
Synthesis of Safe, QoS Extendible, Application
Specific Schedulers for Heterogeneous Real-Time

Systems

Christos KLOUKINAS ∗ Sergio YOVINE †‡

VERIMAG,CentreÉquation,2 avenue de Vignate,38610 GIÈRES,France
Christos.Kloukinas@imag.fr Sergio.Yovine@imag.fr

February 27, 2003

Abstract

We present a new scheduler architecture, which permits adding QoS poli-
cies to the scheduling decisions. We also present a new scheduling synthesis
method which allows a designer to obtain a safe scheduler for a particular
application and at the same time helps him in analysing the task interactions
and the overall system behaviour. Our scheduler architecture and scheduler
synthesis method have not been developed for a particular application model
and, therefore, can be used for heterogeneous applications, where there are
periodic tasks, event-driven ones and tasks which are always enabled and
where the tasks communicate through various synchronisation primitives. Fi-
nally, we present a prototype implementation of this scheduler architecture
and related mechanisms on top of an open-sourceOSfor embedded systems.

Keywords: QoS Scheduling Policies, Scheduler Architecture, Scheduler
Synthesis, Application Analysis, Hard Real-Time, Heterogeneous Applica-
tions

1 Introduction

Safety & mission-critical systems need to be of extremely high quality, due to the
great dangers and the high cost of their potential failure. For this reason, when they
are multi-threaded they must be guaranteed to be free of deadlocks and all threads
must be guaranteed to meet their deadlines under all circumstances.

The current practice for avoiding deadlocks is to use apriority inheritance pro-
tocol (PIP) [13] for the sharing of non-preemptable resources. This is done in order
to solve thepriority inversionproblem, which arises when a high priority task is
blocked from a lower priority one due to a shared resource1. This procedure has a
certain number of disadvantages though. First of all, Shaet al.[13] have shown that
the basic PIP does not guarantee deadlock freedom. For this reason they proposed
the priority ceiling protocol (PCP), which is not as widely supported in the cur-
rently available Real-Time (R-T) operating systems (OS). Second, all the priority
inheritance protocols (the PCP included) are pessimistic in nature and, therefore,

∗http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas
†http://www-verimag.imag.fr/PEOPLE/Sergio.Yovine
‡This article has been submitted to the 15th Euromicro Conference on Real-Time Systems

(ECRTS’03)http://www.hurray.isep.ipp.pt/ecrts03/
1 For an account of the priority inversion problem in the Mars Pathfinder spacecraft, read the

RISKS-19.49 and RISKS-19.54 digests at the Risks site (http://www.risks.org).

1

mailto:Christos.Kloukinas@imag.fr
mailto:Sergio.Yovine@imag.fr
http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas
http://www-verimag.imag.fr/PEOPLE/Sergio.Yovine
http://www.hurray.isep.ipp.pt/ecrts03/
http://www.risks.org

can refuse access to a shared resource even when there is no real danger of a dead-
lock at the current situation. Additionally, in order to apply the PCP, the designer
of the system must choose a set of priorities for all the tasks in the system. Further-
more, for each shared resource the designer must identify the threads which use
it, in order to assign a priority to that resource (i.e., theceiling priority of the re-
source). More importantly, however, the PCPcannot on its own support tasks which
synchronise using monitors and communicate using condition variables [14], as for
example is done in JAVA [4]. Shaet al.had mentioned that in such cases one should
split tasks, which means that the complexity of what the designers have to do in
order to use PCP is quite high. Worse yet, not all cases of communication through
condition variables can be translated according to these rules, since there can be
tasks which wait on a condition variable while still holding some resource locked.
These tasks cannot be split since the underlying assumptions of the PCP clearly
demand that tasks finish executing without holding any resources. Therefore, it is
not straightforward how one can use the PCP with a language such asR-T JAVA

[11].
Finally, the methods currently used do not allow designers to easily extend

them for incorporating QoS to the scheduler decisions. Nevertheless, QoS is be-
coming more and more important for the systems we are designing. Being able
to extend a scheduler with QoS characteristics could allow us to experiment with
ways to minimise energy consumption, or further increase the speed of the system,
by minimising, for example, the number of context switches. An example of this
can be found in [3] where the authors present a dynamic scheduling method which
also treats the QoS aspect of the system. However, in this work the authors con-
sider a fixed task model where all tasks are periodic and do not consider deadlock
situations or the communication aspect of the system.

In the following, we present a method for synthesisingQoS extendibleand
safeschedulers following the controller synthesis [18] paradigm and continuing
previous work at Verimag [1, 2]. We start in section 2 by presenting the overall
architecture of the scheduler we synthesise and how each part of it participates in
the control of the system. Then, in section 3 we present the model of the systems
we consider and in section 4 the particular method we use for the synthesis of the
scheduler. In section 5 we present a prototype implementation of our scheduler on
top of a real operating system and we conclude in section 6 with a discussion of
our method.

2 Scheduler Architecture

The applications we consider consist of a set of threads synchronising through
monitors and communicating through condition variables. These applications also
have the following characteristic. All threads and shared objects (i.e., mutexes,
condition variables,etc.) are created at the initialisation phase of the application
and, therefore, are known during the execution phase. Additionally, we only con-

2

sider applications executing on a single processor for the moment. In this section
we present the architecture of the schedulers we synthesise in order to control these
applications, which consists of two three-layered stacks, as shown in Figure 1. The
left stack is responsible for selecting an application thread for execution. The right
stack is responsible for selecting an application thread for the reception of a noti-
fication. Being able to control which thread will be notified for a particular event
is something that other scheduling policies like the PCP do not offer, since they
concentrate only on the selection of threads for execution.

Application Application Tasks

R-T OS Provide low-level mechanisms

QoS-Notif Scheduler

Condition Variable Notification Rules

Avoid Deadlocks

Guarantee Deadlines

Notification Scheduler Stack

TASKS TO WAKE UP -Qnotif ⊆ Snotif

TASKS CANDIDATING FOR NOTIFICATIONS - Cnotif

TARGETS FOR THIS NOTIFICATION - Rnotif ⊆ Cnotif

Assure the QoS

SAFE TARGETS -Snotif ⊆ Rnotif

Safe-Notif Scheduler

Ready-Notif Scheduler

Mutual Exclusion Rules

Avoid Deadlocks

Guarantee Deadlines

QoS-ExecScheduler

Execution Scheduler Stack

EXECUTING TASKS -Qexec ⊆ Sexec

Assure the QoS

Ready-ExecScheduler

Safe-ExecScheduler

TASKS CANDIDATING FOR EXECUTION -Cexec

READY TASKS -Rexec ⊆ Cexec

SAFE TASKS -Sexec ⊆ Rexec

Notify tasks inQnotifChoose one amongQexec for execution

Figure 1: A three-layered scheduler architecture

The left stack of the scheduler is given control by the application when the
latter tries to call one ofmonitorEnter , monitorExit , waitForPeriod, wait and
waitTimed or when an interrupt arrives, as is the case where an alarm fires. The
right stack is passed control when the application callsnotify or notifyAll . After
one of the scheduler stacks is finished, it passes control to an underlyingR-T OS
which provides low-level kernel mechanisms. Such mechanisms include the ability
to create, suspend and resume an application thread, as well as the ability to create,
set and disable alarms for future events (e.g., arrival of next period or the timeout of
awaitTimed). In the following sub-sections we will examine each of the scheduler
stacks in more detail.

3

2.1 Controlling the Currently Executing Thread

As aforementioned, the left stack takes control of the system when the application
calls one ofmonitorEnter , monitorExit , waitForPeriod, wait andwaitTimed,
or when an alarm expires. In these cases, it must choose one of the available threads
as the thread which should next be run on the processor. It does this in three steps,
each one performed at a different layer. In the first layer, referred to as theReady-
Execscheduler, it calculates the set of threadsRexec which are ready to execute
without directly blocking due to mutual exclusion. That is, it examines whether an
application thread will try to enter a monitor which is already occupied by another
thread, if it is chosen as the next thread to execute. Having calculated the setRexec,
this layer passes it to the next layer.

TheSafe-Execscheduler layer is responsible for calculating the subsetSexec of
Rexec, which consists of those threads that cansafelyexecute. Safety here refers
both to deadlock freedom (i.e., entering a monitor would not cause a deadlock
later on), as well as, to meeting the timing constraints of the different threads (i.e.,
choosing a thread for execution will not delay another thread enough to make it
miss its deadline).

The Safe-Execlayer passes the setSexec to the third layerQoS-Exec, which
calculates the subsetQexec of Sexec. TheQexec set effectively consists of thesafe
threads (since it is a subset ofSexec), which, in addition, respect the QoS require-
ments.

Normal scheduling policies usually stop at this point. In our case, through the
right stack of the scheduler, we are also able to control the communication aspect
of the system.

2.2 Controlling the Notified Thread

The reader will have noticed that the left stack of the scheduler, deciding which
thread will execute next, does not get called when the application does a noti-
fication (either anotify or a notifyAll). The reason for this is that the threads
which will be notified (if any) cannot in reality ever be selected for execution. This
is because they will immediately try to re-enter the monitor after being notified
and thus get blocked by the notifier (which is already in the monitor). In other
words, notified threads will be excluded by the first layerReady-Exec. Neverthe-
less, when a thread notifies a condition variable, then we can control which among
the threads waiting for the notification should receive the event. Indeed, languages
(like JAVA [4]) which provide the monitor construct, or thread libraries (like POSIX

threads [9]) which offer it to languages which do not provide it, leave this pointun-
specified, allowing each implementation to choose the thread to be notified as it
convenes it the best. The apparent cases where we cannot effect any control on the
system are three. Firstly, the case where no thread waits on the condition variable
being notified. Secondly, the case where only one thread waits on the condition
variable. Finally, the case where the notifying thread does anotifyAll , in which

4

case we are obliged to notify all the threads waiting on the condition variable. In
these cases, the right stack of the scheduler does not make any control decision,
but simplychanges the PCof all threads waiting on the current notification, that
is, the threads belonging to the setRnotif , to mark them as notified.

When, however, we have a simplenotify and there are more than one threads
waiting on the condition variable, then the top layerReady-Notifcalculates the set
Rnotif of threads waiting on the condition variable being notified. Then, it passes
this set to the middle layerSafe-Notif, which calculates the subsetSnotif ofRnotif .
This subset consists of those threads which, if notified, will not cause the system
to enter into a deadlock state or cause some other thread to miss its deadline (i.e.,
they are safe). Finally, theSafe-Notiflayer passes theSnotif set to the bottomQoS-
Notif layer, which calculates the subsetQnotif of Snotif , consisting of the threads
which we can safely notify and also respect the QoS properties of the application.
TheQoS-Notif layer is also responsible for choosing one of the threads inQnotif

as the recipient of the current notification and marking it as notified by changing
its PC. This is a way tosimulatethe behaviour of communication by means of
condition variables through the suspension (at await, waitTimed) and the eventual
resumption of threads marked as notified (once the respectivemonitorExit has
occurred), without really using the condition variable and mutex mechanisms of
the underlyingR-T OS.

2.3 QoS Policies

By incorporating a layer for QoS in the scheduler, we offer anextendiblemecha-
nism for providing additional properties to the system. Additionally, we allow the
QoS policies to use the same information which is available to the scheduler to con-
trol the application. That is, the QoS layer has access to theprogram counters (PC)
of the threads, thecurrently executing thread (TExec), as well as the value of the
system clock (CSystem). In addition to this information, it can also keep statistics
of the use of the various system resources, if so desired by the system designer.

Therefore, the complexity of the QoS layer is controlled by the application
designer. In choosing a QoS policy (or policies, since these are composable) the
designer can balance between the execution time and extra memory space needed
by the policy and the gains to the overall system quality the particular policy can
offer. A QoS policy is, for example, thelocal minimisation of context switchesin
order to speed-up the execution by eliminating unneeded switches. This policy can
be implemented quite easily, since all one needs to examine is whether the currently
executing threadTExec is in the setSexec of threads which are safe to execute next.
If this is the case, then we can let it continue its execution, by setting the setQexec

equal to the singleton{TExec}. This particular policy has another advantage: by
decreasing the number of context switches, we also decrease the cache misses of
the application, since now there are fewer points in the execution where the threads
compete for the cache, potentially flushing each other’s data out of it. This can help
decrease the energy consumptionof the system, since a cache miss can lead to two

5

main memory accesses, which are known to be quite demanding with respect to
energy [10]. In fact, since a cache reads and flushes onecache lineat a time (i.e.,
multiple consecutive memory addresses) the benefits can be even greater, both with
respect to energy consumption and execution speed.

3 System Model

The model of the system we construct is the parallel composition of an automa-
ton which is responsible for advancing time and firing the alarms, one automa-
ton for each of the application threads and two more automata, for theQoS-Exec
and theQoS-Notifscheduler layers respectively. The automaton of time and the
automata of the application threads perform a finite number of actions and then
block, letting the scheduler automata respond. The actions of the time and ap-
plication automata beinguncontrollable, the onlycontrollable actions are those
of the two scheduler automata. Thus, our model can be seen as a two player
game with the scheduler automata on one side (i.e., the controller) and the time
and application thread automata on the other (i.e., the plant, see [18]). In this
game, the automata related to the application simulate the locking and unlock-
ing of resources, as well as, the waiting and notification on condition variables.
The computations performed by the application threads is simulated just by their
minimum and maximum execution times,i.e., the automata block on the transi-
tion simulating the particular computation until enough time has passed to perform
the computation in reality. Each statements of an application thread (wheres is
one ofmonitorEnter ,monitorExit ,wait,waitTimed,waitForPeriod,a conditional
or a computation) is modelled by a separate automaton state and a transition from
it to the next statement position (@s′) which is taken when the statements can be
executed.The only exception to this rule is the case of thewait andwaitTimed
statements. These statements are effectively modelled by two states; the first one
models the release of the mutex associated with the condition variable on which we
wait and the second one models the attempt of the thread to re-acquire the mutex,
once it has been notified.The advancement of time is the responsibility of a single
automaton (see Figure 2-a) which, in addition, enables transitions in the applica-
tion automata which correspond to timeouts, such as in the case of awaitTimed
or a waitForPeriod. This automaton is also responsible for advancing the local
thread clocks, that is, the clocks which model the time spent by threads in com-
putations (and in waiting when doing awaitTimed). These clocks are set to zero
at the beginning of a computation by a thread and are incremented alongside with
the global time, until the duration of the computation is over (or the timeout of the
waitTimed has expired). Finally, the two automata for theQoS-ExecandQoS-
Notif scheduler layers are passed control as described in sub-sections 2.1 and 2.2
and decide which of the application automata should be allowed to execute next or
be notified of an event. These automata are comprised of a single state andn + 1
transitions, wheren is the number of application threads (the additional transition

6

A

Alarm
alarm
=⇒ change state & pass control to the scheduler

¬ Alarm∧ ¬ (Compute∨ wait)
appli
=⇒ allow application to run

¬ Alarm∧ (Compute∨ wait)
tick
=⇒ advance clocks

2-a: Time automaton

ti ∈ Rexec ∩ Sexec ∩Qexec
Chooseti=⇒ T ′

Exec = ti

A

2-b: QoS-ExecScheduler automaton

Figure 2: Time & Scheduler automata

is for theidle thread). A transition of these automata selects one of the threads for
execution (resp. for notification). It is guarded by a predicate which asserts that the
corresponding thread belongs to theQexec (resp.Qnotif) set (see Figure 2-b). The
transition choosing the idle thread asserts that the rest of the threads are not safe to
execute (resp. no thread waits to be notified on the current event).

To summarise, the state in our model comprises of:(i) a program counter (PCi)
for each of the application threads,(ii) a local clock (Ci) for each thread which
is used for their computations and the timeouts if they execute awaitTimed, (iii)
a global clock (CSystemi) for modelling the periods of each periodic thread,(iv)
a variable (TExec) holding the currently executing thread,(v) two boolean vari-
ables (ExecSchedEnabled& Notif SchedEnabled) for controlling whether it is
one of the scheduler automata (and which of them), or the time (when they are
both true) or the time and application automata (when they are both false) which
should execute, and(vi) the booleanvariables of the application threads used in
conditionals which aresignificant2 with respect to the use of resources and com-
munication of events. Our model goes through three different modes of execution,
as shown in Figure 3. In the “Time Only” mode (whereExecSchedEnabled=

New tick, so check alarms

No Alarms ⇒ Allow Application to run

Re-
Sch

ed
ule

Alarm
(s) fired

Check
alarm

s

Schedulers
Only

Time
Only

Time
and

Application

Figure 3: Model execution modes

2We performslicingof the original code to identify these variables.

7

Notif SchedEnabled= true) the time automaton is the sole automaton enabled in
the system and it can fire one or more alarms, if any is enabled. If an alarm is fired
then the execution mode changes to “Schedulers Only” (whereExecSchedEnabled=
¬Notif SchedEnabled), so that our scheduler can treat the alarm. If there is no
alarm to be fired then the execution mode changes to “Time and Application”
(whereExecSchedEnabled= Notif SchedEnabled= false). At this mode, both
the time automaton and the automata of the application are enabled. If the time
automaton gets to execute first, then a tick (i.e., a time step) is performed and we
pass back to the “Time Only” mode, so as to check if an alarm is now enabled. If it
is one of the application automata which gets to execute first, then it executes until
it needs to perform an action which causes re-scheduling, in which case it passes
control to the schedulers (i.e., the mode now becomes “Schedulers Only”). If the
application automaton needs to execute a time guarded action (i.e., a computation),
then it blocks, allowing time to advance.

As an example, let us consider the model shown in Figure 4. Here, the ap-
plication consists of three threads, one of which is aperiodicone (theUser) and
two aperiodicones (theWriter and theRefresher). One should note that the
Writer and theRefresher are continually enabled aperiodic threads and do
not have any deadlines directly associated with them.

V.monitorEnter

[2,3] V_write

L.monitorEnter

[1,1] L_fresh:=true

L.notify

L.monitorExit

V.monitorExit

notified

! V_fresh

V_fresh

Writer

notified \/ timedout

Refresher

L.monitorEnter

L.monitorEnter

[1,1] L_fresh:=false

L.timed_wait(13)

V.monitorEnter

[1,1] V_fresh:=L_fresh

V.notify

V.monitorExit

L.monitorExit

User

V.monitorEnter

while(!V_fresh)

V.wait

V.monitorEnter

[2,2] V_fresh:=false; V_read

V.monitorExit

[5,6] compute

wait_for_period(20)

Figure 4: Application automata
(Ovals depict Atomic states, diamonds depict Preemptable states and boxes depict

Blocking states. To increase readability we have omitted the clock variables,
showing only the interval of the duration for each computation)

8

4 Scheduler Synthesis

In order to synthesise theSafe-ExecandSafe-Notifscheduler layers, we first con-
struct the whole space of the states the system can reach and, thus, identify the
deadlock states. These are the states where the application threads are deadlocked,
or the states where some thread has missed its deadline (since in that case we block
the system explicitly). The existence of these states indicates that the predicate we
are currently using to describe the setSafe-Exec(resp.Safe-Notif) needs to be con-
strained even further. This predicate starts with the value oftrue, thus accepting
initially all threads in the setReady-Exec(resp.Ready-Notif) as safe. Having ob-
tained the deadlocked states, we do a backwards traversal of the whole state space
starting from the deadlocked states, until we reach a state which corresponds to a
choice of one of the scheduler automata. There, we identify the choiceTExec = ti
which allowed the path leading to a deadlock state(s) and create a new constraint
for the layerSafe-Exec(resp.Safe-Notif). This constraint is constructed by chang-
ing the setSexec (resp.Snotif) to be:

S ′
exec(

−−−→state) = Sexec(
−−−→state) \ {ti} (1)

If at some point we find thatS ′
exec(

−−−→state) is equal to the empty set, then we
add the current state to the set of deadlocked states and continue the synthesis
procedure.

Constructing the whole state space and then performing a backwards traversal
is straightforward to implement, since it keeps the state space construction and the
synthesis algorithm separated. Its disadvantage is that we must always construct
the entire state space. Instead of this, we could construct the state space and per-
form a forwards traversal at the same time, thus mixing the state-space construction
and synthesis algorithms together. This is less obvious to implement correctly but
offers the opportunity to perform synthesison the fly, thus avoiding to construct
the whole state space most of the times.

4.1 State Space Reduction & Application Analysis

Even though the basic idea of synthesising theSafe-ExecandSafe-Notifscheduler
layers is simple, it is evident that in practice it suffers from the state explosion
problem. In addition, obtaining a long list of constraints that the scheduler should
always impose, does not help a designer to better understand the thread interde-
pendencies and the overall behaviour of the system under design. Therefore, it is
imperative that we use techniques to minimise the size of the state space and at
the same time provide the designer with easy to use information concerning the
behaviour of the system. Altisenet al. [1] proposed to constrain the system with
a high level policy (i.e., FIFO scheduling, EDF scheduling,etc.) the idea being
that this will constrain enough the system to allow us to construct the entire (con-
strained) state space of it. However, this method can sometimes over-constrain the
system and remove all possible paths which would allow us to avoid the unsafe

9

states. Another result of applying these policies early on is that we now have a
smaller degree of freedom to apply the QoS policies. Finally, it is not always clear
how one can apply policies such as EDF, RMA , etc.when the application consists
of heterogeneous threads. Our method consists of synthesising schedulers for suc-
cessively more detailed models, adding thus complexity to a model only when we
have already calculated how we can constrain the more abstract one. This method
also helps in aiding the designer better understand the system, since the constraints
we construct at each step can be directly linked to a particular system property.
The scheduler synthesis is performed in two major steps under our method. In the
first step, we examine theuntimedmodel of the system and search for constraints
which can guarantee theabsence of deadlocks. In the second step, we re-introduce
time into the model and after constraining the system with the constraints needed
for avoiding deadlocks, we search for those constraints which can guarantee that
all threads meet their deadlines.

4.2 Deadlock Avoidance

Examining the untimed model of the system first, has the disadvantage that some
of the deadlocks we identify are not possible in reality, due to the existing timing
relations. This means that the set of behaviours we are searching is in fact larger
than the “real” untimed one. However, there are significant advantages in treating
the untimed model first. First, adding time to a model significantly increases its
size and thus renders the analysis and synthesis a lot more difficult. On the other
hand, searching for deadlocks in the untimed model allows us to examine a much
smaller search space and thus allows us to attack larger systems. For the example
application shown in Figure 4, treating the untimed version of the model means that
we have to examine a model reduced by 97% to discover the 8 constraints which
can help us avoid all the 10 deadlocks caused by the use of shared resources. More
importantly, once the deadlocks have been found and removed from the untimed
model, we no longer have to worry about deadlocks, if we decide to change the
underlying platform or optimise the algorithms used in the computations. In other
words, finding and removingall deadlocks in the untimed model means that the ap-
plication islogically correct and allows a designer to experiment with different un-
derlying platforms and algorithms for implementing the application computations.
Both these actions can change the timing properties of the computations performed
by the threads and thus unmask deadlocks which were previously impossible. For
this reason we refer to these deadlocks asdormantdeadlocks. Whether the system
meets or not itsR-T requirements depends heavily on the particular platform and
computation algorithms used. Thus, we establish a strong invariant of the applica-
tion, which is independent of the underlying platform and specific computational
algorithms used. In addition, the dormant deadlocks produce constraints which do
not reduce our choices when trying to resolve the problem of meeting the different
thread deadlines. This is because these constraints are active only in those states
of the system which are currently impossible to reach due to the particular tim-

10

ing relations of the application. Finally and most importantly, being able to guard
the application against all deadlocks, possible and dormant ones, means that the
application can survive the bad case where a deadlock has beenwrongly charac-
terisedas dormant due to awrong estimationof the various timing relations of the
threads. Since it is difficult to obtain exactupperandlower timing measurements
of threads, this is a very important point that should not be taken lightly.

4.3 Guaranteeing Deadlines

Having found all the potential deadlocks in the system, we add the synthesised
Sexec andSnotif scheduler sets obtained so far to the timed version of the initial
model, in order to search for thetimelinessconstraints, which can guarantee that
all threads will meet their deadlines. In order to make the problem more tractable,
we apply a safety-preserving abstraction to the model, which reduces the number
of overall states.

4.3.1 Speeding Up Time

Not all time instances are visible when the scheduler automata take control during
the execution of the system. That is, there are certain states of a system where
the only event allowed is the advancement of time. For example, it may well be
the case that some threads are blocked and another thread is waiting for its new
period. In such cases, we do not really gain anything by explicitly constructing the
complete sequence of all the different time steps. Instead, we can jump directly to
the last state of this sequence, where the time has advanced enough to allow some
other event to occur. In other words, what we wish to achieve is to speed up the
advancement of time, when the time automaton is the only one which can execute,
all the way up to the time instance where another automaton can execute. In this
way, when we consider the timed model we only have to pay the cost of coding the
exact time instances at which our system can indeed perform an interesting action.
Indeed, for the application shown in Figure 4 we obtain a 74% reduction of the
state-space.

This state space reduction can be effectively obtained through thebranching
bisimulation equivalence (bbe) reduction[16], which eliminates “unobservable”
actions (in our case the Tick action) but only when doing so preserves the branching
structure of processes. The preservation of the branching structure of the applica-
tion is crucial for us, since the synthesis of the scheduler depends on it for calculat-
ing the states where a controllable action can help avoid taking a path which leads
to an undesired state. Given a set of equivalent states under thebbereduction, we
elect as a representative of this set the state which has the maximum global clock
value. In other words, in thebbereduced system, our scheduler takes its decisions
at the latest moment possible.

Having reduced the state space of the timed model, we continue the synthesis
of the scheduler for the timing constraints, breaking again the process into two

11

steps.

4.3.2 Non Preemptable Threads

In the first step, we consider that the application threads cannot bepreemptedwhile
they are computing. The non-preemption hypothesis reduces the state space we
have to consider, since it removes all the cases where the execution of a thread is
suspended by an interrupt (e.g., for starting a new period of some other thread).
In the application of Figure 4 the reduction obtained by not allowing preemption
is 40% when applied on the initial timed model and 80% when applied to the
bbereduced timed model. Once we can indeed safely schedule the system under
the hypothesis that threads are never preempted, then we can use the constraints
obtained during this step toreduce even furtherthe state space that we have to
construct and analyse when we do allow threads to be preempted. Indeed, for the
application of Figure 4, we can reduce the state space by an additional 10% with
the 30 constraints we construct during this step.

The non-preemption of threads is easily added to our modelsthrough the use
of a QoS policy, which is another indication of the modularity of our architecture
and of the usefulness of the layer dealing with the QoS requirements. This policy
effectively forbids the schedulers from choosing a thread for execution, when an-
other thread is already in a state where it is performing a computation. That is, the
non-preemption QoS policy is expressed as:

Qexec(
−−−→state) = {t . t ∈ Sexec(

−−−→state) ∧ ¬∃t′ 6= t . computes(t′)} (2)

However, we cannot safely schedule all systems when we do not allow threads
to be preempted. Indeed, it is easy to see from the non-preemption QoS policy, that
sometimes the threadt′ which is executing may not be in theSexec(

−−−→state) safe set.
This means that for these systems we will not obtain any scheduling constraints
and, therefore, will be obliged to examine the large, unconstrained state space of
the timed model. Nevertheless, the fact that we have identified our inability to
safely schedule the system when threads cannot be preempted is of great impor-
tance to the designer. It shows that the system may beoverloadedand thusunder
difficulty to meet the deadlinesof the threads if preemption is not allowed and it
also helps the designeridentify the exact set of problematic threads. In this case,
designers will probably want to consider other computation algorithms and/or un-
derlying hardware platforms, in order to have a system which is not overloaded
and, therefore, not sosensitiveto the execution times of the threads.

4.3.3 Allowing Preemption

Having performed the scheduler synthesis for the case where threads are not pre-
emptable, we add the additional constraints we synthesised (if any) to the model
and perform the scheduler synthesis once more, this time allowing threads to be
preempted. This is the final step of the scheduler synthesis, which provides us

12

with the whole set of constraints that we must impose on the application in order
to guarantee that it will be deadlock free and that it will meet all the deadlines of
the threads. For the application of Figure 4, this last synthesis step produces an
additional 18 constraints and thus we can safely schedule this application with a
total of 56 constraints, avoiding both deadlocks and missed deadlines. These 56
constraints are all part of theSafe-Execlayer, since in this application there is al-
ways at most one thread waiting to be notified on a particular condition variable
and thus we cannot control the communication aspect of the application. This safe
model has a state space which is 96% smaller than the original, unsafe one.

4.4 Removing Clocks

Having synthesised a safe scheduler for an application does not necessarily mean
that we can implement it easily on a usualR-T OSthough. The difficulty of im-
plementing it as is, arises from the fact that the constraints we produce during the
synthesis use the state of the system to decide what are the safe choices at each
point during the execution and, therefore, also make reference to the values of the
local clocks of the threads. However, these clocks do not really exist but were only
introduced as a way to model the computations of the threads. Introducing them in
a realR-T OSmeans that we will have to add for each thread an additional timer
object and reset and activate (resp. reset and deactivate) the timer before (resp. af-
ter) each computation and read its value when making a scheduling decision. Even
though we do allow preemptable threads in general, we do not expect the additional
degree of control that these clocks would offer us to be great enough to justify the
complexity of using the additional timers. Therefore, weremovethe clock evalu-
ations from the constraints to obtain a clock-free scheduler, which only examines
thePCs of the threads. This will make the scheduler itself faster to execute, since
in order to make a scheduling decision it now only needs to examine then values
of the differentPCs and not the2n + 1 values of thePCs, the local thread clocks
and the global clock. On the other hand, removing the clocks from the constraints
can introduce states where the scheduler will take the wrong decision and cause a
thread to miss its deadline. These states are those where a scheduler gets called
at the same configuration of threadPCs but at different time instances. Since the
time instance (and therefore the clock values) are different, the safe setSexec of
these states can be different themselves as well. When we decide to not observe
the clock values while scheduling, we are effectively unable to differentiate among
these different sets and all these states becomeequivalent, as far as our scheduler is
concerned. Therefore, if we wish our scheduler to always make a decision which is
safe, then theSexec set of thisequivalence classof states should be theintersection
of theSexec sets of the states which belong to the same equivalence class.

Sexec(
−−−→classj) =

⋂
statei∈classj

Sexec(
−−−→statei) (3)

Sometimes, theSexec(
−−−→classj) set will be empty, if the scheduler decisions at

13

the members of this equivalence class were conflicting. When encountering such
an equivalence class whoseSexec set is the empty set, we need to add its members
to the set of deadlocked states and continue the synthesis algorithm, until we find
a set of constraints which helps us to avoid the whole class.

In some cases it may be impossible to safely schedule the application without
taking into account the values of the clocks. However, we believe that this will not
be the case for the majority of the real applications. The example application of
Figure 4 is indeed an application which can be scheduled without observing the
clock values and so the scheduler we synthesise for it observes only the values of
thePCs.

4.5 Other QoS Policies

Once we have synthesised a safe scheduler, we can compose it with other QoS
policies, as aforementioned in section 2. These policies are used to choose among
the safe threads those which better realise the QoS requirements of the system.
However, it can always be the case that some of these policies can cause the ap-
plication to miss a deadline, by choosing no thread for execution (i.e., setting the
Qexec set to be the empty set). For this reason we must verify them and change
them if they can indeed cause the application to miss a deadline. Since the ver-
ification is performed on thesafely schedulableapplication, the size of the state
space we must explore is quite small. For the example application of Figure 4, we
verified two additional QoS policies. The first is a fixed priority QoS policy, where
User > Refresher > Writer when they aresafeand it is effectively verified
in a model 98.4% smaller than the original timed one. The second is a QoS which
(locally) minimises the number of context switches and it is verified on a model
which is slightly even smaller (a 98.8% reduction). In Appendix A we present all
the data we collected for the application of Figure 4.

5 Scheduler Implementation

In this section we present the implementation of our scheduler over anOS for
embedded systems. We first present the approach we have taken for implementing
the election of the next thread to execute and then for electing the thread that should
receive a particular notification. Our current implementation does not make use of
priorities, mutexes or condition variables of the underlying system. It rather uses
thread suspension and resumptionto simulate these mechanisms, which allows us
to provide an implementation of our approach even on operating systems which
have a very limited number of priorities or have no priorities whatsoever.

5.1 Actions Causing Rescheduling

First, we consider the actions which activate our scheduler in order to elect a new
thread to execute. As we have aforementioned, these are the actionsmonitorEnter ,

14

monitorExit , waitForPeriod, wait andwaitTimed, as well as the expiration of a
timeout. All these actions are implemented similarly. First, theOSscheduler is
locked so as to avoid interrupt handlers from changing the system state. Then our
scheduler examines the current state of the system,i.e., thePCs of all the threads,
and decides which should be the next thread to execute, by using the synthesised
setsRexec & Sexec and the user-provided setQexec. Finally, our scheduler sus-
pends all threads, resumes the one it has chosen for execution and returns after
having unlocked theOSscheduler, thus re-allowing interrupts to occur.

The only case which is treated differently, is the case where an interrupt arrives
to signal a timeout (either for awaitTimed or awaitForPeriod). In this case, the
associated interrupt handler changes thePC of the respective thread to mark it as
no longer waiting and, then, suspends the currently executing thread (if any) and
resumes the thread that was waiting. Once this thread starts to execute, it calls our
scheduler in its turn, to assure that it can safely continue. If this is the case, our
scheduler will allow it to execute, otherwise it will suspend it and resume another
thread.

It is easy to see that if more than one interrupts arrive at the same time, our
scheduler will be called consecutively more than once. However, there can be no
more than 3 consecutive calls to our scheduler ever (the proof of this is provided in
Appendix B).

5.2 Actions Not Causing Rescheduling

Finally, we examine the actions which do not cause our scheduler to elect a new
thread for execution, that is, the actionsnotify and notifyAll . As we have already
seen in section 2, unlike the previously presented actions which made use of the
left stack of our scheduler, these actions make use of its right stack, which deals
with the communication aspects of the system. Indeed, when anotify occurs, the
scheduler is called and it checks whether there are any threads waiting on the event
notified. If so, it selects one of themusing theQnotif set, marks it as notified and
gives back the execution to the thread which did thenotify .

5.3 eCos Implementation

Currently, we have implemented our architecture on top ofeCos [12], an open-
sourceOS for embedded systems. Lacking a real embedded platform, we used
synthetic-Linuxas the execution platform ofeCos, which means thateCos and
its application are running as a single Linux process. The advantage of this is
that one has an easy to use and cheap development platform, with the disadvan-
tage that measurements obtained are not the same that would have been obtained if
eCos was running on its own. Nevertheless, it allows us to experiment with differ-
ent methods and arrive at some initial conclusions. For example, our experiments
showed that despite executing aR-T application on such a non-R-T environment,
it did indeed honour its deadlines. Another point which interested us was the cost

15

of executing the scheduler stack. The tests we have performed showed that, even
in such a rather hostile environment, the cost of evaluating the different scheduler
sets when runningeCos over Linux is of the order of 0.66 micro-seconds per state
on the average, when executed on a 330 MHz Pentium II machine3. Given the fact
that our prototype implementation is not particularly optimised for speed, this is a
rather small execution cost.

6 Conclusions

We have presented a new methodology for building application-driven schedulers
based on the controller synthesis paradigm [18] and a prototype implementation of
our scheduler using an open-sourceOSfor embedded systems.

Our work is based on [1, 2]. Controller synthesis for timed automata has also
been considered in [5], where the problem is reduced to the untimed framework
of [18] using theregion graphconstruction which results in state space explosion.
[17] treats the problem in a more general setting of linear hybrid automata and
presents a semi-decision procedure (the problem is in general undecidable for this
class of systems). The approach proposed in [7] is also similar to ours, in the
sense that it uses an automata-based formalism (after translation from ACSR), but
it relies on a different algorithm based on the notion of weak bisimulation and does
not propose a particular scheduler architecture or implementation. A scheduler
synthesis tool has also been described in [8]. It differs from ours in two major
aspects:(i) it computes static cyclic schedules by sequencing events in a fixed
time frame, whereas our algorithm produces dynamic (and not necessarily cyclic)
schedules for an unbounded time frame, and(ii) it is restricted to deterministic
execution times, while we can handle nondeterministic ones.

In [6], the authors consider applications comprising of heterogeneous thread
types, just as we do herein, but do not consider the problem of thread interdepen-
dencies due to the sharing of non-preemptable resources.

The advantages of our synthesis method is that we can handle larger models
than if we would have tried to attack the original timed version of the model at
once. In addition, following our method a designer is better able to understand
the behaviour of a system, since we successively drive him through:(i) the states
which cause a deadlock later on,(ii) the states where a system is overloaded (and,
therefore, he needs to allow preemption of threads), and finally,(iii) the states
where the scheduler also needs to observe the values of the local clocks measur-
ing the duration of each computation of the threads. Finally, an advantage of our
method is that it does not consider any particular model for threads and therefore
can be applied to applications comprising of any mix of periodic, aperiodic,etc.

3 Minimum/maximum overhead was 0.00µs/ 5.00µs, average deviance was 0.45µs, popu-
lation variance was 0.23 and 65% of the measurements belonged in the intervalaverage ±
average deviance (i.e., 0.66µs± 0.45µs) while 33% of them belonged in the intervalminimum±
average deviance (i.e., 0.00µs± 0.45µs).

16

threads, which share non-preemptable system resources and communicate through
condition variables.

A disadvantage of our method is that we must build the entire state space before
we can synthesise a scheduler for an application. We plan to address this problem
in future versions of our tools, which will perform the synthesis in an on-the-fly
manner while constructing the state-space, as for example was done in [15]. We
also plan to study ways to perform the synthesis symbolically, without explicitly
constructing the state space graph.

In this article we focused on models instead of a particular programming lan-
guage. Such models can be extracted from programs using static analysis tech-
niques. We indeed plan to develop such a model extraction for Java, so as to be
able to schedule real-time Java programs.

Acknowledgements

This work has been partially funded by the French RNTL project Expresso.

References

[1] K. Altisen, G. G̈oßler, and J. Sifakis. Scheduler modeling based on the con-
troller synthesis paradigm.Real-Time Systems, 23(1):55–84, July 2002.

[2] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete
and timed systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, ed-
itors, Hybrid Systems II, volume 999 ofLecture Notes in Computer Science,
pages 1–20, Berlin, 1995. Springer-Verlag.

[3] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling
for flexible workload management.IEEE Trans. Computers, 51(3):289–302,
Mar. 2002.

[4] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addi-
son-Wesley, Reading, MA, USA, 1996.

[5] G. Hoffmann and H. Wong Toi. The input-output control of real-time discrete
event systems. In30th IEEE CDC, 1991.

[6] D. Isović and G. Fohler. Efficient scheduling of sporadic, aperiodic, and
periodic tasks with complex constraints. In21st IEEE Real-Time Systems
Symposium, Walt Disney World, Orlando, Florida, USA, Nov. 2000.

[7] H. Kwak, I. Lee, A. Philippou, J. Choi, and O. Sokolsky. Symbolic schedu-
lability analysis of real-time systems. InIEEE RTSS’98, Madrid, Spain, Dec.
1998.

17

[8] A. K. Mok, D. C. Tsou, and R. C. M. Rooij. The MSP.RTL real-time sched-
uler synthesis tool. InRTSS’96, Washington, D.C., USA, Dec. 1996. IEEE
Computer Society Press.

[9] The Open Group. The Single UNIX Specification, Version 2: Threads,
1997. Available online athttp://www.unix-systems.org/
single_unix_specification_v2/xsh/threads.html .

[10] F. Parain, M. Ban̂atre, G. Cabillic, T. Higuera, V. Issarny, and J.-P. Lesot.
Techniques de réduction de la consommation dans les systèmes embarqúes
temps-ŕeel. Technical Report 1332, IRISA, Campus de Beaulieu, 35042
Rennes Cedex, France, May 2000. (In French).

[11] Real-Time Java Working Group. Real-time core extensions, revision 1.0.14.
Technical report, J Consortium, Sept. 2000. Available athttp://www.
j-consortium.org/rtjwg/rtce.1.0.14.pdf .

[12] RedHat Corporation. eCos reference manual. Available at
http://sources.redhat.com/ecos/docs-latest/pdf/
ecos-ref.pdf , Sept. 2000.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization.IEEE Transactions on Computers,
C-39(9):1175–1185, Sept. 1990.

[14] A. S. Tanenbaum.Modern Operating Systems. Prentice-Hall, Englewood
Cliffs, N.J., 1st edition, 1992.

[15] S. Tripakis and K. Altisen. On-the-fly controller synthesis for discrete and
dense-time systems. In J. M. Wing, J. Woodcock, and J. Davies, editors,
FM’99, World Congress on Formal Methods in the Development of Com-
puting Systems, volume 1708 ofLecture Notes in Computer Science, pages
233–252, Toulouse, France, Sept. 1999. Springer-Verlag.

[16] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in
bisimulation semantics.Journal of the ACM (JACM), 43(3):555–600, May
1996.

[17] H. Wong Toi. The synthesis of controllers for linear hybrid automata. In36th
IEEE CDC, pages 4607–4612, 1997.

[18] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage
of a given language.SIAM Journal of Control and Optimization, 25(3):637–
659, May 1987.

18

http://www.unix-systems.org/single_unix_specification_v2/xsh/threads.html
http://www.unix-systems.org/single_unix_specification_v2/xsh/threads.html
http://www.j-consortium.org/rtjwg/rtce.1.0.14.pdf
http://www.j-consortium.org/rtjwg/rtce.1.0.14.pdf
http://sources.redhat.com/ecos/docs-latest/pdf/ecos-ref.pdf
http://sources.redhat.com/ecos/docs-latest/pdf/ecos-ref.pdf

A Experimental Results

In Table 1 we present the sizes of the different models we used, the reductions we
achieved with our proposed optimisations, the different synthesis steps for this case
study and finally, some QoS policies with which we experimented. In the first sec-
tion of the table, titled“Model Abstractions & Optimisations”, we present how the
different optimisations we have introduced decrease the state-space of the problem.
The attribute “No Clocks” used therein refers to the fact that the synthesised sched-
uler at the particular step does not observe the values of the clocks, either the local
clocks or the global ones. The second section of Table 1, titled“Synthesis Steps”
shows how the model sizes change during the scheduler synthesis process. Finally,
the third section of the Table 1 shows the size of thesafemodel of the application,
when we apply to it different QoS policies. The first QoS policy is one wheresafe
threads have been prioritised, in the orderUser > Refresher > Writer and
the second QoS policy locally minimises the number of thread context switches,
by selecting the previously executing thread if it is still safe to do so.

The state-space graph construction and thebbereduction of the graph in these
experiments have been carried out using the CADP tools4.

Table 1: Comparing the size of the different models
Model kind † States Red.% Transitions Red.% Deadlocks‡ Red.% Constraints††

Model Abstractions & Optimisations

T original (i.e., Preemption) 45470 0.00% 48786 0.00% 367 0.00% —
U 1352 97.03% 1645 96.63% 10 97.28% —
T No Preemption 27266 40.04% 29118 40.31% 134 63.49% —
T Preemption, bbe reduction 11437 74.85% 13648 72.02% 1 99.73% —
T No Preemption, bbe reduction 8648 80.98% 10038 79.42% 1 99.73% —

Synthesis Steps

U 1352 97.03% 1645 96.63% 10 97.28% 0 (8)
U, No Deadlocks 1200 97.36% 1451 97.03% 0 100.00% 8 (0)
T No Preemption, bbe reduction, No Deadlocks 8642 80.99% 10027 79.45% 1 99.73% 8 (30)
T No Preemption, bbe reduction, Safe 1542 96.61% 1668 96.58% 0 100.00% 30+8=38 (0)
T Preemption, bbe reduction, No Clocks 4640 89.80% 5532 88.66% 1 99.73% 30+8=38 (18)
T Preemption, bbe reduction, No Clocks, Safe 1593 96.50% 1740 96.43% 0 100.00% 18+30+8=56 (0)

QoS Policies(reduced with bbe)

T Safe, Fixed Priorities‡‡ 728 98.40% 750 98.46% 0 100.00% 56 (—)
T Safe, Locally Min. Context Switches 549 98.79% 573 98.83% 0 100.00% 56 (—)

† T indicates aTimedandU anUntimedmodel.
‡ Missed deadlines manifest themselves as deadlocks in our models.
†† This column reports the number of constraintsappliedto the model, that is the number of constraints synthesised in theprevious
step(s), as well as, the number ofnewconstraints synthesised at each step (inside parenthesis).
‡‡ In this case, User has a higher priority than Refresher and Refresher has a higher priority than Writer.

B Consecutive Calls to the Scheduler

The following theorem presents an upper bound on the number of consecutive calls
to the scheduler which can happen.

4http://www.inrialpes.fr/vasy/cadp/

19

http://www.inrialpes.fr/vasy/cadp/

Theorem B.1 At each point of execution, we can do at most 3 directly consecutive
reschedulings.

Proof:
The worst case is whenn interrupts arrive, wheren > 1, while we are execut-

ing an action which will pass control to the (left stack of the) scheduler, especially
one ofmonitorEnter andmonitorExit .

Then, we might do one rescheduling for the action. After exiting the action
and unlocking the scheduler, we will execute the interrupt handlers in some random
order, since the interrupt handlers always have a higher priority than the application
threads. After having executed all the interrupt handlers, we will execute the last
thread among those awaken, and perform a second rescheduling. If this last thread
we chose was not the one that should be running at this point, it will give priority
to another one. If that one is one of those recently awaken, then this will perform
a third rescheduling. However, since the state of the threads has not changed since
the second rescheduling, the third rescheduling will have no effect. Thus, this last
thread will continue executing.

Therefore, we may executeat most 3 directly consecutivereschedulings.

20

	Introduction
	Scheduler Architecture
	Controlling the Currently Executing Thread
	Controlling the Notified Thread
	QoS Policies

	System Model
	Scheduler Synthesis
	State Space Reduction & Application Analysis
	Deadlock Avoidance
	Guaranteeing Deadlines
	Speeding Up Time
	Non Preemptable Threads
	Allowing Preemption

	Removing Clocks
	Other QoS Policies

	Scheduler Implementation
	Actions Causing Rescheduling
	Actions Not Causing Rescheduling
	eCos Implementation

	Conclusions
	Experimental Results
	Consecutive Calls to the Scheduler

