
Synthesis of Reactive(1) Designs

Roderick Bloema, Barbara Jobstmannb, Nir Pitermanc,
Amir Pnueli, Yaniv Sa’ard

aGraz University of Technology, Austria
bCNRS/Verimag, France

cImperial College London, UK
dWeizmann Institute of Science, Israel

Abstract

We address the problem of automatically synthesizing digital designs from linear-
time specifications. We consider various classes of specifications that can be
synthesized with effort quadratic in the number of states of the reactive system,
where we measure effort in symbolic steps.

The synthesis algorithm is based on a novel type of game called General
Reactivity of rank 1 (gr(1)), with a winning condition of the form

(GF p1 ∧ · · · ∧GF pm)→ (GF q1 ∧ · · · ∧GF qn),

where each pi and qi is a Boolean combination of atomic propositions. We show
symbolic algorithms to solve this game, to build a winning strategy and several
ways to optimize the winning strategy and to extract a system from it. We
also show how to use gr(1) games to solve the synthesis of ltl specifications in
many interesting cases.

As empirical evidence to the generality and efficiency of our approach we
include a significant case studie. We describe the formal specifications and the
synthesis process applied to a bus arbiter, which is a realistic industrial hardware
specification of modest size.

Keywords: property synthesis, realizability, game theory

1. Introduction

One of the most ambitious and challenging problems in computer science is
the automatic synthesis of programs and (digital) designs from logical specifi-
cations. A solution to this problem would lift programming from the current
level, which is mostly imperative, to a declarative, logical style. There is some

IThis work was supported by the European Commission under contract 507219 (PROSYD),
217069 (COCONUT), and 248613 (DIAMOND).

IIThis paper is based the following papers: [1, 2, 3, 4].

Preprint submitted to Elsevier May 25, 2011

evidence that this level is preferable, in particular when concurrency plays an
important role.

The synthesis problem was first identified by Church [5]. Several methods
have been proposed for its solution [6, 7]. The two prevalent approaches to
solving the synthesis problem were by reducing it to the emptiness problem of
tree automata, and viewing it as the solution of a two-person game. In these
preliminary studies of the problem, the logical specification that the synthe-
sized system should satisfy was given as an S1S formula and the complexity of
synthesis is non-elementary.

The problem was considered again in [8] in the context of synthesizing reac-
tive modules from a specification given in Linear Temporal Logic (ltl). This
followed two previous attempts [9, 10] to synthesize programs from temporal
specifications, which reduced the synthesis problem to satisfiability, ignoring
the fact that the environment should be treated as an adversary. The method
proposed in [8] for a given ltl specification ϕ starts by constructing a Büchi au-
tomaton Bϕ, which is then determinized into a deterministic Rabin automaton.
This double translation necessarily causes a doubly exponential time complexity
[11].

The high complexity established in [8, 11] caused the synthesis process to
be identified as hopelessly intractable and discouraged many practitioners from
ever attempting to use it for any sizeable system development. Yet there exist
several interesting cases where the synthesis problem can be solved in polyno-
mial time, by using simpler automata or partial fragments of ltl [12, 13, 14, 15].
Representative cases are the work in [16] which presents an efficient quadratic
solution to games (and hence synthesis problems) where the acceptance condi-
tion is one of the ltl formulas G p, F q, GF p, or FG q. The work in [13]
presents efficient synthesis approaches for various ltl fragments.

This paper can be viewed as a generalization of the results of [16] and [13]
into the wider class of Generalized Reactivity(1) formulas (gr(1)), i.e., formulas
of the form

(GF p1 ∧ · · · ∧GF pm) → (GF q1 ∧ · · · ∧GF qn). (1)

Here, we assume that the specification is an implication between a a set of
assumptions and a set of guarantees.1 Following the results of [18], we show how
any synthesis problem whose specification is a gr(1) formula can be solved with
effort O(mnN2), where N is the size of the state space of the design and effort is
measured in symbolic steps, i.e., in the number of preimage computations [19].
Furthermore, we present a symbolic algorithm for extracting a design (program)
which implements the specification.

We show that gr(1) formulas can be used to represent a relatively wide
set of specifications. First, we show that we can include past ltl formulas
in both the assumptions and the guarantees. Second, we show that each of

1The source of the name reactivity and the rank follow from the definitions of the temporal
hierarchy in [17].

2

the assumptions and guarantees can be a deterministic “Just Discrete System”
(Büchi automaton). Thus, our method does not incur the exponential blow-ups
incurred in ltl synthesis for the translation of the formula to an automaton
and for the determinization of the automaton because the user provides the
specification as a set of deterministic automata. (But note that the state space
of the system is the product of the sizes of the automata, which may cause
an exponential blowup.) Furthermore, a symbolic implementation of our algo-
rithm is easily obtained when the automata are represented in symbolic form.
One drawback is that our formalism is less expressive than ltl. In particular,
Reactivity (Streett) conditions can not be expressed.

The reader may suspect that gr(1) specifications place an undue burden on
the user or that the expressivity is too limited. We argue that this is not the
case. Intuitively, many specifications can naturally be split into assumptions on
the environment and guarantees on the system. (Cf. [20].) Often, assumptions
and guarantees can naturally be written as conjunctions of simple properties
that are easily expressed as deterministic automata. We substantiate this view
by presenting two case studies of small but realistic industrial modules. We show
that the specifications for these modules can be expressed in gr(1), that their
specifications are compact and easy to read, and that they can be synthesized
relatively efficiently.

The first case study concerns a generalized buffer from ibm, a tutorial design
for which a good specification is available. The second concerns the arbiter for
one of the amba buses [21], a characteristic industrial design that is not too
big. This is the first time realistic industrial examples have been tackled; pre-
vious work has only considered toy examples such as a simple mutual exclusion
protocol, an elevator controller, or a traffic light controller [14, 1, 22].

Our work stresses the compositionality of synthesis from ltl specifications
and the structure of specifications as a guide to efficient synthesis. At the
same time, it emphasizes the symbolic analysis of the state space through the
usage of bdds. Sohail et al. removed some of the restrictions on the expressive
power imposed by our work [23, 24]. They present a compositional approach
in which each property is translated to a Büchi or parity automaton and the
resulting generalized parity game is solved symbolically. They also show how in
some cases to circumvent the construction of deterministic automata based on
[25]. Morgenstern and Schneider present a similar approach. They construct an
automaton that is minimal in the automata hierarchy for each of the properties
in the specification [26].

In recent years significant theoretical progress has been made in approaches
that emphasize the treatment of full ltl. One key result is that ltl realizability
and synthesis can be reduced to games that are easier to solve than Rabin or par-
ity games, when bounding the size of the resulting system. In [27], Kupferman
and Vardi show a reduction to Büchi games that avoids the determinization
procedure by going through universal co-Büchi automata. Their approach is
further extended to work compositionally for specifications that are a conjunc-
tion of properties [28]. The algorithm of [27] was implemented directly in [22].
Schewe and Finkbeiner extend the reduction to co-Büchi winning conditions

3

introduced in [27] to a reduction to Safety games [29]. They show how to use
these insights to solve distributed synthesis, where the size of components is
bounded. Filiot, Jin, and Raskin [30] give the same reduction to safety games
and implement this approach using antichains to efficiently encode sets of states
[30]. To date, these approaches are still very restricted in the scale of systems
they can handle.

The paper is structured as follows. We start with presenting the notation
and recalling known results (Section 2). Then, we show how to solve Generalized
Reactive(1) games symbolically (Section 3), compute a winning strategy, and
extract a correct program, if it exists (Section 4). In Section 5, we show how the
techniques developed in Sections 3 and 4 are used to synthesize systems from
temporal specifications. In Section 6, we describe the amba ahb arbiter case
study. We give its formal specification, and show the results of synthesizing it.
Finally, we discuss lessons learned and conclude in Section 7.

2. Preliminaries

2.1. Linear Temporal Logic

We assume a countable set of Boolean variables (propositions) V. Without
loss of generality, we assume that all variables are Boolean. The general case
in which a variable ranges over arbitrary finite domains can be reduced to the
Boolean case. ltl formulas are constructed as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Yϕ | ϕSϕ

A model σ for a formula ϕ is an infinite sequence of truth assignments to
propositions. Namely, if P̂ is the set of propositions appearing in ϕ, then for
every finite set P such that P̂ ⊆ P , a word in (2P)ω is a model. Given a model
σ = σ0, σ1, . . ., we denote by σi the set of propositions at position i. For a
formula ϕ and a position i ≥ 0, we say that ϕ holds at position i of σ, written
σ, i |= ϕ, and define it inductively as follows:

• For p ∈ P we have σ, i |= p iff p ∈ σi.

• σ, i |= ¬ϕ iff σ, i 6|= ϕ

• σ, i |= ϕ ∨ ψ iff σ, i |= ϕ or σ, i |= ψ

• σ, i |= Xϕ iff σ, i+ 1 |= ϕ

• σ, i |= ϕUψ iff there exists k ≥ i such that σ, k |= ψ and σ, j |= ϕ for all j,
i ≤ j < k

• σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ

• σ, i |= ϕSψ iff there exists k, 0 ≤ k ≤ i such that σ, k |= ψ and σ, j |= ϕ for
all j, k < j ≤ i

4

If σ, 0 |= ϕ, then we say that ϕ holds on σ and denote it by σ |= ϕ. A set of
models M satisfies ϕ, denoted M |= ϕ, if every model in M satisfies ϕ.

We use the usual abbreviations of the Boolean connectives ∧, → and ↔
and the usual definitions for true and false. We use the temporal abbreviations
F (eventually), G (globally), W (weakuntil), and for the past fragment H
(historically), P (once), and B (backto) which are defined as follows.

• Fϕ = trueUϕ,

• Gψ = ¬F¬ψ,

• ϕWψ = (ϕUψ) ∨Gϕ,

• Pϕ = trueSϕ,

• Hψ = ¬P¬ϕ, and

• ϕBψ = (ϕSψ) ∨Hϕ.

The following abbreviations are used in Section 6. They are inspired by the
ones designed in psl [31]. Given an atomic proposition p and two ltl formulas
ϕ and ψ, we define

• raise(p) = ¬p ∧X p,

• fall(p) = p ∧X¬p, and

• ϕW [i]ψ = ϕW (ψ ∧X(ϕW [i− 1]ψ)) for i > 1 and ϕW [1]ψ = ϕWψ.

That is raise(p) indicates the raising edge of signal p, fall(p) indicates the
falling edges of signal p, and the nested weak until ϕW [i]ψ indicates that ϕ
waits for ψ to hold i times or forever.

We distinguish between safety and liveness properties. An ltl-definable
property ϕ is a safety property if for every model σ that violates ϕ, i.e., σ 6|= ϕ,
there exists an i such that for every σ′ that agrees with σ up to position i, i.e.,
∀0 ≤ j ≤ i, σ′i = σi, σ

′ also violates ϕ. An ltl-definable property ϕ is a liveness
property if for every prefix of a model σ0, . . . , σi there exists an infinite model
σ that starts with σ0, . . . , σi and σ |= ϕ. Intuitively, safety properties specify
bad things that should never happen and liveness properties specify good things
that should occur. We distinguish between properties that are (i) safety, (ii)
liveness, or (iii) combinations of safety and liveness.

A formula that does not include temporal operators is a Boolean formula
(or an assertion). Given non-overlapping sets of Boolean variables V1, . . . ,Vk,
we use the notation ϕ(V1, . . . ,Vk) to indicate that ϕ is a Boolean formula over
V1∪· · ·∪Vk. For Boolean formulas we consider models representing only a single
truth assignment, i.e., given a Boolean formula ϕ(V), we say that s ∈ 2V models
(or satisfies) ϕ, written as s |= ϕ, if the formula obtained from ϕ by replacing
all variables in s by true and all other variables by false is valid. Formally,
we define s |= ϕ inductively by (i) for v ∈ V, s |= v iff v ∈ s, (ii) s |= ¬ϕ
iff s 6|= ϕ, and (iii) s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ. We call the set of all

5

possible assignments to variables V states and denote them by ΣV (or simply
Σ, if V is clear from the context), i.e., ΣV = 2V . We say that s is a ϕ-state
if s |= ϕ. Given a formula ϕ and a set of states S ⊆ ΣV , we say S satisfies ϕ
denoted by S |= ϕ, if for all s ∈ S, s |= ϕ holds. Given a subset Y ⊆ V of the
variables and a state s ∈ ΣV , we denote by s|Y the projection of s to Y, i.e.,
s|Y = {y ∈ Y | y ∈ s}. We will often use assertions over V1∪· · ·∪Vk∪V ′1∪· · ·∪V ′k,
where V ′i is the set of primed versions of variables in Vi, i.e., V ′i = {v′ | v ∈ Vi}.
Given an assertion ϕ(V1, . . . ,Vk,V ′1, . . . ,V ′k) and assignments si, ti ∈ ΣVi , we
use (s1, . . . , sk, t

′
1, . . . , t

′
k) |= ϕ to abbreviate s1 ∪ · · · ∪ s2 ∪ t′1 ∪ · · · ∪ t′k |= ϕ,

where t′i = {v′ ∈ V ′i | v ∈ ti}.

2.2. Fair Discrete Systems

A fair discrete system (fds) [32] is a symbolic representation of a transition
system with finitely many states and weak and strong fairness constraints. We
use fds to represent reactive systems such as concurrent systems that communi-
cate by shared variables or digital circuits. Formally, an fds D = 〈V, θ, ρ,J , C〉
consists of the following components.

• V = {v1, ..., vn} : A finite set of Boolean variables. We define a state s to be
an interpretation of V, i.e., s ∈ ΣV .

• θ : The initial condition. This is an assertion over V characterizing all the
initial states of the fds. A state is called initial if it satisfies θ.

• ρ : A transition relation. This is an assertion ρ(V ∪V ′), relating a state s ∈ Σ
to its D-successors s′ ∈ Σ, i.e., (s, s′) |= ρ.

• J = {J1, . . . , Jm} : A set of justice requirements (weak fairness). Each
requirement J ∈ J is an assertion over V that is intended to hold infinitely
many times in every computation.

• C = {(P1, Q1), . . . , (Pn, Qn)} : A set of compassion requirements (strong fair-
ness). Each requirement (P,Q) ∈ C consists of a pair of assertions, such that if
a computation contains infinitely many P -states, it should also hold infinitely
many Q-states.

We define a run of the fds D to be a maximal sequence of states σ =
s0, s1, . . . satisfying (i) initiality, i.e., s0 |= θ, and (ii) consecution, i.e., for
every j ≥ 0, (sj , sj+1) |= ρ. A sequence σ is maximal if either σ is infinite or
σ = s0, . . . , sk and sk has no D-successor, i.e., for all sk+1 ∈ Σ, (sk, sk+1) 6|= ρ.

A run σ is called a computation of D if it is infinite and satisfies the following
additional requirements: (i) justice (or weak fairness), i.e., for each J ∈ J , σ
contains infinitely many J-positions, i.e., positions j ≥ 0, such that sj |= J ,
and (ii) compassion (or strong fairness), i.e., for each (P,Q) ∈ C, if σ contains
infinitely many P -positions, it must also contain infinitely many Q-positions.

We say that an fds D implements specification ϕ, denoted D |= ϕ, if every
run of D is infinite, and every computation of D satisfies ϕ. An fds is said to

6

be fairness-free if J = C = ∅. It is called a just discrete system (jds) if C = ∅.
When J = ∅ or C = ∅ we simply omit them from the description of D. Note
that for most reactive systems, it is sufficient to use a jds (i.e., compassion-free)
model. Compassion is only needed in cases, in which the system uses built-in
synchronization constructs such as semaphores or synchronous communication.

An fds D is deterministic with respect to X ⊆ V, if (i) D has deterministic
initial states, i.e, for all states s, t ∈ ΣV , if s |= θ, t |= θ, and s|X = t|X ,
then s = t holds, and (ii) D has deterministic transitions, i.e., for all states
s, s′, s′′ ∈ ΣV , if (s, s′) |= ρ, (s, s′′) |= ρ, and s′|X = s′′|X , then s′ = s′′ holds.

An fds D is complete with respect to X ⊆ V, if (i) for every assignment
sX ∈ ΣX , there exists a state s ∈ ΣV such that s|X = sX and s |= θ, and (ii)
for all states s ∈ ΣV and assignments s′X ∈ ΣX , there exists a state s′ ∈ ΣV
such that s′|X = s′X and (s, s′) |= ρ. For every fds and every X ⊆ V, we
can construct an fds that is complete w.r.t. X whose set of computations is
the same as that of the original. We simply add a Boolean variable sf and
set θ̂ := sf ↔ θ and ρ̂ := sf ′ ↔ (ρ ∧ sf) and add sf as an additional justice
requirement. The set of computations of the two fds (when projecting the value
of sf) are the same.

Given an fds D that is deterministic and complete w.r.t. X , for every
possible sequence σ = s0, s1, . . . of states in ΣX , D has a unique run τ = t0, t1, . . .
such that for all j ≥ 0, sj |X = tj |X holds. We call τ the run of D on σ. Note
that D can be seen as a symbolic representation of a Mealy machine with input
signal X and output signals V\X . We say that a sequence σ ∈ (ΣX)ω is accepted
by D, if the run of D on σ is a computation.

For every fds D, there exists an ltl formula ϕD , called the temporal seman-
tics of D, which characterizes the computations of D. It is given by:

ϕD : θ ∧ G(ρ(V,XV)) ∧
∧
J∈J

GF J ∧
∧

(P,Q)∈C
(GFP →GFQ),

where ρ(V,XV) is the formula obtained from ρ by replacing each instance of
primed variable v′ by the ltl formula X v.

Note that in the case that D is compassion-free (i.e., it is a jds), then its
temporal semantics has the form

ϕD : θ ∧ G(ρ(V,XV)) ∧
∧
J∈J

GF J.

Here, we are interested in open systems. That is, systems that interact
with their environment: that receive some inputs and react to them. For such
systems specifications are usually partitioned into assumptions and guarantees.
The intended meaning is that if all assumptions hold then all guarantees should
hold as well. That is, if the environment behaves as expected then the system
will behave as expected as well. In many cases, when we consider the conjunction
of all assumptions (or all guarantees) the resulting formula is the temporal
semantics of a jds. That is, it is common to get specifications of the form ϕe
and ϕs, where (i) ϕe and ϕs are conjunctions of smaller properties, (ii) ϕe and

7

ϕs are the temporal semantics of jdss, and (iii) the intended meaning is that
the system should satisfy ϕe → ϕs.

2.3. Game Structures

We consider two-player games played between a system and an environment.
The goal of the system is to satisfy the specification regardless of the actions
of the environment. Formally, a game structure G = 〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉
consists of the following components.

• V = {v1, . . . , vn} : A finite set of typed state variables over finite domains.
Without loss of generality, we assume they are all Boolean. A state and the
set of states ΣV are defined as before.

• X ⊆ V is a set of input variables. These are variables controlled by the
environment.

• Y = V \ X is a set of output variables. These are variables controlled by the
system.

• θe is an assertion over X characterizing the initial states of the environment.

• θs is an assertion over V characterizing the initial states of the system.

• ρe(V,X ′) is the transition relation of the environment. This is an assertion
relating a state s ∈ Σ to a possible next input value sX ∈ ΣX by referring
to unprimed copies of V and primed copies of X . The transition relation ρe
identifies a valuation sX ∈ ΣX as a possible input in state s if (s, sX) |= ρe.

• ρs(V,X ′,Y ′) is the transition relation of the system. This is an assertion
relating a state s ∈ Σ and an input value sX ∈ ΣX to an output value
sY ∈ ΣY by referring to primed and unprimed copies of V. The transition
relation ρs identifies a valuation sY ∈ ΣY as a possible output in state s
reading input sX if (s, sX , sY) |= ρs.

• ϕ is the winning condition, given by an ltl formula.

A state s is initial if it satisfies both θe and θs, i.e., s |= θe∧θs. For two states s
and s′ of G, s′ is a successor of s if (s, s′) |= ρe∧ρs. A play σ of G is a maximal
sequence of states σ = s0, s1, . . . satisfying (i) initiality , i.e., s0 is initial and
(ii) consecution, i.e., for each j ≥ 0, sj+1 is a successor of sj . Let G be a game
structure and σ be a play of G. Initially, the environment chooses an assignment
sX ∈ ΣX such that sX |= θe and the system chooses an assignment sY ∈ ΣY
such that (sX , sY) is initial. From a state s, the environment chooses an input
sX ∈ ΣX such that (s, sX) |= ρe and the system chooses an output sY ∈ ΣY
such that (s, sX , sY) |= ρs. We say that a play starting in state s is an s-play .

A play σ = s0, s1, . . . is winning for the system if either (i) σ is finite and
there is no assignment sX ∈ ΣX such that (sn, sX) |= ρe, where sn is the last
state in σ, or (ii) σ is infinite and it satisfies ϕ. Otherwise, σ is winning for the
environment .

8

A strategy for the system is a partial function f : M ×ΣV ×ΣX 7→M ×ΣY ,
where M is some memory domain with a designated initial value m0 ∈ M ,
such that for every s ∈ ΣV , every sX ∈ ΣX , and m ∈ M if (s, sX) |= ρe
then (s, sX , sY) |= ρs, where f(m, s, sX) = (m′, sY). Let f be a strategy for
the system. A play s0, s1, . . . is said to be compliant with strategy f if for all
i ≥ 0 we have f(mi, si, si+1|X) = (mi+1, si+1|Y). Notice, that the sequence
m0,m1, . . . is implicitly defined. Strategy f is winning for the system from
state s ∈ ΣV if all s-plays (plays starting from s) which are compliant with f
are winning for the system. We denote by Ws the set of states from which there
exists a winning strategy for the system. We treat Ws as an assertion as well.
For player environment, strategies, winning strategies, and the winning set We

are defined dually. A game structure G is said to be winning for the system, if
for all sX ∈ ΣX , if sX |= θe, then there exists sY ∈ ΣY such that (sX , sY) |= θs
and (sX , sY) |= Ws. We say that f uses finite memory or is finite when M is
finite. When M is a singleton, we say that f is memoryless.

2.3.1. Realizability and Synthesis

Given an ltl formula ϕ over sets of input and output variables X and
Y, we say that an fds D = 〈V, θ, ρ,J , C〉 realizes ϕ if (i) V contains X and
Y, (ii) D is complete with respect to X , and (iii) D |= ϕ. Such an fds is
called a controller for ϕ, or just a controller. We say that the specification is
realizable ([8]), if there exists a fairness-free fds D that realizes it. Otherwise,
we say that the specification is unrealizable. If the specification is realizable,
then the construction of such a controller constitutes a solution for the synthesis
problem2.

Given an ltl formula over sets of input and output variables X and Y,
respectively, its realizability problem can be reduced to the decision of winner
in a game. Formally, Gϕ = 〈X ∪ Y,X ,Y, true, true, true, true, ϕ〉 is the game
where the initial conditions and the transition relations are true and the winning
condition is ϕ. If the environment is winning in Gϕ, then ϕ is unrealizable.
If the system is winning in Gϕ, then ϕ is realizable. Furthermore, from the
winning strategy of the system it is possible to extract a controller that realizes
ϕ. Realizability for general ltl specifications is 2EXPTIME-complete [33]. It is
well known that for ltl specifications it is sufficient to consider finite memory
strategies. In this paper we are interested in a subset of ltl for which we solve
realizability and synthesis in time exponential in the size of the ltl formula and
polynomial in the resulting controller.

More generally, consider a game G : 〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉. The system

2As all the variables of fdss are Boolean, this definition calls for realizability by a finite
state system. It is well known that for ltl specifications realizability and realizability by finite
state systems are the same.

9

wins in G iff the following formula is realizable.3

ϕG = (θe → θs) ∧ (θe →G((H ρe)→ ρs)) ∧ (θe ∧G ρe → ϕ))

Formally, we have the following.

Theorem 1. The system wins in a game G iff ϕG is realizable.

The proof of this theorem resembles the proof of Theorem 4 and is omitted.

3. Generalized Reactive(1) Games

In [18], we consider the case of Generalized Reactive(1) games (called there
generalized Streett(1) games). In these games the winning condition is an im-
plication between conjunctions of recurrence formulas (GFJ where J is a
Boolean formula). We repeat the main ideas from [18] and show how to solve
gr(1) games, by computing the winning states of each of the players. We start
with a definition of µ-calculus over game structures. We then give the µ-calculus
formula that characterizes the set of winning states of the system; and explain
how to implement this solution symbolically. We defer the extraction of a con-
troller from this computation to Section 4. We finish this section by explaining
the straightforward usage of gr(1) games in synthesis from ltl. In Section 5
we include a thorough discussion of usage of gr(1) games for ltl synthesis.

3.1. µ-calculus over Game Structures

We define µ-calculus [34] over game structures. Consider a game structure
G : 〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉. For every variable v ∈ V the formulas v and ¬v
are atomic formulas. Let V ar = {X,Y, . . .} be a set of relational variables. The
µ-calculus formulas are constructed as follows.

ϕ ::= v | ¬v | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 1ϕ | 0ϕ | µXϕ | νXϕ

A formula ψ is interpreted as the set of G-states in Σ in which ψ is true. We
write such set of states as [[ψ]]EG where G is the game structure and E : V ar → 2Σ

is an environment . The environment assigns to each relational variable a subset
of Σ. We denote by E [X ← S] the environment such that E [X ← S](X) = S
and E [X ← S](Y) = E(Y) for Y 6= X. The set [[ψ]]EG is defined inductively as
follows4.

• [[v]]EG = {s ∈ Σ | s[v] = 1}

• [[¬v]]EG = {s ∈ Σ | s[v] = 0}

• [[X]]EG = E(X)

3Technically, ρe and ρs contain primed variables and are not ltl formulas. This can be
easily handled by using the next operator (X). We ignore this issue in the rest of the paper.

4Only for finite game structures.

10

• [[ϕ ∨ ψ]]EG = [[ϕ]]EG ∪ [[ψ]]EG

• [[ϕ ∧ ψ]]EG = [[ϕ]]EG ∩ [[ψ]]EG

• [[1ϕ]]EG =

{
s ∈ Σ

∣∣∣∣ ∀sX ∈ ΣX , (s, sX) |= ρe → ∃sY ∈ ΣY such that
(s, sX , sY) |= ρs and (sX , sY) ∈ [[ϕ]]EG

}
A state s is included in [[1ϕ]]EG if the system can force the play to reach a
state in [[ϕ]]EG. That is, regardless of how the environment moves from s, the
system can choose an appropriate move into [[ϕ]]EG.

• [[0ϕ]]EG =

{
s ∈ Σ

∣∣∣∣ ∃sX ∈ ΣX such that (s, sX) |= ρe and ∀sY ∈ ΣY ,
(s, sX , sY) |= ρs → (sX , sY) ∈ [[ϕ]]EG

}
A state s is included in [[0ϕ]]EG if the environment can force the play to
reach a state in [[ϕ]]EG. As the environment moves first, it chooses an input
sX ∈ ΣX such that for all choices of the system the successor is in [[ϕ]]EG.

• [[µXϕ]]EG = ∪iSi where S0 = ∅ and Si+1 = [[ϕ]]
E[X←Si]
G

• [[νXϕ]]EG = ∩iSi where S0 = Σ and Si+1 = [[ϕ]]
E[X←Si]
G

When all the variables in ϕ are bound by either µ or ν the initial environment
is not important and we simply write [[ϕ]]G. In case that G is clear from the
context we write [[ϕ]].

The alternation depth of a formula is the number of alternations in the
nesting of least and greatest fixpoints. A µ-calculus formula defines a symbolic
algorithm for computing [[ϕ]] [35] (i.e, an algorithm that manipulates sets of
states rather than individual states). For a µ-calculus formula of alternation
depth k, this symbolic algorithm requires the computation of at most O(|Σ|k+1)
symbolic next step operations. By saving intermediate results of the symbolic
computation it is possible to reduce the number of symbolic next step operations

of the symbolic algorithm to O(|Σ|d k+1
2 e) [36]. In general, if the number of

transitions of G is m, then it is known that a µ-calculus formula over G can
be evaluated in time proportional to O(m|Σ|b k2 c) [37]. For a full exposition of
µ-calculus we refer the reader to [38]. We often abuse notations and write a
µ-calculus formula ϕ instead of the set [[ϕ]].

In some cases, instead of using a very complex formula, it may be more
readable to use vector notation as in Equation (2) below.

ϕ = ν

[
Z1

Z2

] [
µY (1Y ∨ p ∧1Z2)
µY (1Y ∨ q ∧1Z1)

]
(2)

Such a formula, may be viewed as the mutual fixpoint of the variables Z1 and
Z2 or equivalently as an equal formula where a single variable Z replaces both
Z1 and Z2 and ranges over pairs of states [39]. The formula above characterizes
the set of states from which system can force the game to visit p-states infinitely

11

often and q-states infinitely often. We can characterize the same set of states
by the following ‘normal’ formula5.

ϕ = νZ ([µY (1Y ∨ p ∧1Z)] ∧ [µY (1Y ∨ q ∧1Z)])

3.2. Solving gr(1) Games

Let G be a game where the winning condition is of the following form.

ϕ =

m∧
i=1

GFJei →
n∧
j=1

GFJsj

Here Jei and Jsj are Boolean formulas. We refer to such games as Generalized
Reactivity(1) games, or gr(1) in short. In [18] we term these games as gen-
eralized Streett(1) games and provide the following µ-calculus formula to solve
them. Let j ⊕ 1 = (j mod n) + 1.

ϕgr = ν

Z1

Z2

...

...

Zn

µY

(
m∨
i=1

νX(Js1 ∧1Z2 ∨ 1Y ∨ ¬Jei ∧1X)

)

µY

(
m∨
i=1

νX(Js2 ∧1Z3 ∨ 1Y ∨ ¬Jei ∧1X)

)
...
...

µY

(
m∨
i=1

νX(Jsn ∧1Z1 ∨ 1Y ∨ ¬Jei ∧1X)

)

(3)

Intuitively, for j ∈ [1..n] and i ∈ [1..m] the greatest fixpoint νX(Jsj ∧1Zj⊕1 ∨
1Y ∨ ¬Jei ∧1X) characterizes the set of states from which the system can
force the play either to stay indefinitely in ¬Jei states (thus violating the left
hand side of the implication) or in a finite number of steps reach a state in the
set Jsj ∧1Zj⊕1 ∨ 1Y . The two outer fixpoints make sure that the system
wins from the set Jsj ∧1Zj⊕1 ∨ 1Y . The least fixpoint µY makes sure that
the unconstrained phase of a play represented by the disjunct 1Y is finite and
ends in a Jsj ∧1Zj⊕1 state. Finally, the greatest fixpoint νZj is responsible for
ensuring that, after visiting Jsj , we can loop and visit Jsj⊕1 and so on. By the
cyclic dependence of the outermost greatest fixpoint, either all the sets in Jsj
are visited or, getting stuck in some inner greatest fixpoint, some Jei is visited
only finitely many times.

Lemma 2. [18] Ws = [[ϕ]]

5This does not suggest a canonical translation from vector formulas to plain formulas.
The same translation works for the formula in Equation (3) below. Note that the formula in
Equation (2) and the formula in Equation (3) have a very similar structure.

12

public BDD calculate_win() {

BDD Z = TRUE;

for (Fix fZ = new Fix(); fZ.advance(Z);) {

mem.clear();

for (int j = 1; j <= sys.numJ(); j++) {

BDD Y = FALSE;

for (Fix fY = new Fix(); fY.advance(Y);) {

BDD start = sys.Ji(j).and(cox(Z)).or(cox(Y));

Y = FALSE;

for (int i = 1; i <= env.numJ(); i++) {

BDD X = Z;

for (Fix fX = new Fix(); fX.advance(X);)

X = start.or(env.Ji(i).not().and(cox(X)));

mem.addX(j, i, X); // store values of X

Y = Y.or(X);

}

mem.addY(j, Y); // store values of Y

}

Z = Y;

}

}

return Z;

}

Figure 1: Jtlv implementation of Equation (3)

We include in Fig. 1 a (slightly simplified) code of the implementation of
this µ-calculus formula in Jtlv ([40]). We denote the system and environment
players by sys and env, respectively. We denote Jei and Jsj by env.Ji(i) and
sys.Ji(j), respectively. 1 is denoted by cox. We use Fix to iterate over the
fixpoint values. The loop terminates if two successive values are the same. We
use mem to collect the intermediate values of Y and X. We denote by mY the two
dimensional vector ranging over 1..n, and 1..k, where k is the depth of the least
fixpoint iteration of Y. We denote by mX a three dimensional vector ranging over
1..n, 1..k, and 1..m. We use the sets mY[j][r] and their subsets mX[j][r][i] to
define n memoryless strategies for the system. The strategy fj is defined on
the states in Zj . We show that the strategy fj either forces the play to visit
Jsj and then proceed to Zj⊕1, or eventually avoid some Jei . We show that by
combining these strategies, either the system switches strategies infinitely many
times and ensures that the play be satisfies the right hand side of the implication
or eventually uses a fixed strategy ensuring that the play does not satisfy the
left hand side of the implication. Essentially, the strategies are “go to mY[j][r]

13

for minimal r” until getting to a Jsj state and then switch to strategy j ⊕ 1 or
“stay in mX[j][r][i]”.

It follows that we can solve realizability of ltl formulas in the form that
interests us in polynomial (quadratic) time.

Theorem 3. [18] A game structure G with a gr(1) winning condition of the
form ϕ =

∧m
i=1 GF Jei →

∧n
j=1 GF Jsj can be solved by a symbolic algo-

rithm that performs O(nm|Σ|2) next step computations, where Σ is the set of
all possible assignments to the variables in ϕ.

A straightforward implementation of the fixpoint computation gives a cubic up-
per bound. Implementing the approach of [36] reduces the complexity in |Σ|
to quadratic, as stated. Their approach starts computations of fixpoints from
earlier approximations of their values. Thus, the fixpoint is not restarted from
scratch leading to significant savings. An enumerative algorithm (i.e., an algo-
rithm that handles states individually and not sets of states) can solve a gr(1)
game structure in time O(nm|Σ||T |), where |T | is the number of transitions in
the game [41].6

Following Theorem 1, we prove the following about the connection between
solving gr(1) games and realizability. Consider a gr(1) game G : 〈V, X , Y, θe,
θs, ρe,ρs, ϕ〉, where ϕ =

∧m
i=1 GF Jei →

∧n
j=1 GFJsj . Let

ϕG = (θe → θs) ∧ (θe →G((H ρe)→ ρs)) ∧ ((θe ∧G ρe)→ ϕ)

Intuitively, this formula is split into three levels: initial, safety, and liveness
levels. In order to realize this formula the system needs to satisfy the same
levels the environment does. For instance, if the environment chooses an ini-
tial assignment satisfying θe, the system cannot choose an initial assignment
violating θs even if the environment later violates ρe.

Theorem 4. The system wins in G iff ϕG is realizable.

Proof: Recall that if the system wins G finite memory suffices. Let M be some
memory domain and m0 its designated initial value. Suppose that f : M ×Σ×
ΣX →M×ΣY is a winning strategy for the system in G. Furthermore, for every
sX ∈ ΣX such that sX |= θe there exists a sY ∈ ΣY such that (sX , sY) |= θe ∧ θs
and (sX , sY) ∈Ws. We use f to construct a fairness free fds that realizes ϕG.

Let |M | = k and let M = {m1, . . . ,mdlog(k)e} be Boolean variables. It
follows that an assignment to M characterizes a value in M . By abuse of
notations, we denote by m the value in M , the assignment toM that represents
that value, and the assertion over M whose unique satisfying assignment is m.

6We note that in the previous versions [18, 1] the analysis of complexity was not accurate
and in particular higher than stated above. This led to some confusion in the exact complexity
of solving gr(1) games. In particular, in [42] an enumerative algorithm for gr(1) games is
suggested whose complexity is higher than the complexity stated above. It is, however, better
than the stated complexity in previous publications.

14

Similarly, for a state s ∈ Σ, we denote by s the assertion whose unique satisfying
assignment is s. Consider the fairness free fds D = 〈V̂, θ̂, ρ̂〉 with the following
components.

• V̂ = X ∪ Y ∪M.

• θ̂ = θe → (θs ∧m0 ∧Ws).

That is, if the assignment to X satisfies θe then the assignment to Y ensures
θs and the joint assignment to X and Y (i.e., the state) is in Ws. Furthermore,
the initial memory value is m0. If the assignment to the input variables does
not satisfy θe then the choice of m and sY is arbitrary.

• For the definition of ρ̂ we write the strategy f as an assertion as follows.

f̂ =
∧
m∈M

∧
s∈Ws

∧
s′X∈ΣX

((m ∧ s ∧ s′X)→ f(m, s, s′X)′)

That is, depending on the current value of m, s, and s′X , the assignment to
m′ and s′Y respects the strategy f .

Finally, ρ̂ is the following assertion:

ρ̂ = (Ws ∧ ρe)→ f̂

That is, if the current state s is winning for system (Ws) and the environment
chooses an input s′X such that (s, s′X) |= ρe, then the system is going to
update the memory and choose outputs s′Y according to f . If the current
state is winning for the environment or the environment does not satisfy its
transition, the choice of memory value and output is arbitrary.

We have to show that D is complete with respect to X and that D |= ϕG.
Completeness of D follows from the definition of winning in G and from the
definition of the strategy f . Indeed, as system wins G, for every sX ∈ ΣX such
that sX |= θe there exists a state s ∈ Σ such that s ∈ Ws and s |= θe ∧ θs.
Furthermore, if sX 6|= θe then, by definition of θ̂, for every state s such that

s|X = sX we have s |= θ̂. Similarly, for every m ∈ M , s ∈ Σ, and s′X ∈
ΣX , if s ∈ Ws and (s, s′X) |= ρe then f̂ defines values s′Y and m′ such that
(s,m, s′X ,m

′, s′Y) |= ρ̂. If s /∈ Ws or (s, s′X) 6|= ρe then for every s′Y ∈ ΣY we
have (s,m, s′X ,m

′, s′Y) |= ρ̂.
We have to show that D |= ϕG. Consider an infinite computation σ :

s0, s1, . . . of D. Clearly, if s0 6|= θe then σ |= ϕG. Assume that s0 |= θe,

then by definition of θ̂ we have s0 |= θs and s0 ∈ Ws as well. Suppose now
that for some i′ we have (si′ , si′+1) 6|= ρe. Let i0 be the minimal such that
(si0 , si0+1) 6|= ρe. We can show by induction that for every i < i0 we have
si ∈ Ws and (si, si+1) |= ρs. It follows that σ |= G(H ρe → ρs) as required.
Finally, as σ 6|= G ρe the third clause holds as well. The remaining case is
when σ |= G ρe. We can show by induction that for every i ≥ 0 we have
(si, si+1) |= ρs. We have to show that σ |= ϕ as well. However, σ|X∪Y is a

15

play in G that is compliant with f . It follows that σ |= ϕ as required. Overall,
D |= ϕG.

Suppose that there exists a fairness free fds D = 〈V̂, θ̂, ρ̂〉 that is complete
with respect to X and such that D |= ϕ. We use the states of D as the memory
domain for construction of a strategy f . Let tin be a new state to be used
as the initial value of the memory. Formally, for a memory value t we define
f(t, s, s′X) = (t′, s′Y) as follows.

• If t = tin then we define t′ and s′Y as follows.

– If s |= θe ∧ θs and there exists a state t0 |= θ̂ such that t0|X∪Y = s then, by
completeness of D, there exists a successor t′ of t0 such that t′|X = s′X and
we set s′Y = t′|Y .

– If s 6|= θe ∧ θs or there is no state t0 |= θ̂ such that t0|X∪Y = s then we
choose arbitrary t′ and s′Y (if at all).

• If t 6= tin then we define t′ and s′Y as follows.

– If t|X∪Y = s, then, by completeness of D, the state t has a successor t′′

such that t′′|X = s′X . We set t′ = t′′ and s′Y = t′′|Y .

– If t|X∪Y 6= s, then t′ and s′Y are arbitrary.

We claim that this strategy is winning from every state s for which there exists
a state t0 such that t0 |= θ̂ and t0|X∪Y = s. Consider such a state s0. Then for
every s′X such that (s0, s

′
X) |= ρe there exists a t1 and s′Y such that (t0, t1) |= ρs,

t1|X = s′X , and t1|Y = s′Y . Consider a play σ : s0, . . . , sn compliant with f ,
where the sequence of memory values is τ : t0, . . . , tn. It is simple to show by
induction that for every j ≥ 1 we have tj |X∪Y = sj . Consider a value s′X such
that (sn, s

′
X) |= ρe. By completeness of D there exists a memory value tn+1 such

that (tn, tn+1) |= ρ̂, tn+1|X = s′X so the strategy f is defined. Furthermore, from
D |= ϕG it follows that (tn, tn+1) |= ρs. Thus, tn+1|Y is a valid choice of the
strategy f .

Consider an infinite play σ : s0, . . . compliant with f , where τ : t0, . . . is
the associated sequence of memory values. Then, as τ is a computation of D
(modulo the initial state), it follows that τ |= ϕG. We conclude that σ |= ϕ.

Finally, we have to show that for every value s′X such that s′X |= θe there
exists a value s′Y such that (s′X , s

′
Y) |= θe ∧ θs. However, this follows from the

completeness of D and from the inclusion of θe on the left-hand-side of every
implication in ϕG.

3.3. Symbolic Jds Specifications

We would like to use gr(1) games to solve realizability directly from ltl
formulas. In many practical cases, the specification is partitioned to assump-
tions and guarantees. Each assumption or guarantee is relatively simple; and
together they have the semantics that the conjunction of all assumptions implies
the conjunction of all guarantees. To support this claim, we will demonstrate in

16

Section 6 the application of the synthesis method to a realistic industrial spec-
ification. Here we suggest to embed such specifications directly into a gr(1)
game, giving rise to the strict semantics of the implication. In Section 5 we
discuss the differences between the strict semantics and the simple implication.

Recall that a temporal semantics of a jds D has the following form:

ϕD : θ ∧G(ρ(V,XV)) ∧
∧
J∈J

GF J

Let X and Y be finite sets of typed input and output variables, respectively and
let V = X ∪ Y. We say that a jds is output independent if θ does not relate to
Y and ρ does not depend on the value of Y in the next state. That is, ρ can
be expressed as an assertion over X ∪ Y ∪ X ′. A jds can be represented by a
triplet 〈ϕi,Φt,Φg〉 with the following parts.

• ϕi is an assertion which characterizes the initial states (i.e., θ above).

• Φt = {ψi}i∈It is a set of Boolean formulas ψi, where each ψi is a Boolean
combination of variables from X ∪ Y and expressions of the form X v where
v ∈ X if the jds is output independent, and v ∈ X ∪ Y otherwise.

That is ρ(V,XV) is the conjunction of all the assertions in Φt.

• Φg = {Ji}i∈Ig is a set of Boolean formulas (i.e, Φg is a different name for J).

The intended semantics of the triplet 〈ϕi,Φt,Φg〉 is

ϕi ∧
∧
i∈It

Gψi ∧
∧
i∈Ig

GFJi.

Consider the case where assumptions and guarantees have the following
forms: (i) ψ for an assertion over V, (ii) Gψ for an assertion over V ∪ V ′,
or (iii) GFψ for an assertion over V. Then, we can partition the Boolean
components of assumptions or guarantees to triplets as explained above.

Let Sα = 〈ϕαi ,Φαt ,Φαg 〉 for α ∈ {e, s} be two specifications as described
above, where Se is output independent. Here Se is a description of the envi-
ronment (i.e., results from the assumptions) and Ss is the description of the
system (i.e., results from the guarantees). The specifications Se and Ss natu-
rally give rise to the following game. The strict realizability game for Se and Ss
is Gsre,s : 〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉 with the following components.7

• V = X ∪ Y.

• θe = ϕei .

• θs = ϕsi .

• ρe =
∧
i∈Iet

ψei .

7The name strict realizability when referring to such a composition was coined in [43].

17

• ρs =
∧
i∈Ist

ψsi .

• ϕ =
∧
i∈Ieg

GF Jei →
∧
i∈Isg

GFJsi .

By Theorem 4 the game Gsre,s is winning for system iff the following formula
is realizable.

ϕsre,s = (ϕei → ϕsi) ∧
(ϕei ∧G((H ρe)→ ρs)) ∧
(ϕei ∧G ρe ∧

∧
i∈Ieg

GFJei →
∧
i∈Isg

GFJsi)

The proof of Theorem 4 also tells us how to extract an implementation for
ϕsre,s from the winning strategy in Gsre,s.

3.4. Example: Lift Controller

As an example, we consider a simple lift controller. We specify a lift con-
troller serving n floors. We assume the lift has n button sensors (b1, . . ., bn)
controlled by the environment. The lift may be requested on every floor, once
the lift has been called on some floor the request cannot be withdrawn. Ini-
tially, on all floors there are no requests. The location of the lift is modeled by
n Boolean variables (f1, . . ., fn) controlled by the system. Once a request has
been fulfilled it is removed. Formally, the specification of the environment is
Se = 〈ϕei , {ψe1,1, . . . , ψe1,n, ψe2,1, . . . , ψe2,n}, ∅〉, where the components of Se are as
follows.

ϕei =
∧
j ¬bj

ψe1,j = bj ∧ fj →X¬bj
ψe2,j = bj ∧ ¬fj →X bj

We expect the lift to initially start on the first floor. We model the loca-
tion of the lift by an n bit array. Thus we have to demand mutual exclusion
on this array. The lift can move at most one floor at a time, and eventu-
ally satisfy every request. Formally, the specification of the system is Ss =
〈ϕsi , {ψs1, ψs2,1, . . . , ψs2,n, ψs3,1, . . . , ψs3,n}, {Js1 , . . . , Jsn+1}〉, where the components
of Ss are as follows.

ϕsi =
∧
j(j = 1 ∧ fj) ∨ ((j 6= 1) ∧ ¬fj)

ψs1 = up → sb
ψs2,j =

∧
k 6=j ¬(fj ∧ fk)

ψs3,j = fj →X(fj ∨ fj−1 ∨ fj+1)
Jsj = bj → fj

Jsn+1 = f1 ∨ sb

where up =
∨
i(fi ∧X fi+1) denotes that the lift moves one floor up, and

sb =
∨
i bi denotes that at least one button is pressed. The requirement ψs1

states that the lift should not move up unless some button is pressed. The
liveness requirement Jsn+1 states that either some button is pressed infinitely
many times, or the lift parks at floor f1 infinitely many times. Together they

18

imply that when there is no active request, the lift should move down and park
at floor f1.

The strict realizability game for Se and Ss is won by system, implying that
there is a controller realizing ϕsre,s.

4. GR(1) Strategies

In this section we discuss how to extract a program from the solution of the
gr(1) game. First, we show how to analyze the intermediate values and how to
extract from them a winning strategy for the system. Then, we show how this
strategy can be reduced in size in some cases. Finally, we show how to extract
from the symbolic bdd representation of the strategy a deterministic strategy
that can be used for creating an hdl description of a resulting circuit.

4.1. Extracting the Strategy

We show how to use the intermediate values in the computation of the fix-
point to produce an fds that implements ϕ. The fds basically follows the
strategies explained in Section 3.2. Recall that the combined strategy does one
of two things. It either iterates over strategies f1, .., fn infinitely often, where
strategy fj ensures that the play reaches a Jsj state. Thus, the play satisfies
all liveness guarantees. Or, it eventually uses a fixed strategy ensuring that the
play does not satisfy one of the liveness assumptions.

Let Zn = {z0, . . . , zk} be a set of Boolean variables that encode a counter
ranging over [1..n]. We denote by Zn = j the variable assignment that encodes
the value j. Let X and Y be finite sets of input and output variables, respec-
tively, and ϕ be a gr(1) winning condition. Let G = 〈V,X ,Y, θe, θs, ρe, ρs, ϕ〉 be
a game structure (where V = X ∪Y). We show how to construct a fairness-free
fds D = 〈VD, θD, ρ〉, where VD = V ∪Zn, such that D is complete with respect
to X . the BDD representing the set of winning states. Following Theorem 4,
we set θD = θe → (θs ∧ Zn = 1 ∧ Z). Recall, that Z is the variable representing
the winning states for the system (as in Fig. 1). The variable Zn is used to
store internally which strategy should be applied. The transition relation ρ is
(ρe ∧ Z) → (ρ1 ∨ ρ2 ∨ ρ3), where ρ1, ρ2, and ρ3 are formally defined in Fig. 2,
and described below.

We use the sets mY[j][r] and their subsets mX[j][r][i] to construct the strate-
gies f1, . . . , fn collected for the system, where j ranges over the number of

strategies, r ranges over the number of iterations of the least fixpoint at the jth

strategy, and i ranges over the number of assumptions. Let mY[j][<r] denote the
set
⋃
l∈[1..r−1] mY[j][l]. We write (r′, i′) ≺ (r, i) to denote that the pair (r′, i′) is

lexicographically smaller than the pair (r, i). That is, either r′ < r or r′ = r
and i′ < i. Let mX[j][≺(r, i)] denote the set

⋃
(r′,i′)≺(r,i) mX[j][r′][i′].

Transitions in ρ1 are taken when a Jsj state is reached and we change strategy
from fj to fj⊕1. The counter Zn is updated accordingly. Transitions in ρ2 are
taken when we can get closer to a Jsj state. These transitions go from states
in mY[j][r] to states in mY[j][r′] where r′ < r. We require that r′ is strictly smaller

19

ρ1 =
∨

j∈[1..n]

(Zn=j) ∧ Jej ∧ ρs ∧ Z′ ∧ (Z ′n=j⊕1)

ρ2(j) =
∨
r>1

mY[j][r] ∧ ¬mY[j][<r] ∧ ρs ∧ mY′[j][<r]

ρ2 =
∨

j∈[1..n]

(Zn=Z ′n=j) ∧ ρ2(j)

ρ3(j) =
∨
r

∨
i∈[1..m]

mX[j][r][i] ∧ ¬mX[j][≺(r, i)] ∧ ¬Jsi ∧ ρs ∧ mX′[j][r][i]

ρ3 =
∨

j∈[1..n]

(Zn=Z ′n=j) ∧ ρ3(j)

Figure 2: The Transitions Definition

than r to ensure that the phase of the play, where neither the guarantees are
satisfied nor the assumptions are violated, is bounded. Note that there is no
need to add transitions that start from states in mY[j][1] to ρ2(j), because these
transitions are already included in ρ1. The conjunct ¬mY[j][<r] appearing in
ρ2(j) ensures that each state is considered once in its minimal entry.

Transitions in ρ3 start from states s ∈ mX[j][r][i] such that s |= ¬Jei and take
us back to states in mX[j][r][i]. Repeating such a transition forever will also lead
to a legitimate computation because it violates the environment requirement
of infinitely many visits to Jei -states. Again, to avoid redundancies we apply
this transition only to states s for which (r, i) are the lexicographically minimal
indices such that s ∈ mX[j][r][i]. The conjuncts ¬mX[j][≺(r, i)] appearing in
transitions ρ3(j) ensure that each state is considered once in its minimal entry.

Note that the above transition relation can be computed symbolically. We
show the Jtlv code that symbolically constructs the transition relation of the
synthesized fds in Fig. 3. We denote the resulting controller by ctrl. The
functionality of all used methods is self-explanatory.

4.2. Minimizing the Strategy

In the previous section, we have shown how to create an fds that implements
an ltl goal ϕ. The set of variables of this fds includes the given set of input
and output variables as well as the ‘memory’ variables Zn. This fds follows a
very liberal policy when choosing the next successor in the case of a visit to Jsj ,
i.e., it chooses an arbitrary successor in the winning set. In the following, we
use this freedom to minimize (symbolically) the resulting fds. Notice, that our
fds is deterministic with respect to X ∪ Y. That is, for every state and every
possible assignment to the variables in X ∪Y there exists at most one successor

20

public void build_symbolic_controller() {

ctrl = new FDS("symbolic_controller");

Zn = ctrl.newBDDDomain("Zn", 1, sys.numJ());

BDD tr12 = sys.trans().and(env.trans());

for (int j = 1; j <= sys.numJ(); j++) {

BDD rho1 = (Zn.eq(j)).and(Z).and(sys.Ji(j)).and(tr12)

.and(next(Z)).and(next(Zn).eq((j % sys.numJ()) + 1));

ctrl.disjunctTrans(rho1);

}

for (int j = 1; j <= sys.numJ(); j++) {

BDD low = mem.Y(j, 1);

for (int r = 2; r <= mem.maxr(j); r++) {

BDD rho2 = (Zn.eq(j)).and(mem.Y(j, r)).and(low.not())

.and(tr12).and(next(low)).and(next(Zn).eq(j));

low = low.or(mem.Y(j, r));

ctrl.disjunctTrans(rho2);

}

}

for (int j = 1; j <= sys.numJ(); j++) {

BDD low = FALSE;

for (int r = 2; r <= mem.maxr(j); r++) {

for (int i = 1; i <= env.numJ(); i++) {

BDD rho3 = (Zn.eq(j)).and(mem.X(j, r, i))

.and(low.not()).and(env.Ji(i).not()).and(tr12)

.and(next(mem.X(j, r, i))).and(next(Zn).eq(j));

low = low.or(mem.X(j, r, i));

ctrl.disjunctTrans(rho3);

}

}

}

}

Figure 3: The Symbolic Construction of the fds

state with this assignment.8 As X and Y and the restrictions on their possible
changes are part of the specification, removing transitions seems to be of lesser
importance. We concentrate on removing redundant states.

Since we are using the given sets of variables X and Y the only possible

8On the other hand, the fds may be non-deterministic with respect to X . That is, for a
given state s and a given assignment s′X to X , there may be multiple s′Y such that (s, s′X , s

′
Y)

satisfies the transition of D.

21

candidate states for merging are states that agree on the values of variables in
X ∪Y and disagree on the value of Zn. If we find two states s and s′ such that
ρ(s, s′), s|X∪Y = s′|X∪Y , and s′|Zn = s|Zn⊕1, we remove state s. We direct all
its incoming arrows to s′ and remove its outgoing arrows. Intuitively, we can
do that because the specification does not relate to the variable Zn. Consider
a computation where the sequence (s0, s

′, s1) appears and results from separate
transitions (s0, s) and (s′, s1). Consider the case that there is no successor s′1
of s such that s′1|X∪Y = s1|X∪Y and similarly for a predecessor s′0 of s′. By
s|X∪Y = s′X∪Y we conclude that (s0, s

′) |= ρe ∧ ρs. Furthermore, if some J is
visited in s then the same J is visited in s′ and the progress of Zn ensures that
an infinite computation satisfies all required liveness constraints.

The symbolic implementation of the minimization is given in Fig. 4. The
transition obseq includes all possible assignments to V and V ′ such that all vari-
ables except Zn maintain their values. It is enough to consider the transitions
from Zn = j to Zn = j⊕1 for all j and then from Zn = n to Zn = j for all j to
remove all redundant states. This is because the original transition just allows
to increase Zn by one.

This minimization can significantly reduce the numbers of states and so lead
to smaller explicit-state representations of a program. However, it turns out
that the minimization increases the size of the symbolic representation, i.e., the
bdds. Depending on the application, we may want to keep the size of bdds
minimal rather than minimize the fds. In the next section, we minimize the
symbolic representation to reduce the size of the resulting circuit.

4.3. Generating Circuits from bdds

In this section, we describe how to construct a Boolean circuit from the
strategy in Section 4.1. A strategy is a bdd over the variables X , Y, Zn, X ′, Y ′,
and Z ′n where X are input variables, Y are output variables, Zn are the variables
encoding the memory of the strategy, and the primed versions represent next
state variables. The corresponding circuit contains |X |+ |Y|+ |Zn| flipflops to
store the values of the inputs and outputs in the last clock tick as well as the
extra memory needed for applying the strategy (see Fig. 5). In every step, the
circuit reads the next input values X ′ and determines the next output values
Y ′ (and Z ′n) using combinational logic with inputs I = X ∪ Y ∪ Zn ∪ X ′. Note
that the strategy does not prescribe a unique combinational output for every
combinational input. In most cases, multiple outputs are possible, in states
that do not occur when the system adheres to the strategy, no outputs may be
allowed. Both issues need to be solved before translation to a combinational
circuit. That is, we have to fix exactly one possible output for every possible
value of the flipflops and the inputs.

The extant solution [44] yields a circuit that can generate, for a given input,
any output allowed by the strategy. To this end, it uses a set of extra inputs
to the combinational logic. Note that this is more general than what we need:
a circuit that always yields one valid output given an input. Our experience
shows that this may come at a heavy price in terms of the size of the logic [3].

22

public void reduce() {

For (j = 1; j <= sys.numJ(); j++)

reduce_helper(j, (j % sys.numJ()) + 1);

For (j = 1; j < sys.numJ(); j++)

reduce_helper(sys.numJ(), j);

}

public void reduce_helper(j, k) {

BDD init = ctrl.initial();

BDD trans = ctrl.trans();

BDD states = (trans.and(obseq).and(Zn.eq(j))

.and(next(Zn).eq(k))).exist(next(V));

BDD Znj_states = states.and(Zn.eq(j));

BDD rm_trans = next(Znj_states).or(Znj_states);

ctrl.conjunctTrans(rm_trans.not());

BDD add_trans = (trans.and(next(states))

.and(next(Zn).eq(j))).exist(Zn);

ctrl.disjunctTrans(add_trans.and(next(Zn).eq(k)));

BDD rm_init = states.and(Zn.eq(j));

ctrl.conjunctIni(rm_init.not());

BDD add_init = init.and(states).and(Zn.eq(j)).exist(Zn);

ctrl.disjunctIni(add_init.and(Zn.eq(k)));

}

Figure 4: The Symbolic Algorithm of the Minimization

Due to these scalability problems of [44], we devised the following method
to extract a combinational circuit from a bdd that matches our setting. Our
method uses the pseudo code shown in Fig. 6.

We write outputs and inputs to denote the set of all combinational outputs
and inputs, respectively. We denote by set_minus(outputs,y) the function-
ality which excludes y from the set outputs. For every combinational output
y we construct a function f_y in terms of X that is compatible with the given
strategy bdd. The algorithm proceeds through the combinational outputs y one
by one: First, we build trans_y to get a bdd that restricts only y in terms of
X . Then we build the positive and negative cofactors (p,n) of trans_y with
respect to y, that is, we find the sets of inputs for which y can be 1 and the sets
of inputs for which y can be 0. For the inputs that occur both in the positive
cofactor and in the negative cofactor, both 0 and 1 are possible values. The
combinational inputs that are neither in the positive cofactor nor in the nega-

23

X ′

FFs

FFs

X ′

X

Y

Comb. Y ′

Y ′

|Y|

|X |

Logic

Figure 5: Diagram of generated circuit

tive cofactor are outside the winning states and thus represent situations that
cannot occur (as long as the environment satisfies the assumptions). Thus, f_y
has to be 1 in p ∩ !n and 0 in (!p ∩ n), which give us the set of care states.
We minimize the positive cofactors with the care set to obtain the function f_y.
Finally, we substitute variable y in comb by f_y, and proceed with the next
variable. The substitution is necessary since a combinational output may also
depend on other combinational outputs.

The resulting circuit is constructed by writing the bdds for the functions
using cudd’s DumpBlif command [45].

In the following we describe two extensions that are simple and effective.

4.3.1. Optimizing the Cofactors

The algorithm presented in Fig. 6 generates a function in terms of the combi-
national inputs for every combinational output. Some outputs may not depend
on all inputs and we would like to remove unnecessary inputs from the func-
tions. Consider the positive cofactor and the negative cofactor of a variable y.
If the cofactors do not overlap when we existentially quantify variable x, then
variable x is not needed to distinguish between the states where y has to be 1
and where y has to be 0. Thus, variable x can be simply left out. We adapt the
algorithm in Fig. 6 by inserting the code shown in Fig. 7 at the spot marked
with (*).

4.3.2. Removing Dependent Variables

After computing the combinational logic, we perform dependent variables
analysis [46] on the set of reachable states to simplify the generated circuit.

Definition 1. [46] Given a Boolean function f over v0, v1, · · · vn, a variable vi
is functionally dependent in f iff ∀vi.f = 0.

24

public void build_circuit() {

comb = ctrl.trans();

for (BDDDomain y : outputs) {

BDD trans_y = comb.exist(set_minus(outputs, y));

BDD p = trans_y.and(y.eq(TRUE)).exist(y);

BDD n = trans_y.and(y.eq(FALSE)).exist(y);

// (*)

// NOTE: p and n in general incomparable

BDD careset = p.and(n.not()).or(p.not().and(n));

BDD f_y = p.simplify(careset);

// keep relation between outputs

comb = comb.relprod(f_y, y);

}

}

Figure 6: Algorithm to construct a circuit from a bdd

Note that if vi is functionally dependent, it is uniquely determined by the re-
maining variables of f . Thus, the value of vi can be replaced by a function
g(v0, · · · vi−1, vi+1 · · · vn).

Suppose our generated circuit has the set R(X ∪Y) of reachable states. If a
state variable y is functionally dependent in R, we can remove the corresponding
flipflop in the circuit. The value of s is instead computed as a function of the
values of the other flipflops. This will reduce the number of flipflops in the
generated circuit.

5. LTL Synthesis

In this section we show that the techniques developed in Sections 3 and 4 are
strong enough to handle synthesis of ltl specifications in many interesting cases.
In particular, the specifications of many hardware designs that we encountered
as part of the Prosyd project fall into this category [47]. Given a specification of
a realizability problem, we show how to embed this problem into the framework
of gr(1) games. We start from a simple subset of ltl (that is interesting in
its own right) and show how to extend the types of specifications that can be
handled.

5.1. Implication of Symbolic Jds over Input and Output Variables

We have already argued that in many practical cases the specification calls
for a jds that realizes the environment and a jds that realizes the system.
We suggested to embed the different parts of such specifications into a gr(1)
game and defined the strict realizability of the implication of such specifications.

25

p = p.and(n.not());

n = n.and(p.not());

// where p and n overlap, output can be anything

for (BDDDomain x : inputs) {

BDD p_x = p.exist(x);

BDD n_x = n.exist(x);

if (p_x.and(n_x).isZero()) {

p = p_x; n = n_x;

}

}

Figure 7: Extension to algorithm in Figure 6

Here we highlight the differences between strict realizability of the implication
and realizability of the implication; show how to embed the implication of the
specifications as a gr(1) game; and (in the following subsections) explain how
to extend the fragment of ltl handled by these techniques.

Recall, that the temporal semantics of a jds D has the following form:

θ ∧G ρ ∧
∧
J∈J

GFJ

Accordingly, when assumptions or guarantees taken together give rise to a jds
they can be arranged as a specification as follows. Let Sα = 〈ϕαi ,Φαt ,Φαg 〉 be
a specification, where ϕαi is an assertion over V, Φαt = {ψi}i∈Iαt is a set of
assertions over V ∪ V ′, and Φαg = {Ji}i∈Iαg is a set of assertions over V. Given
Se and Ss of this form, we defined strict realizability in Section 3. Consider
now the implication between these two specifications. Formally, let ϕ→e,s be the
following formula.

(ϕei ∧G ρe ∧
∧

i∈Ieg
GF Jei)→ (ϕsi ∧G ρs ∧

∧
i∈Isg

GF Jsi) (4)

where ρe =
∧
i∈Ieg

ψi and ρs =
∧
i∈Isg

ψi. Namely, ϕ→e,s says that if the en-

vironment satisfies its specification then the system guarantees to satisfy its
specification. The formula ϕ→e,s seems simpler and more intuitive than ϕsre,s.
This simplified view, however, leads to dependency between the fulfillment of
the systems safety and the liveness of the environment. Thus, specifications
that should intuitively be unrealizable turn out to be realizable.

Notice that ϕsre,s implies ϕ→e,s. Thus, if ϕsre,s is realizable, a controller for
ϕsre,s is also a controller for ϕ→e,s. The following example shows that the other
direction is false.

Example 1. Let X = {x} and Y = {y}, where both x and y are Boolean vari-
ables. Let Se = 〈true, {Xx}, {x ↔ y}〉 and Ss = 〈true, {Xx ↔ X y}, {¬y}〉.

26

Intuitively, the environment specification says that the environment should keep
x asserted and make sure that x and y are equal infinitely often9. The system
specification says that the system should keep y equal to x and make sure that y
is off infinitely often. Consider the two specifications ϕ→e,s and ϕsre,s.

ϕ→e,s = (GXx ∧GF(x↔ y))→ (G(Xx↔X y) ∧GF¬y)
ϕsre,s = G(HXx→ (Xx↔X y)) ∧ (GXx ∧GF(x↔ y)

→GF¬y)

While ϕ→e,s is realizable, ϕsre,s is unrealizable. Indeed, in the first case, the strategy
that always sets y to the inverse of x is a winning strategy. The system may
violate its safety but it ensures that the environment cannot fulfill its liveness.
On the other hand, ϕsre,s is unrealizable. Indeed, as long as the environment
does not violate its safety the system has to satisfy safety. An infinite play that
satisfies safety will satisfy the liveness of the environment but not of the system.
We find that ϕsre,s better matches what we want from such a system. Indeed, if
the only way for the system to satisfy its specification is by violating its safety
requirement, then we would like to know that this is the case. Using ϕsre,s and
its unrealizability surfaces this problem to the user.

We now contrast two examples10.

Example 2. Consider the case where X = {x} and Y = {y} but this time x
ranges over {1, . . . , 10} and y ranges over {1, . . . , 5}. Let Se = 〈x = 0, {Xx >
x}, {true}〉 and Ss = 〈y = 0, {X y > y}, {true}〉. Intuitively, both the system
and the environment are doomed. Both cannot keep increasing the values of x
and y as both variables range over a finite domain. In this case ϕ→e,s is realizable
and ϕsre,s is unrealizable. Dually, if x ranges over {1, . . . , 5} and y ranges over
{1, . . . , 10} both ϕ→e,s and ϕsre,s are realizable. Again, we find that the behavior
of ϕsre,s matches better our intuition of what it means to be realizable. Indeed,
only when the environment is the first to violate its safety the specification is
declared realizable.

In general, the kind of dependency that is created in the realizability of ϕ→e,s
is related to machine closure of specifications [48] (cf. also discussion in [49, 50]).
In general, we find that specifications that allow this kind of dependency between
safety and liveness are not well structured and using strict realizability informs
us of such problems.

We now turn to the question of realizability of ϕ→e,s and show how to reduce
it to the solution of a gr(1) game. Intuitively, we add to the game a memory
of whether the system or the environment violate their initial requirements or
their safety requirements. Formally, we have the following.

9This example and the observation that the implication between strict realizability and
realizability is only one way is due to M. Roveri, R. Bloem, B. Jobstmann, A. Tchaltsev, and
A. Cimatti.

10Due to O. Maler.

27

Let Sα = 〈ϕαi ,Φαt ,Φαg 〉 for α ∈ {e, s} be two specifications. The realizability
game for ϕ→e,s isG→e,s : 〈V,X ′,Y ′, θe, θs, ρe, ρs, ϕ′〉 with the following components.

• X ′ = X .

• Y ′ = Y ∪ {sf e, sf s}.

• V = X ′ ∪ Y ′.

• θe = true.

• θs = (ϕei ↔ sf e) ∧ (ϕsi ↔ sf s).

• ρe = true.

• ρs = ((
∧
i∈Iet

ψei ∧ sf e)↔ sf ′e) ∧ ((
∧
i∈Ist

ψsi ∧ sf s)↔ sf ′s).

• ϕ′ = (GF sf e ∧
∧
i∈Ieg

GF Jei)→ (GF sf s ∧
∧
i∈Isg

GF Jsi).

We show that the game G→e,s realizes the goal ϕ→e,s.

Theorem 5. The game G→e,s is won by system iff ϕ→s,e is realizable.

Proof: By Theorem 4 we have that G→e,s is won by system iff the following
specification ψsr is realizable.

ψsr = ((ϕei ↔ sf e) ∧ (ϕsi ↔ sf s)) ∧
G(((

∧
i∈Iet

ψei ∧ sf e)↔ sf ′e) ∧ ((
∧
i∈Ist

ψsi ∧ sf s)↔ sf ′s)) ∧
(GF sf e ∧

∧
i∈Ieg

GF Jei)→ (GF sf s ∧
∧
i∈Isg

GFJsi)

Consider an fds that realizes ψsr. Let σ : s0, s1, . . . be a computation of this
fds. We show that σ |= ϕ→e,s. If σ does not satisfy one of the conjuncts on
the left-hand-side of ϕ→e,s then clearly σ |= ϕ→e,s. Assume that σ satisfies all the
conjuncts on the left-hand-side of ϕ→e,s. As σ |= ϕei it follows that σ |= sf e. As
σ |= G(

∧
i∈Iet

ψei) it follows that σ |= G sf e. As σ |=
∧
i∈Ieg

GF Jei and clearly

σ |= GF sf e if follows that σ |= GF sf s and σ |=
∧
i∈Isg

GF Jsi . As there are

infinitely many positions where sf s holds, by using G((
∧
i∈Ist

ψsi ∧ sf s) ↔ sf ′s)

we conclude that σ |= G sf s and σ |= G(
∧
i∈Ist

ψsi). Finally, as σ |= sf s we

conclude that σ |= ϕsi . Thus, σ satisfies all the conjuncts on the right-hand-side
of ϕ→e,s as well.

In the other direction, consider an fds D that satisfies ϕ→e,s. We create the

system D̂ by adding to D the variables sf e and sf s and use the augmented initial

condition θ̂ = θ ∧ θs and the augmented transition relation ρ̂ = ρ ∧ ρs. The
addition of sf e and sf s does not restrict the behavior of D. Furthermore, the
values of sf s and sf e are determined according to the values of other variables
of D̂. Consider a computation σ : s0, s1, . . . of the augmented system D̂. By
definition of D̂ we have σ |= θs and σ |= G((H ρe) → ρS). We have to show
σ |= ϕ′. As σ is also a computation of D we have σ |= ϕ→e,s.

28

• Suppose that σ 6|= ϕei . Then, σ |= G¬sf e and σ |= ϕ′.

• Suppose that σ |= ϕei and σ 6|= G
∧
i∈Iet

ψei . Then, σ |= FG¬sf e and

σ |= ϕ′.

• Suppose that σ |= ϕei ∧G
∧
i∈Iet

ψei , and that σ 6|=
∧
i∈Ieg

GF Jei . Then,

σ |= ϕ′ as the left-hand-side of the implication does not hold.

• Suppose that σ satisfies all the conjuncts on the left-hand-side of ϕ→e,s. Then,
σ also satisfies all the conjuncts on the right-hand-side of ϕ→e,s. It follows
that σ |= ϕsi implying σ |= sf s. It follows that σ |= G(

∧
i∈Ist

ψsi) implying

σ |= G sf s. Finally, σ |= GF sf s and ϕ′ holds as well.

5.2. Incorporating the Past

We have discussed the case where the specification is a combination of as-
sumptions and guarantees of the forms Gψ and GF J , where ψ is a Boolean
formula restricting transitions of the environment or of the system, and J is a
Boolean formula. In this subsection we show how to reduce to gr(1) games the
case where specifications include parts J and ψ containing past temporal for-
mulas (or temporal patterns that can be translated to past temporal formulas).
As before, one could distinguish between realizability and strict realizability. To
simplify presentation we concentrate on strict realizability.

An ltl formula ϕ is a past formula if it does not use the operators X and
U . That is, it belongs to the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Yϕ | ϕSϕ

For example, the formula ψ = (¬g)Sr is a past formula. If r is a request and g
is a grant, then ψ holds at time i if there is a pending request in the past that
was not granted.

For every ltl formula ϕ over variables V, one can construct a temporal tester,
a jds Tϕ, which has a distinguished Boolean variable xϕ such that the following
hold.

• Tϕ is complete with respect to V.

• For every computation σ : s0, s1, s2, . . . of Tϕ, si[xϕ] = 1 iff σ, i |= ϕ.

• For every sequence of states σ : s0, s1, s2, . . . there is a corresponding compu-
tation σ′ : s′0, s

′
1, s
′
2, . . . of Tϕ such that for every i we have si and s′i agree on

the interpretation of the variables of ϕ.

For further details regarding the construction and merits of temporal testers, we
refer the reader to [51, 52]. It is well known that temporal testers for past ltl
formulas are fairness-free and deterministic. It follows that for every past ltl
formula ϕ, there exists a fairness-free fds Tϕ : 〈V, θ, ρ〉 such that V contains the

29

set of variables of ϕ and θ and ρ are deterministic. Using these fairness-free fds
we can now handle assumptions and guarantees that contain past ltl formulas.

Let X and Y be the set of input and output variables, respectively, and let
V = X ∪ Y. Consider an assumption or guarantee Gψ, where ψ is a Boolean
combination of past formulas over V and expressions of the form X v, where
v ∈ X if Gψ is an assumption, and v ∈ X ∪Y if Gψ is a guarantee. For every
maximal past temporal formula γ appearing in ψ,11 there is a temporal tester
Tγ with the distinguished variable xγ . Consider the following specification G ψ̂,

where ψ̂ is obtained from ψ by replacing γ by xγ . It follows that the specification

G ψ̂ is of the required form as in Section 3. Given an assumption or guarantee
GF J , where J is a past formula over V, we treat it in a similar way.

Here we extend the specifications described previously by incorporating re-
ferral to past in them. The specifications we consider are

Sα = 〈ϕαi ,Φαt ,Φαg 〉 for α ∈ {e, s}, where Φαt = {ψαi }i∈Iαt and Φαg = {Jαi }i∈Iαj

and ψαi and Jαi may relate to past formulas.

Given such a specifications Se and Ss, let Ŝα denote the specification ob-
tained by treating Sα as explained above. Namely, replacing referral to past
formulas by referral to the outputs of temporal testers. In particular, let ψ̂αi
denote the specification obtained from ψαi by replacing maximal past formulas

γ by xγ and similarly for Ĵαi . Let Tγ1 , . . ., Tγn be the temporal testers whose

variables are used in Ŝα for α ∈ {e, s}. The strict realizability game for Se and
Ss is Gsre,s : 〈V ∪ Vt,X ,Y ∪ Vt, θe, θs, ρe, ρs, ϕ〉 with the following components.

• Vt is the set of variables of Tγ1 , . . ., Tγn that are not in V.

• θe = ϕei

• θs = ϕsi ∧
∧n
i=1 θi, where θi is the initial condition of Tγi .

• ρe =
∧
i∈Iet

ψ̂ei .

• ρs = (
∧
i∈Ist

ψ̂si) ∧ (
∧n
i=1 ρi), where ρi is the transition of Tγi .

• ϕ =
∧
i∈Ieg

GF Ĵei →
∧
i∈Isg

GF Ĵsi .

That is, all the variables of Tγ1 , . . ., Tγn are added as variables of the system.
The initial condition of the system is extended by all the initial conditions of the
temporal testers and the transition of the system is extended by the transitions
of the temporal testers. Notice, that variables and transitions of temporal testers
that come from assumptions as well as guarantees are added to the system side
of the game. This is important as the next state of temporal testers may depend
on the next state of both the inputs and the outputs.

11Subformula γ is a maximal past formula in ψ if every subformula γ′ of ψ that contains γ
includes the operator X.

30

Theorem 6. The game Gsre,s is won by system iff ϕsre,s is realizable.

Notice that ϕsre,s uses ψαi and and not ψ̂αi , and similarly for Jαi .

Proof: This follows from Theorem 4 and the correctness of the temporal
testers Tψ1

, . . ., Tψn . The argument relies on temporal testers for past being
fairness-free, deterministic, and complete with respect to X ∪ Y.

We note that the inclusion of the past allows us to treat many interesting
formulas. For example, consider formulas of the form G(r →F g), where r is a
request and g a guarantee. As this formula is equivalent to GF¬(¬g S (¬g∧r)),
it is simple to handle using the techniques just introduced. Similarly, G(a ∧
X b → X2 c) can be rewritten to G(Y a ∧ b → X c) and G(a → aU b) is
equivalent to GH(Y(a ∧ ¬b) → (a ∨ b)) ∧GF(¬a ∨ b). In practice, many
interesting future ltl formulas (that describe deterministic properties) can be
rewritten into the required format.

In the next subsection we use deterministic fds to describe very expressive
specifications whose realizability can be reduced to gr(1) games.

5.3. Implication of Symbolic Jds

We now proceed to an even more general case of specifications, where each of
the assumptions or guarantees is given as (or can be translated to) a determin-
istic jds. The main difference between this section and previous sections is in
the inclusions of additional variables as part of the given specifications. These
variables are then added to the game structure and enable a clean treatment of
this kind of specifications. Notice that it is hard to impose strict realizability
as there is no clean partition of specifications to safety and liveness.

Let X and Y be finite sets of typed input and output variables, respectively.
In this subsection we consider the case where specifications are given as a set of
complete deterministic jds. Formally, let Sα = {Dα

i }i∈Iα for α ∈ {e, s} be a pair
of specifications, where Dα

i = 〈Vαi , θαi , ραi ,J αi 〉 is a complete and deterministic
jds with respect to X ∪ Y for every i and α.

The realizability game for Se and Ss is Gde,s : 〈V,X ′,Y ′, true, θs, true, ρs, ϕ〉
with the following components.

• V = X ∪ Y ∪ (
⋃
i∈Ie V

e
i) ∪ (

⋃
i∈Is V

s
i).

• X ′ = X .

• Y ′ = Y ∪ (
⋃
i∈Ie V

e
i) ∪ (

⋃
i∈Is V

s
i).

• θs = (
∧
i∈Ie θ

e
i) ∧ (

∧
i∈Is θ

s
i).

• ρs = (
∧
i∈Ie ρ

e
i) ∧ (

∧
i∈Is ρ

s
i).

• ϕ = (
∧
i∈Ie(

∧
J∈J ei

GFJ))→ (
∧
i∈Is(

∧
J∈J si

GFJ)).

31

We show that the game Gde,s realizes the goal of implication between these sets
of deterministic jds. Let

ϕde,s =
∧
i∈Ie

Di →
∧
i∈Is

Di

We say that σ |= ϕde,s if either (i) there exists an i ∈ Ie such that there is no
computation of Di that agrees with σ on the variables in X ∪Y or (ii) for every
i ∈ Is there is a computation of Di that agrees with σ on the variables in X ∪Y.
The specification ϕde,s is realizable if there exists an fds that is complete with
respect to X that implements this specification.

Theorem 7. The game Gde,s is won by system iff ϕde,s is realizable.

Proof: By Theorem 4 we have that Gde,s is won by system iff the following
specification ψsr is realizable.

ψsr = (
∧
i∈Ie θ

e
i) ∧ (

∧
i∈Is θ

s
i) ∧

G((
∧
i∈Ie ρ

e
i) ∧ (

∧
i∈Is ρ

s
i)) ∧

(
∧
i∈Ie(

∧
J∈J ei

GF J))→ (
∧
i∈Is(

∧
J∈J si

GF J))

Consider an fds that realizes ψsr. Let σ : s0, s1, . . . be a computation of this
fds. Let τ : t0, t1, . . . be the computation over X ∪ Y such that for every
j ≥ 0 we have sj |X∪Y = tj . We show that σ |= ϕde,s. Consider an fds Di.
As Di is deterministic the assignment to the variables in Vi in σ is the unique
assignment that is possible to accompany τ . It follows that τ |= Di iff the
σ |=

∧
J∈Ji GFJ . It follows that σ |= ϕde,s.

In the other direction, consider an fds D that satisfies ϕde,s. From deter-
minism and completeness of Di for every i it follows that D also satisfies ψsr.

To summarize, we have presented three possible fragments of specifications
and their translation to gr(1) games. In general, when one is presented with
specifications in ltl or psl, a combination of the approaches in the previous
sections should be taken. Simple specifications of the form Gψ or GFJ ,
where ψ or J are either Boolean formulas or past formulas, should be treated
by adding them to the game as explained previously. More complicated speci-
fications should be translated to deterministic jds and treated by inclusion of
the additional variables in this jds as part of the game. In a sense, the treat-
ment of past formulas and of deterministic jds is very similar in that it requires
the inclusion of additional variables (except the input and the output) in the
structure of the game.

For some specifications, it may be impossible to translate them to determin-
istic jds. We find that these specifications are not very common. Generaliza-
tions of our techniques as presented, e.g., in [23] might be applicable. Otherwise,
techniques that handle general ltl formulas may be required [53, 27, 28, 25, 24].

32

6. AMBA AHB Case Study

We demonstrate the application of the synthesis method by shortly sum-
marizing a case study that we performed on one of the amba (Advanced Mi-
crocontroller Bus Architecture) [21] buses of arm. More details about this case
study can be found in [2]. In order to obtain further insights on the applicability
and performance of the method, we refer the interested reader to a second case
study [3] based on a tutorial design from ibm.

6.1. Protocol

Arm’s Advanced Microcontroller Bus Architecture (amba) [21] defines the
Advanced High-Performance Bus (ahb), an on-chip communication standard
connecting such devices as processor cores, cache memory, and dma controllers.
Up to 16 masters and up to 16 slaves can be connected to the bus. The masters
initiate communication (read or write) with a slave of their choice. Slaves are
passive and can only respond to a request. Master 0 is the default master and
is selected whenever there are no requests for the bus.

The ahb is a pipelined bus. This means that different masters can be in
different stages of communication. At one instant, multiple masters can request
the bus, while another master transfers address information, and a yet another
master transfers data. A bus access can be a single transfer or a burst, which
consists of a specified or unspecified number of transfers. Access to the bus is
controlled by the arbiter, which is the subject of this section. All devices that
are connected to the bus are Moore machines, that is, the reaction of a device
to an action at time t can only be seen by the other devices at time t+ 1.

The amba standard leaves many aspects of the bus unspecified. The protocol
is at a logic level, which means that timing and electric parameters are not
specified; neither are aspects such as the arbitration protocol.

We will now introduce the signals used in the ahb. The notation S[n:0]
denotes an (n+ 1)-bit signal.

• HBUSREQ[i] – A request from Master i to access the bus. Driven by the
masters.

• HLOCK[i] – A request from Master i to receive a locked (uninterruptible)
access to the bus (raised in combination with HBUSREQ[i]). Driven by the
masters.

• HMASTER[3:0] – The master that currently owns the address bus (binary
encoding). Driven by the arbiter.

• HREADY – High if the slave has finished processing the current data. Change
of bus ownership and commencement of transfers only takes place when
HREADY is high. Driven by the slave.

• HGRANT[i] – Signals that if HREADY is high, HMASTER = i will hold in the
next tick. Driven by the arbiter.

33

• HMASTLOCK – Indicates that the current master is performing a locked
access. If this signal is low, a burst access may be interrupted when the bus
is assigned to a different master. Driven by the arbiter

The following set of signals is multiplexed using HMASTER as the control sig-
nal. For instance, although every master has an address bus, only the address
provided by the currently active master is visible on HADDR.

• HADDR[31:0] – The address for the next transfer. The address determines
the destination slave.

• HBURST[1:0] – One of SINGLE (a single transfer), BURST4 (a four-transfer
burst access), or INCR (unspecified length burst).

The list of signals does not contain the data transfer signals as these do not
concern the arbiter (ownership of the data bus follows ownership of the address
bus in a straightforward manner). Bursts of length 8 or 16 are not taken into
account, nor are the different addressing types for bursts. Adding longer bursts
only lengthens the specification and the addressing types do not concern the
arbiter. Furthermore, as an optional feature of the ahb, a slave is allowed to
“split” a burst access and request that it be continued later. We have left this
feature out for simplicity, but it can be handled by our approach.

A typical set of accesses is shown in Fig. 8 Signals DECIDE, START, and
LOCKED should be ignored for now. At time 1, Masters 1 and 2 request an
access. Master 1 requests a locked transfer. The access is granted to Master 1
at the next time step, and Master 1 starts its access at time 3. Note that
HMASTER changes and HMASTLOCK goes up. The access is a BURST4 that
cannot be interrupted. At time 6, when the last transfer in the burst starts,
the arbiter prepares to hand over the bus to Master 2 by changing the grant
signals. However, HREADY is low, so the last transfer is extended and the bus
is only handed over in time step 8, after HREADY has become high again.

6.2. Formal Specification

This section contains the specification of the arbiter. To simplify the specifi-
cation, we have added three auxiliary variables, START, LOCKED, and DECIDE,
which are driven by the arbiter. Signal START indicates the start of an access.
The master only switches when START is high. The signal LOCKED indicates if
the bus will be locked at the next start of an access. Signal DECIDE is described
below.

We group the properties into three sets. The first set of properties defines
when a new access is allowed to start, the second describes how the bus has to
be handed over, and the third describes which decisions the arbiter makes.

All properties are stated using ltl formulas. Some properties are assump-
tions on the environment, the others are guarantees the system has to satisfy.
As explained in Section 5, not all ltl specifications can be synthesized directly
using gr(1) games. In order to apply the presented synthesis approach, we
aim for a specification that can be expressed using Equation (4) in Section 5.

34

A10

1

876543

0

A13 A20

2

10

HBUSREQ[2]

HLOCK[1]

HBUSREQ[1]

HLOCK[2]

8

HREADY

HBURST

HGRANT[1]

HGRANT[2]

HMASTER

HMASTLOCK

HADDR

DECIDE

START

SINGLEBURST4

72 6543

LOCKED

1

HCLK

A11 A12

2

Figure 8: An example of amba bus behavior

The separation of the properties into assumptions and guarantees facilitates this
translation: the conjunction of all formulas used to describe assumptions form
the premiss (left part) of the implication in Equation (4). Formulas describing
guarantees form to the consequent (right part). Now, we only need to ensure
that every formula that we use can be mapped into one of the parts of Equa-
tion (4), i.e., into (1) ϕxi , (2) G ρx, or (3)

∧
i∈Ixg

GF Jxi with x = {e, s}.
(Recall that ϕxi and Jxi are Boolean formulas over the variables, and ρx is a
Boolean formula over the variables potentially prefixed with the next opera-
tor X.) Furthermore, note that Gϕ1 ∧Gϕ2 = G(ϕ1 ∧ ϕ2) for arbitrary ϕ1

and ϕ2. Therefore, we can write Part (2) also as conjunction of formulas starting
with the always operator G.

Most formulas we use to describe the desired properties of the arbiter are
already in the required format. For the properties (Assumption 1, Guaran-
tees 2 and 3) that are initially not in the right format, we give a corresponding
translation.

35

s=0 s=1 s=2

¬lock

lock

req

¬req ∧ ¬lock

¬req ∧ lock

¬req ∧ lock

req

¬req ∧ ¬lock

(a) Assumption (A1.2)

t=0 t=1 t=2

¬(lock ∧ start)

lock ∧ start

¬start ∧ req

start

¬start ∧ ¬req

>

(b) Guarantee (2)

Figure 9: Automata representing Assumption (A1.2) and Guarantee (2). The formu-
las HMASTLOCK ∧HBURST= INCR, BUSREQ, and START are abbreviated by lock,
req, and start, respectively.

6.2.1. Starting an Access

Assumption 1. During a locked unspecified length burst, leaving HBUSREQ[i]

high locks the bus. This is forbidden by the standard.

G((HMASTLOCK∧HBURST = INCR)→XF¬HBUSREQ[HMASTER])

The expression HBUSREQ[HMASTER] is not part of the ltl syntax. The for-
mula can be replaced by adding for every master i, the formula G((HMASTLOCK∧
HBURST = INCR ∧ HMASTER = i) → X F¬HBUSREQ[i]). Alternative, we
can introduce a new variable (e.g., BUSREQ) and add the following two formu-
las:

G(
∧
i

HMASTER = i→ (BUSREQ↔ HBUSREQ[i])) (A1.1)

G((HMASTLOCK ∧ HBURST = INCR)→X F¬BUSREQ) (A1.2)

We chose the latter option, since it made the synthesis computation more effi-
cient.

Assumption (A1.1) is in the right format. We translated Assumption (A1.2)
into a deterministic fds encoding the automaton shown in Fig. 9(a), i.e., we
replace Assumption (A1.2) by the three formulas (A1.3), (A1.4), and (A1.5)
referring to a new variable s ranging over {0, 1, 2}. (See Section 5.3 for references
on how to obtain this fds.)

s=0 (A1.3)

G(s=0 ∧ ¬(HMASTLOCK ∧ HBURST= INCR) → X(s=0))∧
G(s=0 ∧ HMASTLOCK ∧ HBURST= INCR → X(s=1))∧
G((s=1 ∨ s=2) ∧ BUSREQ → X(s=1))∧
G((s=1 ∨ s=2) ∧ ¬BUSREQ∧

HMASTLOCK ∧ HBURST= INCR → X(s=2))∧
G((s=1 ∨ s=2) ∧ ¬BUSREQ∧

¬(HMASTLOCK ∧ HBURST= INCR) → X(s=0))

(A1.4)

GF(s=0 ∨ s=2) (A1.5)

36

Assumption 2. Leaving HREADY low locks the bus, the standard forbids it.

GFHREADY (A2)

Assumption 3. The lock signal is asserted by a master at the same time as
the bus request signal. ∧

i

G(HLOCK[i]→ HBUSREQ[i]) (A3)

Guarantee 1. A new access can only start when HREADY is high.

G(¬HREADY→X(¬START)) (G1)

Guarantee 2. When a locked unspecified length burst starts, a new access does
not start until the current master (HMASTER) releases the bus by lowering
HBUSREQ[HMASTER].

G((HMASTLOCK ∧ HBURST = INCR ∧ START)→
X(¬STARTW (¬START ∧ ¬HBUSREQ[HMASTER])))

We treat the expression HBUSREQ[HMASTER] in the same way as in Assump-
tion 1, i.e., we use the variable BUSREQ introduced previously and obtain the
following formula.

G((HMASTLOCK ∧ HBURST = INCR ∧ START)→
X(¬STARTW (¬START ∧ ¬BUSREQ)))

(G2.1)

Guarantee (2) has the form G(a → X(bW (b ∧ c))), which is equivalent
to the past formula G(¬(¬b ∧Y(¬cSY a))). As explained in Section 5.2,
for every past ltl formula, there exists a corresponding fairness-free12 fds.
Fig. 9(b) shows an automaton that encodes Guarantee (G2.1) and corresponds
to the fds that is given by the formulas (G2.2), (G2.3), and (G2.4) referring to
the new Boolean variable t.

t=0 (G2.2)

G(t=0 ∧ ¬(HMASTLOCK ∧ HBURST= INCR ∧ START)→X(t=0))∧
G(t=0 ∧ HMASTLOCK ∧ HBURST= INCR ∧ START →X(t=1))∧
G(t=1 ∧ ¬START ∧ ¬BUSREQ →X(t=0))∧
G(t=1 ∧ ¬START ∧ BUSREQ →X(t=1))∧
G(t=1 ∧ START →X(t=2))
G(t=2 →X(t=2))

(G2.3)

GF(t=0 ∨ t=1) (G2.4)

12Note that if we remove the state t= 2, which has an empty language, from the automa-
ton shown in Fig. 9(b), then the automaton is fairness-free. However, in order to ensure
that the semantics of realizability and strict realizability are the same for our specification
(cf. Section 5.1) we give the translation for the complete automaton with fairness.

37

u=0 u=1 u=2 u=3 u=4

u=5

>

¬(burst∧start)

burst∧start∧¬rdy

burst∧start∧rdy

¬start∧¬rdy

start

¬start∧rdy

¬start∧¬rdy

start

¬start∧rdy

¬start∧¬rdy

start

¬start∧rdy

¬start∧¬rdy

start

¬start∧rdy

Figure 10: Automaton encoding Guarantee (G3.1) and (G3.2). We use burst, start, and rdy to
abbreviate HMASTLOCK∧HBURST = BURST4, START, and HREADY, respectively.

Guarantee 3. When a length-four locked burst starts, no other accesses start
until the end of the burst. We can only transfer data when HREADY is high,
so the current burst ends at the fourth occurrence of HREADY (in the formula,
we treat the cases where HREADY is true initially separately from the case in
which it is not).

G((HMASTLOCK ∧ HBURST = BURST4 ∧ START ∧ HREADY)→
X(¬STARTW [3](¬START ∧ HREADY)))

(G3.1)

G((HMASTLOCK ∧ HBURST = BURST4 ∧ START ∧ ¬HREADY)→
X(¬STARTW [4](¬START ∧ HREADY)))

(G3.2)

In order to express Guarantee (G3.1) and (G3.2) in the right format, we
translate them into a deterministic fds in the same way as for Guarantee (G2.1).
Fig. 10 shows the automaton this fds encoding. We use a new variable u,
ranging over {0, 1, 2, 3, 4, 5}, and three formulas (G3.3), (G3.4), and (G3.5) to
encode the initial, transition, and final condition of the corresponding fds,
respectively. Since the encoding is done in the same way as the encoding for
Assumption (A1.2) and Guarantee (G2.1), we omit the detailed descriptions
of (G3.3), (G3.4), and (G3.5).

6.2.2. Granting the Bus

Guarantee 4. The HMASTER signal follows the grants: When HREADY is
high, HMASTER is set to the master that is currently granted. This implies that
no two grants may be high simultaneously and that the arbiter cannot change
HMASTER without giving a grant.∧

i

G(HREADY→ (HGRANT[i]↔X(HMASTER = i))) (G4)

38

Guarantee 5. Whenever HREADY is high, the signal HMASTLOCK copies the
signal LOCKED.

G(HREADY→ (LOCKED↔X(HMASTLOCK))) (G5)

Guarantee 6. If we do not start an access in the next time step, the bus is not
reassigned and HMASTLOCK does not change.

For each master i,
G(X(¬START)→ ((HMASTER = i↔X(HMASTER = i))∧

(HMASTLOCK↔X(HMASTLOCK))))
(G6)

6.2.3. Deciding the Next Access

Signal DECIDE indicates the time slot in which the arbiter decides who the
next master will be, and whether its access will be locked. The decision is based
on HBUSREQ[i] and HLOCK[i]. For instance, DECIDE is high in Step 1 and 6
in Fig. 8. Note that a decision is executed at the next START signal, which can
occur at the earliest two time steps after the HBUSREQ[i] and HLOCK[i] signals
are read. See Fig. 8, the signals are read in Step 1 and the corresponding access
starts at Step 3.

Guarantee 7. When the arbiter decides to grant the bus, it uses LOCKED to
remember whether a locked access was requested.∧

iG((DECIDE ∧X(HGRANT[i]))→ (HLOCK[i]↔X(LOCKED))) (G7)

Guarantee 8. We do not change the grant or locked signals if DECIDE is low.

G(¬DECIDE→
∧
i(HGRANT[i]↔X(HGRANT[i])))∧

G(¬DECIDE→ (LOCKED↔X(LOCKED)))
(G8)

Guarantee 9. We have a fair bus. Note that this is not required by the amba
standard, and there are valid alternatives, such as a fixed-priority scheme (with-
out this property, there is no need for the arbiter to serve any master at all).∧

iGF(¬HBUSREQ[i] ∨ HMASTER = i) (G9)

Guarantee 10. We do not grant the bus without a request, except to Master 0.
If there are no requests, the bus is granted to Master 0.∧

i6=0

(¬HGRANT[i]WHBUSREQ[i])) (G10.1)

G((DECIDE ∧
∧
i

¬HBUSREQ[i])→X(HGRANT[0])) (G10.2)

Guarantee 11. An access by Master 0 starts in the first clock tick and si-
multaneously, a decision is taken. Thus, the signals DECIDE, START, and
HGRANT[0] are high and all others are low.

DECIDE ∧ START ∧ HGRANT[0] ∧ HMASTER = 0 ∧ ¬HMASTLOCK∧∧
i 6=0 ¬HGRANT[i]

(G11)

39

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5 6 7 8 9 10 11 12

sy
nt

he
si

s
tim

e
(s

)

no. of masters

total
winning region

winning strategy

(a) Time to synthesize amba arbiter

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1 2 3 4 5 6 7 8 9 10 11 12

ar
ea

no. of masters

automatic
handwritten

(b) Size of the amba arbiter circuits

Figure 11: Synthesis of amba Arbiter results

Assumption 4. We assume that all input signals are low initially.∧
i

(¬HBUSREQ[i] ∧ ¬HLOCK[i]) ∧ ¬HREADY (A4)

6.3. Synthesis

The final specification in the right form is an implication ϕe → ϕs, where
ϕe is the conjunction of all the formulas referring to assumptions and ϕs is the
conjunction of all the formulas referring to guarantees. In the following we use
the equation numbers to abbreviate for the corresponding formulas.

ϕe = (A1.1) ∧ (A1.3) ∧ (A1.4) ∧ (A1.5) ∧ (A2) ∧ (A3) ∧ (A4)

ϕs = (G1) ∧ (G2.2) ∧ (G2.3) ∧ (G2.4) ∧ (G3.3) ∧ (G3.4) ∧ (G3.5) ∧
(G4) ∧ (G5) ∧ (G6) ∧ (G7) ∧ (G8) ∧ (G9) ∧ (G10.1) ∧ (G10.2) ∧ (G11)

Given a specification in the right form, we synthesize a strategy and construct
a circuit as described in Section 4.3. Subsequently, the circuit is optimized and
mapped to standard cells using abc [54].

We note that using an extra variable (BUSREQ) for Assumption 1 afforded
a considerable increase in capacity of the technique. The time for synthesis is
shown in Fig. 11(a) and ranges from a few seconds for 2 masters to about 1,5h
for 10 masters and 21h for 12 masters. Computing the set of winning states,
which allows us to decide if the specification is realizable, takes only a small
fraction of the total time. Most of the time is spent in constructing the winning
strategy. A more precise analysis showed that our tool spends most of this time
reordering bdds to keep them small. We do not know why synthesis for ten
masters is faster than for nine.

In Fig. 11(b), we show the areas of the arbiter as a function of the number
of masters using our algorithm compared with a manual implementation. For
one master the manual and the automatically generated implementation have

40

approximately the same size. The automatically generated implementations
grow rapidly with the number of masters, while the manual implementations
are nearly independent of the number of masters. The automatically generated
implementation for ten master is about a hundred times larger than the manual
implementation. We do not know why size of arbiter for nine masters is smaller
than for eight.

The automatically generated arbiter implements a round-robin arbitration
scheme. This can be explained from the construction of the strategy in the syn-
thesis algorithm, but it is also the simplest implementation of a fair arbiter. We
have validated our specification by combining the resulting arbiter with manu-
ally written masters and clients, with which it cooperates without problems.

7. Discussion and Conclusions

In this section we discuss the most important benefits and drawbacks of
automatic synthesis, as we perceive them, and we discuss extensions of the
approach presented here.

Writing a complete formal specification for the amba arbiter was not trivial.
Many aspects of the arbiter are not defined in arm’s standard. Such ambiguities
would lead to long discussions on how someone implementing a bus device could
read the standard, and which behavior the arbiter should allow. Note that the
same problem occurs when writing a verilog implementation for the arbiter.

Second, it was not trivial to translate the informal specification to formulas.
One of the important insights when writing the specification of the arbiter was
that additional signals were needed. This problem also occurs when we attempt
to formally verify a manually coded arbiter, in which case the same signals
are useful. In fact, these signals occur, in one form or other, in our manual
implementation as well.

The effort for and the size of a manual implementation of the amba arbiter
does not depend much on the number of senders. The same is not true for
automatic synthesis: the time to synthesize the arbiter grows quickly with the
number of masters as does the size of the generated circuit. Moreover, the size
of the system depends strongly on the formulation of the specification. Godhal,
Chatterjee, and Henzinger present a formulation of the ahb specification that
can be synthesized more efficiently than ours, and present recommendation for
writing specifications for synthesis [55].

The gate-level output that our tool produces is complicated and cannot be
easily modified manually. The resulting circuit can likely be improved further by
using more intelligent methods to generate the circuits, which is an important
area for future research. The problem is related to synthesis of partially spec-
ified functions [56] with the important characteristic that the space of allowed
functions is very large.

On the upside, the resulting specification is short, readable, and easy to
modify, much more so than a manual implementation in verilog. There is
anecdotal evidence that the specification in the form given in this paper can

41

easily be understood by people with no experience in formal methods: The arm
helpdesk very quickly found some errors in the specification in a preliminary
version of this paper13. For the arbiter, we expect that it is easier to learn
the way the design functions from the formal specification than from a manual
verilog implementation. The synthesis algorithm was also a great tool to get
the specifications to be consistent and complete. We doubt whether we would
have gotten to a complete and consistent specification without it.

Automatic synthesis is first and foremost applicable to control circuitry. We
are looking into methods to beneficially combine manually coded data paths
with automatically synthesized control circuitry.

Although this approach removes the need for verification of the resulting cir-
cuit, the specification itself still needs to be validated. This is not quite trivial,
as the specification is not executable. In our experience, mistakes in the specifi-
cation are immediately apparent: either the specification becomes unrealizable,
or the resulting system behaves nonsensically. Finding the cause, however, is
not at all easy. Debugging of specifications has been addressed in [57]. In [58]
and [43], methods were developed to extract a core from an unrealizable (or
incorrect) specification and to extract a compact explanation of unrealizability.
Chatterjee, Henzinger, and Jobstmann consider the modification of unrealizable
specifications by making the environment assumptions (minimally) stricter [59].

A need for quantitative specifications to state that an event should happen
“as soon as possible,” “as infrequently” as possible, etc. was identified in [60],
but requires a more expensive synthesis algorithm.

The algorithm presented in this paper has the disadvantage that the re-
sulting system can behave arbitrarily as soon as the environment assumptions
are violated. In [61, 42], we developed algorithms that synthesize systems that
behave “reasonably” in the presence of environment failures.

The algorithm presented here generates synchronous systems. Pnueli and
Klein [62] show an incomplete algorithm to reduce asynchronous synthesis [63]
of gr(1) properties to the problem of synchronous gr(1) synthesis, making the
algorithm presented here applicable to that domain as well.

The work described in this paper has given rise to several implementations.
The algorithm is implemented as part of tlv [64] and Jtlv [40], as a stand-
alone tool called Anzu [4], as a realizability checker in the requirements analysis
tool rat [65] and in the synthesis tool ratsy [66]. Ratsy in particular allows
for graphical input of the specification automata and contains the debugging
algorithm described above.

Finally, our algorithm and its implementation have been used also for ap-
plications in robotics and user programming. Kress-Gazit, Conner, et al. use
our algorithm to produce robot controllers [67, 68]. They combine the discrete
controller with continuous control and achieve, for example, controllers for cars
that autonomously search for parking. Further, they start exploring domain-

13We take this opportunity to acknowledge the help of Margaret Rugira, Chris Styles, and
Colin Campbell at the arm helpdesk.

42

specific languages for synthesis of robot controllers [69]. Similar applications
are considered in [70, 71, 72], where additional effort is exerted to analyze huge
state spaces. In the context of user programming our algorithm is used to pro-
duce programs from live sequence charts [73, 74], and to develop AspectLTL –
an aspect-oriented programming langauge for LTL specifications [75].

References

[1] N. Piterman, A. Pnueli, Y. Sa’ar, Synthesis of reactive(1) designs, in: Proc.
of the 7th Int. Conf. on Verification, Model Checking, and Abstract Inter-
pretation, Vol. 3855 of Lect. Notes in Comp. Sci., Springer-Verlag, 2006,
pp. 364–380.

[2] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, M. Weiglhofer,
Automatic hardware synthesis from specifications: A case study, in: Design
Automation and Test in Europe, ACM, 2007, pp. 1188–1193.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, M. Weigl-
hofer, Specify, compile, run: Hardware from PSL, in: 6th Int. Workshop
on Compiler Optimization Meets Compiler Verification, Vol. 190 of Elec-
tronic Notes in Computer Science, 2007, pp. 3–16.

[4] B. Jobstmann, S. Galler, M. Weiglhofer, R. Bloem, Anzu: A tool for prop-
erty synthesis, in: Proc. of the 19th Int. Conf. on Computer Aided Verifi-
cation, Vol. 4590 of Lect. Notes in Comp. Sci., Springer-Verlag, 2007, pp.
258–262.

[5] A. Church, Logic, arithmetic and automata, in: Proc. 1962 Int. Congr.
Math., Upsala, 1963, pp. 23–25.

[6] J. Büchi, L. Landweber, Solving sequential conditions by finite-state strate-
gies, Trans. Amer. Math. Soc. 138 (1969) 295–311.

[7] M. Rabin, Automata on Infinite Objects and Churc’s Problem, Vol. 13 of
Regional Conference Series in Mathematics, Amer. Math. Soc., 1972.

[8] A. Pnueli, R. Rosner, On the synthesis of an asynchronous reactive module,
in: Proc. of the 16th Int. Colloq. Aut. Lang. Prog., Vol. 372 of Lect. Notes
in Comp. Sci., Springer-Verlag, 1989, pp. 652–671.

[9] E. Clarke, E. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic, in: Proc. IBM Workshop on Logics
of Programs, Vol. 131 of Lect. Notes in Comp. Sci., Springer-Verlag, 1981,
pp. 52–71.

[10] Z. Manna, P. Wolper, Synthesis of communicating processes from temporal
logic specifications, ACM Trans. Prog. Lang. Sys. 6 (1984) 68–93.

[11] R. Rosner, Modular synthesis of reactive systems, Ph.D. thesis, Weizmann
Institute of Science (1992).

43

[12] N. Wallmeier, P. Hütten, W. Thomas, Symbolic synthesis of finite-state
controllers for request-response specifications, in: Proceedings of the Inter-
national Conference on the Implementation and Application of Automata,
Vol. 2759 of Lect. Notes in Comp. Sci., Springer-Verlag, 2003, pp. 11–22.

[13] R. Alur, S. L. Torre, Deterministic generators and games for LTL frag-
ments, ACM Trans. Comput. Log. 5 (1) (2004) 1–25.

[14] A. Harding, M. Ryan, P. Schobbens, A new algorithm for strategy synthesis
in LTL games, in: Tools and Algorithms for the Construction and the
Analysis of Systems, Vol. 3440 of Lect. Notes in Comp. Sci., Springer-
Verlag, 2005, pp. 477–492.

[15] B. Jobstmann, A. Griesmayer, R. Bloem, Program repair as a game, in:
Proc. of the 17th Int. Conf. on Computer Aided Verification, Vol. 3576 of
Lect. Notes in Comp. Sci., Springer-Verlag, 2005, pp. 226–238.

[16] E. Asarin, O. Maler, A. Pnueli, J. Sifakis, Controller synthesis for timed
automata, in: IFAC Symposium on System Structure and Control, Elsevier,
1998, pp. 469–474.

[17] Z. Manna, A. Pnueli, A hierarchy of temporal properties, in: Proc. 9th
ACM Symp. Princ. of Dist. Comp., 1990, pp. 377–408.

[18] Y. Kesten, N. Piterman, A. Pnueli, Bridging the gap between fair simula-
tion and trace inclusion, Inf. and Comp. 200 (1) (2005) 36–61.

[19] R. Bloem, H. N. Gabow, F. Somenzi, An algorithm for strongly connected
component analysis in n log n symbolic steps, Formal Methods in System
Design 28 (1) (2006) 37–56.

[20] A. Pnueli, In transition from global to modular temporal reasoning about
programs, Logics and Models of Concurrent Systems 13 (1985) 123–144.

[21] A. Ltd., AMBA specification (rev. 2), Available from www.arm.com (1999).

[22] B. Jobstmann, R. Bloem, Optimizations for LTL synthesis, in: Proc. of the
6th Int. Conf. on Formal Methods in Computer-Aided Design, IEEE, 2006,
pp. 117–124.

[23] S. Sohail, F. Somenzi, K. Ravi, A hybrid algorithm for LTL games, in:
Proc. of the 9th Int. Conf. on Verification, Model Checking, and Abstract
Interpretation, Vol. 4905 of Lect. Notes in Comp. Sci., Springer-Verlag,
2008, pp. 309–323.

[24] S. Sohail, F. Somenzi, Safety first: A two-stage algorithm for LTL games,
in: Proc. of the 9th Int. Conf. on Formal Methods in Computer-Aided
Design, IEEE, 2009, pp. 77–84.

44

[25] T. Henzinger, N. Piterman, Solving games without determinization, in:
Proc. of the 15th Annual Conf. of the European Association for Computer
Science Logic, Vol. 4207 of Lect. Notes in Comp. Sci., Springer-Verlag,
2006, pp. 394–410.

[26] A. Morgenstern, Symbolic controller synthesis for LTL specifications, Ph.D.
thesis, Universität Kaiserslautern (2010).

[27] O. Kupferman, M. Vardi, Safraless decision procedures, in: Proc. of the
46th IEEE Symp. on Foundations of Computer Science, 2005, pp. 531–542.

[28] O. Kupferman, N. Piterman, M. Vardi, Safraless compositional synthesis,
in: Proc. of the 18th Int. Conf. on Computer Aided Verification, Vol. 4144
of Lect. Notes in Comp. Sci., Springer-Verlag, 2006, pp. 31–44.

[29] S. Schewe, Bounded synthesis, in: Automated Technology for Verification
and Analysis, 2007, pp. 474–488.

[30] E. Filiot, N. Jin, J.-F. Raskin, An antichain algorithm for ltl realizability,
in: Proc. of the 21st Int. Conf. on Computer Aided Verification, Vol. 5643
of Lect. Notes in Comp. Sci., Springer-Verlag, 2009, pp. 263–277.

[31] C. Eisner, D. Fisman, A Practical Introduction to PSL, Springer-Verlag,
2006.

[32] Y. Kesten, A. Pnueli, Verification by augmented finitary abstraction, Inf.
and Comp. 163 (2000) 203–243.

[33] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize,
in: Proc. of the 31st IEEE Symp. Found. of Comp. Sci., 1990, pp. 746–757.

[34] D. Kozen, Results on the propositional µ-calculus, Theoretical Computer
Science 27 (1983) 333–354.

[35] E. A. Emerson, C. L. Lei, Efficient model-checking in fragments of the
propositional modal µ-calculus, in: Proc. of the 1st IEEE Symp. Logic in
Comp. Sci., 1986, pp. 267–278.

[36] D. Long, A. Brown, E. Clarke, S. Jha, W. Marrero, An improved algorithm
for the evaluation of fixpoint expressions, in: Proc. of the 6th Int. Conf.
on Computer Aided Verification, Vol. 818 of Lect. Notes in Comp. Sci.,
Springer-Verlag, 1994, pp. 338–350.

[37] M. Jurdziński, Small progress measures for solving parity games, in: Proc.
of the 17th Symp. on Theoretical Aspects of Computer Science, Vol. 1770
of Lect. Notes in Comp. Sci., Springer-Verlag, 2000, pp. 290–301.

[38] E. Emerson, Model checking and the µ-calculus, in: N. Immerman, P. Ko-
laitis (Eds.), Descriptive Complexity and Finite Models, American Mathe-
matical Society, 1997, pp. 185–214.

45

[39] O. Lichtenstein, Decidability, completeness, and extensions of linear time
temporal logic, Ph.D. thesis, Weizmann Institute of Science (1991).

[40] A. Pnueli, Y. Sa’ar, L. D. Zuck, JTLV : A framework for developing ver-
ification algorithms, in: Proc. of the 22nd Int. Conf. on Computer Aided
Verification, Vol. 6174 of Lect. Notes in Comp. Sci., Springer-Verlag, 2010,
pp. 171–174, web: http://jtlv.ysaar.net/.

[41] S. Juvekar, N. Piterman, Minimizing generalized Büchi automata, in: Proc.
of the 18th Int. Conf. on Computer Aided Verification, Vol. 4144 of Lect.
Notes in Comp. Sci., Springer-Verlag, 2006, pp. 45–58.

[42] R. Bloem, K. Chatterjee, K. Greimel, T. Henzinger, B. Jobstmann, Robust-
ness in the presence of liveness, in: Proc. of the 22nd Int. Conf. on Com-
puter Aided Verification, Vol. 6174 of Lect. Notes in Comp. Sci., Springer-
Verlag, 2010, pp. 410–424.

[43] R. Koenighofer, G. Hofferek, R. Bloem, Debugging formal specifications
using simple counterstrategies, in: Proc. of the 9th Int. Conf. on Formal
Methods in Computer-Aided Design, IEEE, 2009, pp. 152–159.

[44] J. H. Kukula, T. R. Shiple, Building circuits from relations, in: Proc. of the
12th Int. Conf. on Computer Aided Verification, Vol. 1855 of Lect. Notes
in Comp. Sci., Springer-Verlag, 2000, pp. 113–123.

[45] F. Somenzi, CUDD: CU Decision Diagram Package, University of Colorado
at Boulder, ftp://vlsi.colorado.edu/pub/.

[46] A. J. Hu, D. Dill, Reducing BDD size by exploiting functional dependencies,
in: Proc. of the Design Automation Conference, Dallas, TX, 1993, pp. 266–
271.

[47] Prosyd – Property-Based System Design, http://www.prosyd.org/, EU
grant 507219 (2004–2007).

[48] M. Abadi, L. Lamport, The existence of refinement mappings, Theoretical
Computer Science 82 (2) (1991) 253–284.

[49] F. Dederichs, R. Weber, Safety and liveness from a methodological point
of view, Information Processing Letters 36 (1) (1990) 25–30.

[50] M. Abadi, B. Alpern, K. R. Apt, N. Francez, S. Katz, L. Lamport, F. B.
Schneider, Preserving liveness: Comments on “safety and liveness from a
methodological point of view”, Information Processing Letters 40 (3) (1991)
141–142.

[51] Y. Kesten, A. Pnueli, L. Raviv, Algorithmic verification of linear temporal
logic specifications, in: Proc. of the 25th Int. Colloq. Aut. Lang. Prog., Vol.
1443 of Lect. Notes in Comp. Sci., Springer-Verlag, 1998, pp. 1–16.

46

[52] A. Pnueli, A. Zaks, On the merits of temporal testers, in: 25 Years of Model
Checking, Vol. 5000 of Lect. Notes in Comp. Sci., Springer-Verlag, 2008,
pp. 172–195.

[53] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Proc. of
the 16th ACM Symp. Princ. of Prog. Lang., 1989, pp. 179–190.

[54] B. L. Synthesis, V. Group, Abc: A system for sequential synthesis and
verification, release 61208., http://www.eecs.berkeley.edu/∼alanmi/abc/.

[55] Y. Godhal, K. Chatterjee, T. A. Henzinger, Synthesis of AMBA AHB from
formal specification, Tech. Rep. abs/1001.2811, CORR (2010).

[56] G. D. Hachtel, F. Somenzi, Logic Synthesis and Verification Algorithms,
Kluwer Academic Publishers, Boston, MA, 1996.

[57] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, A. Cimatti, Formal
analysis of hardware requirements, in: Proc. of the Design Automation
Conference, 2006, pp. 821–826.

[58] A. Cimatti, M. Roveri, V. Schuppan, A. Tchaltsev, Diagnostic informa-
tion for realizability, in: Proc. of the 9th Int. Conf. on Verification, Model
Checking, and Abstract Interpretation, Vol. 4905 of Lect. Notes in Comp.
Sci., Springer-Verlag, 2008, pp. 52–67.

[59] K. Chatterjee, T. Henzinger, B. Jobstmann, Environment assumptions for
synthesis, in: Int. Conf. on Concurrency Theory (CONCUR), Vol. 5201 of
Lect. Notes in Comp. Sci., Springer-Verlag, 2008, pp. 147–161.

[60] R. Bloem, K. Chatterjee, T. Henzinger, B. Jobstmann, Better quality in
synthesis through quantitative objectives, in: Proc. of the 21st Int. Conf.
on Computer Aided Verification, Vol. 5643 of Lect. Notes in Comp. Sci.,
Springer-Verlag, 2009, pp. 140–156.

[61] R. Bloem, K. Greimel, T. Henzinger, B. Jobstmann, Synthesizing robust
systems, in: Proc. of the 9th Int. Conf. on Formal Methods in Computer-
Aided Design, IEEE, 2009, pp. 85–92.

[62] A. Pnueli, U. Klein, Synthesis of programs from temporal property spec-
ifications, in: Proc. Formal Methods and Models for Co-Design (MEM-
OCODE), IEEE, 2009, pp. 1–7.

[63] M. Abadi, L. Lamport, P. Wolper, Realizable and unrealizable specifica-
tions of reactive systems, in: Proc. of the 16th Int. Colloq. Aut. Lang.
Prog., Vol. 372 of Lect. Notes in Comp. Sci., Springer-Verlag, 1989, pp.
1–17.

[64] A. Pnueli, E. Shahar, A platform for combining deductive with algorithmic
verification, in: Proc. of the 8th Int. Conf. on Computer Aided Verification,
Vol. 1102 of Lect. Notes in Comp. Sci., Springer-Verlag, 1996, pp. 184–195.

47

[65] R. Bloem, R. Cavada, I. Pill, M. Roveri, A. Tchaltsev, Rat: A tool for the
formal analysis of requirements, in: Proc. of the 19th Int. Conf. on Com-
puter Aided Verification, Vol. 4590 of Lect. Notes in Comp. Sci., Springer-
Verlag, 2007, pp. 263–267.

[66] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Koenighofer, M. Roveri,
V. Schuppan, R. Seeber, RATSY — a new requirements analysis tool with
synthesis, in: Proc. of the 22nd Int. Conf. on Computer Aided Verification,
Vol. 6174 of Lect. Notes in Comp. Sci., Springer-Verlag, 2010, pp. 425–429.

[67] H. Kress-Gazit, G. E. Fainekos, G. J. Pappas, Where’s waldo? sensor-based
temporal logic motion planning, in: Conf. on Robotics and Automation,
IEEE, 2007, pp. 3116–3121.

[68] D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, G. J. Pappas, Valet
parking without a valet, in: Conf. on Intelligent Robots and Systems, IEEE,
2007, pp. 572–577.

[69] H. Kress-Gazit, G. Fainekos, G. Pappas, From structured english to robot
motion, in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
IEEE, 2007, pp. 2717–2722.

[70] T. Wongpiromsarn, U. Topcu, R. M. Murray, Receding horizon temporal
logic planning for dynamical systems, in: Proc. of the 48th IEEE Conf. on
Decision and Control, IEEE, 2009, pp. 5997–6004.

[71] T. Wongpiromsarn, U. Topcu, R. M. Murray, Receding horizon control
for temporal logic specifications, in: Proc. of the 13th ACM Int. Conf. on
Hybrid Systems: Computation and Control, ACM, 2010, pp. 101–110.

[72] T. Wongpiromsarn, U. Topcu, R. M. Murray, Automatic synthesis of robust
embedded control software, in: In AAAI Spring Symposium on Embedded
Reasoning: Intelligence in Embedded Systems, 2010, pp. 104–110.

[73] H. Kugler, C. Plock, A. Pnueli, Controller synthesis from LSC require-
ments, in: Proc. Fundamental Approaches to Software Engineering, Vol.
5503 of Lect. Notes in Comp. Sci., Springer-Verlag, 2009, pp. 79–93.

[74] H. Kugler, I. Segall, Compositional synthesis of reactive systems from live
sequence chart specifications, in: Proc. of the 15th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, Vol. 5505 of Lect.
Notes in Comp. Sci., Springer-Verlag, 2009, pp. 77–91.

[75] S. Maoz, Y. Sa’ar, Aspectltl: an aspect language for ltl specifications, in:
Proc. of the 10th Int. Conf. on Aspect-Oriented Software Development,
ACM, 2011, pp. 19–30.

48

