
710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

Synthesis of Reversible Logic Circuits
Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayes, Fellow, IEEE

Abstract—Reversible or information-lossless circuits have ap-
plications in digital signal processing, communication, computer
graphics, and cryptography. They are also a fundamental require-
ment in the emerging field of quantum computation. We investi-
gate the synthesis of reversible circuits that employ a minimum
number of gates and contain no redundant input–output line-pairs
(temporary storage channels). We prove constructively that every
even permutation can be implemented without temporary storage
using NOT, CNOT, and TOFFOLI gates. We describe an algorithm
for the synthesis of optimal circuits and study the reversible func-
tions on three wires, reporting the distribution of circuit sizes. We
also study canonical circuit decompositions where gates of the same
kind are grouped together. Finally, in an application important
to quantum computing, we synthesize oracle circuits for Grover’s
search algorithm, and show a significant improvement over a pre-
viously proposed synthesis algorithm.

Index Terms—Circuit optimization, combinational logic circuits,
logic synthesis, quantum computing, reversible circuits.

I. INTRODUCTION

I N MOST computing tasks, the number of output bits is
relatively small compared with the number of input bits.

For example, in a decision problem, the output is only one bit
(yes or no) and the input can be as large as desired. However,
computational tasks in digital signal processing, communica-
tion, computer graphics, and cryptography require that all of
the information encoded in the input be preserved in the output.
Some of those tasks are important enough to justify adding
new microprocessor instructions to the HP PA-RISC (MAX
and MAX-2), Sun SPARC (VIS), PowerPC (AltiVec), IA-32,
and IA-64 (MMX) instruction sets [13], [18]. In particular,
new bit-permutation instructions were shown to vastly improve
performance of several standard algorithms, including matrix
transposition and DES, as well as two recent cryptographic
algorithms Twofish and Serpent [13]. Bit permutations are a
special case of reversible functions, that is, functions that per-
mute the set of possible input values. For example, the butterfly
operation is reversible but is not a
bit permutation. It is a key element of fast Fourier transform
algorithms and has been used in application-specific Xtensa
processors from Tensilica. One might expect to get further

Manuscript received September 22, 2002; revised January 10, 2003. This
work was sponsored in part by the Undergraduate Summer Research Program,
University of Michigan, Ann Arbor, and in part by the Defense Advanced Re-
search Projects Agency QuIST program. This paper was recommended by Guest
Editor S. Hassoun.

V. C. Shende, I. L. Markov, and J. P. Hayes are with the Advanced Computer
Architecture Laboratory, University of Michigan, Ann Arbor, MI 48109-2122
USA (vshende@umich.edu; imarkov@umich.edu; jhayes@umich.edu).

A. K. Prasad was with the Advanced Computer Architecture Laboratory, Uni-
versity of Michigan, Ann Arbor, MI 48109-2122 USA. He is now with Cerner
Corporation, Southfield, MI 48034 USA (email: akprasad@umich.edu).

Digital Object Identifier 10.1109/TCAD.2003.811448

speed-ups by adding instructions to allow computation of an
arbitrary reversible function. The problem of chaining such
instructions together provides one motivation for studying re-
versible computation and reversible logic circuits, that is, logic
circuits composed of gates computing reversible functions.

Reversible circuits are also interesting because the loss of in-
formation associated with irreversibility implies energy loss [2].
Younis and Knight [22] showed that some reversible circuits
can be made asymptotically energy-lossless as their delay is al-
lowed to grow arbitrarily large. Currently, energy losses due to
irreversibility are dwarfed by the overall power dissipation, but
this may change if power dissipation improves. In particular,
reversibility is important for nanotechnologies where switching
devices with gain are difficult to build.

Finally, reversible circuits can be viewed as a special case of
quantum circuits because quantum evolution must be reversible
[14]. Classical (nonquantum) reversible gates are subject to
the same “circuit rules,” whether they operate on classical
bits or quantum states. In fact, popular universal gate libraries
for quantum computation often contain as subsets universal
gate libraries for classical reversible computation. While the
speed-ups which make quantum computing attractive are not
available without purely quantum gates, logic synthesis for
classical reversible circuits is a first step toward synthesis of
quantum circuits. Moreover, algorithms for quantum com-
munications and cryptography often do not have classical
counterparts because they act on quantum states, even if their
action in a given computational basis corresponds to classical
reversible functions on bit-strings. Another connection be-
tween classical and quantum computing comes from Grover’s
quantum search algorithm [6]. Circuits for Grover’s algorithm
contain large parts consisting of NOT, CNOT, and TOFFOLI
gates only [14].

We review existing work on classical reversible circuits.
Toffoli [20] gives constructions for an arbitrary reversible or
irreversible function in terms of a certain gate library. However,
his method makes use of a large number of temporary storage
channels, i.e., input–output wire-pairs other than those on
which the function is computed (also known as ancilla bits).
Sasao and Kinoshita show that any conservative function [
is conservative if and always contain the same number
of 1’s in their binary expansions] has an implementation with
only three temporary storage channels using a certain fixed
library of conservative gates, although no explicit construction
is given [16]. Kerntopf uses exhaustive search methods to
examine small-scale synthesis problems and related theoretical
questions about reversible circuit synthesis [9]. There has also
been much recent work on synthesizing reversible circuits that
implement nonreversible Boolean functions on some of their
outputs, with the goal of providing the quantum phase shift

0278-0070/03$17.00 © 2003 IEEE

SHENDEet al.: SYNTHESIS OF REVERSIBLE LOGIC CIRCUITS 711

operators needed by Grover’s quantum search algorithm [8],
[12], [21]. Some work on local optimization of such circuits
via equivalences has also been done [8], [12]. In a different
direction, group theory has recently been employed as a tool to
analyze reversible logic gates [19] and investigate generators
of the group of reversible gates [5].

Our paper pursues synthesis of optimal reversible circuits
which can be implemented without temporary storage chan-
nels. In Section III, we show by explicit construction that any
reversible function which performs an even permutation on
the input values can be synthesized using the CNTS (CNOT,
NOT, TOFFOLI, and SWAP) gate library and no temporary
storage. An arbitrary (possibly odd) permutation requires, at
most, one channel of temporary storage for implementation.
By examining circuit equivalences among generalized CNOT
gates, we derive a canonical form for CNT-circuits. In Sec-
tion IV, we present synthesis algorithms for implementing
any reversible function by an optimal circuit with gates from
an arbitrary gate library. Besides branch-and-bound, we use
a dynamic programming technique that exploits reversibility.
While we use gate count as our cost function throughout, this
method allows for many different cost functions to be used.
Applications to quantum computing are examined in Section V.

II. BACKGROUND

In conventional (irreversible) circuit synthesis, one typically
starts with a universal gate library and some specification of a
Boolean function. The goal is to find a logic circuit that imple-
ments the Boolean function and minimizes a given cost metric,
e.g., the number of gates or the circuit depth. At a high level, re-
versible circuit synthesis is just a special case in which no fanout
is allowed and all gates must be reversible.

A. Reversible Gates and Circuits

Definition 1: A gate is reversible if the (Boolean) function it
computes is bijective.

If arbitrary signals are allowed on the inputs, a necessary con-
dition for reversibility is that the gate have the same number of
input and output wires. If it has input and output wires, it is
called a gate, or a gate on wires. We will think of the

th input wire and the th output wire as really being the same
wire. Many gates satisfying these conditions have been exam-
ined in the literature [15]. We will consider a specific set defined
by Toffoli [20].

Definition 2: A -CNOT is a gate. It leaves
the first inputs unchanged, and inverts the last if and only if
all others are 1. The unchanged lines are referred to as control
lines.

Clearly, the -CNOT gates are all reversible. The first three
of these have special names. The zero-CNOT is just an inverter
or NOT gate, and is denoted by N. It performs the operation

, where denotesXOR. The one-CNOT, which
performs the operation is referred to as
a Controlled-NOT [7], or CNOT (C). The two-CNOT is nor-
mally called a TOFFOLI (T) gate, and performs the operation

. We will also be using another re-
versible gate, called the SWAP (S) gate. It is a 22 gate which

Fig. 1. 3� 3 reversible circuit with two T gates and two N gates.

Fig. 2. Truth table for the circuit in Fig. 1.

exchanges the inputs; that is, . One reason for
choosing these particular gates is that they appear often in the
quantum computing context, where no physical “wires” exist,
and swapping two values requires nontrivial effort [14]. We will
be working with circuits from a given, limited-gate library. Usu-
ally, this will be the CNTS gate library, consisting of the CNOT,
NOT, and TOFFOLI, and SWAP gates.

Definition 3: A well-formed reversible logic circuit is an
acyclic combinational logic circuit in which all gates are re-
versible, and are interconnected without fanout.

As with reversible gates, a reversible circuit has the same
number of input and output wires; again we will call a reversible
circuit with inputs an circuit, or a circuit on wires.
We draw reversible circuits as arrays of horizontal lines repre-
senting wires. Gates are represented by vertically-oriented sym-
bols. For example, in Fig. 1, we see a reversible circuit drawn
in the notation introduced by Feynman [7]. Thesymbols rep-
resent inverters and thesymbols represent controls. A vertical
line connecting a control to an inverter means that the inverter
is only applied if the wire on which the control is set carries a
1 signal. Thus, the gates used are, from left to right, TOFFOLI,
NOT, TOFFOLI, and NOT.

Since we will be dealing only with bijective functions, i.e.,
permutations, we represent them using the cycle notation where
a permutation is represented by disjoint cycles of variables. For
example, the truth table in Fig. 2 is represented by (2,3)(6,7)
because the corresponding function swaps 010 (2) and 011 (3),
and 110 (6) and 111 (7). The set of all permutations ofindexes
is denoted , so the set of bijective functions with binary
inputs is . We will call (2,3)(6,7) CNT-constructible since
it can be computed by a circuit with gates from the CNT gate
library. More generally:

Definition 4: Let be a (reversible) gate library. An-cir-
cuit is a circuit composed only of gates from. A permuta-
tion is -constructible if it can be computed by an

-circuit.
Fig. 3(a) indicates that the circuit in Fig. 1(a) is equivalent to

one consisting of a single C gate. Pairs of circuits computing the
same function are very useful, since we can substitute one for
the other. On the right, we see similarly that three C gates can

712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

Fig. 3. Reversible circuit equivalences (a)T � N � T � N = C and
(b)C � C � C = S ; subscripts identify “control bits” while superscripts
identify bits whose values actually change.

Fig. 4. CircuitC with n� k wiresY of temporary storage.

be used to replace the S gate appearing in the middle circuit of
Fig. 3(b). If allowed by the physical implementation, the S gate
may itself be replaced with a wire swap. This, however, is not
possible in some forms of quantum computation [14]. Fig. 3,
therefore, shows us that the C and S gates in the CNTS gate
library can be removed without losing computational power. We
will still use the CNTS gate library in synthesis to reduce gate
counts and potentially speed up synthesis. This is motivated by
Fig. 3, which shows how to replace four gates with one C gate,
and, thus, up to 12 gates with one S gate.

Fig. 4 illustrates the meaning of “temporary storage” [20].
The top lines transfer signals, collectively des-
ignated , to the corresponding wires on the other side of the
circuit. The signals are arbitrary in the sense that the circuit

must assume nothing about them to make its computation.
Therefore, the output on the bottomwires must be only a
function of their input values and not of the “ancilla” bits

, hence, the bottom output is denoted . While the signals
must leave the circuit holding the same values they entered

it with, their values may be changed during the computation as
long as they are restored by the end. These wires usually serve
as an essential workspace for computing . An example of
this can be found in Fig. 3(a): the C gate on the right needs two
wires, but if we simulate it with two N gates and two T gates,
we need a third wire. The signal applied to the top wire emerges
unaltered.

Definition 5: Let be a reversible gate library. Then,is
universal if for all and all permutations , there exists
some such that some-constructible circuit computesusing

wires of temporary storage.
The concept of universality differs in the reversible and ir-

reversible cases in two important ways. First, we do not allow
ourselves access to constant signals during the computation, and
second, we synthesize whole permutations rather than just func-
tions with one output bit.

B. Prior Work

It is a result of Toffoli’s that the CNT gate library is universal;
he also showed that one can bound the amount of temporary
storage required to compute a permutation in by .

Indeed, much of the reversible and quantum circuit literature
allows the presence of polynomially many temporary storage
bits for circuit synthesis. Given that qubits are a severely limited
resource in current implementation technologies, this may not
be a realistic assumption. We are, therefore, interested in trying
to synthesize permutations using no extra storage. To illustrate
the limitations this puts on the set of computable permutations,
suppose we restrict ourselves to the C gate library. The following
results are well known in the quantum circuits literature [3],
[15]. We provide proofs both for completeness and to accustom
the reader to techniques we will require later.

Definition 6: A function is linear if
and only if , where denotes bitwise
XOR.

This is just the usual definition of linearity where we think of
as a vector space over the two-element field. In our

paper, because of reversibility. Thus,can be thought
of as a square matrix over . The composition of two linear
functions is a linear function.

Lemma 7: [3] Every C-constructible permutation computes
an invertible linear transformation. Moreover, every invertible
linear transformation is computable by a C-constructible circuit.
No C-circuit requires more than gates.

Proof: To show that all C-circuits are linear, it suffices to
prove that each C gate computes a linear transformation. Indeed,

. In the basis
, , , , a C gate with the control on theth

wire and the inverter on theth applied to an arbitrary vector will
add the th entry to the th. Thus, the matrices corresponding to
individual C gates account for all the elementary row-addition
matrices. Any invertible matrix in can be written as
a product of these. Thus, any invertible linear transformation
can be computed by a C-circuit. Finally, any matrix over
may be row-reduced to the identity using fewer thanrow
operations.

One might ask how inefficient the row-reduction algorithm is
in synthesizing C-circuits. A counting argument can be used to
find asymptotic lower bounds on the longest circuits [17].

Lemma 8: Let be a gate library; let be the set
of -constructible permutations on wires, and let be the
cardinality of . Then, the longest gate-minimal-circuit on
wires has more than gates, where is the number
of one-gate circuits on wires. , so for large ,
worst case circuits have length .

Proof: Suppose the longest gate-minimal-circuit has
gates. Then every permutation in is computed by an

-circuit of, at most, gates. The number of such circuits
is . Therefore, , and it follows that

.

Finally, let G be a gate in with the largest number of inputs,
say . Then, on wires, there are, at most,

ways to make a 1-gate circuit using G. Ifhas gates
in total, then . Hence,

.
We now need to count the number of C-constructible permu-

tations. On two wires, there are six, corresponding to the six
circuits in Fig. 5.

SHENDEet al.: SYNTHESIS OF REVERSIBLE LOGIC CIRCUITS 713

Fig. 5. Optimal C-circuits for C-constructible permutations on two wires.

Corollary 9: [17] has C-constructible
permutations. Therefore, worst case C-circuits require

gates.
Proof: A linear mapping is fully defined by its values on

basis vectors. There are ways of mapping the -bit
string . Once we have fixed its image, there are

ways of mapping , and so on. Each basis bit-string
cannot map to the subspace spanned by the previous bit-strings.
There are choices for theth basis bit-string. Once all
basis bit-strings are mapped, the mapping of the rest is specified
by linearity. The number of C-constructible permutations on
wires is greater than . By Lemma 8, worst case C-circuits
require gates.

Let us return to CNT-constructible permutations. A result
similar to Lemma 7 requires Definition 10.

Definition 10: A permutation is called even if it can be
written as the product of an even number of transpositions. The
set of even permutations in is denoted .

It is well known that if a permutation can be written as the
product of an even number of transpositions, then it may not
be written as the product of an odd number of transpositions.
Moreover, half the permutations in are even for .

Lemma 11: [20] Any circuit with no gates com-
putes an even permutation.

Proof: It suffices to prove this for a circuit consisting of
only one gate, as the product of even permutations is even. Let

be a gate in an circuit. By hypothesis, is not
, so there must be at least one wire which is unaffected by
. Without loss of generality, let this be the high-order wire.

Then , and implies
. Thus, every cycle in the cycle decomposition of

appears in duplicate: once with numbers less than , and
once with the corresponding numbers with their high-order bits
set to one. But these cycles have the same length, and so their
product is an even permutation. Therefore,is the product of
even permutations, and, hence, is even.

To illustrate this result, consider the following example.
A 2 2 circuit consisting of a single S gate performs the
permutation (1,2), as the inputs 01 and 10 are interchanged, and
the inputs 00 and 11 remain fixed. This permutation consists
of one transposition, and is, therefore, odd. On the other hand,
in a 3 3 circuit, one can check that a swap gate on the
bottom two wires performs the permutation (1,2)(5,6), which
is even.

III. T HEORETICAL RESULTS

Since the CNTS gate library contains no gates of size greater
than three, Lemma 11 implies that every CNTS-constructible
(without temporary storage) permutation is even for . The
main result of this section is that the converse is also true.

Fig. 6. CircuitsN for i < 8. The superscript is interpreted as a binary
number, whose nonzero bits correspond to the location of inverters.

Theorem 12:Every even permutation is CNT-constructible.
Before beginning the proof, we offer the following two corol-

laries. These give a way to synthesize circuits computing odd
permutations using temporary storage, and also extend Theorem
12 to an arbitrary universal gate library.

Corollary 13: Every permutation, even or odd, may be com-
puted in a CNT-circuit with, at most, one wire of temporary
storage.

Proof: Suppose we have an gate G computing
, and we place it on the bottomwires of an

reversible circuit; let be the permutation computed by this new
circuit. Then, by Lemma 11, is even. By Theorem 12, is
the CNT-constructible. Let C be a CNT-circuit computing. C
computes with one line of temporary storage.

Corollary 14: For any universal gate library and suffi-
ciently large , permutations in are -constructible, and
those in are realizable with, at most, one wire of temporary
storage.

Proof: Since is universal, there is some numbersuch
that we can compute the permutations corresponding to the
NOT, CNOT, and TOFFOLI gates using a total ofwires.
Let , and let . By Theorem 12, we can find a
CNT-circuit C computing , and can replace every N, C, or
T gate with a circuit computing it. The second claim follows
similarly from Theorem 12 and Corollary 13.

To prove Theorem 12, we begin by asking which permuta-
tions are C-, N-, and T-constructible. The first of these questions
was answered in Section II. We now summarize the properties
of N-constructible permutations. In what follows,denotes bit-
wise XOR.

Definition 15: Given an integer, we denote by the cir-
cuit formed by placing an N gate on every wire corresponding
to a 1 in the binary expansion of.

We will use to signify both the circuit described above,
and the permutation which this circuit computes. Technically,
the latter is not uniquely determined by the notation, but also
depends on the numberof wires in the circuit; however, will
always be clear from context. The notation is illustrated for
the case of three wires in Fig. 6.

Lemma 16: Let be N-constructible. There exists an
such that . Moreover, the gate-minimal circuit for
is . There are N-constructible permutations in .

Proof: Clearly, computes the permutation
. It now suffices to show that an arbitrary N-circuit may be re-

duced to one of the circuits. Any pair of consecutive N gates
on the same wire may be removed without changing the per-
mutation computed by the circuit. Applying this transformation
until no more gates can be removed must leave a circuit with, at
most, one N gate per wire; that is, a circuit of the form.

714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

A. T-Constructible Permutations

Characterizing the T-constructible permutations is more diffi-
cult. We will begin by extending the notation defined above.

Definition 17: Let be an N-circuit as defined above. Let
be an integer such that the bitwise Boolean product .

Let there be 1’s in the binary expansion of, and in the
binary expansion of . Define to be the reversible circuit
composed of -CNOT gates, with control bits on the wires
specified by the binary expansion of, and inverters as specified
by the binary expansion of. performs if and only if the
wires specified by have the value 1.

In a 3 3 circuit, there are three possible T gates, namely
, , and . They compute the permutations (6,7), (5,7),

(3,7), respectively. By composing these three transpositions in
all possible ways, we may form all 24 permutations of 3,5,6,7.
These are precisely the nonnegative integers less than 8 which
are not of the form 0 or . Clearly, no T gate can affect an input
with fewer than two 1’s in its binary expansion.

Lemma 18: Every T-circuit fixes 0 and for all .
For T-circuits, , there is an added restriction. As

T gates are 3 3, there can be no gates in the circuit, so by
Lemma 11, the circuit must compute an even permutation. On
the other hand, we will show that these are the only restrictions
on T-constructible permutations. We will do this by choosing an
arbitrary even permutation, and then giving an explicit construc-
tion of a circuit which computes it using no temporary storage.
The first step is to decompose the permutation into a product of
pairs of disjoint transpositions.

Lemma 19: For , any even permutation in may
be written as the product of pairs of disjoint transpositions. If a
permutation moves indexes, it may be decomposed into no
more than pairs of transpositions.

Proof: By a pair of disjoint transpositions,
we mean something of the form
where , , , and are distinct. For ,

.
Now, are disjoint, iteratively applying
this decomposition process will convert an arbitrary cycle
into a product of pairs of disjoint transpositions with a final
two-cycle or three-cycle. transpositions possibly followed by a
single transposition, a three-cycle or both.

Consider an arbitrary permutation ,
where are the disjoint cycles in its cycle de-
composition. As shown above, we may rewrite this as

, where the are pairs of
disjoint transpositions, the are transpositions, and the

are 3-cycles. As the come from pairwise disjoint
cycles, they must in turn be pairwise disjoint. Moreover,
there must be an even number of them aswas as-
sumed to be even, and the and are all even. Pairing
up the arbitrarily leaves an expression of the form

. Again, the are pairwise dis-
joint. Note that ;
we may, therefore, rewrite any pair of disjoint three-cycles
as two pairs of disjoint transpositions. Iterating this process
leaves, at most, one three-cycle, (, ,). Since we are working

in for , there are at least two other indexes,, .
Using these, we have .

A careful count of transposition pairs gives the bound
in the statement of the lemma. This bound is tight in the

case of a permutation consisting of a single cycle.
By Lemma 19, it suffices to show that we may construct a

circuit for an arbitrary disjoint transposition pair. We begin with
an important special case. Onwires, a gate computes
the permutation , which
may be implemented by T gates [1, Corollary 7.4].

Lemma 20: On wires, the permutation
is T-constructible.

Consider now an arbitrary disjoint transposition pair,
. Given a permutation with the property

, , , , we have
, where is the permutation in Lemma 20. We

have a circuit which computes . Given a circuit that computes
, we may obtain a circuit computing by reversing it. We

now construct a circuit computing.
Lemma 21: Suppose , and . Further

suppose that none of, , , is 0, or of the form . Then
there exists a T-constructible permutationwith the property

, , , ,
computable by a circuit of no more than T gates.

Proof: To simplify notation, set and
. Now, we construct in five stages. First, we build a

permutation such that . Then, we build
such that , and .
Similarly, will fix and , while

, and will fix , , while
. Finally, we build a circuit that maps

, , ,
and .

By hypothesis, is not zero, nor of the form . This means
that has at least two 1 s in its binary expansion, say in positions

and . Apply T gates with controls on positions and to
set the second andth bits. More precisely, let ,
apply a if and only if has a 0 in the th bit and
if and only if has a 0 in the second bit. Now, apply T gates with
the controls on the th and second bits to set the remaining bits
to zero. Let be the permutation computed by the circuit given
above.

must again have two nonzero bits in its binary expan-
sion; since implies , some nonzero bit of

lies on neither the th nor the second wire. Controlling
by this and another bit, use the techniques of the previous para-
graph to build a circuit taking . By construction,
this fixes ; let the permutation computed by this circuit
be .

Consider now the nonzero bits of . Again,
since , , we have , . Therefore, there
must be at least one bit in whichdiffers from . This bit
could be the th or the second bit, and could have a zero in
this position. However, as is guaranteed to have at least two
nonzero bits, there must be some other bit which is 1 inand
0 in . Similarly, there must be some bit which is 1 in
and 0 in . Controlling by these two bits (or, if they are the

SHENDEet al.: SYNTHESIS OF REVERSIBLE LOGIC CIRCUITS 715

same bit, by this bit and any other bit which is 1 in), we may
use the above method to set .

Next, consider the nonzero bits of . First,
suppose there are two which are not on theth wire. Control-
ling by these can take without affecting any of the
other values, as none of , , have 1’s in both
these positions. If there are no two 1’s in the binary expansion
of which both lie off the th wire, there can be, at most, two
1’s in the binary expansion, one of which lies on theth wire.
Since , the second must lie on some wire which is not
the zeroth, first, or second; in this case we may again control
by these two bits to take without affecting other
values.

Finally, apply and gates, and then a
circuit. The reader may verify that this completes stage 5. Each
of the first four stages takes, at most,T gates, as we flip, at
most, bits in each. The final stage uses exactly T gates.

We now have a key result to prove.
Theorem 22:Every T-constructible permutation in fixes

zero and for all , and is even if . Conversely, every
permutation of this form is T-constructible. A T-constructible
permutation which moves indexes requires, at most,

T gates. There are ! T-constructible
permutations in .

Proof: We have already dealt with the case ;
hence, suppose . The first statement follows directly
from Lemmas 11 and 18. Now, let be an arbitrary
even permutation fixing zero, . Use the method of Lemma
19 to decompose into pairs of disjoint transpositions which
fix zero, . We are justified in using Lemma 19 because, for

, there are at least five numbers between zero and
which are not of the form zero or . Finally, using the circuits
implied by Lemmas 20 and 21, we may construct circuits
for each of these transposition pairs. Chaining these circuits
together gives a circuit for the permutation. Collecting the
length bounds of the various lemmas cited gives the length
bound in the theorem. The final claim then follows.

B. Circuit Equivalences

Given a (possibly long) reversible circuit to perform a spec-
ified task, one approach to reducing the circuit size is to per-
form local optimizations using circuit equivalences. The idea
is to find subcircuits amenable to reduction. This direction is
pursued in a paper by Iwamaet al. [8], which examines circuit
transformation rules for generalized-CNOT circuits which only
alter one bit of the circuit. In their scenario, other bits may be
altered during computation, so long as they are returned to their
initial state by the end of the computation. We present a more
general framework for deriving equivalences, from which many
of the equivalences from [8] follow as special cases. First, let us
introduce notation to better deal with control bits.

Definition 23: Let be a reversible gate that only affects
wires corresponding to the 1’s in the binary expansion of(as
in an gate). Let the bitwise Boolean product . Then
define as the gate which computes if and only if the
wires specified by all carry a 1.

In particular, , and .
Addition, multiplication, etc., of lower indexes will always be
taken to be bitwise Boolean, with, , representingOR, AND,
andXOR, respectively. We denote the bitwise complement of
as .

Lemma 24: Let be an reversible circuit
such that , and
let be the function defined by

. Then is a well-de-
fined permutation in , and if is a circuit computing ,
then .

Proof: , by hypothesis, permutes the inputs with a
leading 0 amongst themselves. By reversibility, it must permute
inputs with a leading 1 amongst themselves as well.

Definition 25: The commutator of permutations and ,
denoted , is .

The commutator concept is useful for moving gates past
each other since . Moreover, it has reasonable
properties with respect to control bits as the following result
indicates.

Corollary 26:

Proof: The corollary provides a circuit equivalent to the
commutator of two given gates with arbitrary control bits.
Namely, such a circuit can be constructed in two steps. First,
identify wires which act as control for one gate but are not
touched by the other gate. Second, connect the latter gate to
every such wire so that the wire controls the gate.

By induction, it suffices to show that this procedure can be
done to one such wire. Without loss of generality, suppose con-
trol bits and only control bits appear on the first wire. Then
the input to this wire goes through the circuit unchanged. At
least one of the two gates whose commutator is being computed
must, by hypothesis, be controlled by the first wire. Therefore,
on an input of zero to the first wire, this gate (and, therefore, its
inverse) leaves all signals unchanged. Since the other gate ap-
pears along with its inverse, the whole circuit leaves the input
unchanged. Our result now follows from Lemma 24.

If we are computing the commutator of generalized CNOT
gates, then we may pick , to be single inverters ,
with , having only a single 1 apiece in their binary expansions.
Then we must have or , and or . The four
cases are accounted for as follows:

Lemma 27: Let , have only a single 1 apiece in their binary
expansions. Then
, and .

Proof: As these equivalences all involve only 2-bit cir-
cuits, we may check them for , by evaluating both
sides of each equivalence on each of four inputs.

C. and Constructible Permutations

While an arbitrary CNT-circuit may have the C, N, and T
gates interspersed arbitrarily, we first consider circuits in which
these gates are segregated by type.

Definition 28: For any gate libraries , a
-circuit is an -circuit followed by an -cir-

716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

(a) (b)

Fig. 7. Equivalences between reversible circuits used in our constructions.

cuit, , followed by an -circuit. A permutation computed
by an -circuit is -constructible.

A CNT-circuit with all N gates appearing at the right end is
called a circuit.

Theorem 29:Let be CNT-constructible. Then is also
-constructible. Moreover, uniquely determines the per-

mutations and computed by the CT and N subcircuits,
respectively.

Proof: We move all the N gates toward the outputs of the
circuit. Each box in Fig. 7(a) indicates a way of replacing an

circuit with a circuit. The equivalences in this
figure come from Corollary 26. Moreover, every possible way
for an N gate to appear to the immediate left of a C or a T is ac-
counted for, up to permutating the input and output wires. Now,
number the non-N gates in the circuit in a reverse topological
order starting from the outputs. In particular, if two gates appear
at the same level in a circuit diagram, they must be independent,
and one can order them arbitrarily. Letbe the number of the
highest-numbered gate with an N gate to its immediate left. All
N gates past theth gate can be reordered with the gate
without introducing new N gates on the other side of, and
without introducing new gates between the N gates and the out-
puts. In any event, as there are no remaining N gates to the left
of , decreases. This process terminates when all the N gates
are clustered together at the circuit outputs. If we always cancel
redundant pairs of N gates, then no more than two new gates
will be introduced for each noninverter originally in the circuit;
additionally, there will be, at most, N gates when the process
is complete. Thus, if the original circuit hadgates, then the
new circuit has, at most, gates. Note that C and T
gates (and, hence, CT-circuits) fix 0. Thus, , so

, and .
Thus, if we want a CNT-circuit computing a permutation,

we can quickly compute , then simplify the problem to that
of finding a CT-circuit for . By Theorem 29, we know that
a minimal-gate circuit of this form has roughly three times as
many gates as the gate-minimal circuit computing.

The next natural question is whether an arbitrary CT-circuit
is equivalent to some circuit. The equivalences in Fig. 7(b)
suggest that the answer is yes. However, the proof of Theorem
29 requires that many N gates be able to simultaneously move
past a C or T gate, while Fig. 7 only shows how to move a single
C gate past a single T gate.

Lemma 30: The permutation , computed by a -circuit,
determines the permutations and computed by the sub-
circuits. An even permutation is TC-constructible if and only if
it fixes 0 and the images of inputs of the form are linearly
independent over .

Proof: Let be an arbitrary permutation. If is -con-
structible, then images of the inputsare unaffected by the T
subcircuit; by Lemma 7, they must be mapped to linearly inde-
pendent values by the C subcircuit. This mapping of basis vec-
tors completely specifies the permutationcomputed by the
C subcircuit, and, therefore, also the permutation
computed by the T subcircuit. Conversely, supposeis even
and fixes 0, and the images ofare linearly independent. Then,
there is some C-circuit taking the valuesto their images under

. Let it compute the permutation ; then, fixes the
values 0 and by construction. Theorem 22, therefore, guar-
antees that is T-constructible.

We will later use this result to show the existence of CT-con-
structible permutations which are not constructible.

D. -Constructible Permutations

With the results of the previous two subsections, we are now
ready to prove Theorem 12. According to Lemma 20, zero-
fixing even permutations are -constructible if they map in-
puts of the form in a certain way. This suggests that -cir-
cuits account for a relatively large fraction of such permutations.

Theorem 31:Every zero-fixing permutation in and every
zero-fixing even permutation in for is -con-
structible, and, hence, is CT-constructible. None requires more
than C gates and T gates.

Proof: Let be any zero-fixing permutation. Note that if
the images of under were linearly independent, Lemma 20
would imply that was constructible. So, we will build a
permutation with the property that the images of under

are linearly independent, ensuring that is -con-
structible. Given a -circuit for and a T-circuit for ,
we can reverse the circuit for and append it to the end of the

-circuit for to give at -circuit for . All that re-
mains is to show we can build one such.

The basis vectors must be mapped either to themselves,
to other basis vectors, or to vectors with at least two 1’s. Let

be the indexes of basis vectors which are not the im-
ages of other basis vectors, and let be the indexes of
basis vectors whose images have at least two 1 s. Let
and be the indexes which are not in the and ,
respectively. Consider the matrix in which the th column
is the binary expansion of . We take the entries of to
be elements of . Our indexing system divides into four
submatrices; , , , and . By
construction, and are square, is a
permutation matrix, and is a zero matrix. Therefore,

, and is invertible if and only if

SHENDEet al.: SYNTHESIS OF REVERSIBLE LOGIC CIRCUITS 717

is. Moreover, there is an invertible linear transforma-
tion, computable by column reduction, which zeroes out the ma-
trix without affecting or . As this
transformation is invertible, it corresponds to a permutation

, and the matrix is the matrix of images of under the
permutation . In particular, the columns of must all
be different, which implies that the columns of must all
be different. Moreover, is linear and is, therefore, zero-fixing;
hence, can have no zero columns. Taken together, these
facts imply that for , is invertible, hence, so is

, thus, is -constructible.
Suppose , and consider the family of matrices de-

fined as follows. is a matrix with 1’s on the diagonal,
1’s in the first row, and 1’s in the first column, except possibly
in the (1,1) entry, which is one if and only if is odd. Row re-
ducing the to lower triangular matrices quickly shows that
the are invertible for all . Moreover, for , there are
at least two 1’s in every column. Therefore, there is a T-con-
structible permutation such that . Thus,

is -constructible, and is constructible.
Finally, we know from Corollary 9 that no more than

gates are necessary to compute. At most, 2 indexes need
be moved by , and no more than can be moved
by the T-constructible part of. Thus, by Theorem 22, we need
no more than gates for and no more than

gates for . Adding these gives the gate-count
estimate above.

Corollary 32: There exist -constructible permutations
which are not -constructible.

Proof: The permutation fixes 0 and is
even and, hence, is -constructible in for all
by Theorem 31. However, ,
hence, by Lemma 20, is not -constructible.

Theorem 33:Every permutation in for , 2, 3 and
every even permutation in for is -con-
structible, and, hence, CNT-constructible. None requires more
than C gates, N gates, and 3 T gates.

Proof: Let be any permutation; then,
fixes 0. For , must be the identity; for 2 per-
mutes 1,2,3, any such permutation is linear, hence,is C-con-
structible. For , is -constructible; for ,
is -constructible if and only if it is even, which happens if
and only if is even. Thus, in all cases there is a -circuit,

computing ; then is a -circuit computing
.
We note that the size of a truth table for a circuit within-

puts and outputs is 2 bits. The synthesis procedure used
in the theorems above clearly runs in time proportional to the
number of gates in the final circuit. This is 2 , hence, the
synthesis procedure detailed in the theorems has linear runtime
in the input size.

Just as in Corollary 9, we may ask how far from optimal
the foregoing construction is for long circuits. There are
even permutations in , and these are all CNT-constructible.
Using Stirling’s approximation, , and Lemma
8 gives:

Corollary 34: Worst case CNT-circuits on wires require
2 gates.

So, for long CNT-circuits, the algorithm implied by The-
orem 33 is asymptotically suboptimal by, at worst, a logarithmic
factor, as it produces circuits of length 2 . This is remark-
ably similar to the result of Corollary 9, in which we found that
using row reduction to build C-circuits is asymptotically subop-
timal by a logarithmic factor in the case of long C-circuits. How-
ever, even a constant improvement in size is very desirable, and
circuits for practical applications are almost never of the worst
case type considered in Corollaries 9 and 34.

IV. OPTIMAL SYNTHESIS

We will now switch focus, and seek optimal realizations for
permutations we know to be CNT-constructible. A circuit is op-
timal if no equivalent circuit has smaller cost; in our case, the
cost function will be the number of gates in the circuit.

Lemma 35: (Property of Optimality) If is a subcircuit of
an optimal circuit , then is optimal.

Proof: Suppose not. Then let be a circuit with fewer
gates than , but computing the same function. If we replace

by , we get another circuit which computes the same
function as . But since we have only modified, must be as
much smaller than as is smaller than . was assumed to
be optimal, hence, this is a contradiction. (Note that equivalent,
optimal circuits can have the same number of gates.)

The algorithm detailed in this section relies entirely on the
property of optimality for its accuracy. Therefore, any cost
function for which this property holds may, in principle, be
used instead of gate count.

Lemma 35 allows us to build a library of small optimal cir-
cuits by dynamic programming because the firstgates of an
optimal -gate circuit form an optimal subcircuit. There-
fore, to examine all optimal -gate circuits, we iterate
through optimal -gate circuits and add single gates at the end
in all possible ways. We then check the resulting circuits against
the library, and eliminate any which are equivalent to a smaller
circuit. In fact, instead of storing a library of all optimal cir-
cuits, we store one optimal circuit per synthesized permutation
and also store optimal circuits of a given size together.

One way to find an optimal circuit for a given permutation
is to generate all optimal-gate circuits for increasing values of

until a circuit computing is found. This procedure requires
memory in the worst case (is the number of wires)

and may require more memory than is available. Therefore, we
stop growing the circuit library at -gate circuits, when hard-
ware limitations become an issue. The second stage of the algo-
rithm uses the computed library of optimal circuits and, in our
implementation, starts by reading the library from a file. Since
little additional memory is available, we trade off runtime for
memory.

We use a technique known as depth-first search with iterative
deepening (DFID) [10]. After a given permutation is checked
against the circuit library, we seek circuits with
gates that implement this permutation. If none are found, we
seek circuits with gates, etc. This algorithm, in gen-
eral, needs an additional termination condition to prevent infi-
nite looping for inputs which cannot be synthesized with a given
gate library. For each, we consider all permutations optimally
synthesizable in gates. For each such permutation, we mul-
tiply by and recursively try to synthesize the result using

718 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

Fig. 8. Finding a circuit of cost�COST that computes permutation
PERM (NIL returned if no such circuit exists). TEMP_CCT and records in
LIB represent circuits, and include a field “perm” storing the permutation
computed. The� character means both multiplication of permutations and
concatenation of circuits, andNIL hanythingi = NIL.

gates. When , this can be done by checking
against the existing library. Otherwise, the recursion depth in-
creases. Pseudocode for this stage of our algorithm is given in
Fig. 8.

In addition to being more memory-efficient than straight-
forward dynamic programming, our algorithm is faster than
branching over all possible circuits. To quantify these im-
provements, consider a library of circuits of size or less,
containing circuits of size . We analyze the efficiency
of the algorithms discussed by simulating them on an input
permutation of cost . Our algorithm requires
references to the circuit library. Simple branching is no better
than our algorithm with , and, thus, takes at least
steps, which is times more than our algorithm.
A speed-up can be expected because , but specific
numerical values of that expression depend on the numbers of
suboptimal and redundant optimal circuits of length. Indeed,
Table I lists values of for various subsets of the CNTS
gate library and . For example, for the NT gate library,

, , , and . Therefore,
the performance ratio is .
Yet, this comparison is incomplete because it does not account
for time spent building circuit libraries. We point out that this
charge is amortized over multiple synthesis operations. In our
experiments, generating a circuit library on three wires of up to
three gates from the CNTS gate library takes less than
a minute on a 2-GHz Pentium 4 Xeon. Using such libraries,
all of Table I can be generated in minutes,1 but it cannot be
generated even in several hours using branching.

Let us now see what additional information we can glean from
Table I. Adding the C gate to the NT library appears to signifi-

1Although complete statistics for all 16! four-wire functions are beyond our
reach, average synthesis times are less than one second when the input function
can be implemented with eight gates or fewer. Functions requiring nine or more
gates tend to take more than 1.5 hours to synthesize. In this case, memory con-
straints limit our circuit library to 4-gate circuits, and the large jump in runtime
after the 8-gate mark is due to an extra level of recursion.

TABLE I
NUMBER OF PERMUTATIONS COMPUTABLE IN AN OPTIMALL-CIRCUIT

USING A GIVEN NUMBER OF GATES. L � CNTS.RUNTIMES ARE

IN SECONDS FOR A2-GHZ PENTIUM 4 XEON CPU

cantly reduce circuit size, but further adding the S gate does not
help as much. To illustrate this, we show sample worst case cir-
cuits on three wires for the NT, CNT, and CNTS gate libraries
in Fig. 9.

The totals in Table I can be independently determined by the
following arguments. Every reversible function on three wires
can be synthesized using the CNT gate library [20] and there
are of these. All can be synthesized with the NT
library because the C gate is redundant in the CNT library; see
Fig. 3(a). On the other hand, adding the S gate to the library
cannot decrease the number of synthesizable functions. There-
fore, the totals in the NT and CNTS columns must be 40 320
as well. On the other side of the table, the number of possible
N circuits is just since there are three wires, and there
can be, at most, one N gate per wire in an optimal circuit (else
we can cancel redundant pairs.) By Theorem 29, the number
of CN-constructible permutations should be the product of the
number of N-constructible permutations and the number of C
constructible permutations, since any CN-constructible permu-
tation can be written uniquely as a product of an N- and a C-con-
structible permutation. So, the total in the CN column should be
the product of the totals in the C and N columns, which it is.
Similarly, the total in the CNT column should be the product of
the totals in the CT and N columns; this allows one to deduce
the total number of CT-constructible permutations from values
we know. Finally, we showed that there were 24 T-constructible
permutations on three wires in Section III, and Corollary 9 states
that the number of permutations implementable onwires with
C gates is . For , this yields 168 and agrees
with Table I.

We can also add to the discussion of constructible cir-
cuits we began in Section III. By Lemma 30, the number of

-constructible permutations can be computed as the product
of the numbers of T- and C-constructible permutations. Table I
mentions 24 T-circuits and 168 C-circuits on three wires. The

SHENDEet al.: SYNTHESIS OF REVERSIBLE LOGIC CIRCUITS 719

(a) (b) (c)

Fig. 9. Worst caseL-circuits whereL is (a) NT, (b) CNT, and (c) CNTS.

product (4032) is less than 5040, the number of CT constructible
permutations on three wires, as we would expect from Corollary
32.

Finally, the longest C-circuits we observed on 3, 4, and 5
wires merely permute the wires. Such wire-permutations on
wires never require more than gates. However, from
Corollary 9, we know that for a large, worst case C-circuits
require gates. Identifying specific worst case cir-
cuits and describing families with worst case asymptotics re-
mains a challenge.

Finally, we note that while the exact runtime complexity of
this algorithm is dependant on characteristics of the gate library
chosen, for a complete gate library it is obviously exponential
in the number of input wires to the circuit (this is guaranteed by
Corollary 34), and in fact must be at least doubly exponential in
the number of input wires (that is, exponential in the size of the
truth table). Scalability issues, therefore, restrict this approach
to small problems. On the other hand, given that the state of
the art in quantum computing is largely limited by ten qubits,
such small circuits are of interest to physicists building quantum
computing devices.

V. QUANTUM SEARCH APPLICATIONS

Quantum computation is necessarily reversible, and quantum
circuits generalize their reversible counterparts in the classical
domain [14]. Instead of wires, information is stored on qubits,
whose states we write as and instead of 0 and 1. There
is an added complexity—a qubit can be in a superposition state
that combines and . Specifically, and are thought of
as vectors of the computational basis, and the value of a qubit
can be any unit vector in the space they span. The scenario is
similar when considering many qubits at once: the possible con-
figurations of the corresponding classical system (bit-strings)
are now the computational basis, and any unit vector in the
linear space they span is a valid configuration of the quantum
system. Just as the classical configurations of the circuit per-
sist as basis vectors of the space of quantum configurations,
so too classical reversible gates persist in the quantum con-
text. Non-classical gates are allowed, in fact, any (invertible)
norm-preserving linear operator is allowed as a quantum gate.
However, quantum gate libraries often have very few nonclas-
sical gates [14]. An important example of a nonclassical gate
(and the only one used in this paper) is the Hadamard gate.
It operates on one qubit, and is defined as follows:

and . Note that be-
cause is linear, giving the images of the computational basis
elements defines it completely.

During the course of a computation, the quantum state can be
any unit vector in the linear space spanned by the computational
basis. However, a serious limitation is imposed by quantum
measurement, performed after a quantum circuit is executed. A

measurement nondeterministically collapses the state onto some
vector in a basis corresponding to the measurement being per-
formed. The probabilities of outcomes depend on the measured
state. Basis vectors [nearly] orthogonal to the measured state
are least likely to appear as outcomes of measurement. If
were measured in the computational basis, it would be seen as

half the time, and the other half.
Despite this limitation, quantum circuits have significantly

more computational power than classical circuits. In this paper,
we consider Grover’s search algorithm, which is faster than any
known nonquantum algorithm for the same problem [6]. Fig. 10
outlines a possible implementation of Grover’s algorithm. It
begins by creating a balanced superposition of n-qubit
states which correspond to the indexes of the items being
searched. These index states are then repeatedly transformed
using a Grover operator circuit, which incorporates the search
criteria in the form of a search-specific predicate . This
circuit systematically amplifies the search indexes that satisfy

until a final measurement identifies them with high
probability.

A key component of the Grover operator is a so-called “or-
acle” circuit that implements a search-specific predicate .
This circuit transforms an arbitrary basis state to the state

. The oracle is followed by: 1) several Hadamard
gates; 2) a subcircuit which flips the sign on all computational
basis states other than ; and 3) more Hadamard gates. A
sample Grover-operator circuit for a search on two qubits is
shown in Fig. 11 and uses one qubit of temporary storage [14].
The search space here is , and the desired indexes
are zero and 3. The oracle circuit is highlighted by a dashed
line. While the portion following the oracle is fixed, the or-
acle may vary depending on the search criterion. Unfortunately,
most works on Grover’s algorithm do not address the synthesis
of oracle circuits and their complexity. According to Bettelli
et al. [4], this is a major obstacle for automatic compilation of
high-level quantum programs, and little help is available.

Lemma 36: [14] With one temporary storage qubit, the
problem of synthesizing a quantum circuit that transforms
computational basis states to can be reduced
to a problem in the synthesis of classical reversible circuits.

Proof: Define the permutation by
, and define a unitary operator by letting it permute

the states of the computational basis according to. The ad-
ditional qubit is initialized to so that

. If we now ignore the value of the last qubit, the
system is in the state , which is exactly the state
needed for Grover’s algorithm. Since a quantum operator is
completely determined by its behavior on a given computa-
tional basis, any circuit implementing implements . As
reversible gates may be implemented with quantum technology,
we can synthesize as a reversible logic circuit.

720 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

Fig. 10. High-level schematic of Grover’s search algorithm.

Fig. 11. Grover-operator circuit with oracle highlighted.

Quantum computers implemented so far are severely lim-
ited by the number of simultaneously available qubits. While

qubits are necessary for Grover’s algorithm, one should try
to minimize the number of additional temporary storage qubits.
One such qubit is required by Lemma 36 to allow classical re-
versible circuits to alter the phase of quantum states.

Corollary 37: For permutations ,
such that has even cardinality, no more tem-
porary storage is necessary. For the remaining, we need an
additional qubit of temporary storage.

Proof: The permutation swaps (,) with
, and, therefore, performs one transposition

for each element of . Therefore, it is exactly
even when this set has even cardinality. The lemma follows
from Corollary 13.

Given , we can use the algorithm of Section IV to construct
an optimal circuit for it. Table II gives the optimal circuit sizes of
functions corresponding to three-input one-output functions

(“3 1 oracles”), which can be synthesized on four wires.
These circuits are significantly smaller than many optimal cir-
cuits on four wires. This is not surprising, as they perform less
computation.

In Grover oracle circuits, the main input lines preserve their
input values and only the temporary storage lines can change
their values. Therefore, Travaglioneet al. [21] circuits where
some lines cannot be changed even at intermediate stages of
computation. In their terminology, a circuit withlines that we
are allowed to modify and an arbitrary number of read-only lines
is called a -bit ROM-based circuit. They show how to com-
pute permutation arising from a Boolean function using a
1-bit quantum ROM-based circuit, and prove that if only clas-
sical gates are allowed, two writable bits are necessary. Two bits
are sufficient if the CNT gate library is used. The synthesis al-
gorithms of Travaglioneet al.[21] rely onXOR sum-of-products
decompositions of . We outline their method in a proof of the
following result.

TABLE II
OPTIMAL 3+ 1 ORACLE CIRCUITS FORGROVER’S SEARCH

Lemma 38: Ref. [21]. There exists a reversible 2-bit ROM-
based CNT-circuit computing ,
where is a -bit input. If a function’sXOR decomposition con-
sists of only one term, let be the number of literals appearing
(without complementation). If , then gates
are required.

Proof: Assume we are given anXOR sum-of-products de-
composition of . Then, it suffices to know how to transform

for an arbitrary product of uncomple-
mented literals , because then we can add the terms in anXOR

decomposition term by term. So, without loss of generality,
let . Denote by a T gate with controls
on , and an inverter on. Similarly, denote by a C
gate with control on and inverter on . Number the ROM
wires , and the non-ROM wires and . Let us
first suppose that there is at least one uncomplemented literal,
and put a on the circuit; note that
applied to the input (, ,) gives (, ,). We will write
this as , and denote
this operation by . Then, we define the circuit as the
sequence of gates ,
and one can check that . We
define by exchanging the wires and ; clearly,

. In general, given a circuit
, we define

; one
can check that . De-
fine by exchanging the wires and ; then clearly,

. By induction, we
can get as many uncomplemented literals in this product as
we like.

The heuristic presented above has the property that none of
its gates has more than one control bit on a ROM bit. Indeed,
Travaglioneet al. [21] had restricted their attention to circuits
with precisely this property. However, they note [21] that their
results do not depend on this restriction.

SHENDEet al.: SYNTHESIS OF REVERSIBLE LOGIC CIRCUITS 721

TABLE III
CIRCUIT SIZE DISTRIBUTION OF 3 + 2 ROM-BASED CIRCUITS

SYNTHESIZED USING VARIOUS ALGORITHMS

We applied the construction of Lemma 38 to all 256 functions
implementable in 1-bit ROM-based circuits with three bits of
ROM. The circuit size distribution is given in the line labeled
XOR in Table III. In comparison with circuit lengths resulting
from our synthesis algorithm of Section IV, we consider two
cases. First, in the OPT T line, we only look at circuits satisfying
the restriction mentioned above. Then, in the OPT line, we relax
this restriction and give the circuit size distribution for optimal
circuits.2

Most functions computable by a 2-bit ROM-based circuit ac-
tually require two writable bits [21]. Whether or not a given
function can be computed by a 1-bit ROM-based CNT-circuit,
can be determined by the following constructive procedure. Ob-
serve that gates in 1-bit ROM circuits can be reordered arbi-
trarily, as no gate affects the control bits of any other gate. Thus,
whether or not a C or T gate flips the controlled bit, depends only
on the circuit inputs. Furthermore, multiple copies of the same
gate on the same wires cancel out, and we can assume that, at
most, one is present in an optimal circuit. A synthesis procedure
can then check which gates are present by applying the permu-
tation on every possible input combination with zero, one, or
two 1’s in its binary expansion. (Again, we have relaxed the re-
striction that only one control may be on a ROM wire). If the
value of the function is one, the circuit needs an N, C, or T gate
controlled by those bits.

Observe that adding the S gate to the gate library during
ROM synthesis will never decrease circuit sizes, no two wires
can be swapped since at least one of them is a ROM wire. In the
case of ROM synthesis, only the two non-ROM wires can
be swapped, and one of them must be returned to its initial value
by the end of the computation. We ran an experiment comparing
circuit lengths in the 3 2 ROM-based case and found no im-
provement in circuit sizes upon adding the S gate, but we have
been unable to prove this in the general case.

VI. CONCLUSION

We have explored a number of promising techniques for
synthesizing optimal and near-optimal reversible circuits that

2Using a circuit library with� six gates (191-Mb file, 1.5 min to generate),
the OPT line takes 5 min to generate. The use of a five-gate library improves
the runtimes by at least 2x if we do not synthesize the only circuit of size
11. For the OPT T line, we first find the 250 optimal circuits of size�
12 (15 min) using a six-gate library (61 Mb, 5 min). The remaining six
functions were synthesized in 5 min with a seven-gate library (376 Mb,
10 min). This required more than 1 Gb of RAM.

require little or no temporary storage. In particular, we have
proven that every even permutation function can be synthe-
sized without temporary storage using the CNT gate library.
Similarly, any permutation, even or odd, can be synthesized
with up to one bit of temporary storage. Recently, De Vos[5]
has independently demonstrated this result; however, his proof
relies on nontrivial group-theoretic notions and resorts to a
computer algebra package for a special case. We give a much
more elementary analysis, and, moreover, our proof techniques
are sufficiently constructive to be interpreted as a synthesis
heuristic. We have also derived various equivalences among
CNT-circuits that are useful for synthesis purposes, and given
a decomposition of a CNT-circuit into a -circuit.

To further investigate the structure of reversible circuits,
we developed a method for synthesizing optimal reversible
circuits. While this algorithm scales better than its counterparts
for irreversible computation [11], its runtime is still exponen-
tial. Nonetheless, it can be used to study small problems in
detail, which may be of interest to physicists building quantum
computing devices because the current state of the art is largely
limited to ten qubits. One might think that an exhaustive search
procedure would suffice for small problems, but in fact, even
for three-input circuits, an exhaustive search is nowhere near
finished after many hours; our procedure terminates in minutes.
Our experimental data about all optimal reversible circuits on
three wires using various subsets of the CNTS library reveal
some interesting characteristics of optimal reversible circuits.
Such statistics, extrapolated to larger circuits, can be used in
the future to guide heuristics, and may suggest new theorems
about reversible circuits.

Finally, we have applied our optimal synthesis tool to the de-
sign of oracle circuits for a key quantum computing application,
Grover’s search algorithm, and obtained much smaller circuits
than previous methods. Ultimately, we aim to extend the pro-
posed methods to handle larger and more general circuits, with
the eventual goal of synthesizing quantum circuits containing
dozens of qubits.

REFERENCES

[1] A. Barencoet al., “Elementary gates for quantum computation,”Phys.
Rev. A, vol. 52, pp. 3457–3467, 1995.

[2] C. Bennett, “Logical reversibility of computation,”IBM J. Res.
Develop., vol. 17, pp. 525–532, 1973.

[3] T. Beth and M. Rötteler, “Quantum algorithms: applicable algebra and
quantum physics,”Springer Tracts Mod. Physics, vol. 173, pp. 50–96,
2001.

[4] S. Bettelli, L. Serafini, and T. Calarco. (2001, Nov.) Toward
an architecture for quantum programming. [Online] Available:
http://arxiv.org/abs/cs.PL/0 103 009

[5] A. De Vos et al., “Generating the group of reversible logic gates,”J.
Physics A: Math. Gen., vol. 35, pp. 7063–7078, 2002.

[6] K. Grover, “A framework for fast quantum mechanical algorithms,” in
Proc. Symp. Theory Comput., 1998.

[7] R. Feynman, “Quantum mechanical computers,”Optics News, vol. 11,
pp. 11–20, 1985.

[8] K. Iwama et al., “Transformation rules for designing CNOT-based
quantum circuits,” in Proc. Design Automation Conf., 2002, pp.
419–425.

[9] P. Kerntopf, “A comparison of logical efficiency of reversible and con-
ventional gates,”Int. Workshop Logic Synthesis, pp. 261–269, 2000.

[10] R. Korf, “Artificial intelligence search algorithms,” inAlgorithms
Theory Computation Handbook. Boca Raton, FL: CRC Press, 1999.

722 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

[11] E. Lawler, “An approach to multilevel Boolean minimization,”J. Assoc.
Comput. Mach., vol. 11, pp. 283–295, 1964.

[12] J. Lawler et al.. A practical method of constructing
quantum combinational logic circuits. [Online] Available:
http://arxiv.org/abs/cs.PL/9 911 053

[13] J. P. McGregor and R. B. Lee, “Architectural enhancements for fast sub-
word permutations with repetitions in cryptographic applications,” in
Proc. Int. Conf. Comput. Design, 2001, pp. 453–461.

[14] M. Nielsen and I. Chuang,Quantum Computation Quantum Informa-
tion. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[15] M. Perkowskiet al., “A general decomposition for reversible logic,” in
Proc. Reed–Muller Workshop, Aug. 2001.

[16] T. Sasao and K. Kinoshita, “Conservative logic elements and their uni-
versality,” IEEE Trans. Comput., vol. 28, pp. 682–685, 1979.

[17] T. Silke. (1995, Dec.) PROBLEM: Register swap. [Online] Available:
http://www.mathematik.uni-bielefeld.de

[18] Z. Shi and R. Lee, “Bit permutation instructions for accelerating soft-
ware cryptography,” inProc. IEEE Int. Conf. Applic.-Spec. Syst. Archi-
tectures, Process., 2000, pp. 138–148.

[19] L. Stormeet al., “Group theoretical aspects of reversible logic gates,”J.
Universal Comput. Sci., vol. 5, pp. 307–321, 1999.

[20] T. Toffoli, “Reversible Computing,” Lab. for Computer Science, Mass.
Inst. of Technol., Cambridge, MA, Tech. Memo. MIT/LCS/TM-151,
1980.

[21] B.C. Travaglione, M.A. Nielsen, H.M. Wiseman, and A. Ambainis.
(2001) ROM-based computation: Quantum versus classical. Phys. Rev.
A [Online] Available: http://xxx.lanl.gov/abs/quant-ph/0109016

[22] S. Younis and T. Knight, “Asymptotically zero energy split-level charge
recovery logic,” inProc. Workshop Low-Power Design, 1994.

Vivek V. Shende is pursuing the B.S. degrees in
mathematics and philosophy at the University of
Michigan, Ann Arbor.

His current research interests include quantum
computation and the epistemic foundations of modal
discourse.

Aditya K. Prasad received the B.S. degree in com-
puter engineering from the University of Michigan,
Ann Arbor, in 2002.

He is now with Cerner Corporation, Southfield,
MI. His research interests include quantum and clas-
sical reversible circuits and consciousness-related
physical phenomena.

Igor L. Markov received the M.S. degree in
mathematics and the Ph.D. degree in computer
science, from the University of California, Los
Angeles (UCLA).

He is an Assistant Professor of Electrical Engi-
neering and Computer Science at the University of
Michigan, Ann Arbor. His interests are in quantum
computing and in combinatorial optimization
with applications to the design and verification of
integrated circuits. His contributions include the
Capo circuit placer and quantum circuit simulator

QuIDDPro. He has co-authored more than 50 publications.
Prof. Markov is serving on technical program committees at the Design, Au-

tomation, and Test in Europe, International Symposium on Physical Design,
International Conference on Computer-Aided Design, Great Lakes Symposium
on Very Large Scale Integration, System Level Interconnect Prediction, Interna-
tional Workshop on Logic and Synthesis, and SymCon in 2003. He received the
Best Ph.D. Student Award from the Department of Computer Science, UCLA
in 2000.

John P. Hayes(S’67–M’70–SM’81–F’85) received
the B.E. degree from the National University of Ire-
land, Dublin, and the M.S. and Ph.D. degrees from
the University of Illinois, Urbana-Champaign, all in
electrical engineering.

While at the University of Illinois, he participated
in the design of the ILLIAC III computer. In 1970, he
joined the Operations Research Group of the Shell
Benelux Computing Center in The Hague, where he
worked on mathematical programming and software
development. From 1972 to 1982, he was a Faculty

Member at the Departments of Electrical Engineering Systems and Computer
Science, University of Southern California, Los Angeles. Since 1982, he has
been with the Electrical Engineering and Computer Science Department, Uni-
versity of Michigan, Ann Arbor, where he holds the Claude E. Shannon Chair
in Engineering Science. He was the Founding Director of the University of
Michigan’s Advanced Computer Architecture Laboratory. He is the author of
over 200 technical papers, three patents, and five books, includingLayout Min-
imization for CMOS Cells, (Norwell, MA: Kluwer, 1992; with R. L. Maziasz),
Introduction to Digital Logic Design(Addison-Wesley, 1993), andComputer
Architecture and Organization, (3rd edition, New York: McGraw-Hill, 1998).
His current teaching and research interests are in the areas of computer-aided
design, verification, and testing, very large scale integration design, computer
architecture, fault-tolerant embedded systems, and quantum computing.

He was the Technical Program Chairman of the 1977 International Confer-
ence on Fault-Tolerant Computing, Los Angeles, and the 1991 International
Computer Architecture Symposium, Toronto. He has served as Editor of var-
ious technical journals, including theCommunications of the ACM, the IEEE
TRANSACTIONS ONPARALLEL AND DISTRIBUTED SYSTEMS, and theJournal of
Electronic Testing. He is a Fellow of the ACM and a Member of Sigma Xi.
He received the University of Michigan’s Distinguished Faculty Achievement
Award in 1999.

