoS

requirements of systems exhibiting stochastic behaviour, e.g. due to unreliable com-

ponents or uncertainties in the environment (Kwiatkowska 2007). The technique has

been successfully applied to the engineering of software for critical systems (Alur et al.

2015; Woodcock et al. 2009). In PMC, the behaviour of a SUD is defined formally as

a finite state-transition model whose transitions are annotated with information about

the likelihood or timing of events taking place. Examples of probabilistic models that

PMC operates with include discrete and continuous-time Markov chains, and Markov

decision processes (Kwiatkowska et al. 2007). QoS requirements are expressed for-

mally using probabilistic variants of temporal logic, e.g., probabilistic computation

tree logic and continuous stochastic logic (Kwiatkowska et al. 2007). Through auto-

mated exhaustive analysis of the underlying low-level model, PMC proves or disproves

compliance of the probabilistic model of the system with the formally specified QoS

requirements.

Recent advances in PMC reinforced its applicability to the cost-effective engi-

neering of software both at design time (Baier et al. 2010; Calinescu et al. 2016;

Kwiatkowska et al. 2010) and at runtime (Calinescu et al. 2012; Draeger et al. 2014).

The design-time use of the technique involves the verification of alternative designs

of a SUD. The objectives are to identify designs whose quality attributes comply with

system QoS requirements and also to eliminate early in the design process errors that

could be hugely expensive to fix later (Damm and Lundberg 2007). Designs that meet

these objectives can then be used as a basis for the implementation of the system.

Alternatively, software engineers can construct probabilistic models of existing sys-

tems and employ PMC to assess their QoS attributes. Within the last decade, PMC has

also been used to drive the reconfiguration of self-adaptive systems (Baresi and Ghezzi

2010; Calinescu and Kwiatkowska 2009; Epifani et al. 2009) by supporting the “anal-

yse” and “plan” stages of the monitor-analyse-plan-execute control loop (Calinescu

et al. 2017d; Salehie and Tahvildari 2009) of these systems. In this runtime use, PMC

provides formal guarantees that the reconfiguration plan adopted by the self-adaptive

system meets the QoS requirements (Calinescu et al. 2017a, 2012). We discuss related

research on using PMC at runtime, including our recent work from Calinescu et al.

(2015), Gerasimou et al. (2014), in Sect. 8.

Notwithstanding the successful applications of PMC at both design time and

runtime, the synthesis and verification of probabilistic models that satisfy the QoS

123



Autom Softw Eng (2018) 25:785–831 787

requirements of a system remains a very challenging task. The complexity of this task

increases significantly when the search space is large and/or the QoS requirements

ask for the optimisation of conflicting QoS attributes of the system (e.g. the maximi-

sation of reliability and minimisation of cost). Existing approaches such as exhaustive

search and simple heuristics like manual trial-and-error and automated hill climbing

can only tackle this challenge for small systems. Exhaustively searching the solution

space for an optimal probabilistic model is intractable for most real-world systems.

On the other hand, trial-and-error requires manual verification of numerous alternative

instantiations of the system parameters, while simple heuristics do not generalise well

and are often biased towards a particular area of the problem landscape (e.g. through

getting stuck at local optima).

The EvoChecker search-based software engineering approach presented in our

paper addresses these limitations of existing approaches by automating the synthesis

of probabilistic models and by considerably improving the outcome of the synthesis

process. EvoChecker achieves these improvements by using evolutionary algorithms

(EAs) to guide the search towards areas of the search space more likely to comprise

probabilistic models that meet a predefined set of QoS requirements. These require-

ments can include both constraints, which specify bounds for QoS attributes of the

system (e.g. “Workflow executions must complete successfully with probability at

least 0.98”), and optimisation objectives (e.g. “The workflow response time should be

minimised”).

Given this set of QoS requirements and a probabilistic model template that encodes

the configuration parameters (e.g., alternative architectures, parameter ranges) of the

software system, EvoChecker supports both the identification of suitable architectures

and configurations for a software system under design, and the runtime reconfiguration

of a self-adaptive software system.

When used at design time, EvoChecker employs multi-objective EAs to synthesise

(i) a set of probabilistic models that closely approximates the Pareto-optimal model set

associated with the QoS requirements of a software system; and (ii) the corresponding

approximate Pareto front of QoS attribute values. Given this information, software

designers can inspect the generated solutions to assess the tradeoffs between multiple

QoS requirements and make informed decisions about the architecture and parameters

of the SUD.

When used at runtime, EvoChecker drives the reconfiguration of a self-adaptive

software system by synthesising probabilistic models that correspond to configura-

tions which meet the QoS requirements of the system. To speed up this runtime search,

we use incremental probabilistic model synthesis. This novel technique involves

maintaining an archive of specific probabilistic models synthesised during recent

reconfiguration steps, and using these models as the starting point for each new search.

As reconfiguration steps are triggered by events such as changes to the environment

that the system operates in, the EvoChecker archive accumulates “solutions” to past

events that often resemble new events experienced by the system. Therefore, start-

ing new searches from the archived “solutions” can achieve significant performance

improvement for the model synthesis process.

The main contributions of our paper are:

123



788 Autom Softw Eng (2018) 25:785–831

– The EvoChecker approach for the search-based synthesis of probabilistic models

for QoS software engineering, and its application to the synthesis of models that

meet QoS requirements both at design time and at runtime.

– The EvoChecker high-level modelling language, which extends the modelling

language used by established probabilistic model checkers such as PRISM

(Kwiatkowska et al. 2011) and Storm (Dehnert et al. 2017).

– The definition of the probabilistic model synthesis problem.

– An incremental probabilistic model synthesis technique for the efficient runtime

generation of probabilistic models that satisfy the QoS requirements of a self-

adaptive system.

– An extensive evaluation of EvoChecker in three case studies drawn from different

application domains.

– A prototype open-source EvoChecker tool and a repository of case studies, both

of which are freely available from our project webpage at http://www-users.cs.

york.ac.uk/simos/EvoChecker.

These contributions significantly extend the preliminary results from our confer-

ence paper on search-based synthesis of probabilistic models (Gerasimou et al. 2015)

in several ways. First, we introduce an incremental probabilistic model synthesis tech-

nique that extends the applicability of EvoChecker to self-adaptive software systems.

Second, we devise and evaluate different strategies for selecting the archived solutions

used by successive EvoChecker synthesis tasks at runtime. Third, we extend the pre-

sentation of the EvoChecker approach with additional technical details and examples.

Fourth, we use EvoChecker to develop two self-adaptive systems from different appli-

cation domains (service-based systems and unmanned underwater vehicles). Finally,

we use the systems and models from our experiments to assemble a repository of case

studies available on our project website.

The rest of the paper is organised as follows. Section 2 presents the software system

used as a running example. Section 3 introduces the EvoChecker modelling language,

and Sect. 4 presents the specification of EvoChecker constraints and optimisation

objectives using the QoS requirements of a software system. Section 5 describes the

use of EvoChecker to synthesise probabilistic models at design time and at runtime.

Section 6 summarises the implementation of the EvoChecker prototype tool. Section 7

presents the empirical evaluation carried out to assess the effectiveness of EvoChecker,

and an analysis of our findings. Finally, Sects. 8 and 9 discuss related work and

conclude the paper, respectively.

2 Running example

We will illustrate the EvoChecker approach for synthesising probabilistic models using

a real-world service-based system from the domain of foreign exchange trading. The

system, which for confidentiality reasons we anonymise as FX, is used by a European

foreign exchange brokerage company and implements the workflow in Fig. 1.

An FX trader can use the system to carry out trades in expert or normal mode. In

the expert mode, the trader can provide her objectives or action strategy. FX period-

ically analyses exchange rates and other market activity, and automatically executes

123

http://www-users.cs.york.ac.uk/simos/EvoChecker
http://www-users.cs.york.ac.uk/simos/EvoChecker


Autom Softw Eng (2018) 25:785–831 789

Fig. 1 Workflow of the FX

system. (modified with the

permission from Gerasimou

et al. (2015))

Table 1 QoS requirements for

the FX system
ID Informal description

R1 “Workflow executions must complete successfully with

probability at least 98%”

R2 “The total service response time per workflow execution

should be minimised”

R3 “The probability of a service failure during a workflow

execution should be minimised”

R4 “The total cost of the third-party services used by a

workflow execution should be minimised”

a trade once the trader’s objectives are satisfied. In particular, a Market watch service

retrieves real-time exchange rates of selected currency pairs. A Technical analysis

service receives this data, identifies patterns of interest and predicts future variation in

exchange rates. Based on this prediction and if the trader’s objectives are “satisfied”,

an Order service is invoked to carry out a trade; if they are “unsatisfied”, execution

control returns to the Market watch service; and if they are “unsatisfied with high

variance”, an Alarm service is invoked to notify the trader about opportunities not

captured by the trading objectives. In the normal mode, FX assesses the economic

outlook of a country using a Fundamental analysis service that collects, analyses and

evaluates information such as news reports, economic data and political events, and

provides an assessment of the country’s currency. If the trader is satisfied with this

assessment, she can sell/buy currency by invoking the Order service, which in turn

triggers a Notification service to confirm the successful completion of a trade.

The FX system uses mi ≥ 1 functionally equivalent implementations of the i th

service. For any service i , the j th implementation, 1 ≤ j ≤ mi is characterised by

its reliability ri j ∈ [0, 1] (i.e., probability of successful invocation), invocation cost

ci j ∈R+ and response time ti j ∈R+.

FX is required to satisfy the QoS requirements from Table 1. For each service, FX

must select one of two invocation strategies by means of a configuration parameter

stri ∈ {PROB, SEQ}, where

123



790 Autom Softw Eng (2018) 25:785–831

• if stri = PROB, FX uses a probabilistic strategy to randomly select one of the

service implementations based on an FX-specified discrete probability distribution

pi1, pi2, . . . , pimi
; and

• if stri = SEQ, FX uses a sequential strategy that employs an execution order to

invoke one after the other all enabled service implementations until a successful

response is obtained or all invocations fail.

For the SEQ strategy, a parameter exi ∈ {1, 2, . . . , mi !} establishes which of the mi !

permutations of the mi implementations should be used, and a configuration parameter

xi j ∈ {0, 1} indicates if implementation j is enabled (xi j = 1) or not (xi j = 0).

3 EvoChecker modelling language

EvoChecker uses an extension of the modelling language that leading model checkers

such as PRISM (Kwiatkowska et al. 2011) and Storm (Dehnert et al. 2017) use to define

probabilistic models. This language is based on the Reactive Modules formalism (Alur

and Henzinger 1999), which models a system as the parallel composition of a set of

modules. The state of a module is defined by a set of finite-range local variables, and

its state transitions are specified by probabilistic guarded commands that modify these

variables:

[action] guard −> e1 : update1 + · · · + en : updaten; (1)

where guard is a boolean expression over all model variables. If the guard is true, the

arithmetic expression ei , 1 ≤ i ≤ n, gives the probability (for discrete-time models)

or rate (for continuous-time models) with which the updatei change of the module

variables occur. The action is an optional element of type ‘string’; when used, all

modules comprising commands with the same action must synchronise by performing

one of these commands simultaneously. For a complete description of the modelling

language, we refer the reader to the PRISM manual at www.prismmodelchecker.org/

manual.

EvoChecker extends this language with the following three constructs that support

the specification of the possible configurations of a system.

1. Evolvable parameters EvoChecker uses the syntax

evolve int param [min..max];

evolve double param [min..max];
(2)

to define model parameters of type ‘int’ and ‘double’, respectively, and acceptable

ranges for them. These parameters can be used in any field of command (1) other than

action.

2. Evolvable probability distributions The syntax

evolve distribution dist [min1..max1] . . . [minn ..maxn]; (3)

where [mini , maxi ] ⊆ [0, 1] for all 1 ≤ i ≤ n, is used to define an n-element discrete

probability distribution, and ranges for the n probabilities of the distribution. The name

123

www.prismmodelchecker.org/manual
www.prismmodelchecker.org/manual


Autom Softw Eng (2018) 25:785–831 791

of the distribution with 1, 2, . . . , n appended as a suffix (i.e., dist1, dist2, etc.) can then

be used instead of expressions e1, e2, …, en from an n-element command (1).

3. Evolvable modules EvoChecker uses the syntax

evolve module modName implementation1 endmodule

. . .

evolve module modName implementationn endmodule

(4)

to define n ≥ 2 alternative implementations of a module modName.

The interpretation of the three EvoChecker constructs within a probabilistic model

template is described by the following definitions.

Definition 1 (Probabilistic model template) A valid probabilistic model augmented

with EvoChecker evolvable parameters (2), probability distributions (3) and modules

(4) is called a probabilistic model template.

Definition 2 (Valid probabilistic model) A probabilistic model M is an instance of

a probabilistic model template T if and only if it can be obtained from T using the

following transformations:

– Each evolvable parameter (2) is replaced by a ‘const int param = val;’ or ‘const

double param = val;’ declaration (depending on the type of the parameter), where

val ∈ {min, . . . , max} or val ∈ [min..max], respectively.

– Each evolvable probability distribution (3) is removed, and the n occurrences of its

name instead of expressions e1, …, en of a command (1) are replaced with values

from the ranges [min1..max1], …, [minn ..maxn], respectively. For a discrete-time

model, the sum of the n values is 1.0.

– Each set of evolvable modules with the same name is replaced with a single element

from the set, from which the keyword ‘evolve’ was removed.

As the EvoChecker modelling language is based on the modelling language of

established probabilistic model checkers such as PRISM and Storm, our approach

can handle templates of all types of probabilistic models supported by these model

checkers. Table 2 shows these types of probabilistic models, and the probabilistic

temporal logics available to specify the QoS requirements of the modelled software

systems.

Example 1 Figure 2 presents the discrete-time Markov chain (DTMC) probabilistic

model template of the FX system introduced in Sect. 2. The template comprises a

WorkflowFX module modelling the FX workflow, and two modules modelling the

alternative implementations of each service. These two service modules correspond

to the probabilistic invocation strategy and the sequential invocation strategy, respec-

tively. Due to space constrains, Fig. 2 shows in full only the MarketWatch module for

the probabilistic strategy of the Market watch service; the complete FX probabilistic

model template is available on our project webpage.

The local variable state from the WorkflowFX module (line 5 in Fig. 2) encodes

the state of the system, i.e. the service being invoked, the success or failure of that

123



792 Autom Softw Eng (2018) 25:785–831

Table 2 Types of probabilistic models supported by EvoChecker

Type of probabilistic model QoS requirement specification logic

Discrete-time Markov chains PCTLa , LTLb, PCTL*c

Continuous-time Markov chains CSLd

Markov decision processes PCTLa , LTLb, PCTL*c

Probabilistic automata PCTLa , LTLb, PCTL*c

Probabilistic timed automata PCTLa

aProbabilistic Computation Tree Logic (Bianco and Alfaro 1995; Hansson and Jonsson 1994), bLinear

Temporal Logic (Pnueli 1985) , cPCTL* is a superset of PCTL and LTL, dContinuous Stochastic Logic

(Aziz et al. 2000; Baier et al. 1999)

service invocation, etc. The local variable mw from the MarketWatch implementa-

tions (line 39) records the internal state of the Market watch service invocation.The

WorkflowFX module synchronises with the service modules through ‘start’-, ‘failed’-

and ‘succ’-prefixed actions, which are associated with the invocation, failed execution,

and successful execution of a service, respectively. For instance, the synchronisation

with the MarketWatch module occurs through the actions startMW, failedMW and

succMW (lines 9–11).

Each service module models a specific invocation strategy, e.g. a probabilistic

selection is made between three available Market watch service implementations in

line 41 of the first MarketWatch module. Then, the selected service implementation is

invoked (lines 43–45) and either completes successfully (line 47) or fails (line 48). The

FX system continues with the rest of its workflow (lines 12–31 from WorkflowFX) if

the service executed successfully, or terminates (line 32) otherwise.

All three EvoChecker constructs (2)–(4) are used by the FX probabilistic model

template:

– four evolvable parameters specify the enabled Market watch service implemen-

tations and their execution order (lines 50–53) associated with the sequential

invocation strategy;

– an evolvable distribution specifies the discrete probability distribution for the prob-

abilistic invocation strategy of the first MarketWatch module (line 36);

– two alternative implementations of the MarketWatch module are provided in

lines 37–49 and 54–57, respectively.

4 EvoChecker specification of QoS requirements

4.1 Quality-of-service attributes

Given the probabilistic model template T of a system, QoS attributes such as the

response time, throughput and reliability of the system can be expressed in the prob-

abilistic temporal logics from Table 2, and can be evaluated by applying probabilistic

model checking to relevant instances of T . Formally, given the probabilistic temporal

logic formula Φ for a QoS attribute attr and an instance M of T (i.e. a probabilistic

123



Autom Softw Eng (2018) 25:785–831 793

1

2
3

4
5

6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31
32
33
34

35

36

37
38

39
40
41

42

43
44
45

46
47
48
49

50
51
52
53

54
55
56
57
58

dtmc

const double pExpert=0.66; const double pSat = 0.61; const double pNotSat = 0.28;
const double pTrade = 0.27; const double pRetry = 0.20;

module WorkflowFX
state: [0..15] init 0; // FX state

// Start: expert or normal mode
[fxStart] state=0 −> pExpert :(state’=1) + (1-pExpert):(state’=9);

//Service #1: Market Watch
[startMW] state=1 −> 1.0:(state’=2);
[failedMW] state=2 −> 1.0:(state’=5);
[succMW] state=2 −> 1.0:(state’=3);

//Service #2: Technical Analysis
[startTA] state=3 −> 1.0:(state’=4);
[failedTA] state=4 −> 1.0:(state’=5);
[succTA] state=4 −> pSat : (state’=1) + pNotSat : (state’=11) + (1-pSat-pNotSat) : (state’=7);

//Service #3: Alarm
[startAL] state=7 −> 1.0:(state’=8);
[failedAL] state=8 −> 1.0:(state’=5);
[succAL] state=8 −> 1.0:(state’=13);

//Service #4: Fundamental Analysis
[startFA] state=9 −> 1.0:(state’=10);
[failedFA] state=10 −> 1.0:(state’=5);
[succFA] state=10 −> pTrade : (state’=11) + pRetry : (state’=9) + (1-pTrade-pRetry) : (state’=0);

//Service #5: Order
[startOR] state=11 −> 1.0:(state’=12);
[failedOR] state=12 −> 1.0:(state’=5);
[succOR] state=12 −> 1.0:(state’=13);

//Service #6: Notification
[startNOT] state=13 −> 1.0:(state’=4);
[failedNOT] state=14 −> 1.0:(state’=5);
[succNOT] state=14 −> 1.0:(state’=15);

[failedFX] state=5 −> 1.0:(state’=5);
[succFX] state=15 −> 1.0:(state’=15);

endmodule

const double r11 = 0.998; const double r12 = 0.995; const double r13 = 0.996;

evolve distribution p1[0.1..0.3][0.3..0.5][0.2..0.6];

// Probabilistic invocation strategy for Service #1: Market Watch
evolve module MarketWatch

mw: [0..5] init 0; // MW state
// Probabilistic service selection
[startMW] mw=0 −> p11 : (mw’=1) + p12 : (mw’=2) + p13 : (mw’=3);

// Run services
[runMW1] mw=1 −> r11 : (mw’=4) + (1-r11): (mw’=5);
[runMW2] mw=2 −> r12 : (mw’=4) + (1-r12): (mw’=5);
[runMW3] mw=3 −> r13 : (mw’=4) + (1-r13): (mw’=5);

// End Market Watch service
[succMW] mw=4 −> 1.0:(mw’=0);
[failedMW] mw=5 −> 1.0:(mw’=0);

endmodule

evolve int x11[0..1];
evolve int x12[0..1];
evolve int x13[0..1];
evolve int ex1[1..6];

// Sequential invocation strategy for Service #1: Market Watch
evolve module MarketWatch

...
endmodule

...

Fig. 2 DTMC probabilistic model template for the FX system

123



794 Autom Softw Eng (2018) 25:785–831

Table 3 QoS attributes for the FX system

QoS attribute Informal description Formula Φi

attr1 Workflow reliability P=?[F state=15]

attr2 Workflow response time Rtime
=? [F state=15 ∨ state=5]

attr3 Workflow invocation cost RinvocationCost
=? [F state=15 ∨ state=5]

model corresponding to a system configuration being examined), the value of the QoS

attribute is

attr = PMC(M, Φ), (5)

where PMC is the probabilistic model checking “function” implemented by tools such

as PRISM and Storm.

Example 2 The QoS requirements of the FX system from our running example (shown

in Table 1) are based on three QoS attributes. Requirements R1 and R3 refer to the

probability of successful completion (i.e. the reliability) of FX workflow executions.

This QoS attribute corresponds to the probabilistic computation tree logic (PCTL)

formula P=?[F state=15] from the first row of Table 3. This PCTL formula expresses

the probability that the probabilistic model template from Fig. 2 reaches its success

state.

The QoS attributes for the other two requirements can be specified using rewards

PCTL formulae (Andova et al. 2004; Katoen et al. 2005; Kwiatkowska 2007). For

this purpose, positive values are associated with specific states and transitions of the

model template from Fig. 2 by adding the following two rewards …endrewards

structures to the template:

rewards “time” rewards “invocationCost”

[runMW1] true : t11; [runMW1] true : c11;

[runMW2] true : t12; [runMW1] true : c12;

[runMW3] true : t13; [runMW1] true : c13;

… …

endrewards endrewards

These structures support the computation of the total service response time for

requirement R2 and of the workflow invocation cost for requirement R4. To this

end, the two structures associate the mean response time ti j and the invocation cost

ci j of the j th implementation of FX service i with the transition that models the

execution of this service implementation. The corresponding PCTL formulae, shown

in the last two rows of Table 3, represent the reward (i.e. the response time and cost,

respectively) “accumulated” before reaching a state where the workflow execution

terminates. In these formulae, state=15 denotes a successful termination, and state=5

an unsuccessful one.

Before describing the formalisation of QoS requirements in EvoChecker, we note

that a software system has two types of parameters:

123



Autom Softw Eng (2018) 25:785–831 795

1. Configuration parameters, which software engineers can modify to select between

alternative system architectures and configurations. The EvoChecker constructs

(2)–(4) are used to define these parameters and their acceptable values. The set of all

possible combinations of configuration parameter values forms the configuration

space Cfg of the system.

2. Environment parameters, which specify relevant characteristics of the environment

in which the system will operate or is operating. These parameters cannot be

modified, and need to be estimated based on domain knowledge or observations

of the actual system. The set of all possible combinations of environment parameter

values forms the environment space Env of the system.

A probabilistic model template T of a system with configuration space Cfg and envi-

ronment space Env corresponds to a specific combination of environment parameter

values e ∈ Env and to the entire configuration space Cfg. Furthermore, each instance

M of T is associated with the same environment state e and with a specific combina-

tion of configuration parameter values c ∈ Cfg. We will use the notation M(e, c) to

refer to this specific instance of T , and the notation attr(e, c) for the value of a QoS

attribute (5) computed for this instance.

Example 3 The environment parameters of the FX system comprise:

– the probabilities pExpert, pSat, pNotSat, pTrade and pRetry from module Work-

flowFX in Fig. 2;

– the success probabilities ri j , response times ti j and costs ci j of the FX service

implementations.

The FX configuration parameters defined by the EvoChecker constructs from Fig. 2

are:

– the invocation strategies stri used for the i th FX service;

– the probabilities pi j of invoking the j th implementation of service i when the

probabilistic invocation strategy is used;

– the xi j and exi parameters specifying which implementations of service i are used

by the sequential invocation strategy and their execution order.

4.2 Quality-of-service requirements

EvoChecker supports the engineering of software systems that need to satisfy two

types of QoS requirements:

1. Constraints, i.e. requirements that specify bounds for the acceptable values of QoS

attributes such as response time, throughput, reliability and cost.

2. Optimisation objectives, i.e. requirements which specify QoS attributes that should

be minimised or maximised.

Formally, EvoChecker considers systems with n1 ≥ 0 constraints RC
1 , RC

2 , . . ., RC
n1

,

and n2 ≥ 1 optimisation objectives RO
1 , RO

2 , . . . , RO
n2

. The i th constraint, RC
i , has the

form

attri ⊲⊳i boundi (6)

123



796 Autom Softw Eng (2018) 25:785–831

Table 4 Formal specification of QoS requirements for the FX system

ID Formal description Informal description Requirement type

R1 attr1 ≥ 0.98 Workflow reliability greater than 98% Constraint

R2 minimise attr2 Minimise workflow reponse time Optimisation objective

R3 minimise 1 − attr1 Minimise worklfow reliability Optimisation objective

R4 minimise attr3 Minimise workflow invocation cost Optimisation objective

and, assuming that all optimisation objectives require the minimisation of QoS

attributes,1 the j th optimisation objective, RO
j , has the form

minimise attrn1+ j , (7)

where ⊲⊳i∈ {<,≤,≥,>,=} is a relational operator, boundi ∈ R, 0 ≤ i ≤ n1,

1 ≤ j ≤ n2, and attr1, attr2, …, attrn1+n2 represent n1 + n2 QoS attributes (5) of the

software system.

Example 4 The QoS requirements of the FX system (Table 1) comprise one constraint

(R1) and three optimisation objectives (R2–R4). Table 4 shows the formalisation of

these requirements for the design time use of EvoChecker using the FX QoS attributes

from Table 3.

5 EvoChecker probabilistic model synthesis

EvoChecker supports both the selection of a suitable architecture and configuration

for a software system under design, and the runtime reconfiguration of a self-adaptive

software system. There are three key differences between these two uses of

EvoChecker .

First, the use of EvoChecker during system design requires the specification of the

(fixed) environment state that the system will operate in by a domain expert, while

for its runtime use the environment state is continually updated based on monitoring

information.

Second, the EvoChecker use at design time can handle multiple optimisation

objectives and yields multiple Pareto-optimal solutions (i.e. probabilistic models).

In contrast, EvoChecker at runtime yields a single solution (as synthesising multiple

solutions is not useful without a software engineer to examine them) by operating with

a single optimisation objective (i.e. a “loss” function).

Finally, the use of EvoChecker for the design of a system is a one-off activity,

whereas for a self-adaptive system the approach is used to select new system con-

figurations on frequent intervals or after each environment change. The latter use

involves the incremental synthesis of probabilistic models by generating each new

configuration efficiently based on previously synthesised ones.

1 This assumption simplifies the presentation of EvoChecker without loss of generality.

123



Autom Softw Eng (2018) 25:785–831 797

Given these differences between the design time and runtime EvoChecker uses, we

present them separately in Sects. 5.1 and 5.2, respectively.

5.1 Using EvoChecker at design time

5.1.1 Probabilistic model synthesis problem

Consider a SUD with environment space Env, an environment state e ∈ Env pro-

vided by a domain expert, and a probabilistic model template T associated with the

configuration space Cfg of the system. Given n1 ≥ 0 constraints (6) and n2 ≥ 1 opti-

misation objectives (7), the probabilistic model synthesis problem involves finding the

Pareto-optimal set PS of configurations from Cfg that satisfy the n1 constraints and

are non-dominated with respect to the n2 optimisation objectives:

PS =
{

c∈Cfg | ∄ c′ ∈Cfg • (∀0≤ i ≤n1 • attri (e, c) ⊲⊳i boundi∧

attri (e, c′) ⊲⊳i boundi

)

∧ c′ ≺ c
}

(8)

with the dominance relation ≺ : Cfg× Cfg→B defined by

∀c, c′ ∈ Cfg • c ≺ c′ ≡ ∀ n1 + 1 ≤ i ≤ n1 + n2 • attri (e, c) ≤ attri (e, c′) ∧

∃ n1 + 1 ≤ i ≤ n1 + n2 • attri (e, c) < attri (e, c′).

Finally, given the Pareto-optimal set PS, the Pareto front PF is defined by

PF = {(an1+1, an1+2, . . . , an1+n2) ∈ Rn2 |

∃c ∈ PS • ∀n1 + 1≤ i ≤n1 + n2 • ai = attri (e, c)}, (9)

because the system designers need this information in order to choose between the

configurations from the set P S.

5.1.2 Probabilistic model synthesis approach

Obtaining the Pareto-optimal set of a SUD, given by Eq. (8), is usually unfeasible,

as the configuration space Cfg is typically extremely large or (when the probabilistic

model template T includes evolvable distributions or evolvable parameters of type

double) infinite. Therefore, EvoChecker synthesises a close approximation of the

Pareto-optimal set by using standard multiobjective evolutionary algorithms such as

the genetic algorithms NSGA-II (Deb et al. 2002), SPEA2 (Zitzler et al. 2001) and

MOCell (Nebro et al. 2009).

Evolutionary algorithms (EAs) encode each possible solution of a search prob-

lem as a sequence of genes, i.e. binary representations of the problem variables. For

EvoChecker, each use of an ‘evolvable’ construct (2)–(4) within the probabilistic

model template T contributes to this sequence with the gene(s) specified by the

encoding rules in Table 5. EvoChecker uses these rules to obtain the value ranges

123



798 Autom Softw Eng (2018) 25:785–831

Table 5 EvoChecker gene encoding rules

Evolvable feature of the probabilistic

model template

EvoChecker gene(s)

Type Cardinality Value range Vi

evolve int param[min..max]; int 1 {min,…, max}

evolve double param[min..max]; double 1 [min..max]

evolve distributiondist[min1..max1] . . .

. . . [minn ..maxn ];
double n [min1..max1] …[minn ..maxn ]

evolve module mod implementation1 int 1 {1, 2, . . . , m}

endmodule…

evolve module modimplementationm

endmodule

Fig. 3 High-level EvoChecker architecture

V1, V2, . . . , Vk for the k ≥1 genes of T , and to assemble the SUD configuration space

Cfg = V1 × V2 × · · · × Vk .

The high-level architecture of EvoChecker is shown in Fig. 3. The probabilistic

model template T of the SUD is processed by a Template parser component. The

Template parser converts the template into an internal representation (i.e. a paramet-

ric probabilistic model) and extracts the configuration space Cfg as described above.

The configuration space Cfg and the n1 QoS constraints and n2 optimisation objectives

of the SUD are used to initialise the Multi-objective evolutionary algorithm compo-

nent at the core of EvoChecker. This component creates a random initial population

of individuals (i.e. a set of random gene sequences corresponding to different Cfg ele-

ments), and then iteratively evolves this population into populations containing “fitter”

individuals by using the standard EA approach summarised next.

The EA approach involves evaluating different individuals (i.e., potential new

system configurations) through invoking an Individual analyser. This component com-

bines an individual and the parametric model created by the Template parser to produce

a probabilistic model M in which all configuration parameters are fixed using values

from the genes of the analysed individual. Next, the Individual analyser invokes a

Quantitative verification engine that uses probabilistic model checking to determine

the QoS attributes attri , 1 ≤ i ≤ n1 + n2, of the analysed individual. To this end,

123



Autom Softw Eng (2018) 25:785–831 799

the Quantitative verification engine analyses the model M and each of the probabilis-

tic temporal logic formulae Φ1, Φ2, …, Φn1+n2 corresponding to the n1 + n2 QoS

attributes. These attributes are then used by the Multi-objective evolutionary algorithm

to establish whether the individual satisfies the n1 QoS constraints and to assess its

“fitness” based on the QoS attribute values associated with the n2 QoS optimisation

objectives.

Once all individuals have been evaluated, the Multi-objective evolutionary algo-

rithm performs an assignment, reproduction and selection step. During assignment,

the algorithm establishes the fitness of each individual (e.g., its rank in the population).

Fit individuals have higher probability to enter a “mating” pool and to be chosen for

reproduction and selection. With reproduction, the algorithm creates new individu-

als from the mating pool by means of crossover and mutation. Crossover randomly

selects two fit individuals and exchanges genes between them to produce offspring

with potentially higher fitness values. Mutation, on the other hand, introduces variation

in the population by selecting an individual from the pool and creating an offspring

by randomly changing a subset of its genes. Finally, through selection, a subset of the

individuals from the current population and offspring becomes the new population

that will evolve in the next generation.

The Multi-objective evolutionary algorithm uses elitism, a strategy that directly

propagates into the next population a subset of the fittest individuals from the current

population. This strategy ensures the iterative improvement of the Pareto-optimal

approximation set P S assembled by EvoChecker. Furthermore, the multi-objective

EAs used by EvoChecker maintain diversity in the population and generate a Pareto-

optimal approximation set spread as uniformly as possible across the search space.

This uniform spread is achieved using algorithm-specific mechanisms for diversity

preservation. One such mechanism involves combining the nondomination level of

each evaluated individual and the population density in its area of the search space.2

The evolution of fitter individuals continues until one of the following termination

criteria is met:

1. the allocated computation time is exhausted;

2. the maximum number of individual evaluations has been reached;

3. no improvement in the quality of the best individuals has been detected over a

predetermined number of successive iterations.

Once the evolution terminates, the set of nondominated individuals from the final

population is returned as the Pareto-optimal set approximation PS. The values of the

QoS attributes associated with the n2 optimisation objectives and with each individual

from PS are used to assemble the Pareto front approximation PF. System designers

can analyse the PS and PF sets to select the design to use for system implementation.

2 For example, NSGA-II (Deb et al. 2002) associates a nondominance level of 1 to all nondominated

individuals of a population, a level of 2 to the individuals that are not dominated when level-1 individuals

are ignored etc. Individuals not satisfying problem constraints receive a default level of ∞. SPEA2 (Zitzler

et al. 2001) evaluates population density as the inverse of the distance to the kth nearest neighbour of the

individual.

123



800 Autom Softw Eng (2018) 25:785–831

Fig. 4 EvoChecker-driven reconfiguration of a self-adaptive software system

5.2 Using EvoChecker at runtime

5.2.1 EvoChecker-based self-adaptive systems

The use of EvoChecker to drive the runtime reconfiguration of self-adaptive software

systems is illustrated in Fig. 4. The approach uses system Sensors to continually

monitor the system and identify the parameters of the environment it operates in.

Changes in the environment state e lead to updates of the probabilistic model template

T used by EvoChecker and to the incremental synthesis of a probabilistic model

specifying a new configuration c that enables the system to meet its QoS requirements

in the changed environment. This configuration is applied using an Effectors interface

of the self-adaptive system.

To speed up the search for a new configuration, the use of EvoChecker at run-

time builds on the principles of incrementality and exploits the fact that changes in

a self-adaptive system are typically localised (Ghezzi 2012). As reported in other

domains (Helwig and Wanka 2008; Kazimipour et al. 2014), and also discussed in our

related work section (Sect. 8), an effective initialisation of the EA search can speed

up its convergence and can yield better-quality solutions. Accordingly, EvoChecker

maintains an Archive (cf. Fig. 4) of “effective” configurations identified during recent

reconfigurations of the self-adaptive system. This Archive is used to “seed” each new

search with a subset of recent configurations that encode solutions to potentially similar

environment states experienced in the past.

To fully automate the EvoChecker operation, its runtime use combines the QoS

requirements that target the optimisation of QoS attributes into a composite single

objective. Similar to other approaches for developing self-adaptive systems (Ramirez

et al. 2011), this objective requires the minimisation of a generalised loss function

given by

loss(e, c) =

n1+n2
∑

j=n1+1

w j · attr j (e, c), (10)

where w j ≥ 0 are weight coefficients and at least one of them is strictly positive.3

These weight coefficients express the desired trade-off between the j QoS attributes.

Fonseca and Fleming (Fonseca and Fleming 1997) show that for any positive set

3 Alternative loss functions include lexicographic ordering, criterion-based, ǫ-constrained and aggregation-

based (e.g., linear and nonlinear) functions of the relevant QoS attributes (Coello et al. 2006).

123



Autom Softw Eng (2018) 25:785–831 801

of coefficient values, the identified solution is always Pareto optimal (compared to

all other solutions generated during the search). Selecting appropriate values for the

coefficients is a responsibility of system designers. To this end, they can use domain

knowledge to determine the value range of the QoS attributes comprising the loss

function and assign appropriate coefficient values that reflect their relative impor-

tance (Coello et al. 2006). Note that although more complex, loss is just another QoS

attribute which can still be specified in the latest version of the probabilistic temporal

logic languages supported by model checkers like PRISM (Kwiatkowska et al. 2011),

so it fits the definition of an attribute from Eq. (5).

Example 5 To use EvoChecker in a self-adaptive variant of the FX system from our

running example, the QoS attributes from Table 3 need to be combined into a loss

function (10) that the self-adaptive system should minimise, e.g.:

loss(e, c) = w1 · (attr1(e, c))−1 + w2 · attr2(e, c) + w3 · attr3(e, c),

with the weights w1, w2 and w3 chosen based on the value ranges and on the relative

importance of the three attributes. Note that the first attribute from the loss function

is actually the reciprocal of the reliability attribute attr1 from Table 3, as we want

decreases in reliability to lead to rapid increases in loss. Using the failure probability

1−attr1 as the first attribute is also an option, although this choice yields a loss function

that increases only linearly with the failure probability.

5.2.2 Runtime probabilistic model synthesis

When EvoChecker is used at runtime, the synthesis of probabilistic models is per-

formed incrementally, i.e. by exploiting previously generated solutions, to speed up

the synthesis of new solutions. This incremental synthesis is enabled by the Archive

component shown in Fig. 4.

The use of EvoChecker within a self-adaptive system starts with an empty Archive,

which is updated at the end of each reconfiguration step using an archive updating

strategy. This strategy selects individuals from the final EA population synthesised

by EvoChecker in the current reconfiguration step. Several criteria are used to enable

this selection:

1. an individual that meets all n1 constraints is preferred over an individual that

violates one or more constraints;

2. from two individuals that satisfy all constraints, the individual with the lowest loss

is preferred;

3. from two individuals that both violate at least one constraint, the individual with

the lowest overall “level of violation” is preferred.4

While EvoChecker is not prescriptive about the calculation of the level of violation

from the last criterion, the current version of our tool uses the following definition.

4 In this scenario, the system might switch to a degraded, failsafe mode of operation. For the FX system,

a failsafe mode is to skip the Order service invocation so that the system does not execute any trade that

might be based on incorrect or stale data.

123



802 Autom Softw Eng (2018) 25:785–831

Definition 3 (Constraints violation) For each combination of an environment state

e ∈ Env and a configuration c ∈ Cfg of a self-adaptive system, the level of violation

of the n1 QoS constraints is given by

violation(e, c) =
∑

1≤i≤n1
¬(attri ⊲⊳i boundi )

αi · |boundsi − attri (e, c)|, (11)

where αi > 0 is a violation weight associated with the i th attribute.

Note that according to this definition, violation(e, c) = 0 for all (e, c) combinations

that violate none of the n1 bounds.

Example 6 Consider the QoS requirements of the FX system from Table 1. The only

QoS constraint, R1, requires that workflow executions are at least bound1 = 0.98

reliable. Hence, for any (e, c) ∈ Env × Cfg,

violation(e, c) =

{

α1 · |0.98 − attr1(e, c)|, if attr1(e, c) < 0.98

0, otherwise

The value of α1 (i.e., α1 = 100 in our experiments from Sect. 7.2) is provided to

EvoChecker by simply annotating the constraint R1 with this value. EvoChecker

automatically parses all such annotations and constructs the violation function for the

system.

EvoChecker employs a preference relation based on criteria 1–3 to select configu-

rations for storing in its archive. This relation and the EvoChecker archive updating

strategy are formally defined below.

Definition 4 (Preference relation) Let e ∈ Env be an environment state of a self-

adaptive system. Then, given two configurations c, c′ ∈ Cfg, configuration c is

preferred over configuration c′ (written c ≺ c′) iff

(

∀1 ≤ i ≤ n1 • attri (e, c) ⊲⊳i boundsi ∧

∃1 ≤ i ≤ n1 • ¬(attri (e, c′) ⊲⊳i boundsi )
)

∨ ①
(

∀1 ≤ i ≤ n1 • attri (e, c) ⊲⊳i boundsi ∧ attri (e, c′) ⊲⊳i boundsi

∧ loss(e, c) < loss(e, c′)
)

∨ ②
(

∃1≤ i, j≤ n1 • ¬(attri (e, c)⊲⊳i boundsi ) ∧ ¬(attr j (e, c′)⊲⊳ j bounds j )

∧ violation(e, c) < violation(e, c′)
)

③

Definition 5 (Archive updating strategy) Let Ce ⊆ Cfg be the set of configurations

synthesised for the new environment state e ∈ Env and Arch be the archive before the

change. Then an archive updating strategy is a function σ : Cfg → B such that the

updated archive at the end of the reconfiguration step is given by

Arch′ = {c ∈ Arch ∪ Ce | σ(c)} (12)

123



Autom Softw Eng (2018) 25:785–831 803

We formally define four archive updating strategies that we will use to evaluate

EvoChecker in Sect. 7:

1. The prohibitive strategy retains no configurations in the archive:

σ(c) = false,∀c ∈ Arch ∪ Ce (13)

2. The complete recent strategy uses the entire population from the current adaptation

step and removes the previous configurations from the archive:

σ(c) =

{

true, if c ∈ Ce

false, otherwise
(14)

3. The limited recent strategy keeps the x, 0 < x < #Ce, best configurations from the

current adaptation step and removes the previous configurations from the archive:

σ(c) =

{

true, if c ∈ Ce and position(c) ≤ x

false, otherwise
, (15)

where position : Ce → {1, 2, . . . , #Ce} is a function that gives the position of a

configuration c ∈ Ce, i.e. position(c) = #{c′ ∈ Ce \ {c} | c′ ≺ c} + 1.

4. The limited deep strategy accumulates the x, 0 ≤ x ≤ #Ce best configurations

from all previous adaptation steps, given by

σ(c) =

⎧

⎪

⎨

⎪

⎩

true, if c ∈ Ce and position(c) ≤ x

true, if c ∈ Arch

false, otherwise

(16)

As the limited deep strategy yields archives that grow in size after each reconfigura-

tion step, some of the archive elements must be evicted when the archive size exceeds

the size of the EA population. Possible eviction methods include: (i) discarding the

“oldest” individuals (e.g. by implementing the archive as a circular buffer of size equal

to that of the EA population); and (ii) performing a random selection.

Using the archive Arch to create the initial EA population is carried out by importing

configurations from the archive into the population (cf. Fig. 4). If a complete population

cannot be created in this way (e.g. because Arch is empty at the beginning of the first

reconfiguration step and may not contain sufficient individuals for a few more steps),

additional individuals are generated randomly to form a complete initial population.

The assignment, reproduction and selection operations applied during the iterative

evolution of the population, and the EA termination criteria are similar to those from the

design-time use of EvoChecker. However, a standard single-objective (generational)

evolutionary algorithm is used instead of the multi-objective evolutionary algorithm,

since there is only one optimisation objective (10).

123



804 Autom Softw Eng (2018) 25:785–831

6 Implementation

To ease the evaluation and adoption of the EvoChecker approach, we have imple-

mented a tool that automates its use at both design time and runtime. Our EvoChecker

tool uses the leading probabilistic model checker PRISM (Kwiatkowska et al. 2011)

as its Quantitative verification engine, and the established Java-based framework for

multi-objective optimization with metaheuristics jMetal (Durillo and Nebro 2011) for

its (Multi-objective) Evolutionary algorithm component. We developed the remain-

ing EvoChecker components in Java, using the Antlr5 parser generator to build the

Template parser, and implementing dedicated versions of the Individual analyser,

Monitor, Sensor and Effector components.

The open-source code of EvoChecker, the full experimental results summarised in

the following section, additional information about EvoChecker and the case stud-

ies used for its evaluation are available at http://www-users.cs.york.ac.uk/simos/

EvoChecker.

7 Evaluation

We performed a wide range of experiments to evaluate the effectiveness of EvoChecker

at both design time and runtime. The design-time use of Evo-Checker employs multi-

objective genetic algorithms (MOGAs), while the runtime use of EvoChecker is based

on a single-objective (generational) Genetic algorithm (GA). Experimenting with other

types of evolutionary algorithms (e.g. evolution strategies, differential evolution) is

part of our future work (Sect. 9). In Sects. 7.1 and 7.2, we describe the evaluation pro-

cedure and the results obtained for the design-time and runtime use of EvoChecker,

respectively. For each use, we introduce the research questions that guided the exper-

imental process, we describe the experimental setup, we summarise the methodology

followed for obtaining and analysing the results, and finally, we present and dis-

cuss our findings. We conclude the evaluation with a review of threats to validity

(Sect. 7.3).

7.1 Evaluating EvoChecker at design time

7.1.1 Research questions

The aim of our evaluation was to answer the following research questions.

RQ1 (Validation): How does the design-time use of EvoChecker perform com-

pared to random search? We used this research question to establish if the

application of EvoChecker at design time “comfortably outperforms a random

search” (Harman et al. 2012a), as expected of effective search-based software

engineering solutions.

5 http://www.antlr.org.

123

http://www-users.cs.york.ac.uk/simos/EvoChecker
http://www-users.cs.york.ac.uk/simos/EvoChecker
http://www.antlr.org


Autom Softw Eng (2018) 25:785–831 805

Table 6 Analysed system variants for EvoChecker at design time

Variant Details Size Trun[s]

FX_Small m1 = · · · = m4 = 3, m5 = m6 = 1 4.98E+31 0.0858

FX_Medium m1 = · · · = m6 = 4 1.39E+65 0.1695

FX_Large m1 = · · · = m8 = 4 7.22E+86 0.4162

DPM_Small QmaxH,L ∈{1, . . . , 10}, m =2 2E+14 0.1050

DPM_Medium QmaxH,L ∈{1, . . . , 15}, m =2 4.5E+14 0.2118

DPM_Large QmaxH,L ∈{1, . . . , 20}, m =2 8E+14 0.3796

RQ2 (Comparison): How do EvoChecker instances using different MOGAs per-

form compared to each other? Since we devised EvoChecker to work with any

MOGA, we examined the results produced by EvoChecker instances using three

established such algorithms [i.e., NSGA-II (Deb et al. 2002), SPEA2 (Zitzler

et al. 2001), MOCell (Nebro et al. 2009)].

RQ3 (Insights): Can EvoChecker provide insights into the tradeoffs between

the QoS attributes of alternative software architectures and instantiations

of system parameters? To support system experts in their decision making,

EvoChecker must provide insights into the tradeoffs between multiple QoS

objectives. To address this question, we identified a range of decisions suggested

by the EvoChecker results for the software systems considered in our evaluation.

7.1.2 Experimental setup

The experimental evaluation comprised multiple scenarios associated with two soft-

ware systems from different application domains. The first is the foreign exchange

(FX) service-based system described in Sect. 2. The second is a software-controlled

dynamic power management (DPM) system adapted from Qiu et al. (2001), Sesic

et al. (2008) and described on our project webpage.

We performed a wide range of experiments using the system variants from Table 6.

The column ‘Details’ reports the number of third-party implementations for each

service of the FX system6; and the capacity of the two request queues (QmaxH and

QmaxL ) and the number of power managers available (m = 2) for the DPM system.

The column ‘Size’ lists the configuration space size assuming a two-decimal points

discretisation of the real parameters and probability distributions of the probabilistic

model template (cf. Table 5). Given the nonlinearity of most probabilistic models, this

is the minimum precision we could assume as an 0.01 increase or decrease in one

of these parameters can have a significant effect in the evaluation of a QoS attribute.

Finally, the column ‘Trun’ shows the average running time per system variant for

evaluating a configuration. Note that the EvoChecker run time depends on the size of

6 The n = 8 services used by FX_Large correspond to using two-part composite service implementations

for the Technical analysis and Fundamental analysis services from Fig. 1.

123



806 Autom Softw Eng (2018) 25:785–831

model M and the time consumed by the probabilistic model checker to establish the

n1 + n2 QoS attributes from Eq. (5) and on the computer used for the evaluation.

We conducted a two-part evaluation for EvoChecker. First, to assess the stochas-

ticity of the approach when different MOGAs are adopted and also to eliminate the

possibility that any observations may have been obtained by chance, we used specific

scenarios for the system variants from Table 6. For the FX system variants, we chose

realistic values for reliability, performance and invocation cost of third-party services

implementations, while the values of parameters for the DPM system variants (i.e.,

power usage and transition rates) correspond to the real-world system from Qiu et al.

(2001), Sesic et al. (2008). Second, to mitigate further the risk of accidentally choos-

ing values that biased the EvoChecker evaluation, we defined a set of 30 different

scenarios per FX system variant with varied services characteristics for each scenario.

7.1.3 Evaluation methodology

We used the following established MOGAs to evaluate the use of EvoChecker at design

time: NSGA-II (Deb et al. 2002), SPEA2 (Zitzler et al. 2001) and MOCell (Nebro

et al. 2009).

In line with the standard practice for evaluating the performance of stochastic

optimisation algorithms (Arcuri and Briand 2011), we performed multiple (i.e., 30)

independent runs for each system variant from Table 6 and each multiobjective opti-

misation algorithm, i.e., NSGA-II, SPEA2, MOCell and random search. Each run

comprised 10,000 evaluations, each using a different initial population of 100 indi-

viduals, single-point crossover with probability pc = 0.9, and single-point mutation

with probability pm = 1/n p, where n p is the number of configuration parameters for

a particular system variant. All the experiments were run on a CentOS Linux 6.5 64bit

server with two 2.6GHz Intel Xeon E5-2670 processors and 32GB of memory.

Obtaining the actual Pareto front for our system variants is unfeasible because of

their very large configuration spaces. Therefore, we adopted the established prac-

tice (Zitzler et al. 2008) of comparing the Pareto front approximations produced by

each algorithm with the reference Pareto front comprising the nondominated solutions

from all the runs carried out for the analysed system variant. For this comparison, we

employed the widely-used Pareto-front quality indicators below, and we will present

their means and box plots as measures of central tendency and distribution, respec-

tively:

Iǫ (Unary additive epsilon) (Zitzler et al. 2003). This is the minimum additive

term by which the elements of the objective vectors from a Pareto front approx-

imation must be adjusted in order to dominate the objective vectors from the

reference front. This indicator presents convergence to the reference front and is

Pareto compliant.7 Smaller Iǫ values denote better Pareto front approximations.

IH V (Hypervolume) (Zitzler and Thiele 1999). This indicator measures the volume

in the objective space covered by a Pareto front approximation with respect

7 Pareto compliant indicators do not “contradict” the order introduced by the Pareto dominance relation on

Pareto front approximations (Zitzler et al. 2007).

123



Autom Softw Eng (2018) 25:785–831 807

to the reference front (or a reference point). It measures both convergence and

diversity, and is strictly Pareto compliant (Zitzler et al. 2007). Larger IH V values

denote better Pareto front approximations.

II G D (Inverted Generational Distance) (Van Veldhuizen 1999). This indicator gives

an “error measure” as the Euclidean distance in the objective space between the

reference front and the Pareto front approximation. II G D shows both diversity

and convergence to the reference front. Smaller II G D values signify better

Pareto front approximations.

We used inferential statistical tests to compare these quality indicators across the

four algorithms (Arcuri and Briand 2011; Harman et al. 2012b). As is typical of mul-

tiobjective optimisation (Zitzler et al. 2008), the Shapiro–Wilk test showed that the

quality indicators were not normally distributed, so we used the Kruskal–Wallis non-

parametric test with 95% confidence level (α = 0.05) to analyse the results without

making assumptions about the distribution of the data or the homogeneity of its vari-

ance. We also performed a post-hoc analysis with pairwise comparisons between the

algorithms using Dunn’s pairwise test, controlling the family-wise error rate with the

Bonferroni correction pcri t = α/k, where k is the number of comparisons.

7.1.4 Results and discussion

RQ1 (Validation) We carried out the experiments described in the previous section and

we report their results in Table 7 and Fig. 5. The ‘+’ from the last column of the table

entries indicate that the Kruskal–Wallis test showed significant difference among the

four algorithms (p value<0.05) for all six system variants and all Pareto-front quality

indicators.

For both systems, EvoChecker using any MOGA achieved considerably better

results than random search, for all quality indicators and system variants. The post hoc

analysis of pairwise comparisons between random search and the MOGAs provided

statistical evidence about the superiority of the MOGAs for all system variants and for

all quality indicators. The best and, when obtained, the second best outcomes of this

analysis per system variant and quality indicator are shaded and lightly shaded in the

result tables, respectively. This superiority of the results obtained using EvoChecker

with any of the MOGAs over those produced by random search can also be seen from

the boxplots in Fig. 5.

We qualitatively support our findings by showing in Figs. 6 and 7 the Pareto front

approximations achieved by EvoChecker with each of the MOGAs and by random

search, for a typical run of the experiment for the DPM and FX system variants, respec-

tively. We observe that irrespective of the MOGA, EvoChecker achieves Pareto front

approximations with more, better spread and higher quality nondominated solutions

than random search.

As explained earlier, the parameters we used for the DPM system variants (power

usage, transition rates, etc.) correspond to the real-world system (Qiu et al. 2001; Sesic

et al. 2008). In contrast, for the FX system variants we chose realistic values for the

reliability, performance and cost of the third-party services. To mitigate the risk of

accidentally choosing values that biased the EvoChecker evaluation, we performed

123



808 Autom Softw Eng (2018) 25:785–831

Table 7 Mean quality indicator values for a specific scenario of the FX system variants (top) and DPM

system variants (bottom) from Table 6

Variant NSGA-II SPEA2 MOCell Random

Iǫ (Epsilon)
FX Small 0.6258 0.5083 0.6745 2.2274 +

FX Medium 1.6379 2.0105 2.0486 6.1529 +

FX Large 3.8528 5.2777 4.6366 13.0234 +

IHV (Hypervolume)
FX Small 0.611 0.628 0.608 0.593 +

FX Medium 0.719 0.725 0.702 0.606 +

FX Large 0.657 0.675 0.633 0.555 +

IIGD (Inverted Generational Distance)
FX Small 0.00123 0.00129 0.00125 0.00145 +

FX Medium 0.00192 0.00207 0.00200 0.00316 +

FX Large 0.00244 0.00255 0.00272 0.00395 +

Variant NSGA-II SPEA2 MOCell Random

Iǫ (Epsilon)
DPM Small 0.0209 0.0130 0.0242 0.1403 +

DPM Medium 0.0225 0.0123 0.0489 0.1996 +

DPM Large 0.0229 0.0147 0.0884 0.2497 +

IHV (Hypervolume)
DPM Small 0.4455 0.4458 0.4396 0.4022 +

DPM Medium 0.4487 0.4499 0.4386 0.3946 +

DPM Large 0.4528 0.4549 0.4395 0.3947 +

IIGD (Inverted Generational Distance)
DPM Small 0.00023 0.00018 0.00016 0.00062 +

DPM Medium 0.00024 0.00019 0.00028 0.00091 +

DPM Large 0.00024 0.00020 0.00038 0.00109 +

Fig. 5 Boxplots for a specific scenario of the FX system variants (left) and DPM system variants (right)

from Table 6, evaluated with quality indicators Iǫ , IH V and II G D

123



Autom Softw Eng (2018) 25:785–831 809

(a) (b) (c)

Fig. 6 Typical Pareto front approximations for the FX system variants and optimisation objectives R2–R4

from Table 4. a FX_Small, b FX_Medium, c FX_Large

(a) (b) (c)

Fig. 7 Typical Pareto front approximations for the DPM system variants. The DPM optimisation objectives

involve minimising the steady-state power utilisation (“Power use”), minimising the number of requests

lost at the steady state (“Lost requests”), and minimising the capacity of the DPM queues (“Queue length”).

a DPM_Small, b DPM_Medium, c DPM_Large

additional experiments comprising 300 independent runs per FX system variant (900

runs in total) in which these parameters were randomly instantiated. To allow for a

fair comparison across the experiments comprising the 30 different FX scenarios, and

to avoid undesired scaling effects, we normalise the results obtained for each quality

indicator per experiment within the range [0,1]. The results of this further analysis,

shown in Table 8 and Fig. 8, validate our findings.

Considering all these results, we have strong empirical evidence that the

EvoChecker significantly outperforms random search, for a range of system variants

from two different domains, and across multiple widely-used MOGAs. This also con-

firms the challenging and well-formulated nature of the multi-objective probabilistic

model synthesis problem we introduced in Sect. 5.1.1.

RQ2 (Comparison) To compare EvoChecker instances based on different MOGAs,

we first observe in Table 7 that NSGA-II and SPEA2 outperformed MOCell for all

system variant–quality indicator combinations except DPM_Small (II G D). Between

SPEA2 and NSGA-II, the former achieved slightly better results for the smaller con-

figuration spaces of the DPM system variants (across all indicators) and for the IH V

indicator (across all system variants), whereas NSGA-II yielded Pareto-front approx-

imations with better Iǫ and II G D indicators for the larger configuration spaces of the

FX system variants (except the combination FX_Small (Iǫ)).

Additionally, we carried out the post-hoc analysis described in Sect. 7.1.3, for

9 system variants (counting separately the FX system variants with chosen services

characteristics and those comprising the adaptation scenarios) × 3 quality indicators =

123



810 Autom Softw Eng (2018) 25:785–831

Table 8 Mean quality indicator values across 30 different scenarios for the FX system variants from

Table 6

Variant NSGA-II SPEA2 MOCell Random

Iǫ (Epsilon)

FX Small 0.2212 0.2209 0.2272 0.6200 +

FX Medium 0.3393 0.3664 0.3645 0.7568 +

FX Large 0.3396 0.3764 0.3625 0.7970 +

IHV (Hypervolume)

FX Small 0.9374 0.9914 0.9337 0.9016 +

FX Medium 0.9514 0.9848 0.9219 0.8138 +

FX Large 0.9467 0.9804 0.8962 0.7868 +

IIGD (Inverted Generational Distance)

FX Small 0.6365 0.5348 0.6390 0.8000 +

FX Medium 0.5919 0.5790 0.6114 0.7957 +

FX Large 0.5887 0.5622 0.6561 0.8884 +

Fig. 8 Boxplots for the FX system variants (Table 6) across 30 different scenarios, evaluated using the

quality indicators Iǫ , IH V and II G D

27 tests. Out of these tests, 22 tests (i.e., a percentage of 81.4%) showed high statistical

significance in the differences between the performance achieved by EvoChecker with

different MOGAs (Table 9). The five system variant–quality indicator combinations

for which the tests were unsuccessful are: FX_Medium (Iǫ), FX_Small_Adapt (Iǫ),

FX_ Medium_Adapt(Iǫ), FX_Small(II G D) and FX_Medium(II G D).

123



Autom Softw Eng (2018) 25:785–831 811

Table 9 System variants for which the MOGAs in rows are significantly better than the MOGAs in

columns

Key: 1:DPM_Small, 2:DPM_Medium, 3:DPM_Large, 4:FX_Small, 5:FX_Medium, 6:FX_Large,

7:FX_Small_Random, 8:FX_Medium_Random, 9:FX_Large_Random

These results show that if the probabilistic model synthesis problem can be for-

mulated as a multi-objective optimisation problem, then several MOGAs can be used

to synthesise the Pareto approximation sets PF and PS effectively. Selecting between

alternative MOGAs entails using domain knowledge about the synthesis problem, and

analysing the individual strengths of the MOGAs (Harman et al. 2012a). The results

also confirm the generality of the EvoChecker approach, showing that its functionality

can be realised using multiple established MOGAs.

RQ3 (Insights) We performed qualitative analysis of the Pareto front approximations

produced by EvoChecker, in order to identify actionable insights. We present this for

the FX and DPM Pareto front approximations from Figs. 6 and 7, respectively.

First, the EvoChecker results enable the identification of the “point of diminishing

returns” for each system variant. The results from Fig. 6 show that configurations

with costs above approximately 52 for FX_Small, 61 for FX_Medium and 94 for

FX_Large provide only marginal response time and reliability improvements over the

best configurations achievable for these costs. Likewise, the results in Fig. 7 show that

DPM configurations with power use above 1.7W yield insignificant reductions in the

number of lost requests, whereas configurations with even slightly lower power use

lead to much higher request loss. This key information helps system experts to avoid

unnecessarily expensive solutions.

Second, we note the high density of solutions in the areas with low reliability (below

0.95) for the FX system in Fig. 6, and with high request loss (above 0.09) for the DPM

system in Fig. 7. For the FX system, for instance, these areas correspond to the use

of the probabilistic invocation strategy, for which numerous service combinations can

achieve similar reliability and response time with relatively low, comparable costs.

Opting for a configuration from this area will make the FX system susceptible to

failures, as when the only implementation invoked for an FX service fails, the entire

workflow execution will also fail. In contrast, reliability values above 0.995 correspond

to expensive configurations that use the sequential selection strategy; e.g., FX_Small

123



812 Autom Softw Eng (2018) 25:785–831

must use the sequential strategy for the Market watch and Fundamental analysis

services in order to achieve 0.996 reliability.

Third, the EvoChecker results reveal configuration parameters that QoS attributes

are particularly sensitive to. For the FX system, for example, we noticed a strong

dependency of the workflow reliability on the service invocation strategy and the

number of implementations used for each service. Configurations from high-reliability

areas of the Pareto front not only use the sequential strategy, but also require multiple

services per FX service (e.g., three FX service providers are needed for success rates

above 0.99).

Finally, we note EvoChecker’s ability to produce solutions that: (i) cover a wide

range of values for the QoS attributes from the optimisation objectives of the FX and

DPM systems; and (ii) include alternatives with different tradeoffs for fixed values of

one of these attributes. Thus, for 0.99 reliability, the experiment from Fig. 6 generated

four alternative FX_Large configurations, each with a different cost and execution

time. Similar observations can be made for a specific value of either of the other two

QoS attributes. These results support the system experts in their decision making.

7.2 Evaluating EvoChecker at runtime

7.2.1 Research questions

We evaluated the runtime use of EvoChecker to answer the research questions below.

RQ4 (Effectiveness): Can EvoChecker support dependable adaptation? With

this research question we examine whether our approach can identify new

effective configurations at runtime.

RQ5 (Validation): How does EvoChecker perform compared to random search?

Following the standard practice in search-based software engineering (Harman

et al. 2012b), with this research question we aim to determine whether our

approach performs better than random search.

RQ6 (Archive-strategy comparison): How do EvoChecker instances based on

different archive updating strategies compare to each other? We used this

research question to analyse the impact of various archive updating strate-

gies in the performance of EvoChecker. To this end, we study whether specific

strategies improve the quality of a search and/or help identifying faster an effec-

tive configuration. We also investigate possible relationships between archive

updating strategies and specific adaptation events.

7.2.2 Experimental setup

For the experimental evaluation, we used two self-adaptive software systems from

different application domains. The first is the FX service-based system from Sect. 2

and the second is an embedded system from the area of unmanned underwater vehicles

(UUVs) adapted from Calinescu et al. (2015), Gerasimou et al. (2014), Gerasimou et al.

(2017) and described on our project webpage.

123



Autom Softw Eng (2018) 25:785–831 813

Table 10 Analysed system variants for the runtime EvoChecker

Variant Details Size Trun[s]

UUV_Medium m = 5, r1, r2, . . . , r5 ∈ [0H z, 8H z], sp ∈ [0, 10m/s] 1.04E+19 0.0076

UUV_Large m =10, r1, r2, . . . , r10 ∈[0H z, 8H z], sp∈[0, 10m/s] 1.09E+35 0.1622

FX_Small m1 = · · · = m4 = 3, m5 = m6 = 1 4.98E+31 0.0312

FX_Medium m1 = · · · = m6 = 4 1.39E+65 0.0953

Table 11 QoS requirements for

the UUV system
ID Informal description

R1 “The UUV must take at least 500 accurate measurements

for each 100 m travelled”

R2 “The UUV sensors must not consume more than 1000 J per

100 m travelled”

R3 “The speed with which the UUV travels should be

maximised”

R4 “The energy consumed by the UUV sensors should be

minimised”

We applied EvoChecker at runtime to the system variants from Table 10, aiming to

assess its behaviour for multiple configuration space sizes. As before (cf. Table 6), the

column ‘Details’ shows for the UUV system the number of sensors, their measurement

rates and the UUV speed, while for the FX system the number of third-party implemen-

tations for each service. The column ‘Size’ reports the size of the configuration space

that an exhaustive search would need to explore using two-decimal precision for the

real parameters and probability distributions of the probabilistic model template (cf.

Table 5). Finally, the column ‘Trun’ shows the average time required by EvoChecker

to evaluate a configuration on a 2.6GhZ Intel Core i5 Macbook Pro computer with

16GB memory, running Mac OSX 10.9.

To evaluate EvoChecker at runtime, we identified several changes that can cause

each UUV and FX system variant to adapt. These changes cover a wide range of

the possible values that the environment parameters of each system variant can take

(Table 12). Due to these changes, the systems experience problems while providing ser-

vice (e.g., service degradation, violation of QoS requirements) and therefore are forced

to adapt. Sensors in the UUV variants, beyond normal behaviour, encounter periods of

unexpected changes (C1–C12) during which their rates change dramatically, including

sensor failures and recovery from these failures, and significant variation in measure-

ment rates. Changes C1–C13 in FX comprise sudden minor or significant increase

in response time and decline in reliability of service implementations, and complete

failure or recovery of service implementations. For instance, change C7 in FX_Small

represents a deviation from the nominal reliability of the first and third service imple-

mentations of the Market_Watch service (cf. Fig. 2): before the change, r11 = 0.98

and r13 = 0.993; and, after the change, r11 = 0.89 and r13 = 0.93. This is a significant

change because the FX system cannot meet the reliability requirement (Table 1) using

123



814 Autom Softw Eng (2018) 25:785–831

Table 12 Changes in environment state of UUV and FX system variants used for evaluating EvoChecker

at runtime

ID UUV_Medium UUV_Large FX_Small FX_Medium

C1 r1 ↔, . . . , r5 ↔ r1 ↔, . . . , r9 ↔ r11↔, . . . , r61↔

t11 ↔, . . . ,

t61 ↔

r11↔, . . . , r64↔

t11 ↔, . . . ,

t64 ↔

C2 r1 ↔, . . . , r5 ↔ r1 ↔, . . . , r9 ↔ r11↔, . . . , r61↔

t11 ↔, . . . ,

t61 ↔

r11↔, . . . , r64↔

t11 ↔, . . . ,

t64 ↔

C3 r1 ↓, r5 ↓ r1 ↓, r4 ↓ r9 ↓ r11 ↓, r13 ↓ r11 ↓, r13 ↓, r14 ↓

C4 r1 ↔, r5 ↔ r1 ↔, r4 ↔ r9 ↔ r11 ↔, r13 ↔ r11 ↔, r13 ↔,

r14 ↔

C5 r2 ↓, r4 ↓ r2 ↓, r4 ↓, r8 ↓,

r10 ↓

r21 ↓, r22 ↓ r21 ↓, r22 ↓, r24 ↓

C6 r2 ↔, r4 ↔ r2↔, r4 ↔, r8 ↔,

r10 ↔

r21 ↔, r22 ↔ r21 ↔, r22 ↔,

r24 ↔

C7 r2 ↓ r8 ↓, r10 ↓ r11 ↓, r13 ↓ r11 ↓, r13 ↓, r14 ↓

C8 r2 ↔ r8 ↔, r10 ↔ r11 ↔, r13 ↔ r11 ↔, r13 ↔,

r14 ↔

C9 r1 ↓, r5 ↓ r1 ↓, r5 ↓ r9 ↓ t41 ↑, t42 ↑ t41 ↑, t42 ↑, t44 ↑

C10 r1 ↔, r5 ↔ r1 ↔, r5 ↔ r9 ↔ t41 ↔, t42 ↔ t41 ↔, t42 ↔,

t44 ↔

C11 r1 ↓, r3 ↓, r5 ↓ r1 ↓, r3 ↓, r5 ↓

r7 ↓, r9 ↓, r10 ↓

t51 ↑, t52 ↓ t51 ↑, t52 ↑, t53 ↑

C12 r1 ↔, r3 ↔, r5 ↔ r1 ↔, r3 ↔, r5 ↔

r7 ↔, r9 ↔,

r10 ↔

t51 ↔, t52 ↔ t51 ↔, t52 ↔,

t53 ↔

C13 r11 ↓, r12 ↓, r21 ↓,

r22 ↓, r31 ↓,

r33 ↓, r42 ↓,

r43 ↓

r11 ↓, r12 ↓, r13 ↓,

r21 ↓, r22 ↓,

r31 ↓, r33 ↓,

r43 ↓, r44 ↓

r51 ↓, r52 ↓,

r54 ↓ r62 ↓,

r64 ↓

Key↔: nominal value of environment characteristic (i.e., reliability, response time)

↓(↑): decrease(increase), i.e., a change, in value of environment characteristic

ri : sensor reliability for the UUV_Medium and UUV_Large variants from Table 10

rimi
(timi

): service reliability (response time) for the FX_Small and FX_Medium

variants from Table 10

only the degraded service implementations (i.e., x11 =1, x12 =0, x13 = 1). Instead, a

valid configuration should always realise the functionality of the Market_Watch service

by selecting its second service implementation (thus setting x12 = 1).8 We make avail-

able the EvoChecker templates for the changes in Table 12 on our project webpage.

8 Although the other service implementations have lower reliability, they are still functional and can be used

within the sequential strategy in conjunction with the second service implementation to improve further the

FX workflow reliability.

123



Autom Softw Eng (2018) 25:785–831 815

Answering research question RQ1 entails making the configuration space size

tractable for exhaustive search. Searching exhaustively through the configuration space

of the UUV_Medium variant (which has the smallest configuration space and the

shortest average time per evaluation) would take an estimated 2.19 · 1013 h (given the

1.04 · 1019 configurations to analyse, and a mean analysis time of 0.0076 s). Thus, we

used the UUV_Medium variant but disabled three of its sensors, leaving just under

2.56 · 109 possible configurations. We also disregarded the adaptation time, since it

is too large for exhaustive search. For the same reason, we performed this assessment

on a subset of the UUV changes (i.e. C1, C3, C4); these changes correspond to a

representative sample of the UUV changes from Table 12.

For using EvoChecker at runtime, we define the QoS optimisation objectives as a

loss function; see Eq. (10) in Sect. 5.2. We used the loss function from Example 5 with

w1 = 0.2, w2 = 0.004 and w3 = 0.016 for the FX system variants, and a similarly

defined loss function (provided on our project webpage) for the UUV system variants.

Since EvoChecker at runtime employs a single optimisation objective, we employ

an elitist single objective GA. Recall that an elitist GA propagates the best individuals

to the next generation. With elitism, if the GA discovers the best solution, then the

entire population will eventually converge to this solution (Coello et al. 2006).

To investigate whether different archive updating strategies (cf. Def. 5) can improve

the efficiency of EvoChecker, we realised the strategies from (13)–(16). To this end,

we created four different GA variants, each enhanced with one of the following archive

updating strategies:

PGA: a prohibitive strategy (13) that does not keep any configurations in the archive.

Thus, a search for a new configuration starts without using any prior knowl-

edge.

CRGA: a complete recent strategy (14) that puts in the archive the entire population

from the current adaptation step and discards all previous configurations.

LRGA: a limited recent strategy (15) that stores in the archive the two best config-

urations (i.e. x = 2) from the current adaptation step, and removes all the

other configurations from the archive.

LDGA: a limited deep strategy (16) that accumulates in the archive the two best

configurations (i.e. x = 2) from all previous adaptation steps. If the archive

size exceeds the initial size of the GA population, then a random selection

is carried out to select the configurations that will comprise the seed for the

next search.

7.2.3 Evaluation methodology

We adopted the established procedure in search-based software engineering for the

analysis of optimisation algorithms (Arcuri and Briand 2011). Thus, for each system

variant from Table 10 we carried out 30 independent runs per optimisation algo-

rithm using the adaptation events (changes) in Table 12 sequentially. We assume

that the time interval between successive changes is long enough that enables running

EvoChecker. All algorithms used a population of 50 individuals. The GAs used single-

point crossover with probability pc = 0.9 and single-point mutation with probability

123



816 Autom Softw Eng (2018) 25:785–831

pm = 1/nk , where nk is the number of system configuration parameters from the

configuration space Cfg. Each algorithm was executed for 5000 iterations. When no

improvement was detected for 1000 successive iterations (i.e. 20% of the allocated

evolution time), the evolution terminated early. The solution corresponding to the best

individual from the last population was used to reconfigure the system. After nor-

malisation, and for ease of presentation, we assigned the maximum loss of 1.00 for

each event in which an algorithm failed to find a configuration satisfying the QoS

constraints of the system. We used the loss corresponding to the selected configura-

tion as a quality indicator to compare the effectiveness of the optimisation algorithms

and answer research questions RQ4–RQ6. Furthermore, we combined these quality

results with data about the number of iterations executed by the algorithms (for all 30

independent runs) to assess their ability both to identify good solutions and converge

(or stagnate, if no effective solution was found within the available time).

Following the standard advice for assessing the performance of optimisation algo-

rithms, we used inferential statistical tests (Arcuri and Briand 2011; Coello et al.

2006). First, we analysed the normality of data and confirmed its deviation from the

normal distribution using the Shapiro–Wilk test. Then, we used the non-parametric

tests Mann–Whitney and Kruskal–Wallis with 95% confidence level (α = 0.05) to

analyse the results without making assumptions about the data distribution or the

homogeneity of its variance. Also, to compare the EvoChecker instantiations with dif-

ferent archive updating strategies, we ran a post-hoc analysis using Dunn’s pairwise

test, controlling the family-wise error rate using the Bonferroni correction pcrit =α/k,

where k is the number of comparisons.

Finally, when statistical significance exists, we establish the practical importance

of the observed effect. Therefore, we used the Varga and Delaney’s effect size mea-

sure (Vargha and Delaney 2000; Arcuri and Briand 2011). When comparing algorithms

A and B, this measure returns the probability AAB ∈ [0, 1] that algorithm A will yield

better results than algorithm B. For instance, if AAB = 0.5 then the algorithms are

equivalent, while if AAB = 0.8 then algorithm A will achieve better results 80% of

the time.

7.2.4 Results and discussion

RQ4 (Effectiveness) We begin the presentation of our results by examining whether

EvoChecker at runtime can identify new effective configurations in response to

unexpected environment and/or system events. To answer this research question we

performed two types of experiments.

First, we used the UUV_Medium system variant and assessed the effectiveness

of the selected configurations using PGA compared to those generated by exhaus-

tive search. We reduced the configuration space of UUV_Medium, using the process

described in Sect. 7.2.2, to make it tractable for exhaustive search. For all the events,

the EvoChecker with PGA found configurations satisfying system QoS constraints R1

and R2 (cf. Table 11) with average loss not more than 9% of the optimal loss given

by the configurations found by exhaustive search. Both time and memory overheads

incurred by exhaustive search were approximately two orders of magnitude larger than

PGA.

123



Autom Softw Eng (2018) 25:785–831 817

For the second experiment, we analysed how the events in FX_Small system vari-

ant from Table 12 affected its compliance with QoS requirement R1 (i.e. workflow

reliability) and varied the loss before (using the current configuration) and after (using

the new configuration) each adaptation. Figure 9 depicts a typical run (timeline) of

these changes and the impact of the configurations selected by the no-archive version

of EvoChecker (i.e. PGA) in workflow reliability and loss.

Irrespective of the change in environment state, either being a serious decrease in

workflow reliability or a moderate increase in response time, EvoChecker always man-

aged to successfully self-adapt the system by identifying configurations that met QoS

constraint R1 (cf. Table 1). Furthermore, EvoChecker maintained a balanced system

loss of approximately 0.845. Given that searching exhaustively the configuration space

is unfeasible and that the average running time for evaluating a single configuration is

less than 1s (cf. Table 10), these experimental results indicate that our approach can

support system adaptation.

We also analysed changes C3, C5, C7 and C13, in which the system exhibited a

significant decrease in workflow reliability, caused by decrease in reliability of the

service implementations used at various points in time. Due to this abrupt change, the

currently used service implementations failed to meet requirement R1 and EvoChecker

was invoked to carry out the search for a new configuration. As an example, for change

C13, the system experienced a serious disruption in about 50% of the available service

implementations. As a result, workflow reliability fell to only 72%. The newly found

configuration restored compliance with R1 (i.e. approximately 98.5%), but increased

the probabilities of using more expensive implementations, yielding a significantly

higher expected loss of 0.935.

Another interesting observation concerns change C10 (cf. Table 12) in which two

previously under-performing service implementations (those with increased response

time t41 and t42) recover. Although no requirement violation occurs, i.e. workflow

reliability R1 is not affected by this change, the system loss corresponding to the new

configuration selected by EvoChecker is slightly higher compared to the configuration

before the change. Since for each change PGA starts a new search and does not use

any knowledge gained from previous adaptation steps, this is expected. As we explain

in research question RQ6, this issue can be addressed using one of the other archive

updating strategies which seed a new GA search with configurations from the archive.

RQ5 (Validation). To answer this research question we compared the no-archive

version of incremental EvoChecker (i.e. PGA) with random search (RS). For con-

ciseness, we include a representative sample of reconfiguration events. Thus, Figs. 10

and 11 show the evolution of the algorithms every 500 iterations (i.e., 10 generations)

for the FX_Small variant for changes C4, C7, C11 and C13, and for the UUV_Large

variant for changes C7 and C12, respectively. When an algorithm terminated early,

we propagated the final loss to the remaining evolution stages (i.e. until the 5000th

iteration). An asterisk ‘∗’ next to each algorithm’s boxplot denotes when the algorithm

terminated for all 30 runs.

For both variants of the FX and UUV systems and for all 25 events, the EvoChecker

employing PGA identified configurations that met QoS requirements and achieved

lower loss than RS. We obtained statistical significance (p value < 0.05) using the

123



818 Autom Softw Eng (2018) 25:785–831

Fig. 9 Variation in workflow reliability and system loss of the FX_Small variant due to the changes from

Table 12 and system adaptation using EvoChecker with no archive use (i.e. PGA)

Fig. 10 Boxplots for changes in environment state C4, C7, C11, C13 of the FX_Small system variant using

LRGA, LDGA, PGA, CRGA, and RS. The asterisk next to each algorithm’s boxplot signifies when the

algorithm terminated for all 30 runs

Mann–Whitney test for all system variants and for all events, with the p value being

in the range [1.689E−02, 1.669E−11]. In fact, as the size of the system increases (cf.

Table 10), PGA’s ability to outperform RS becomes more evident.

We also measured the improvement magnitude using the APGA,RS effect size met-

ric (Vargha and Delaney 2000). For all evaluated events and evolution stages, the effect

size was large with APGA,RS ∈ [0.696, 1.00]. Thus, PGA achieved better results than

123



Autom Softw Eng (2018) 25:785–831 819

0.75

0.80

0.85

0.90

0.95

1.00

0.75

0.80

0.85

0.90

0.95

1.00

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

L
o

s
s

LRGA LDGA PGA CRGA RS

#Iterations

Change C7 Change C12

Fig. 11 Boxplots for changes C7, C12 of the UUV_Large system variant using LRGA, LDGA, PGA,

CRGA, and RS. The asterisk next to each algorithm’s boxplot signifies when the algorithm terminated for

all 30 runs

RS at least 69.6% of the time, while in some events, especially for the larger system

variants FX_Medium and UUV_Large, the dominance reached 100%.

Another interesting finding concerns the evolution of the populations of these algo-

rithms. Despite the overall performance difference, at the beginning of the evolution,

i.e. 200–300 iterations, both the p value and effect size are on the lower end of their

respective value ranges. During these iterations, PGA operates pseudo-randomly and

the impact of its selection and reproduction mechanisms, i.e. crossover and mutation,

are not strong yet. As the evolution progresses, the performance gap between PGA and

RS increases, reaching eventually the upper end of the p value and effect size ranges.

Considering these results, we conclude that EvoChecker instantiated with GA-based

algorithm that uses a prohibitive selection strategy (PGA) significantly outperforms

random search (RS) with large effect size in all adaptation steps and for all FX and

UUV system variants. Thus, the use of evolutionary search-based approaches produces

configuration with better quality.

RQ6 (Archive-strategy comparison) We analysed the system configurations selected

by a GA using the archive updating strategies – prohibitive (PGA), complete recent

(CRGA), limited recent (LRGA) and limited deep (LDGA) – in order to identify action-

able insights. Note that these strategies are used on top of a basic GA and therefore

have similar computation overheads (i.e. negligible CPU and memory use). Hence,

the incurred overheads from the use of these strategies are not discussed further. In the

interest of conciseness, we show a subset of these adaptation steps; similar reasoning

applies to the other steps. Table 13 shows an excerpt of the pairwise comparisons car-

ried out to check for significant difference and, when the difference exists, its effect

size in parenthesis.

First, for change C1, i.e. the starting state of the examined systems (not shown in

Table 13), and for all FX and UUV variants, all examined archive updating strategies

identified configurations of comparable quality. No statistical difference was detected

in any evolution stage for this event. Since all algorithms used a randomly generated

initial population for change C1, this observation was not surprising.

Second, we found that GA variants using the archive (LRGA, CRGA, LDGA) per-

formed significantly better than PGA for changes C2–C12 in FX and for most events

123



820 Autom Softw Eng (2018) 25:785–831

T
a

b
le

1
3

P
ai

rw
is

e
co

m
p
ar

is
o
n

o
f

ar
ch

iv
e

se
le

ct
io

n
st

ra
te

g
ie

s
fo

r
v
ar

io
u
s

st
ag

es
o
f

ch
an

g
es

C
4

an
d

C
1
1

o
f

th
e

F
X

v
ar

ia
n
ts

sh
o
w

in
g

th
e

si
g
n
ifi

ca
n
tl

y
b
et

te
r

st
ra

te
g

y
an

d
ef

fe
ct

si
ze

(i
n

p
ar

en
th

es
is

)

S
tr

at
eg

ie
s

C
4

C
1

1

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

F
X

_
S

m
al

l

R
S

v
s

P
G

A
P

G
A

(L
)

P
G

A
(L

)
P

G
A

(L
)

P
G

A
(L

)
P

G
A

(L
)

P
G

A
(L

)
P

G
A

(L
)

P
G

A
(L

)

P
G

A
v
s

L
R

G
A

L
R

G
A

(L
)

L
R

G
A

(M
)

L
R

G
A

(M
)

L
R

G
A

(S
)

L
R

G
A

(L
)

L
R

G
A

(L
)

L
R

G
A

(L
)

L
R

G
A

(M
)

P
G

A
v
s

C
R

G
A

C
R

G
A

(L
)

C
R

G
A

(S
)

–
–

–
–

–
–

L
R

G
A

v
s

C
R

G
A

–
–

–
–

L
R

G
A

(L
)

L
R

G
A

(L
)

L
R

G
A

(L
)

L
R

G
A

(L
)

F
X

_
M

ed
iu

m

R
S

v
s

P
G

A
P

G
A

(L
)

P
G

A
(L

)
P

G
A

(L
)

P
G

A
(L

)
P

G
A

(L
)

P
G

A
(L

)
P

G
A

(L
)

P
G

A
(L

)

P
G

A
v
s

L
R

G
A

L
R

G
A

(L
)

L
R

G
A

(M
)

L
R

G
A

(S
)

–
L

R
G

A
(L

)
L

R
G

A
(M

)
L

R
G

A
(S

)
–

P
G

A
v
s

C
R

G
A

C
R

G
A

(M
)

C
R

G
A

(S
)

–
–

–
–

–
–

L
R

G
A

v
s

C
R

G
A

L
R

G
A

(S
)

L
R

G
A

(S
)

L
R

G
A

(S
)

L
R

G
A

(S
)

–
–

–
–

K
ey

:
S

=
S

m
al

l,
M

=
M

ed
iu

m
,

L
=

L
ar

g
e

123



Autom Softw Eng (2018) 25:785–831 821

in UUV during the majority of the evolution stages. No comparison showed statis-

tical significance in favour of PGA for any change or evolution stage. As expected,

as the evolution progressed all the GA variants had the opportunity to refine their

solutions and the performance gap between the algorithms decreased. More specifi-

cally, there was a distinct performance gap favouring LRGA, CRGA and LDGA at the

early evolution stages (p value ∈ [3.38E−5,1.67E−11]), while PGA was able to find

configurations that achieve similar cost towards the end of evolution (p value ≈ 0.05

in some cases). Looking at change C4 in Fig. 10, for instance, PGA is significantly

worse until the 2500th iteration (i.e., 50 generations), but it approaches the others after

that.

Third, in changes with statistical difference between PGA and the other variants,

we observed a similar declining trend regarding the effect size. At the beginning of

the evolution, the effect size is mostly large ([0.69.0.88] and [0.77,1.0] for UUV and

FX, respectively), at the intermediate stages it changes to medium/small before it

becomes small/negligible towards the end. Given these observations, we can state

that using an archive updating strategy to select configurations from the archive and

seed the initial population produces better configurations and faster, compared to a

prohibitive strategy that ignores the archive. Given sufficient time, however, PGA will

potentially catch up. Thus, archive-based GA variants are useful in the frequently

encountered situations where the reconfiguration time and/or computation resources

are limited.

Fourth, the archive-based GA variants (LRGA, CRGA, LDGA) identified config-

urations of similar quality to each other, demonstrating effective use of the archive.

The post-hoc analysis, however, showed a performance difference between the three

variants. In particular, we obtained statistically significant results in favour of LDGA

against LRGA in 202 out of 500 tests (40.4%). For most changes, this difference con-

cerned the first few evolution stages; after that LRGA performed similarly (e.g., C7

and C11 in Fig. 10). Furthermore, CRGA failed to produce better configurations than

LDGA for any change and system variant, whereas it was marginally better than LRGA

(6.2%) in changes that had similar characteristics to the preceding change. Like before,

the performance difference involved only the initial stages. On the other hand, both

LRGA and LDGA outperformed CRGA in a range of changes and evolution stages.

We obtained statistical difference favouring LRGA and LDGA in 18.2% (91/500) and

47.8% (239/500) of these tests, respectively. This difference occurs because CRGA’s

population already identified good configurations and/or converged to a particular

area in the fitness landscape. Since population variation is achieved only through

crossover and mutation, CRGA finds difficulties to evolve the population in succes-

sive generations and produce better configurations. This leads to stagnation and early

termination; see for instance changes C7 and C11 in Fig. 10 in which CRGA ter-

minated in the 2500th and 1500th iteration, respectively. Therefore, reusing the final

population from the current adaptation event does not offer a distinct advantage in

producing better configurations over the other strategies. However, exploiting a subset

of configurations from previous reconfiguration events (e.g, LDGA) could speed up

the search significantly.

123



822 Autom Softw Eng (2018) 25:785–831

Finally, we note the inability of any archive-based GA variant to deal efficiently with

disruptive change C13 affecting FX. For this event, about 50% of the available service

implementations suffered a serious service degradation (cf. Table 12). For C13, we did

not find any statistical significance between PGA, CRGA, LRGA and LDGA in any

evolution stage in both FX system variants (Fig. 10). Moreover, at the initial evolution

stages, CRGA had difficulties to select configurations that satisfy QoS requirements;

its cost is close to the maximum value. Hence, when a disruptive change occurs, it

does not have much impact which archive updating strategy is used. Using instead a

population that is not biased towards a particular area (due to previous experience)

would facilitate exploration of the fitness landscape.

We suppose that a hybrid approach which considers the types of changes in the

system and its environment would be more effective. In this hybrid approach, some

of the initial population would be derived from the archive (to exploit knowledge

gained from previous reconfiguration events) and some would be randomly generated

(to enable exploration of new events). The ratio between exploration and exploitation

should be based on the expected ratio between small changes and radical changes in

the environment.

7.3 Threats to validity

Several construct, internal, and external validity threats could affect the validity of

the experiments conducted in this work.

Construct validity threats correspond to the methodology adopted when designing

the experimental study and any underpinning assumptions. This includes any assump-

tions and simplifications made when modelling the DPM, FX and UUV systems. To

mitigate this threat, the DPM system, model and QoS requirements are based on a vali-

dated real-world case study taken from the literature (Qiu et al. 2001; Sesic et al. 2008),

which we are familiar with from our previous work (Calinescu and Kwiatkowska

2009). This is also the case for the UUV system, model and requirements (Calinescu

et al. 2015; Gerasimou et al. 2014, 2017). For the FX system, the model and require-

ments were developed in close collaboration with a foreign exchange domain expert.

Also, the environment changes cover a wide range of system scenarios that could cause

service degradation and/or violation of QoS requirements, including minor changes

and disruptive events.

Internal validity threats might be due to any bias introduced when establishing

the causality between our findings and the evolutionary algorithms employed in our

study. To mitigate this threat, we followed the established practice in search-based

software engineering (Arcuri and Briand 2011; Harman et al. 2012b). In particular,

we reported results over 30 independent runs of each experiment and used inferential

statistical tests to check for significant difference in the performance of the algorithms.

To this end, we evaluated whether the data conformed to the normal distribution using

the Shapiro–Wilk test and used the non-parametric tests Mann–Whitney and Kruskal–

Wallis to check for statistical significance. We also conducted a post-hoc analysis using

Dunn’s pairwise test. All these tests used a 95% confidence level; hence, the probability

of committing a Type I error is 0.05, which is the recommended value in empirical

123



Autom Softw Eng (2018) 25:785–831 823

studies in this area. Finally, we employed the Varga and Delaney’s effect size (Vargha

and Delaney 2000) measure to establish the magnitude of an improvement.

External validity threats might be due to the difficulty of representing a soft-

ware system using the EvoChecker constructs (2)–(4), QoS attributes (5) constraints

(6), optimisation objectives (7) and loss (10). We limit this threat by specifying the

EvoChecker modelling language based on the modelling language of established

probabilistic model checkers [PRISM (Kwiatkowska et al. 2011), Storm (Dehnert

et al. 2017)]. Moreover, given the generality of the EvoChecker constructs (2)–(4),

other probabilistic modelling languages [e.g., those of the model checkers MRMC

(Katoen et al. 2011) and Ymer (Younes 2005)] can be naturally supported. Addition-

ally, EvoChecker supports a wide range of probabilistic models and temporal logics

(Table 2). We also examined various archive updating strategies, but other more sophis-

ticated strategies can be developed. Finally, to further reduce the risk that EvoChecker

might be difficult to use in practice, we validated it through application to several

variants of three realistic software systems with diverse characteristics in terms of

application domain, size, complexity and QoS requirements. Nevertheless, our find-

ings are not conclusive for all types of software systems, and more experiments are

needed to confirm the generality of the EvoChecker approach and tool.

8 Related work

The research underpinning EvoChecker spans the areas of probabilistic model check-

ing (Kwiatkowska 2007) and search-based software engineering (SBSE) (Harman

et al. 2012a, b). The closest work related to EvoChecker is Forejt et al. (2012), which

uses policies of Markov decision processes (MDPs) to synthesise Pareto front approx-

imations. Nevertheless, this approach requires fully specified MDPs and it is limited

by the finite search spaces that can be encoded as MDP policies. Furthermore, the

approach currently supports only up to three optimisation objectives and it is applicable

only to a subset of probabilistic computation tree logic (i.e., reachability and expected

total reward formulae). In contrast, EvoChecker deals with probabilistic model tem-

plates that can encode infinite search spaces (due to evolvable double parameters and

distributions) and supports all types of models and temporal logics from Table 2. Addi-

tionally, the EAs used by EvoChecker can generate Pareto front approximations for

more than three optimisation objectives.

Search-based techniques (Harman et al. 2012b) have been successfully used in

areas ranging from project management (Ferrucci et al. 2013; Gerasimou et al. 2012;

Ren et al. 2011; Stylianou et al. 2012), effort estimation (Minku and Yao 2013) and

testing (Andrews et al. 2011; Fraser and Arcuri 2013) to software repair and evolu-

tion (Canfora et al. 2005; Praditwong et al. 2011), software product lines (Harman

et al. 2014a; Sayyad et al. 2013) and software architectures (Martens et al. 2010). A

general survey on using SBSE within software engineering is available in Harman

et al. (2012a), while the comprehensive survey from Aleti et al. (2013) focuses on

the application of SBSE to software architecture design. However, the application of

SBSE to model checking is limited and related research focuses on non-probabilistic

models and design-time activities (Harman et al. 2012a). In Johnson (2007), Katz and

123



824 Autom Softw Eng (2018) 25:785–831

Peled (2013), genetic evolution is applied to synthesise model checking specifications,

while in Alba and Chicano (2007), Alba and Chicano (2008) ant colony optimisation

is used for generating counterexamples in medium–large stochastic models.

Despite the increasing interest in dynamic adaptive search-based techniques, their

use in reconfiguring software systems based on QoS requirements is rather lim-

ited (Harman et al. 2012b). Harman et al. (2014b) report that a combination of machine

learning and search-based techniques will enable software systems to adapt while pro-

viding service. Early work in this direction is presented in Coker et al. (2015). The

only other approach that we are aware of in this area is Plato (Ramirez et al. 2011),

which employs genetic algorithms in the decision-making process of a self-adaptive

system and generates new configurations that balance functional and non-functional

requirements. However, Plato does not consider environment or system stochastic-

ity, as EvoChecker does with its probabilistic model template. Also, Plato does not

employ any knowledge acquired during system operation to speed up the search, as

EvoChecker at runtime does with its archive and archive updating strategies.

Our work is also related to research that explores ways to incorporate problem

specific knowledge into an evolutionary algorithm through seeding its initial popula-

tion (Grefenstette 1987). As advocated by recent research (Kazimipour et al. 2014),

if prior knowledge is available or can be generated with reasonable computational

effort, effective seeding may yield better quality solutions and lead to faster conver-

gence. The effect of various seeding options (between 25%-100% of the population

size) was studied in Oman and Cunningham (2001) for the travelling salesman and the

job-shop scheduling problems. The authors reported that seeding produced most of

the time significantly better solutions than no seeding, although a 100% seed did not

always generate better results. In the domain of search-based software testing, Fraser

and Arcuri (2012) assessed the effectiveness of various seeding strategies for gener-

ating test cases in object-oriented languages. They found that the impact of effective

seeding is heavier during the early stages of the search, while weaker seeding strategies

or no seeding will perform similarly from intermediate stages onwards. These obser-

vations validate our findings regarding the impact of the archive updating strategies

(13)–(16).

EvoChecker also partially overlaps with research on stochastic controller synthesis,

in which formally verified stochastic controllers are used to disable certain (control-

lable) system behaviours or to vary the probability with which these behaviours occur.

Draeger et al. (2014) propose the synthesis of a multi-strategy controller that enables

a set of actions at any state and which is optimally permissive with respect to a penalty

function. Irrespective of the action carried out, the controller guarantees compliance

with system requirements. However, unlike our work which covers the full PCTL and

CSL, Draeger et al. (2014) focuses only on probabilistic reachability and expected

total rewards.

Moreno et al. (2015) propose a controller synthesis approach by combining looka-

head and latency awareness. Lookahead projects the expected system evolution over a

limited horizon, while latency awareness considers the time between making and real-

ising an adaptation decision. The synthesised controller performs a limited lookahead,

but it ignores any previous knowledge and thus fails to support incremental synthesis.

123



Autom Softw Eng (2018) 25:785–831 825

A complementary approach to controller synthesis is proposed by Ulusoy et al.

(2014). The key idea is based on partitioning the synthesis task into several steps and

then to refine the controller incrementally. Initially, the technique considers a high-level

system model and adds extra details as the synthesis progresses, until a termination

criterion is met (e.g., exhausted computational resources). Unlike EvoChecker, though,

which supports a variety of specification logics (Table 2), this approach supports

specifications defined only in linear temporal logic.

Another research area related to EvoChecker is probabilistic model repair, which

automatically “repairs” a Markov model that violates a probabilistic temporal logic

formula (Bartocci et al. 2011). Given this situation, probabilistic model repair involves

modifying the transition probabilities of the model to generate new models that satisfy

the formula and are “close” to the original model (Bartocci et al. 2011; Chen et al.

2013). The proposed approaches have limited applicability since they consider only

a single temporal logic formula and modify only the transition probabilities of the

original model. In contrast, EvoChecker operates with multiple formulae and uses

multiobjective optimisation to evolve a set of probabilistic models that approximates

the Pareto-optimal model set corresponding to these formulae. Furthermore, we repli-

cated the results of the IPv4 Zeroconf Protocol (Bartocci et al. 2011) and Network Virus

Infection (Chen et al. 2013) case studies, demonstrating that EvoChecker subsumes

the capabilities of probabilistic model repair.

The concept of model repair has been also explored for non-probabilistic mod-

els (Bonakdarpour and Kulkarni 2012; Buccafurri et al. 1999; Zhang and Ding 2008).

Similarly to probabilistic model repair, these approaches can handle a single type of

model and can repair a single temporal logic formula (Carrillo and Rosenblueth 2014;

Chatzieleftheriou et al. 2012; Martinez-Araiza and Lopez-Mellado 2014).

Probabilistic model checking at runtime involves the continual verification of

Markov models to support the analyse and plan stages of the MAPE-K control

loop (Kephart and Chess 2003) of self-adaptive systems (Calinescu and Kwiatkowska

2009; Calinescu et al. 2011, 2012; Epifani et al. 2009). Recent research aims to

tackle the state explosion problem (Baier et al. 1999) and improve the efficiency of

runtime probabilistic model checking. More specifically, compositional methods use

assume-guarantee reasoning to verify component-based systems one component at a

time (Kwiatkowska et al. 2010), incremental methods establish the current verifica-

tion results using results obtained in previous verification runs (Johnson et al. 2013;

Kwiatkowska et al. 2011; Meedeniya and Grunske 2010), and pre-computation-based

methods transform temporal logic formulae into easy-to-evaluate algebraic expres-

sions (Filieri et al. 2016). For a detailed overview, see Calinescu et al. (2017d) and

Chapter 2 in Gerasimou (2017). These methods reduce the probabilistic model check-

ing overheads but they are only applicable to discrete-time models, can support only

the simplest structural changes in the verified model, and make limiting assumptions

(e.g., that the model can be partitioned into strongly connected components each of

which is much smaller than the original model). Our work, on the other hand, is model

and property agnostic.

In recent work, we integrated probabilistic model checking with established

efficiency-improvement methods from other software engineering areas, i.e., caching,

limited lookahead and nearly-optimal reconfiguration (Gerasimou et al. 2014).

123



826 Autom Softw Eng (2018) 25:785–831

Although these methods reduce the overheads of PMC at runtime, they need to per-

form (in the worst case) an exhaustive search through the entire configuration space

when selecting new configurations for self-adaptive systems. EvoChecker does not

suffer from this limitation and can search efficiently through configuration spaces that

are too large for exhaustive search.

Finally, the approach to developing distributed self-adaptive systems we introduced

in Calinescu et al. (2015) operates with reduced overheads by only performing PMC

at component level, but relies on analysing all possible component configurations at

runtime. As such, this approach cannot handle very large (component) configuration

spaces, which is the challenge addressed by the runtime variant of EvoChecker.

9 Conclusions

The synthesis of probabilistic models is key for the cost-effective engineering of

software. Nevertheless, techniques like exhaustive search, trial-and-error and simple

heuristics are insufficient, as they cannot deal with large configuration spaces and

produce models that may not represent satisfactory tradeoffs between multiple QoS

requirements.

Our EvoChecker search-based software engineering approach automates this pro-

cess and improves its outcome. EvoChecker can be used at design time to identify

suitable architectures and parameter values for a software system under design. The

design-time use of EvoChecker employs multi-objective evolutionary algorithms to

generate a set of probabilistic models that closely approximates the Pareto-optimal

model set associated with the QoS requirements and the corresponding approximate

QoS Pareto front. EvoChecker can be also used at runtime to support the reconfig-

uration of a self-adaptive software system. This involves the incremental synthesis

of probabilistic models using single-objective evolutionary algorithms. When used at

runtime, EvoChecker maintains an archive of configurations from recent adaptations,

and uses the archived historical configurations to seed the initial population of a new

search and, thus, to identify effective new configurations faster.

We evaluated EvoChecker on three case studies from the domains of unmanned

underwater vehicles (Gerasimou et al. 2014), dynamic power-management (Qiu et al.

2001) and service-based systems. Our results indicate that the design-time use of

EvoChecker can generate Pareto-optimal approximation sets and help system experts

to make informed decisions (e.g., identify “point of diminishing returns”, find architec-

tures and configuration parameters that have significant impact on QoS requirements).

We also found that NSGA-II (Deb et al. 2002) and SPEA2 (Zitzler et al. 2001)

performed equally good in the considered case studies and for all analysed quality

indicators (i.e., hypervolume, epsilon, and inverted generational distance). Hence, any

of these algorithms is a good choice for instantiating the EvoChecker at design time.

For the use of EvoChecker at runtime, we observed that combining the external archive

with a suitable updating strategy helps EvoChecker to identify effective configurations

much faster than EvoChecker instances that do not use the archive. Thus, using an

archive to store configurations from recent adaptations and seeding a new popula-

tion with archived historical configurations can speed up the search, especially when

similar environment states are encountered often.

123



Autom Softw Eng (2018) 25:785–831 827

Our planned future work on EvoChecker is twofold. First, we aim to enhance the

capabilities of the approach. To this end, we will extend the range of modelling

formalisms and verification logics that EvoChecker can support by exploiting other

established quantitative model checkers such as UPPAAL (Behrmann et al. 2006) and

MRMC (Katoen et al. 2011). We also plan to integrate the EvoChecker approach with

our recent work on runtime probabilistic model checking (Calinescu et al. 2017b, 2015,

2017; Gerasimou et al. 2014). Furthermore, we intend to enhance the EvoChecker syn-

thesis capabilities by supporting other evolutionary and natured-inspired optimisation

algorithms like evolutionary strategies, particle swarm optimisation and ant-colony

optimisation (Coello et al. 2006). Finally, adapting techniques that analyse the fitness

landscape of the induced search space (Aleti et al. 2017) is another possible extension

for EvoChecker.

Second, we intend to evaluate the use of EvoChecker in other domains and by other

projects, in order to extract lessons, insights and best practices from the practical appli-

cation of the approach to real systems. This area of future work was made possible

by the recent adoption of our approach within several projects carried out by teams

that include researchers and engineers not involved in the EvoChecker development.

These projects have used or will use EvoChecker to devise safe reinforcement learning

solutions (Mason et al. 2017, 2018), to synthesise robust designs for software-based

systems (Calinescu et al. 2017b, c), and to suggest safe evacuation routes for commu-

nities affected by adverse events such as natural disasters. This will show how easy

it is to define and validate EvoChecker models and requirements in real applications,

allowing us to improve the usability of the approach.

Acknowledgements This paper presents research partly sponsored by UK MOD. The information con-

tained in it should not be interpreted as representing the views of the UK MOD, nor should it be assumed

it reflects any current or future UK MOD policy.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alba, E., Chicano, F.: Finding safety errors with ACO. In: 9th International Conference on Genetic and

Evolutionary Computation (GECCO’07), pp. 1066–1073 (2007)

Alba, E., Chicano, F.: Searching for liveness property violations in concurrent systems with ACO. In: 10th

International Conference on Genetic and Evolutionary Computation (GECCO’08), pp. 1727–1734

(2008)

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software architecture optimization meth-

ods: a systematic literature review. IEEE Trans. Softw. Eng. 39(5), 658–683 (2013)

Aleti, A., Moser, I., Grunske, L.: Analysing the fitness landscape of search-based software testing problems.

Autom. Softw. Eng. 24(3), 603–621 (2017)

Alur, R., Henzinger, T.A.: Reactive modules. Form. Methods Syst. Des. 15(1), 7–48 (1999)

Alur, R., Henzinger, T.A., Vardi, M.Y.: Theory in practice for system design and verification. ACM SIGLOG

News 2(1), 46–51 (2015)

Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In: FORMATS 2003, vol.

2791, pp. 88–104 (2004)

123

http://creativecommons.org/licenses/by/4.0/


828 Autom Softw Eng (2018) 25:785–831

Andrews, J., Menzies, T., Li, F.: Genetic algorithms for randomized unit testing. IEEE Trans. Softw. Eng.

37(1), 80–94 (2011)

Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software

engineering. In: 33rd International Conference on Software Engineering (ICSE’11), pp. 1–10 (2011)

Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous-time Markov chains. ACM

Trans. Comput. Log. 1(1), 162–170 (2000)

Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation and model checking join

forces. Commun. ACM 53(9), 76–85 (2010)

Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

Baier, C., Katoen, J.P., Hermanns, H.: Approximate symbolic model checking of continuous-time Markov

chains. In: 10th International Conference on Concurrency Theory (CONCUR’99), pp. 146–161 (1999)

Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and run-time. In: Proceedings

of the FSE/SDP workshop on Future of software engineering research (FoSER’10), pp. 17–22 (2010)

Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C., Smolka, S.: Model repair for probabilistic systems.

In: 17th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’11), vol. 6605, pp. 326–340. Springer (2011)

Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W., Hendriks, M.: UPPAAL 4.0.

In: 3rd International Conference on the Quantitative Evaluation of Systems (QEST’06), pp. 125–126

(2006)

Bianco, A., Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Foundations of

Software Technology and Theoretical Computer Science, vol. 1026, pp. 499–513. Springer (1995)

Bonakdarpour, B., Kulkarni, S.S.: Automated model repair for distributed programs. ACM SIGACT News

43(2), 85–107 (2012)

Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in verification by AI techniques.

Artif. Intell. 112, 57–104 (1999)

Calinescu, R., Autili, M., Cmara, J., Di Marco, A., Gerasimou, S., Inverardi, P., Perucci, A., Jansen, N.,

Katoen, J.P., Kwiatkowska, M., Mengshoel, O., Spalazzese, R., Tivoli, M.: Synthesis and Verification

of Self-aware Computing Systems, pp. 337–373. Springer (2017)

Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Designing robust software systems

through parametric Markov chain synthesis. In: 2017 IEEE International Conference on Software

Architecture (ICSA), pp. 131–140 (2017)

Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: RODES: A robust-design synthesis

tool for probabilistic systems. In: 14th International Conference on Quantitative Evaluation of Systems

(QEST), pp. 304–308 (2017)

Calinescu, R., Gerasimou, S., Banks, A.: Self-adaptive software with decentralised control loops. In: 18th

International Conference on Fundamental Approaches to Software Engineering (FASE’15), pp. 235–

251 (2015)

Calinescu, R., Gerasimou, S., Johnson, K., Paterson, C.: Using runtime quantitative verification to provide

assurance evidence for self-adaptive software. In: Software Engineering for Self-Adaptive Systems

III. Assurances, pp. 223–248. Springer (2017)

Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.: Formal verification with

confidence intervals to establish quality of service properties of software systems. IEEE Trans. Reliab.

65(1), 107–125 (2016)

Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software needs quantitative

verification at runtime. Commun. ACM 55(9), 69–77 (2012)

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic QoS management

and optimization in service-based systems. IEEE Trans. Softw. Eng. 37(3), 387–409 (2011)

Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement autonomic IT systems. In: 31st

International Conference on Software Engineering (ICSE’09), pp. 100–110 (2009)

Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engineering trustworthy self-

adaptive software with dynamic assurance cases. IEEE Trans. Softw. Eng. PP(99), 1–31 (2017)

Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware service composition based

on genetic algorithms. In: 7th International Conference on Genetic and Evolutionary Computation

(GECCO’05), pp. 1069–1075 (2005)

Carrillo, M., Rosenblueth, D.A.: CTL update of Kripke models through protections. Artif. Intell. 211, 51–74

(2014)

123



Autom Softw Eng (2018) 25:785–831 829

Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract model repair. In: NASA

Formal Methods, pp. 341–355. Springer (2012)

Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for Markov decision pro-

cesses. In: 7th International Symposium on Theoretical Aspects of Software Engineering (TASE’13),

pp. 85–92 (2013)

Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-objective

Problems. Springer, Berlin (2006)

Coker, Z., Garlan, D., Le Goues, C.: SASS: self-adaptation using stochastic search. In: 10th International

Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’15), pp.

168–174 (2015)

Damm, L.O., Lundberg, L.: Company-wide implementation of metrics for early software fault detection.

In: ICSE, pp. 560–570 (2007)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: a modern probabilistic model checker.

In: 29th International Conference on Computer Aided Verification, pp. 592–600 (2017)

Draeger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive controller synthesis for proba-

bilistic systems. In: 20th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’14), vol. 8413, pp. 531–546 (2014)

Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42,

760–771 (2011)

Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter adaptation.

In: 31st International Conference on Software Engineering (ICSE’09), pp. 111–121 (2009)

Ferrucci, F., Harman, M., Ren, J., Sarro, F.: Not going to take this anymore: multi-objective overtime

planning for software engineering projects. In: 35th International Conference on Software Engineering

(ICSE’13), pp. 462–471 (2013)

Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative verification and sensi-

tivity analysis at run time. Trans. Softw. Eng. 42(1), 75–99 (2016)

Fonseca, C.M., Fleming, P.J.: Multiobjective optimization. In: Handbook of Evolutionary Computation,

vol. 1, pp. C4.5:1–C4.5:9 (1997)

Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: 10th Interna-

tional Symposium on Automated Technology for Verification and Analysis (ATVA’12), vol. 7561, pp.

317–332 (2012)

Fraser, G., Arcuri, A.: The seed is strong: Seeding strategies in search-based software testing. In: Fifth

International Conference on Software Testing, Verification and Validation (ICST’12), pp. 121–130

(2012)

Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2), 276–291 (2013)

Gerasimou, S.: Runtime quantitative verification of self-adaptive systems. Ph.D. thesis, University of York,

York, UK (2017)

Gerasimou, S., Calinescu, R., Banks, A.: Efficient runtime quantitative verification using caching, looka-

head, and nearly-optimal reconfiguration. In: 9th International Symposium on Software Engineering

for Adaptive and Self-Managing Systems (SEAMS’14), pp. 115–124 (2014)

Gerasimou, S., Calinescu, R., Shevtsov, S., Weyns, D.: Undersea: an exemplar for engineering self-adaptive

unmanned underwater vehicles. In: 12th International Symposium on Software Engineering for Adap-

tive and Self-Managing Systems (SEAMS’17), pp. 83–89 (2017)

Gerasimou, S., Stylianou, C., Andreou, A.S.: An investigation of optimal project scheduling and team

staffing in software development using particle swarm optimization. In: 14th International Conference

on Enterprise Information Systems (ICEIS’12), pp. 168–171 (2012)

Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilistic models for quality-of-

service software engineering. In: 30th International Conference on Automated Software Engineering

(ASE’15), pp. 319–330 (2015)

Ghezzi, C.: Evolution, adaptation, and the quest for incrementality. In: Large-Scale Complex IT Systems.

Development, Operation and Management, vol. 7539, pp. 369–379 (2012)

Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. Genetic algorithms

and simulated annealing, pp. 42–60 (1987)

123



830 Autom Softw Eng (2018) 25:785–831

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput. 6(5),

512–535 (1994)

Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search based software engineering

for software product line engineering: a survey and directions for future work. In: 18th International

Software Product Line Conference, pp. 5–18 (2014)

Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S., Wu, F.: Genetic improvement for

adaptive software engineering. In: 9th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS’14), pp. 1–4 (2014)

Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends, techniques and appli-

cations. ACM Comput. Surv. 45(1), 11:1–11:61 (2012a)

Harman, M., McMinn, P., de Souza, J., Yoo, S.: Search based software engineering: techniques, taxonomy,

tutorial. In: Empirical Software Engineering and Verification, vol. 7007, pp. 1–59. Springer (2012b)

Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In: 10th International Con-

ference on Parallel Problem Solving from Nature (PPSN’08), pp. 889–898 (2008)

Johnson, C.: Genetic programming with fitness based on model checking. In: Genetic Programming, vol.

4445, pp. 114–124. Springer (2007)

Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework for component-based

software systems. In: 16th International Symposium on Component-Based Software Engineering

(CBSE’13), pp. 33–42 (2013)

Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Quantitative Evaluation of

Systems (QEST’05), pp. 243–244 (2005)

Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic

model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)

Katz, G., Peled, D.: Synthesis of parametric programs using genetic programming and model checking.

In: 15th International Workshop on Verification of Infinite-State Systems (INFINITY’13), pp. 70–84

(2013)

Kazimipour, B., Li, X., Qin, A.K.: A review of population initialization techniques for evolutionary algo-

rithms. In: IEEE Congress on Evolutionary Computation (CEC’14), pp. 2585–2592 (2014)

Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: 6th Joint Meeting on European

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering: Companion Papers (ESEC-FSE’07), pp. 449–458 (2007)

Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Formal Methods for the Design of

Computer, Communication and Software Systems: Performance Evaluation (SFM’07), pp. 220–270.

Springer (2007)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In:

23rd International Conference on Computer Aided Verification (CAV’11), pp. 585–591 (2011)

Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for probabilistic systems.

In: 16th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’10), vol. 6015, pp. 23–37. Springer (2010)

Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for Markov decision processes.

In: 41st International Conference on Dependable Systems Networks (DSN’11), pp. 359–370 (2011)

Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models

for performance, reliability, and cost using evolutionary algorithms. In: First Joint WOSP/SIPEW

International Conference on Performance Engineering, WOSP/SIPEW ’10, pp. 105–116. ACM (2010)

Martinez-Araiza, U., Lopez-Mellado, E.: A CTL model repair method for Petri Nets. In: World Automation

Congress (WAC’14), pp. 654–659 (2014)

Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assured reinforcement learning with formally verified

abstract policies. In: 9th International Conference on Agents and Artificial Intelligence (ICAART’17),

vol. 2, pp. 105–117. SciTe Press (2017)

Mason, G., Calinescu, R., Kudenko, D., Banks, A.: Assurance in reinforcement learning using quantitative

verification. In: Advances in Hybridization of Intelligent Methods: Models, Systems and Applications,

pp. 71–96. Springer (2018)

Meedeniya, I., Grunske, L.: An efficient method for architecture-based reliability evaluation for evolving

systems with changing parameters. In: 21st International Symposium on Software Reliability Engi-

neering (ISSRE’10), pp. 229–238 (2010)

123



Autom Softw Eng (2018) 25:785–831 831

Minku, L.L., Yao, X.: Software effort estimation as a multiobjective learning problem. Trans. Softw. Eng.

Methodol. 22(4), 35:1–35:32 (2013)

Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under uncertainty: a probabilis-

tic model checking approach. In: 10th Joint Meeting on European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’15),

pp. 1–12 (2015)

Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: a cellular genetic algorithm for

multiobjective optimization. Int. J. Intell. Syst. 24(7), 726–746 (2009)

Oman, S., Cunningham, P.: Using case retrieval to seed genetic algorithms. Int. J. Comput. Intell. Appl.

01(01), 71–82 (2001)

Pnueli, A.: In transition from global to modular temporal reasoning about programs. Log. Models Concurr.

Syst. 13, 123–144 (1985)

Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-objective search problem.

IEEE Trans. Softw. Eng. 37(2), 264–282 (2011)

Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-construction and optimiza-

tion. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(10), 1200–1217 (2001)

Ramirez, A., Knoester, D., Cheng, B., McKinley, P.: Plato: a genetic algorithm approach to run-time recon-

figuration in autonomic computing systems. Clust. Comput. 14(3), 229–244 (2011)

Ren, J., Harman, M., Di Penta, M.: Cooperative co-evolutionary optimization of software project staff

assignments and job scheduling. In: 3rd International Symposium on Search Based Software Engi-

neering (SSBSE’11), vol. 6956, pp. 127–141. Springer (2011)

Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM Trans. Auton.

Adapt. Syst. 4(2), 14:1–14:42 (2009)

Sayyad, A., Ingram, J., Menzies, T., Ammar, H.: Scalable product line configuration: A straw to break the

camel’s back. In: 28th International Conference on Automated Software Engineering (ASE’13), pp.

465–474 (2013)

Sesic, A., Dautovic, S., Malbasa, V.: Dynamic power management of a system with a two-priority request

queue using probabilistic-model checking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.

27(2), 403–407 (2008)

Stylianou, C., Gerasimou, S., Andreou, A.: A novel prototype tool for intelligent software project schedul-

ing and staffing enhanced with personality factors. In: 24th International Conference on Tools with

Artificial Intelligence (ICTAI’12), pp. 277–284 (2012)

Ulusoy, A., Wongpiromsarn, T., Belta, C.: Incremental controller synthesis in probabilistic environments

with temporal logic constraints. Int. J. Robot. Res. 33(8), 1130–1144 (2014)

Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innova-

tions. Ph.D. thesis (1999)

Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics

of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)

Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM

Comput. Surv. 41(4), 19:1–19:36 (2009)

Younes, H.L.S.: Ymer: A statistical model checker. In: 17th International Conference on Computer Aided

Verification (CAV’05), vol. 3576, pp. 429–433. Springer (2005)

Zhang, Y., Ding, Y.: CTL model update for system modifications. J. Artif. Intell. Res. (JAIR) 31, 113–155

(2008)

Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of Pareto-compliant

indicators via weighted integration. In: 4th International Conference on Evolutionary Multi-criterion

Optimization (EMO’07), pp. 862–876 (2007)

Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of Pareto set approximations. In: Multiobjective

Optimization, vol. 5252, pp. 373–404. Springer (2008)

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. In:

Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems

(EUROGEN’01), pp. 95–100 (2001)

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength

pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective

optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

123


	Synthesis of probabilistic models for quality-of-service software engineering
	Abstract
	1 Introduction
	2 Running example
	3 EvoChecker modelling language
	4 EvoChecker specification of QoS requirements
	4.1 Quality-of-service attributes
	4.2 Quality-of-service requirements

	5 EvoChecker probabilistic model synthesis 
	5.1 Using EvoChecker at design time 
	5.1.1 Probabilistic model synthesis problem
	5.1.2 Probabilistic model synthesis approach

	5.2 Using EvoChecker at runtime
	5.2.1 EvoChecker -based self-adaptive systems
	5.2.2 Runtime probabilistic model synthesis


	6 Implementation
	7 Evaluation
	7.1 Evaluating EvoChecker at design time
	7.1.1 Research questions
	7.1.2 Experimental setup
	7.1.3 Evaluation methodology 
	7.1.4 Results and discussion

	7.2 Evaluating EvoChecker at runtime
	7.2.1 Research questions
	7.2.2 Experimental setup
	7.2.3 Evaluation methodology
	7.2.4 Results and discussion

	7.3 Threats to validity

	8 Related work
	9 Conclusions
	Acknowledgements
	References


