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Abstract

The application of hydroformylation to the synthesis of quaternary carbon centers is reported. The
synthesis of the highly substituted carbon is achieved by applying a catalytic amount of 1. Ligand
1 serves as a catalytic directing group by covalently and reversibly binding to both the substrate
and catalyst. The intramolecular nature of the directing group strategy accelerates the
hydroformylation reaction such that the reaction is performed at mild temperatures (35–55 °C) and
with excellent regioselectivity (b:l > 94:6).

The application of directing groups in organic chemistry is a powerful technique for
controlling regio- and stereoselectivity.1 Often the use of directing groups leads to an
increase in the rate and substrate scope of the reaction. Hydroformylation of disubstituted
olefins has been a challenge due to the difficulty in controlling regioselectivity and the
inherently poor reactivity of these substrates.2 Phosphorous-based directing groups have
been uniquely able to address these challenges making it possible to obtain highly
regioselective reactions, while performing the reactions under mild conditions.3 The liability
of this strategy is the use of stoichiometric amounts of phosphorous-based ligands; however,
recently our group4 and the Breit group5 have demonstrated that a catalytic amount of a
directing group can be employed if the directing group reversibly and covalently links to the
substrate. We have termed these catalytic directing groups “scaffolding ligands” due to their
ability to bind both the substrate and catalyst simultaneously. Using this type of ligand
allows for both regio- and diastereoselective hydroformylation of both mono- and
disubstituted olefins.

A significant challenge that remains for the area of hydroformylation is the application
towards the synthesis of quaternary carbon centers. The formation of quaternary centers in
hydroformylation is so unfavourable that in 1948 Keulemans stated that “addition of the
formyl group to a tertiary C atom does not occur, so that no quaternary C atoms are formed”
(Keulemans’ rule).6 Though this rule has generally been found to be true, there are a limited
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number of examples that use hydroformylation for the synthesis of quaternary carbon
centers.7,8,9,10 The majority of examples are with α, β-unsaturated esters, which are both
electronically activated towards forming the branched regioisomer, and which contain an
ester that can serve as a chelating group. For unactivated substrates, a sole example exists
where a phosphorous directing group facilitates formation of a quaternary center from a 1,1-
disubstituted olefin by hydroformylation.3d Inspired by this work we report that catalytic
quantities of 1 can be used for the efficient generation of quaternary carbon centers (eq 1).

(1)

We initiated our investigation by examining the hydroformylation of 2. Though styrenyl-
based substrates are known to have a preference for the branched regioisomer,11 α-
substituted styrenes have been reported to be highly linear-selective.12 During the course of
our studies we found that the branched aldehyde product is unstable to silica gel purification,
and also dimerizes to a small extent to a cyclic acetal.13 To circumvent these problems we
oxidize the unpurified reaction mixture directly and isolate the carboxylic acid product.
When 2 is subjected to hydroformylation at 75 °C with PPh3, only the linear product is
formed (Table 1 entry 1). In stark contrast when ligand 1 is used the branched product is
obtained (Table 1, entry 2). Performing a temperature screen using ligand 1, we found that
at 45 °C the branched product is formed in 61% yield and with excellent regioselectivity (b:l
= 95:5, table 1, entry 3). At higher temperatures and longer reaction times a decrease in yield
is observed consistent with slow product decomposition (Table 1, entry 4). Upon optimizing
the pressure of CO/H2 and reaction time the desired product could be isolated in 73% yield
with b:l ratio of 97:3 (Table 1, entry 7).14 As the CO/H2 pressure is raised, the
regioselectivity of the process increases suggesting the selectivity-determining step may be
changing with pressure or higher pressure could be suppressing minor amounts of
background reaction.15 Under the same reaction conditions except using PPh3, 2 is
unreactive (Table 1, entry 8). A second control reaction was performed with the methyl
ether of 2 and ligand 1 and again no reaction is observed (Figure SI-1). When a binding
study was performed by adding 2.5 equiv of 2 and 2.5 equiv of the aldehyde product to 1, a
61:39 ratio of 2 bound to 1 over the product bound to 1 was observed (eq 2).16 This
experiment demonstrates that there is only a slight preference for binding of 2 over the
product. These results are consistent with 1 serving as a catalytic directing group that
controls the regioselectivity of the reaction and accelerates the overall process.
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(2)

With these initial promising results we investigated the substrate scope of the reaction. The
addition of electron-withdrawing groups to the aromatic ring leads to an increase in the
yields of the branched product while maintaining high selectivity (Table 2, entries 1 and 2).
An electron rich aromatic ring is tolerated with a small decrease in the yield, while
maintaining excellent regioselectivity (Table 2, entry 3). Aromatic rings substituted with
either bromo- or chloro-groups function in the reaction (Table 2, entries 4–6). Furthermore,
π-electron withdrawing groups such as nitriles and esters can be used in the reaction with b:l
ratio of > 98:2 (Table 2, entries 7 and 8). Heterocyclic aromatic rings and napthylene-based
substrates also yield the quaternary carbon products (Table 2, entries 9–12). Attempts to
hydroformylate an o-tolyl substrate led to minimal conversion, suggesting that steric
hindrance impedes the reaction. Using 2-methyl-propen-1-ol results in the branched product
being formed as the major product (b:l = 76:24; Table 2, entry 13). We are currently
investigating whether ligand modifications can be made to improve the regioselectivity for
aliphatic substituted olefins.

Next, we investigated the possibility of isolating the product in the aldehyde oxidation state.
This is achieved by treating the crude hydroformylation reaction mixture with ethylene
glycol and catalytic p-TsOH to form the cyclic acetal (eq 3). Over the two steps the product
was isolated in 72% yield, matching the results obtained from direct oxidation to the
carboxylic acid.

(3)

We have established that using a catalytic directing group formation of quaternary carbon
centers via hydroformylation can be achieved. These results demonstrate the power of
directing groups to overturn inherent selectivities of reactions. The fact that these reactions
are performed under mild temperatures further shows the benefits of using directing groups.
We will continue to develop these scaffolding ligands and apply them to reactions that suffer
from poor selectivity or reactivity.
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Refer to Web version on PubMed Central for supplementary material.
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