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Abstract—As processors continue to get exponentially cheaper
for end users following Moore’s law, the costs involved in their
design keep growing, also at an exponential rate. The reason
is ever increasing complexity of processors, which modern EDA
tools struggle to keep up with. This paper focuses on the design
of Instruction Set Architecture (ISA), a significant part of the
whole processor design flow. Optimal design of an instruction
set for a particular combination of available hardware resources
and software requirements is crucial for building processors with
high performance and energy efficiency, and is a challenging task
involving a lot of heuristics and high-level design decisions.

This paper presents a new compositional approach to formal
specification and synthesis of ISAs. The approach is based on a
new formalism, called Conditional Partial Order Graphs, capable
of capturing common behavioural patterns shared by processor
instructions, and therefore providing a very compact and efficient
way to represent and manipulate ISAs. The Event-B modelling
framework is used as a formal specification and verification back-
end to guarantee correctness of ISA specifications.

We demonstrate benefits of the presented methodology on
several examples, including Intel 8051 microcontroller.

Index terms: microprocessor, instruction set, synthesis.

I. INTRODUCTION

Modern microprocessors become increasingly diversified in

terms of power modes, heterogeneous hardware platforms, and

requirements for legacy software reuse. This is amplified by

the ever growing demand for high performance and low power

consumption. As a result, under the pressure of time-to-market

constraints, a computer architect faces a design productivity

gap [4]: the capacity of modern CAD tools is insufficient for

exploring the variety of possible architectural solutions.

An important part of a microprocessor design is determining

the optimal Instruction Set Architecture (ISA) for the target

application domain. This is a very computationally intensive

task whose search space grows exponentially with the number

of instructions and supported operating modes. Furthermore,

the ISA development process often goes beyond a one-time

effort of a single designer as the ISA may need to be extended

at the customer side, e.g., as in Application Specific Instruction

set Processors (ASIPs) [37]. ASIPs allow adding new function-

ality to an extensible baseline ISA in the form of Instruction

Set Extensions (ISEs), thereby combining flexibility of a

general purpose CPU and performance of an ASIC. The key

idea is to analyse the application domain and identify repetitive

source code fragments that can be replaced by custom ISE

instructions to reduce overheads associated with the instruction

fetch cycle and storage of temporary values [22], as well

as to enable additional optimisation opportunities in resource

allocation, register binding, and port assignment [15][34].

Modern embedded systems often require yet another di-

mension of ISA flexibility – dynamic reconfigurability. For

example, a baseband processor whose core functionality is

signal processing may need to be reconfigured upon stand-

ardisation of a new communication protocol. Reconfigurable

ASIPs address this requirement by combining a static general

purpose ISA with a reconfigurable fabric to introduce new

functionality when it becomes needed [11][12]. Reconfig-

urability and custom instructions also address the issue of

energy efficiency (a major concern for the microelectronics

industry, particularly in mobile and embedded domains) by

power elasticity [38] and by moving computationally intensive

algorithms from software to hardware [22][27].

One of the key difficulties in designing instruction sets is

the necessity to comprehend and deal with a large number

of instructions, whose microcontrol implementation may be

altered to suit a particular hardware platform or a particular

operating mode. To overcome this instructions and groups of

instructions have to be managed in a compositional way: an

ISA specification should be composable from specifications

of its constituent parts. Furthermore, one should be able to

transform and optimise ISA specifications in a fully formal

way to guarantee correctness without computationally expens-

ive verification after each incremental modification of an ISA.

A. Instruction Set Architecture (ISA) criteria

There are several criteria which determine the choice of an

instruction set and a particular processor microarchitecture.

Functionality. Each instruction is associated with a se-

quence of atomic actions (usually acyclic) to complete the

corresponding computational task. Note that while a sequen-

tial run of actions is sufficient to achieve the instruction

functionality, it is often practical to enable some of the

actions concurrently, e.g., in order to speed up the instruction

execution and to efficiently utilise the available energy. The

distinctive classes of instruction functionality are arithmetic

operations, data handling, memory access and flow control.

The amount of computation per instruction is an important

characteristic of an ISA, which can be illustrated by compar-

ison of Complex Instruction Set Computer (CISC), Reduced

Instruction Set Computer (RISC), and Very Long Instruction

Word (VLIW) architectures. The CISC architecture is based

on a semantically rich instruction set, which provides operand

access in several addressing modes and can execute com-

plex multi-cycle operations without storing the intermediate

results [24]. In contrast, the RISC architecture employs a

relatively small set of basic instructions to build a complex

functionality at the level of software [16]. The microarchitec-

ture complexity is further reduced in the VLIW architecture,



2

where the scheduling for Instruction Level Parallelism (ILP)

is performed statically during the program compilation [19].

Operation modes. The same functionality can be achieved

in different ways targeting various optimisation criteria. For

example, an arithmetic operation can be executed either in

an energy efficient way but slowly, or in a low latency mode

at the price of extra energy consumption. Alternatively, for

security applications, the operation can be combined with

power masking and data scrambling. The choice of available

operation modes is usually made at the design time and is

limited by the circuit area and the timing constraints. Selection

of the operation mode can be encoded in the instruction set at

two levels: coarse-grain, as a separate class of mode-switching

instructions or fine-grain, as a part of each instruction code.

For example, in the ARM architecture [21], apart from the

standard RISC-like operation mode with a 32-bit instruction

set there are several special modes, e.g., Thumb and Jazelle.

In the Thumb mode the processor switches to a compact 16-

bit encoding of a subset of ARM instructions and makes the

instruction operands implicit. This reduces the processor func-

tionality but improves its power efficiency through increased

code density, usually at the expense of performance. In the

Jazelle mode the instruction set is changed to natively execute

Java Bytecode and to support just-in-time compilation [33].

Resources. At least one functional unit must be available

for each type of atomic actions comprising the instructions.

The conflicting situations, when the same hardware resource is

requested by several actions, are resolved through scheduling

and may also involve dynamic arbitration. Quantity of each

resource type is therefore decided by trading resource idle

time against the frequency of potential conflicts to resolve.

Modern CPUs, while often referred to as RISC-like, also

exhibit the features of CISC and VLIW architectures. For ex-

ample, they often have complex multi-clock DSP/multimedia

instructions, which is typical for CISC. They also combine

the compile-time VLIW scheduling with dynamic arbitration

of resources to employ ILP for instruction pipelining, out-of-

order and speculative execution. Such a diversity of instruction

functionality, combined with various operation modes and

resource constraints, makes ISA design extremely challenging.

B. Existing ISA approaches and challenges

There are several well-established approaches for the

functional-level description and formal verification of ISA.

Event-B [39] is a widely adopted language for specifying

first-order logic systems and doing refinements on these

representations. Being combined with the RODIN theorem

prover [6], it becomes a powerful platform for proving that

a (refined) system satisfies the initial specification, e.g., does

not leave a certain set of ‘good’ states during its operation.

HOL [20] is a computer-assisted proving environment for

constructing verifiably correct mathematical proofs. Although

its expressiveness is unrivalled, the generic nature of a tool

such as ISABELLE/HOL makes it more suitable for analysing

individual instructions with deep mathematical properties; see,

for example, verification of IA-64 division algorithm [23].

These formal ISA methods have a history of being used

for reasoning about hardware implementations, however they

are more targeted to the software-related aspects of processor

functionality. No hardware implementation issues are usually

taken into consideration apart from those directly visible to

the instructions, such as the size of addressable memory,

the number and type of available registers, etc. As a result,

an ISA designer does not have the full control on how the

specified functionality is achieved in hardware, what are the

costs of every instruction in terms of energy consumption and

computation resources, how to minimise latency of instruction

decoding logic, or how to dynamically adapt the processor

to the current operating conditions. Modelling such low-level

implementation details in Event-B or HOL is costly; a more

targeted formalism is needed to interface the representation

of knowledge about instructions sets with that of knowledge

about their execution.

There is clearly a niche in microprocessor EDA where the

following design requirements need to be addressed:

• description of individual instruction functionalities at the

microcode level as partial orders of atomic actions;

• efficient representation and manipulation with complete

instruction sets (re-encoding, re-targeting, etc.);

• compositional approach to ISA design to facilitate mod-

ularity, extensibility and reuse;

• explicit capturing of processor operation modes;

• possibility to express the resource availability constraints.

We propose to address these requirements using Conditional

Partial Order Graphs (CPOGs) [32]. This model is particularly

convenient for composition and representation of large sets of

partial orders in a compact form. It can be equipped with a

suite of mathematical tools for the refinement, optimisation,

encoding and synthesis of the control hardware which im-

plements the required instruction set, similar in spirit to the

approach based on control automata [9]. We envisage that

the model can be used as a complementary formalism for the

existing ISA methodologies providing a formal link between

the software and hardware domains. Although general-purpose

modelling languages and proving environments, such as Event-

B or HOL, may be used to a similar effect, the CPOG

model offers a superior mathematical construction permitting

automated analysis and synthesis.

Fig. 1 shows the proposed pathway from a high-level

specification of an ISA to a low-level microcontroller im-

plementation. Our specification and synthesis flow comprises

four distinct levels. At the architectural level the ISA is mod-

elled using the Event-B formalism. Given available hardware

resources and operating modes we can refine the ISA and

descend to the microarchitectural level. At the transformation

level the refined instructions are composed into a single CPOG

representation which is then iteratively optimised for a set

of design constraints, such as requirements to the instruction

opcodes and ILP support. Finally, at the implementation level

the ISA is synthesised into a set of hardware components, such

as instruction decoder and microcontrol logic. The relevant

sections are denoted in the flow diagram for convenient

navigation through the paper.

This paper presents a significant contribution to the relat-

ively new concept of CPOGs. The previous CPOG-related

publications focused on algebraic CPOG properties [29],
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optimal encoding of instructions [30], and controller syn-

thesis [31][32], while this work brings all these methods to

the area of formal ISA specification and introduces CPOG

transformations as an efficient way of ISA development.

This work also contributes to the area of ASIP research by

providing a methodology to systematically manipulate instruc-

tion sets in order to explore the space of possible solutions.

Our approach can simplify the design of ASIPs and synthesis

of ISEs, as it naturally supports incremental and compositional

development of instruction sets. Moreover, we utilise the

same formal model throughout the whole design process:

specification of individual instructions, combining them into

instruction sets, exploring the design space, and synthesis

of the control logic [31], which facilitates productivity and

persistency of the design flow.

The organisation of the paper is as follows. Section II gives

the background on the CPOG model and explains how to use

it for specification of processor instruction sets. It is followed

by Section III, where we describe ISA composition, several

transformations defined on CPOGs, and outline synthesis

of a physical microcontroller implementation. In Section IV

we demonstrate how to formally reason about correctness

of CPOG constructs with respect to the given functional

ISA descriptions using the Event-B model. Case study in

Section V demonstrates how CPOGs can be used for capturing

different hardware configurations and operation modes. The

paper is concluded with experiments, Section VI, where we

demonstrate applicability of the presented approach to design

of Intel 8051 microcontroller.

II. CPOGS AND INSTRUCTION SET SPECIFICATION

This section presents the basic definitions behind the Con-

ditional Partial Order Graph model and establishes a formal

correspondence between CPOGs and instruction sets.

A. CPOG essentials

A Conditional Partial Order Graph [32] (further referred to

as CPOG or graph) is a quintuple H = (V,E,X, ρ, φ) where:

• V is a set of vertices which correspond to events (or

atomic actions) in a modelled system.

• E ⊆ V × V is a set of arcs representing dependencies

between the events.

• Operational vector X is a set of Boolean variables. An

opcode is an assignment (x1, x2, . . . , x|X|) ∈ {0, 1}|X|

of these variables. An opcode selects a particular partial

order from those contained in the graph.

• ρ ∈ F(X) is a restriction function, where F(X) is the

set of all Boolean functions over variables in X . ρ defines

the operational domain of the graph: X can be assigned

only those opcodes (x1, x2, . . . , x|X|) which satisfy the

restriction function, i.e. ρ(x1, x2, . . . , x|X|) = 1.

• Function φ : (V ∪ E) → F(X) assigns a Boolean

condition φ(z) ∈ F(X) to every vertex and arc z ∈ V ∪E

in the graph. Let us also define φ(z)
df
= 0 for z /∈ V ∪E

for convenience.

CPOGs are represented graphically by drawing a labelled

circle for every vertex and drawing a labelled arrow

Functional Description of ISA
(Event-B)

Architectural level

Refinement
Section V-B

Specification of Instructions
(partial orders)

Composition

Microarchitectural level

Section III-A

Compact ISA Representation
(CPOG)

Transformation level

Synthesis
Section III-D

Instruction Decoder and
Control Layer (Verilog)

Implementation level

Optimisation
Section III-B,C

Section IV

Section II-B

Section II

Figure 1: Specification and synthesis flow
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Figure 2: Graphical representation of CPOGs

for every arc. The label of a vertex v consists of the vertex

name, a colon and the vertex condition φ(v), while every

arc e is labelled with the corresponding arc condition φ(e).
The restriction function ρ is depicted in a box next to the

graph; operational variables X can therefore be observed as

parameters of ρ.

Fig. 2(a) shows an example of a CPOG with |V | = 5
vertices and |E| = 7 arcs. There is a single operational

variable x; the restriction function is ρ(x) = 1, hence both

opcodes x = 0 and x = 1 are allowed. Vertices {a, b, d} have

constant φ = 1 conditions and are called unconditional, while

vertices {c, e} are conditional and have conditions φ(c) = x
and φ(e) = x respectively. Arcs also fall into two classes:

unconditional (arc c → d) and conditional (all the rest). As

CPOGs tend to have many unconditional vertices and arcs we

use a simplified notation in which conditions equal to 1 are

not depicted in the graph; see Fig. 2(b).

The purpose of conditions φ is to ‘switch off’ some ver-

tices and/or arcs in a CPOG according to a given opcode,

thereby producing different CPOG projections. An example

of a graph and its two projections is presented in Fig. 3.
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Figure 3: CPOG projections: H|x=1 (left) and H|x=0 (right)

The leftmost projection is obtained by keeping in the graph

only those vertices and arcs whose conditions evaluate to 1
after substitution of variable x with 1 (such projections are

conventionally denoted by H|x=1). Hence, vertex e disappears

(shown as a dashed circle ), because its condition evaluates

to 0: φ(e) = x = 1 = 0. Arcs {a → d, a → e, b → d, b → e}
disappear for the same reason; they are shown as dashed

arrows . The rightmost projection is obtained in the

same way with the only difference that variable x is set

to 0; it is denoted by H|x=0, respectively. Note that although

the condition of arc c → d evaluates to 1 (in fact it is

constant 1) the arc is still excluded from the resultant graph

because one of the vertices it connects, viz. vertex c, is

excluded and naturally an arc cannot appear in a graph without

one of its vertices. Each of the obtained projections can be

regarded as specification of a particular behavioural scenario

of the modelled system, e.g. as specification of a processor

instruction. Potentially, a CPOG H = (V,E,X, ρ, φ) can

specify an exponential number of different instructions (each

composed from atomic actions in V ) according to one of 2|X|

different possible opcodes.

B. Specification of instructions

Consider a processing unit that has two registers A and

B, and can perform two different instructions: addition and

exchange of two variables stored in memory. The processor

contains five datapath components (denoted by a . . . e) that

can perform the following atomic actions:

a) Load register A from memory;

b) Load register B from memory;

c) Compute sum A+B and store it in A;

d) Save register A into memory;

e) Save register B into memory.

Table I describes the addition and exchange instructions in

terms of usage of these atomic actions.

The addition instruction consists of loading the two oper-

ands from memory (actions a and b, causally independent

and thus possibly concurrent), their addition (action c), and

saving the result (action d). Whether a and b are to be

performed concurrently depends on: i) the system architecture,

e.g., if concurrent read memory access is allowed, ii) static

and dynamic resources availability (the processor hardware

Instruction Addition Exchange

a) Load A a) Load A
Action b) Load B b) Load B

sequence c) Add B to A d) Save A
d) Save A e) Save B

Partial order

a

d

b

c

a

d

b

e
with maximum

concurrency

PADD PXCHG

Table I: Two instructions specified as partial orders

configuration must physically contain two memory access

components and they both have to be immediately available

for use), and iii) the current operation mode which determines

the scheduling strategy, e.g. ‘execute a and b concurrently

to minimise latency’, or ‘execute a and b in sequence to

reduce peak power’. Let us assume for simplicity that in this

example all causally independent actions are always performed

concurrently, see the corresponding partial order PADD in

Table I1. Section V will address joint specification of different

scheduling strategies of an instruction.

The operation of exchange consists of loading the operands

(concurrent actions a and b), and saving them into swapped

memory locations (concurrent actions d and e), as captured by

PXCHG . Note that in order to start saving one of the registers

it is necessary to wait until both of them have been loaded to

avoid overwriting one of the values.

One can see that the two partial orders in Table I appear to

be the two projections shown in Fig. 3, thus the corresponding

graph can be considered as a joint specification of both instruc-

tions. Two important characteristics of such a specification

are that the common events {a, b, d} are overlaid and the

choice between the two operations is distributed in the Boolean

expressions associated with the vertices and arcs of the graph.

As a result, in our model there is no need for ‘nodal point’

of choice, which tend to appear in alternative specification

models (a Petri Net [18] would have an explicit choice place,

a Finite State Machine [28] – an explicit choice state, and a

specification written in a Hardware Description Language [28]

would describe the two instructions by two separate branches

of a conditional statement if or case).

One downside of a purely graph-based approach to instruc-

tion sets is the inability to reason about functional correctness;

specifically, the relationship between an instruction behaviour

and the functionality of blocks it is made of. Clearly, a designer

would seek some form of assurance that an instruction is

correct in respect to original requirements and an evidence

of correctness is exhibited. An ultimate form of evidence is a

formal proof. In Section IV we will show how to obtain the

proof of an instruction correctness with a refinement-based

derivation of instruction logic.

1In this paper we describe partial orders using Hasse diagrams [10], i.e.
without depicting transitive dependencies, such as, for example, dependencies
a→ d and b→ d in partial order PADD .
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C. From instructions to instruction sets

The following notions are introduced to formally define

specification and composition of instruction sets.

An instruction is a pair I = (ψ, P ), where ψ ∈ {0, 1}|X|

is a vector assigning a Boolean value to each variable in X ,

and P = (V,≺) is a partial order defined on a set of atomic

actions V . Semantically, ψ represents the instruction opcode2,

while the precedence relation ≺ of the partial order captures

behaviour of the instruction3. We assume that V and X belong

to the corresponding universes shared by all the instructions

of the processor: V ⊆ UV and X ⊆ UX .

An instruction set (denoted by IS) is a set of instructions

with unique opcodes, i.e. for any IS = {I1, I2, . . . , In}, such

that Ik = (ψk, Pk), all opcodes ψk must be different.

Given a CPOG H = (V,E,X, ρ, φ) there is a natural

correspondence between its projections and instructions: an

opcode ψ = (x1, x2, . . . , x|X|) induces a partial order H|ψ ,

and paired together they form an instruction Iψ = (ψ,H|ψ)
according to the above definition. This leads to the following

formal link between CPOGs and instruction sets.

A CPOG H = (V,E,X, ρ, φ) is a specification of an in-

struction set IS(H) defined as a union of instructions (ψ,H|ψ)
which are allowed by the restriction function ρ:

IS(H)
df
= {(ψ,H|ψ), ρ(ψ) = 1}. (1)

Using this definition we can formally state that the graph in

Fig. 3 specifies the instruction set from Table I. Section III

shows how to obtain and efficiently manipulate such CPOG

specifications.

III. TRANSFORMATIONS

In this section we describe CPOG transformations which

allow to systematically manipulate instruction sets. The trans-

formations facilitate the following stages of the ISA design

flow shown in Fig. 1:

• compositional and modular construction of instruction

sets from smaller subsets and/or individual instructions

(Subsection III-A);

• global ISA modifications, that is modifications of all

the instructions at once, for example, re-encoding, re-

targeting for a different hardware platform, refinement

for hardware synthesis (Subsection III-B);

• local and incremental ISA modifications, which usually

apply only to a subset of all the instructions and are

heavily relied on in various ISA optimisation algorithms

(Subsection III-C);

• hardware synthesis, i.e., transformation of an instruction

set into a microcontroller by mapping a given CPOG into

Boolean equations (Subsection III-D).

An important feature of all the discussed transformation

procedures is their higher efficiency in comparison to the

conventional approaches. In particular, we will demonstrate

that the algorithmic complexity of all the procedures does not

depend on the number of instructions in a given ISA.

2In this section the instruction operands are implicit and the opcode
completely defines the instruction. We elaborate on this in Section V.

3We incorporate the notion of a microprogram [28] (the behaviour of the
instruction) into the definition of the instruction.

A. Composition

Compositionality is a key concept in modern system design:

a realistic system can only be designed and analysed by

breaking it down into smaller pieces. A typical instruction set

of a modern processor contains hundreds of base instruction

classes and various ISA extensions, and usually is a result of

several design iterations. Therefore, it is necessary to be able

to compose large instruction sets from smaller ones to enable

modularisation, reuse, and incremental development.

A CPOG can be deconstructed by means of projections,

as was demonstrated in Fig. 3. The opposite operation, that is

constructing a CPOG out of given parts, is called composition.

This subsection describes how it can be used to build large

instruction sets from smaller ones.

Formally, composition of two instruction sets IS1 and IS2 is

simply defined as their union IS1 ∪ IS2; it is required that the

union does not contain two instructions with the same opcode.

Due to the commutativity and associativity properties of set

union ∪, one can compose more than two instruction sets by

performing their pairwise composition in arbitrary order, for

instance, IS1∪ IS2∪ IS3 = (IS1∪ IS2)∪ IS3 = IS1∪(IS2∪ IS3).
Note that if instructions in given sets ISk are represented

individually (e.g., by listing them one after another as in

conventional methods), then the complexity of the compos-

ition operation is linear with respect to the total number of

instructions: Θ(|IS|), where IS =
⋃

k ISk. This is because we

have to iterate over all of them to generate the result. It may

be unacceptably slow for those applications which routinely

perform various operations on large instruction sets. By using

the CPOG model for the compact representation of instruction

sets, one can perform most of the operations much faster, as

demonstrated below.

Let instruction sets IS1 and IS2 be specified with graphs

H1 = (V1, E1, X1, ρ1, φ1) and H2 = (V2, E2, X2, ρ2, φ2),
respectively, as in (1). Then their composition has CPOG

specification H = (V1 ∪ V2, E1 ∪ E2, X1 ∪ X2, ρ1 + ρ2, φ),
where the vertex/arc conditions φ are defined as

∀z ∈ V1 ∪ V2 ∪ E1 ∪ E2, φ(z)
df
= ρ1φ1(z) + ρ2φ2(z).

We call H the CPOG composition of H1 and H2 and denote

this operation as H = H1 ∪ H2. Note that if ρ1 · ρ2 6= 0
then the composition is undefined, because IS(H1) and IS(H2)
contain instructions with the same opcode ψ allowed by both

restriction functions: ρ1(ψ) = ρ2(ψ) = 1. It is possible to

formally prove that IS(H) = IS(H1)∪ IS(H2) using algebraic

methods4 [32], deriving the following important result:

IS(H1 ∪H2) = IS(H1) ∪ IS(H2).

Crucially, the complexity of computing a CPOG composition

does not depend on the total number of instructions |IS1 ∪ IS2|.
It depends only on the sizes of graph specifications H1 and

H2: Θ(|V1|+|E1|+|V2|+|E2|). Since the number of arcs |Ek|
is at most quadratic with respect to |Vk| and |Vk| ≤ |UV | (all

vertices are contained in universe UV ), we have the following

upper bound on CPOG composition complexity: O(|UV |
2).

4The proof follows from Theorems 1 and 2 of [32] which concern a more
restrictive operation – CPOG addition.
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Figure 4: Graph composition

Note that |UV |
2 is potentially much smaller than the number of

different instructions5, which can be exponential with respect

to |V |, in particular the total number of partial orders on set

UV is greater than 2
1

4
|UV |2 [10]. To conclude, we can operate

on the CPOG representations of instruction sets faster than on

the instruction sets themselves.

Let us demonstrate composition of instruction sets on the

aforementioned processing unit example. Fig. 4(a,b) shows

two graphs HADD and HXCHG specifying singleton instruc-

tion sets IS(HADD) = {(1, PADD)} and IS(HXCHG) =
{(0, PXCHG)}, respectively. Since their restriction functions

are orthogonal ρADD · ρXCHG = x · x = 0, we can compose

them into the graph shown in Fig. 4(c). It specifies the com-

position IS(HADD ∪HXCHG) = {(1, PADD), (0, PXCHG)} as

intended (see Fig. 3 as a proof).

B. Global transformations

Consider a graph H = (V,E,X, ρ, φ). Since elements of

the quintuple are shared by all instructions in IS(H), we

can make global modifications of the instruction set without

iterating over all the instructions. For example, we can add a

new action go at the beginning of every instruction by setting

V ′ = V ∪{go}, φ(go) = 1, and φ(go→ v) = 1 for all v ∈ V .

The cost of this global modification is only Θ(|V |); we call

transformations of this type event insertions.

It is possible to introduce a global concurrency reduction

between actions a and b, by setting E′ = E ∪ {a → b}
and φ(a → b) = 1. As a result, action b will always be

scheduled after a in all the instructions. The cost of this

transformation is O(1), but it is not safe in general: it can

introduce deadlocks if action a is scheduled to happen after b
in one of the instructions (forming a cyclic dependency). To

ensure deadlock freeness verification algorithms from [29]

must be employed.

Another basic transformation with the global effect is

variable substitution. For instance, by replacing every occur-

rence of x with x in all conditions φ and function ρ, we flip

the corresponding bit in all instruction opcodes. To perform

this operation we need to change Θ(|V |2) Boolean functions.

5Although this statement does not hold for our simplistic examples, e.g.,
|V |+ |E| = 5+7 = 12 and |IS| = 2 in Fig. 4, it does hold in practice. For
example, our implementation of Intel 8051 microprocessor (see Section VI)
has 244 instructions but its CPOG representation contains only 17 vertices
and 47 arcs. Also, if we do not use abstraction and treat instructions ADD

A,B and ADD C,D as different ones, the number of instructions of a modern
32-bit processor can easily grow to 232 while its CPOG will remain compact.

Variable substitution is a powerful transformation, it can affect

not only a single bit, but all the opcodes; care must be taken

to ensure that the resultant opcodes do not clash.

The above transformations are global. It is possible, how-

ever, to apply them only to a subset of selected instructions

using the operations of set extraction and decomposition

defined below.

C. Local transformations

Instead of looking at the whole instruction set of a processor

one may need to focus attention on its smaller part. As an

example, consider the MMIX processor instruction set [26]

containing 256 different opcodes. 16 of them, starting with bits

0010, are dedicated to addition/subtraction operations, and a

designer wants to manipulate them separately from the others.

Let graph H = (V,E,X, ρ, φ) specify the whole instruction

set IS(H) of the processor and 8-bit opcodes be encoded

with variables {x1, . . . , x8}. Function f = x1 · x2 · x3 · x4
enumerates all Boolean vectors starting with 0010 and its

conjunction with ρ enumerates all wanted opcodes. Thus,

graph H ′ = (V,E,X, f · ρ, φ) specifies the required part of

IS(H). There is a dedicated operation in the CPOG algebra,

called scalar multiplication, specifically intended for this task:

H ′ = f ·H [32]. Its main feature is that

∀f, IS(f ·H) ⊆ IS(H)

In our context, f can be considered an instruction property

and operation f ·H can be called a set extraction: it extracts

a subset of a given instruction set according to a required

property.

A generalisation of this operation is called decomposition. It

is easy to see that H1 = f ·H and H0 = f ·H together contain

all instructions from IS(H): the instructions with opcodes

satisfying property f are put into H1, and all the rest are

put into H0. Thus, any instruction set can be decomposed

into two disjoint sets according to a given property. This is

formally captured by the following statement:

∀f, IS(H) = IS(f ·H) ∪ IS(f ·H)

Set extraction and decomposition are very cheap operations:

they only require computation of a conjunction of two Boolean

functions f and ρ.

Returning back to the MMIX example, we can decompose

IS(H) into two disjoint sets: addition/subtraction operations

IS1 = IS(f ·H), and all the rest IS0 = IS(f ·H). Then we can

apply a transformation, e.g., an event insertion, to IS1 resulting

in ISt
1
. Finally, we can compute composition ISt = ISt

1
∪ IS0

which contains all the instructions from the original instruction

set IS(H), but with a local transformation applied only to

addition/subtraction operations.

D. Mapping to logic gates

Finally, the refined CPOG can be mapped into Boolean

equations. The mapping procedure is a purely structural oper-

ation, i.e., it merely transforms conditions of a given CPOG

into logic gates of the corresponding microcontroller without

iterating over the instruction set itself.
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Consider a functional unit represented by vertex v ∈ V in a

given graph H = (V,E,X, ρ, φ). It is enabled to be executed

if the following two conditions are met:

• vertex v belongs to the partial order of the currently active

instruction, i.e., its condition is satisfied by the current

opcode: φ(v) = 1;

• all the functional units corresponding to its predecessors

in the graph have already been executed.

This is captured in terms of Boolean equations as follows:

enabled(v) = φ(v) ·
∏

u∈V

(

φ(u) · φ(u→ v) ⇒ executed(u)
)

,

where a⇒ b stands for Boolean implication indicating ‘b if a’

relation, while predicates enabled(v) and executed(v) refer to

the physical signals responsible for activation and completion

detection of the functional unit corresponding to vertex v; see

details of the microcontroller realisation in [31]. The obtained

equations should undergo the conventional logic minimisa-

tion [28][32] and technology mapping [18] procedures.

It is interesting to note that size of the microcontroller does

not depend on the number of instructions directly. There are

Θ(|V |2) conditions in all the resultant equations; the average

size of these conditions is difficult to estimate, but in practice

we found that the overall size of the microcontroller never

grows beyond Θ(|V |2).

IV. FUNCTIONAL CORRECTNESS

In this section we discuss a formalism called Event-B [7]

and its application to formal verification of correctness of

CPOG-based representations of instructions. Event-B belongs

to a family of state-based modelling languages that represent

a design as a combination of state (a vector of variables)

and state transformations (computations updating variables). In

general, a design in Event-B is abstract: it relies on data types

and state transformations that are not directly realisable. This

permits terse models abstracting away from insignificant de-

tails and enables one to capture various phenomena of a system

with a varying degree of detail. Crucially, each statement about

the effect of a certain computation is supported by a formal

proof. In Event-B, one is able to make statements about safety

(this incorporates the property of functional correctness) and

progress. Safety properties ensure that a system never arrives at

a state that is deemed unsafe (i.e., a shaft door is never open

when a lift cab is on a different floor). Progress properties

ensure that a system is able to achieve its operational goals.

A. General Event-B methodology

An Event-B development starts with the creation of an

abstract specification. A cornerstone of the Event-B method

is the stepwise development that facilitates a gradual design

of a system implementation through a number of correctness-

preserving refinement steps. The general form of an Event-B

model (or machine) is shown in Fig. 5. Such a model encapsu-

lates a local state (program variables) and provides operations

on the state. The actions (called events) are defined by a list of

new local variables (parameters) vl, a state predicate g called

MACHINE M
SEES Context
VARIABLES v
INVARIANT I(c, s, v)
INITIALISATION R(c, s, v′)
EVENTS

E1 = any vl where
g(c, s, vl, v)

then
S(c, s, vl, v, v′)

end
. . .

END

Figure 5: Event-B model structure

event guard, and a next-state relation S called substitution (see

the EVENTS section in Fig. 5).

The INVARIANT clause contains the properties of the system

(expressed as state predicates) that should be preserved during

system execution. These define safe states of a system. In order

for a model to be consistent, invariant preservation should

be formally demonstrated. Data types, constants and relevant

axioms are defined in a separate component called context.

Model correctness is demonstrated by generating and dis-

charging proof obligations – theorems in first order logic. The

proof obligations demonstrate model consistency, such as the

preservation of the invariant by the events, and refinement links

to other Event-B models. A collection of automated theorem

provers attempts to discharge proof obligations; typically only

3%-5% of proofs require user intervention.

If a model possesses rich control flow properties (e.g., a

computational algorithm) the control flow aspect of a model

is defined in a separate view called the flow of a model [25].

The flow aspects introduces further verification obligations to

ensure that all specified event ordering are found among event

traces of a specification. In this work we apply the flow aspect

to obtain structured programs – programs that use concepts

like sequential composition, choice and loop.

B. Modelling instructions

Our goal is the verification of an instruction, that is, ex-

plaining how it is assembled from smaller blocks and whether

such an assembly always delivers right results. Before one

may attempt such verification, it is requisite to obtain a formal

specification of what an instruction is expected to do. In

other words, what is the expected effect of an instruction

execution on system memory, registers and flags. Such a

specification must capture both the normal and abnormal cases.

A normal case is a successful execution of an instruction until

the completion; this happens when an instruction is called

in a right state and with appropriate parameters. For some

instructions, there are side conditions that must be satisfied

or an instruction execution is aborted. One may also want to

foresee (and, possibly, try to mask) abortive execution attempts

due to transient hardware faults.

For a refinement-based approach such as Event-B the con-

ventional way to obtain a specification is to gradually develop

it from a high-level abstraction of a computing platform:

memory that may be written and read, and a device acting upon
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it [14][17]. Several specifications have been developed re-

cently, e.g., for XMOS architecture [40], that employ Event-B

to formalise instruction sets of real-life CPUs. A CPU is

treated as a black-box so that a specification ends with a char-

acterisation of normal and abnormal instruction behaviours.

We take such a specification as our starting point, open the

black box and explain how each instruction is realised.

Let us first examine what constitutes an instruction specific-

ation. The relevant ingredients are state variables (capturing

concepts like memory, stack and registers), invariant and the

pre- and postconditions of normal and abnormal instruction

cases. Model variables v abstractly characterise memory and

CPU state. An invariant I(v) defines a set of safe states

S = {v | I(v)} that includes all the reachable model states;

it is guaranteed that no chain of instruction execution could

lead to a state outside S. Predicate R(c, s, v′) defines the set

of vectors of initial variable values.

Let predicate families P iN (v) and QiN (v, v′) denote pre-

and postconditions of normal instruction cases, where v and v′

correspond to the current and the next states. Correspondingly,

P iA(v) and QiA(v, v
′) define abnormal cases.

For instruction preconditions PN (v) and PA(v) it holds that

whenever an instruction is invoked and the system is in a safe

state the instruction is ready to run:

I(v) ⇒
∨

i

P iN (v) ∨
∨

i

P iA(v).

At the same time, there must be a definite way to tell

which case applies in a current state and there should not

exist a state where both normal and abnormal cases may be

executed. Formally, the normal and abnormal preconditions of

an instruction must partition the set S of safe states:

S = {v | PN (v)} ⊕ {v | PA(v)}.

A postcondition expresses the set of states that may be

reached via an instruction execution (an instruction specific-

ation may be non-deterministic) and the relationship to the

original state. An instruction must terminate in a safe state;

that is, re-establish the invariant condition I(v):

∀i, t · t ∈ {N,A} ∧ I(v) ∧ P it (v) ∧Q
i
t(v, v

′) ⇒ I(v′).

The condition may be satisfied by simply choosing a pair of

P it (v) and Qit(v, v
′) such that the left-hand side is always

false. To counteract this, it is required that an instruction is

always able to deliver some result:

I(v) ∧ P it (v) ⇒ ∃v′ ·Qit(v, v
′).

The condition also captures the cases where a contradiction

is present only for a subset of states characterised by I(v) ∧
P it (v), e.g., a pair of predicates (y > 0, y′ ∗ y′ = y) where

y ∈ N do not define a valid instruction case.

In a general case, an instruction specification is formed of

a number of normal and abnormal cases.

instruction name is
state v
invariant I(v)
behaviour

P 1

N (v) → Q1

N (v, v′)
. . .
PkN (v) → QkN (v, v′)
P 1

A(v) → Q1

A(v, v
′)

. . .
PkA(v) → QkA(v, v

′)
end

An instruction implementation explains how each case of

an instruction specification is implemented by a deterministic

program comprising of primitive functional blocks.

To formally relate an operation specification to an im-

plementation we construct a separate Event-B development

for each case of an operation. An abstract machine of such

development is based on the following template.

MACHINE op
VARIABLES m, r, f, c
INVARIANT

Im(m, r, f)
c ∈ B

c = FALSE ⇒ P (m, r, f)
c = TRUE ⇒ Q(m, r, f)

INITIALISATION
m, r, f, c : |Im(m′, r′, f ′) ∧ P (m′, r′, f ′) ‖ c := FALSE

EVENTS
op = when

c = FALSE
then

m, r, f, c : | Q(m′, r′, f ′) ‖ c := TRUE
end

END

Here, Im is the state model of an instruction, c is an auxili-

ary control variable. The model defines a single step automata.

The automata is initialised into state when c = FALSE and

atomically transitions into a terminal state where c = TRUE.

The invariant properties c = FALSE ⇒ P (m, r, f) and

c = TRUE ⇒ Q(m, r, f) explain the meaning of the

automata states in relation to the operation definitions: initially,

the state satisfies the operation precondition; upon termination

it satisfies the operation postcondition. A single transition,

defined in event op, takes the automata from a state satisfying

the precondition to a state satisfying the postcondition. Thus,

the specification is trivially convergent.

We use the standard Event-B refinement to gradually replace

event op with a convergent, deterministic program. The de-

terminacy of a final specification is established at the syntactic

level (only deterministic variable updates are used in event

specifications). The preservation of convergence is a part of

the refinement method.

There is a small semantic mismatch. While we speak

about operations in the terms of preconditions and postcon-

ditions, Event-B events are defined in the terms of guards

and postconditions. The difference is that a guard may not

be weakened during refinement while a precondition may not

be strengthened. The solution is to insist that an abstract event

guard is always refined in such a way that abstract states

characterised by the guard are all accounted for by the guards

of concrete events. In other words, the collective precondition

of an implementation is not more restrictive than in the abstract
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Figure 6: Datapath components for DP3 implementation

model:

I(v) ∧G(v) ⇒ H1(v) ∨ · · · ∨Hn(v),

where G is a guard of some abstract event and Hi are the

guards of a subset of concrete events. The condition states

that whenever an event is refined, for every state of the event

guard there is always something to do in the refined machine.

An illustration to the described modelling approach is

provided in Section V.

V. CASE STUDY

In this section we study a common low-level GPU instruc-

tion, called DP3, which given two vectors x = (x1, x2, x3)
and y = (y1, y2, y3), computes their dot product x · y =
x1 · y1 + x2 · y2 + x3 · y3. There are many ways to achieve

the required functionality in hardware; consider the following

datapath components (denoted by a . . . e) which can be used

to fulfil this task:

a) 2-input adder;

b) 3-input adder;

c) 2-input multiplier;

d) fast 2-input multiplier;

e) dedicated DP3 unit.

Similar to the Energy Token model [35], we associate two

attributes, execution latency and power consumption, with

every component. Fig. 6 depicts them as labelled boxes with

dimensions corresponding to their attributes; the area of a box

represents energy required for the computation.

Depending on the current operation mode and availability of

the components, a processor has to schedule their activation

in the appropriate partial order. Fig. 7 lists several possible

partial orders together with their power/latency profiles.

Least latency implementation: the fastest way to implement

the instruction is to compute multiplications tmpk = xk · yk
concurrently using three fast multipliers d1-d3 and then com-

pute the final result tmp
1
+tmp

2
+tmp

3
with a 3-input adder b;

see Fig. 7(a). This implementation is the costliest in terms of

peak power and thus may not always be affordable.

Least peak power implementation: a directly opposite

scheduling strategy is shown in Fig. 7(b). Three multiplications

are performed sequentially on the same slow multiplier c1,

followed by 3-input addition b. This strategy has the largest

latency among all the presented because it is completely

sequential and uses slow power-saving components. On a

positive side, this implementation requires only two basic

functional blocks, which are likely to be reused by other

instructions, so its resource utilisation is high.

d3

d2

d1 b

d1

d3

bd2

(a) Least latency

c1 c1 c1 b

bc1c1c1

(b) Least peak power

e

e

(c) Dedicated unit

c1 c1 a

c2 a

c1

ac2

ac1

(d) Resource limited

d1 c1 a

a

d1

d1

a

ac1d1

(e) Balanced

Figure 7: Different implementations of DP3 instruction

Use of a dedicated component: it is possible that the chosen

hardware platform contains a dedicated computation unit cap-

able of computing dot product of two vectors, e.g. Altera

Cyclone III FPGA board allows building a functional block

called ALTMULT_ADD(3) with three multipliers connected to

a 3-input adder. We can directly execute this block without

any scheduling – see Fig. 7(c). While being convenient and

potentially very efficient due to custom design, such solution

is not always justified because of low resource utilisation: it is

impossible to reuse the built-in multipliers for implementing

other instructions and if DP3 is rarely used by software then

this dedicated component will be wasting area and power

(due to the leakage current) most of the time. Moreover, such

implementation does not allow any dynamic reconfiguration

thereby being less flexible.

Fast implementation with limited resources: if there are

only two available multipliers c1 and c2 (either because of

hardware limitations or because other multipliers are busy at

the moment) then the fastest possible scheduling strategy is as

follows. At first, two multiplications should be performed in

parallel. Then their results are fed to 2-input adder a, while

c1 is restarted for computing the third multiplication. Finally,

the obtained results are added together by the same adder a
as shown in Fig. 7(d).

Balanced solution: Fig. 7(e) presents a balanced strategy,

which aims to spread power consumption evenly over time,

while being relatively fast. This schedule may be advantageous

for the best energy utilisation and in security applications.

A. Derivation of the instruction set

We could devise more implementations of this instruction,

but this is not the point of the case study. The goal is to
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demonstrate that even such a basic instruction as DP3 has a

lot of valid scheduling strategies with distinct characteristics.

Importantly, it is not possible to select the best strategy because

a priori it is not known which one is better. Therefore including

only one of them into a processor instruction set is a serious

compromise which should not be done at this early and

abstract stage of the design process. We propose to include

as many different implementations into the instruction set as

possible, and, if needed, reduce the behavioural spectrum at

the later design stages when more information is at hand

(some final decisions can even be made during runtime by

dynamic processor reconfiguration). The CPOG model is well

suited for this task: it can represent a multitude of different

implementations of the same instruction in a compact overlaid

form. If the instruction is intended to have only one opcode,

we can distinguish between its different implementations using

mode and configuration variables. They are not part of the

opcode (which is fetched from the program memory during

software execution), but can be dynamically changed by the

power/latency runtime control mechanisms [38] or be statically

set to constants according to the limitations of the actual

hardware platform, as shown in Fig. 8.

We can specify all the discussed implementations of DP3

instruction using a single CPOG. To do that we first have

to encode all of them. If there are no requirements on the

mode/configuration codes, then a designer is free to assign

them arbitrarily, however it may affect CPOG complexity and,

as a consequence, complexity of the resultant microcontroller.

In this case it is possible to resort to the help of automated6 op-

timal encoding methods [30], which generate codes ψ1 = 001,

ψ2 = 011, ψ3 = 000, ψ4 = 111, and ψ5 = 101 for the

five partial orders depicted in Fig. 7 (note that these optimal

codes are far from trivial sequence of binary codes 000-100).

If we compose all of them into a single CPOG using the

method from Subsection III-A, we obtain the graph shown

in Fig. 9(a). The mode/configuration variables are denoted

as X = {x, y, z}, and two intermediate variables {p, q} are

derived from them to simplify other graph conditions; as a

result only seven 2-input gates are required to compute all

graph conditions. The obtained graph is a superposition of the

given partial orders, i.e. all of them can be visually identified

6We used WORKCRAFT framework [5] for CPOG modelling and encoding.

in it – see, for example, Fig. 9(b), which shows the balanced

implementation generated by code ψ5, and compare it with

partial order in Fig. 7(e). For a designer this gives a useful

higher-level picture which brings out interaction between the

components much better than separate partial order diagrams

(this is similar to a metro map which represents a set of metro

lines in a compact understandable form).

B. Verification of correctness

We now demonstrate application of the Event-B modelling

and verification approach described in Section IV to the above

example. Due to space constraints we limit ourselves to the

consideration of the least latency implementation of DP3

instruction, as shown in Fig. 7(a). We show with a formal

approach that our chosen implementation does indeed compute

the dot product of two vectors. The following is a simple DP3

instruction specification that defines only one normal case.

instruction dotp is
c = TRUE → r = x(1) ∗ y(1) + x(2) ∗ y(2) + x(3) ∗ y(3)

end

As the first step, we obtain an abstract Event-B state

model of the instruction by instantiating the model template

given above. The properties of the dot product operation

are substituted in the place of abstract predicates P and Q.

The result is the following Event-B machine. Note that the

specification is generalised to an arbitrary vector length. This

does not affect proofs and the model may be reused should

there be a need for a differing vector length:

MACHINE dotp
VARIABLES x, y, r, c
INVARIANT

x ∈ 1..n→ Z

y ∈ 1..n→ Z

r ∈ Z

c ∈ B

c = TRUE ⇒ r = Σ{x(i) ∗ y(i) | i ∈ 1..n}
INITIALISATION

x :∈ 1..n→ Z

y :∈ 1..n→ Z

r :∈ Z

c := FALSE
EVENTS

dotp = when
c = FALSE

then
r := Σ{x(i) ∗ y(i) | i ∈ 1..n}
c := TRUE

end
END

The machine is refined into an implementation that makes

use of n parallel multipliers and one n-input adder; this is a

generalised version of the least latency implementation. The

result is the model shown in Fig. 10.

All the consistency and refinement proof obligations are

discharged by autonomous theorem provers. Once a concrete

model of an instruction is developed and verified it must be,

somehow, transformed into a graph to feed it into the CPOG

synthesis routines. For this we construct a graph expressing

possible event orderings (called the flow aspect of a model).

This additional model must be proven consistent with the

Event-B machine in a sense that all the paths in such a

graph are also possible event sequences in the history of a



11

e: z

a: x
c1: y

a: x

c1: p_

c2: x y·
p = x y_ _

·
q = p z·

d3: q

d2: q

d1: y z·
_

b: x z·
_

d1: x y·
_

c1: x y·
_

_

(a) Composition H of all implementations

e: z

a: x
c1: y

a: x

c1: p_

c2: x y·
p = x y_ _

·
q = p z·

d3: q

d2: q

d1: y z·
_

b: x z·
_

d1: x y·
_

c1: x y·
_

_

(b) Projection H|ψ5
, ψ5 = (1, 0, 1)

Figure 9: CPOG specification of DP3 instruction

MACHINE least_latency
refines dotp
VARIABLES x, y, r, c,m
INVARIANT

m ∈ 1..n 6→ Z

∀i · i ∈ dom(m) ⇒ m(i) = x(i) ∗ y(i)
INITIALISATION . . . ‖ m := ∅
VARIANT 1..n \ dom(m)
EVENTS

mul2 = any i where
i ∈ 1..n
i /∈ dom(m)

then
m(i) := x(i) ∗ y(i)

end
addn ref dotp = when

c = FALSE
dom(m) = 1..n

then
r := Σ(m)
c := TRUE

end
END

Figure 10: Machine for the least latency implementation

machine execution. The relevant proof obligations are gen-

erated automatically by the Event-B modelling tool [6]. The

following flow aspect is constructed for a trivial specialisation

of least_latency where n = 3 with parametrised event mul3

split into three separate events, one for each i ∈ {1, 2, 3}; the

n-input adder becomes 3-input adder:

mul2_1

mul2_2

mul2_3

add3dom(m)=1‥3 ∧ a=FALSE 

1∈dom(m)∧a=FALSE 

2∈dom(m)∧a=FALSE 

3∈dom(m)∧a=FALSE 

m=∅∧a=FALSE 

The shaded boxes are assertions — elements aiding in the

construction of a proof; these do not contribute to the output

control graph. Single and double circles are the initialisation

and termination actions; the rounded boxes are the events

of a machine. The input for CPOG synthesis is a graph

obtained by removing assertion elements and dropping all the

edge and node annotations. Other implementations of the DP3

instruction can be verified in a similar way.

VI. DESIGN OF INTEL 8051 MICROCONTROLLER

In this section we discuss application of the presented

CPOG-based methodology to design of Intel 8051 instruction

set [36] and automated synthesis of the corresponding micro-

controller. Intel 8051 (also referred to as Intel MCS-51) is a

popular CPU introduced back in 1980; although Intel officially

discontinued it in 2007 it is still widely available from other

vendors in various compatible configurations.

The 8051 ISA is not as complex as modern Intel or ARM

ones, however, it is still a serious and practically useful (due

to available legacy software) benchmark for the presented

methodology. Our implementation supports 244 instructions;

to design an ISA of that scale it was essential to make use

of the discussed compositional methods in order to split the

whole instruction set into manageable subsets, develop them

separately, and later merge the intermediate results using the

CPOG composition procedure, as discussed in Section III.

A. Architecture and functional units

Our architecture generally follows the standard Intel 8051

design style [36], which is based on the Harvard architecture

with separate data and program memory [8]. There are two on-

chip RAMs (a register bank and data storage); the program is

stored in a reprogrammable off-chip ROM.

There are five functional units that are considered atomic

blocks in our top-level CPOG model of the ISA:

• Program Counter Increment Unit (PCIU), as the name

suggests, is responsible for incrementing the PC register

throughout a program execution.

• Instruction Fetch Unit (IFU) fetches instruction opcodes

and immediate instruction operands from the program

memory using the PC as the address pointer.

• Arithmetic Logic Unit (ALU) performs all arithmetic,

logic, and other data processing tasks; it contains all the

required functional units at the lower hierarchical level

hidden from the other top-level components:

– arithmetic: adders, multipliers, dividers;

– bitwise operations: Boolean algebra, shifters;

– data transfer, comparators and the flag register.

• Memory Access Unit (MAU) is used to access the register

and data memory banks, as well as the stack.

• Stack pointer Increment Decrement Unit (SIDU) provides

functionality for the stack pointer manipulations.

Note that ALU can also be considered a microcontroller: it

has its own set of functional units that have to be activated

in certain partial orders according the the current instruction

opcode. Therefore the whole design is hierarchical: one can

abstract from ALU internals and consider it simply as an

atomic functional unit whose implementation is an independ-

ent design objective and may, for example, be reused. Hier-

archical CPOGs are outside the scope of this work, see [29].
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Figure 11: CPOG specifications of CJNE instruction and complete 8051 microcontroller instruction set

The original 8051 architecture was based on an 8-bit ALU,

however, we decided to implement a more ambitious 16-bit

version to achieve a higher performance and have a unified

16-bit width for both data and address buses. This was a

late design decision, but thanks to compositionality of our

approach it was possible to quickly identify all the affected

instructions, isolate them by extracting the corresponding

instruction subset, and perform an appropriate batch modi-

fication, as explained in Section III-C.

Another important ISA transformation concerned intro-

duction of two versions for each of the basic computation

components (such as adders, multipliers, etc.) with different

power/latency characteristics to allow dynamic reconfiguration

of the microprocessor for different application-specific require-

ments in the spirit of Section V.

B. Compositional approach to CJNE instruction

In this subsection we demonstrate CPOG specification of

one of the most complicated 8051 instructions, namely, the

conditional branch CJNE instruction [36]. Specifically, we

consider the following addressing mode:

CJNE @Rn, #immediate, offset

In this mode the CJNE instruction compares contents of the

memory location whose address is provided in the specified

register with a given immediate constant, and branches to the

specified destination (by adding the given address offset to

the PC) if their values are not equal. Otherwise, execution

continues with the next instruction. CJNE is a good example

to demonstrate compositionality of CPOGs: the complete be-

haviour of the instruction is split into two scenarios, which are

easier to specify separately; the scenarios are then composed

together resulting in the complete instruction specification.

Fig. 11(a) shows a graph describing the order of activ-

ation of functional units in the first CJNE scenario when

the branch is not taken because the compared values are

equal. This scenario begins with two concurrent sequences

of actions: PCIU → IFU is executed to fetch the constant
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stored immediately after the instruction opcode, while actions

ALU → MAU are performed to fetch the contents of Rn

from the internal memory. After that, another similar sequence

is performed, ALU /2 → MAU /2 , to look up the contents

of the memory at the address loaded from Rn7. Finally,

ALU /3 is performed to compare the obtained values; the

corresponding status flags are set according to the result, in

particular, if the values are equal the flag z is set to 1. In

this scenario we assume that the values are indeed equal,

therefore, the processor may proceed with the next instruction,

that is, the program counter is incremented twice (skipping

the branch offset) and the next instruction opcode is fetched

(actions PCIU /2 → PCIU /3 → IFU /3 ).

The second scenario, see Fig. 11(b), is identical to the

first one until the moment when comparison is performed by

ALU /3 and it is determined that the compared values are

different. At this point, the execution continues as follows.

The branch offset is loaded by performing IFU /2 straight

after PCIU /2 . Then the actual branch operation is executed

by adding the offset to the current PC value (ALU /4 ) and

fetching the next instruction opcode. Note that action PCIU /3
is skipped in this scenario.

The two scenarios are sufficiently complex even when con-

sidered separately; they require a formal proof of correctness

using the methodology presented in Section IV. After it is

done, one can merge them into one instruction by using

the CPOG composition which is a correct by construction

operation and does not require any further verification. The

result of the composition is shown in Fig. 11(c). One can

see that the composition has only three conditional elements,

namely, φ(PCIU /3 ) = z and φ(IFU /2 ) = φ(ALU /4 ) = z.

All the other vertices and all the arcs are unconditional due to

high similarity between the two scenarios.

C. Complete instruction set and implementation details

Similarly to the CJNE instruction, the rest of the 8051

ISA was formally specified with CPOGs. The instruction

opcodes were derived using the optimal encoding methodology

presented in [30]. Encoded instructions were then composed

together to obtain the complete CPOG specification shown

in Fig. 11(d). Note that vertex and arc conditions are not

shown on the diagram for clarity; the arcs therefore illustrate

interdependencies between different functional units occurring

in all 244 supported instructions.

The final CPOG was mapped into logic gates (see Sec-

tion III-D) generating the enabling signals for all the functional

units. We validated the design on an Altera Cyclone III

family FPGA, and then prepared an ASIC implementation

in STMicroelectronics 130nm technology; the design passed

the 8051 ISA testbenches and is to be fabricated in 2013.

To estimate the complexity of the generated control logic, we

counted the number of cells used for the top-level control (326)

and the internal ALU control (220). It should be noted that

in the used technology a cell can correspond to a logic gate

with up to 9 inputs. To sum up, the overall area use was

7We use /k notation to distinguish between different executions of the same
functional unit in the course of an instruction.

only 546 logic gates for the whole microcontroller except

the functional units. For comparison, we took three publicly

available Intel 8051 implementations, namely [1], [2], and

[3], and synthesised their central controllers in the same

technology library. The final gate counts were, respectively:

1545, 472 (without the ALU/interrupt control), and 825. The

ALU and interrupt control logic from [2] was scattered across

datapath modules for optimisation, hence we could not extract

it and it was not included in the count of 472. However, we can

still conclude that our implementation is very efficient in terms

of area. Moreover, unlike [1-3], our 8051 microcontroller

supports two different modes of operation (low latency and

low power) which can be dynamically chosen at runtime [31].

VII. CONCLUSIONS

In this paper we demonstrated that the Conditional Par-

tial Order Graph model is a very convenient and powerful

formalism for specification of processor instruction sets. It

is possible to efficiently describe many different ‘microcode’

implementations of the same instruction as a single mathem-

atical structure and perform its refinement, optimisation, and

encoding using formal CPOG transformations. Crucially, these

transformations operate on a CPOG specification rather than

on the instruction set itself and thus their complexity does not

depend on the number of different instructions.

The overall number of CPU instructions is often quite large

although the majority of them are of a fairly trivial nature.

To free a designer from the tedium of attending to the minute

details of instruction logic we plan to implement a procedure

to automatically construct a collection of correct instruction

specifications. A number of such procedures were studied

within the constructive logic where the proof of a specification

statement is given in terms that permit an automatic extraction

of an executable program. Although the search space for

a proof is potentially very large, the application of proof

planning techniques, such as rippling and abstraction, reduce

it considerably to make possible the discovery of non-trivial

programs with loops and branching [13].

Another direction of the future work includes development

of a software toolkit for integration of the presented method-

ology into the standard processor design flow.
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