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Abstract: In this paper, we propose a simple two-step method for the synthesis of Ag, Au, and
Pt-doped ZnO nanoparticles. The method is based on the fabrication of targets using the pulsed
laser deposition (PLD) technique where thin layers of metals (Ag, Pt, Au) have been deposited on a
metal-oxide bulk substrate (ZnO). Such formed structures were used as a target for the production
of doped nanoparticles (ZnO: Ag, ZnO: Au, and ZnO: Pt) by laser ablation in water. The influence
of Ag, Au, and Pt doping on the optical properties, structure and composition, sizing, and mor-
phology was studied using UV-Visible (UV-Vis) and photoluminescence (PL) spectroscopies, X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM),
and transmission electron microscopy (TEM), respectively. The band-gap energy decreased to 3.06,
3.08, and 3.15 for silver, gold, and platinum-doped ZnO compared to the pure ZnO (3.2 eV). PL
spectra showed a decrease in the recombination rate of the electrons and holes in the case of doped
ZnO. SEM, TEM, and AFM images showed spherical-shaped nanoparticles with a relatively smooth
surface. The XRD patterns confirm that Ag, Au, and Pt were well incorporated inside the ZnO lattice
and maintained a hexagonal wurtzite structure. This work could provide a new way for synthesizing
various doped materials.

Keywords: zinc oxide (ZnO); doped ZnO; silver (Ag) doped ZnO; gold (Au) doped ZnO; platinum
(Pt) doped ZnO; pulsed laser deposition (PLD); pulsed laser ablation in liquid (PLAL); nanoparticles

1. Introduction

In nanotechnology, nanoparticles—particles in the range of 1 to 100 nm in diameter—have
a significant role due to their exceptional magnetic, electrical, mechanical, optical, and electronic
properties with respect to the bulk materials [1]. These unique properties allow the use of
nanoparticles in energy harvesting [2], sensing [3], optics [4], photocatalysis [5], cosmetics [6],
medicine [7], and biology [8]. Metal oxide nanoparticles excel as the most used nanomaterials
due to their various properties, such as being adsorbents to heavy metals or having unique
opto-electrical properties, catalytic sensitivity, and selective activity [9].

Beside pure metallic nanoparticles, two-component (alloyed) and metal-oxide nanopar-
ticles represent advanced functional materials, which have high impact in a wide variety of
applications in science and technology [10]. Such nanoparticles can be fabricated directly
from alloyed targets by PLAL in a form of core-shell nanoparticles [11], alloyed nanopar-
ticles [12], or as hybrid nanostructures where PLAL nanoparticles are adsorbed on the
support or nanostructured surfaces [13,14].

Among metal oxide nanoparticles, zinc oxide (ZnO) is one of the most prominent and
widely used materials for gas and chemical sensors [15], optical and electrical devices [16],
solar cells [17], water treatment [18], antimicrobial activity [19], food packaging [20], and
drug delivery [21]. ZnO is an inorganic n-type semiconductor with a direct bandgap of
3.37 eV and binding energy of 60 meV at room temperature. It has unique physicochemical
properties, such as piezoelectricity [22], pyroelectric effects [23], good electron transport [24],
and photo- and sono-catalytic activities [25]. ZnO strongly absorbs UVA (315–400 nm) and
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UVB (280–315 nm) light [19], which is why it is one of the most effective sun protectors
available. At ambient conditions, ZnO has a hexagonal wurtzite structure with intrinsic
defects—O vacancies and Zn interstitials—resulting in n-type conductivity. Introducing
a new element in the crystal structure of ZnO leads to the enhancement of the electrical
and optical properties and broadens the area of its application [26]. For n-type doping,
we can use group-III (Al, Ga, In), as substitutional elements for Zn, and group-VII (Cl,
I), as substitutional elements for O. The big challenge is to obtain p-type doping in wide-
gap semiconductors such as ZnO because of the native defects, hydrogen impurities,
low solubility of the dopant, and deep impurity level [27]. Known acceptors for p-type
doping are Group-I elements (Li, Na, K), Group-V elements (N, P, As), silver, copper, and
Zn vacancies.

Various methods are developed for ZnO doping, such as chemical vapor deposition
(CVP) [28], sol-gel [29], atomic layer deposition [30], pulsed laser deposition (PLD) [31], a
wet chemical method [32], etc. Drawbacks of chemical methods are the usage of various
chemicals in the synthesis process, toxic by-products, stabilizers, and capping agents, while
high-vacuum methods can be complicated to handle and expensive. Pulsed laser ablation
in liquid (PLAL) gained a lot of attention due to its fast production of nanoparticles with
production rates of several grams per hour [33], simplicity, and effectiveness. In the PLAL
technique, a pulsed laser beam ablates a metal plate immersed in a liquid where plasma is
formed on the surface of the metal plate in the focus of the high-power laser beam. There
is an energy exchange from the plasma to the liquid, where a cavitation bubble forms.
Eventually, particles are released from the cavitation bubble into the surrounding liquid.
Produced nanoparticles have high purity (ligand-free), and their size and shape depend
on the ablation parameters (laser wavelength and fluence, repetition rate, ablation time,
and liquid environment) [34]. Furthermore, there is no limit on the type of produced
nanoparticles because every metal target can be ablated. Since there are no toxic by-
products, the method can be classified as eco-friendly.

According to the literature, researchers successfully produced doped ZnO using
a nanosecond or femtosecond pulsed laser in a liquid environment. Sahoo et al. [35]
generated Mg-doped ZnO nanoparticles in ethanol using a Ti: Sapphire femtosecond laser.
The Mg: ZnO target was prepared by grinding together the MgO and ZnO powders. After
that, the mixture was compressed and sintered at 1200 ◦C for 24 h. Also, Chelnokov
et al. [36] produced Mg-doped ZnO nanoparticles where the target was prepared from
mixtures of Zn and Mg acetylacetonates. The mixture was manually mixed and heated
for one hour at 130 ◦C to evaporate water and then calcined for three hours at 350 ◦C to
destroy organics. Lastly, the mixture was compressed and sintered for two days at 700 ◦C.
The Mg: ZnO nanoparticles were synthesized in ethanol by Ti: Sapphire femtosecond
laser. Qin et al. [37] generated Cu-doped ZnO quantum dots using an ns-Nd: YAG laser
in Polyvinylpyrrolidone (PVP) aqueous solution. The Zn/Cu composite targets were
synthesized by a chemical replacement method. Yudasari et al. [38] employed an ns-
Nd: YAG laser for Fe-doped ZnO nanoparticle production using the Zn and Fe targets.
Firstly, the Zn plate was ablated in pure water. Then, the Zn plate was replaced with a Fe
plate. Lastly, Fe: ZnO nanoparticles were generated by ablating the Fe plate in the ZnO
colloidal solution. With this method, Anugrahwidya et al. [39] produced Ag-doped ZnO
nanoparticles, and Khashan et al. [40] synthesized indium-doped ZnO. Krstulović et al. [41]
used ns-Nd: YAG laser for ZnO: Al2O3 target ablation in MiliQ water and, consequently,
produced Al-doped ZnO nanoparticles. To our knowledge, PLAL was not used for Au and
Pt-doped ZnO nanoparticle synthesis.

In this work, we present a newly developed synthesis method for Ag, Au, and Pt-
doped ZnO that combines the PLD and the PLAL processes. With PLD, we created
ZnO-X (X-Au, Ag, Pt) targets for the ablation process in water using ns-Nd: YAG laser.
The advantage of this target synthesis is simplicity and fast production compared to the
previous methods.
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2. Experimental Procedure
2.1. Material Preparation

The X: ZnO (X-Ag, Au, Pt) doped nanoparticles were synthesized in a two-step process
shown in Figure 1. Firstly, we deposited a thin layer of Ag, Au, and Pt (purity > 99.9%,
GoodFellow, Huntingdon, UK) on ZnO ceramic (purity > 99.99%, GoodFellow, Huntingdon,
UK) substrates using the pulsed laser deposition (PLD) method in order to obtain targets
for the PLAL process (Figure 1a). The deposition was performed in a vacuum (10−4 mbar)
while the target and substrate were rotated to avoid the drilling of the target and to ensure
homogeneous film deposition on the substrate. The laser pulse number was set to 2000
for all samples. In the second step, ZnO-X (X-Ag, Au, Pt) targets were used in the PLAL
process for obtaining X: ZnO (X-Ag, Au, Pt) doped nanoparticle solutions (Figure 1c,d). The
targets were immersed 2.5 cm under water in a glass beaker filled with 25 mL MiliQ water.
The ablation process was carried out by an Nd: YAG (Quantel, Brilliant, Les Ulis, France)
laser with the wavelength and pulse output energy of 1064 nm and 300 mJ, respectively.
The pulse duration and repetition rate were 5 ns and 5 Hz, while the ablation time was
6 min and 40 s (2000 pulses). The energy delivered to the sample was approximately 120 mJ
per pulse, and the fluence of a single laser pulse was 79 J/cm2. The laser beam was focused
on the target using a cylindrical concave lens with a focal length of 10 cm. The incident
angle of the laser beam was 90◦. During the ablation, the targets were continuously scanned
to avoid drilling. The detailed schematics and procedure of the two-step synthesis of doped
nanoparticles can be found here [42]. Also, we measured the weight of ZnO substrates
before and after the PLD and PLAL synthesis using a microbalance (XPR6UD5, Mettler
Toledo, Columbus, OH, USA) to obtain the masses of deposited metal layers and ablated
nanoparticles, respectively.
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Figure 1. Two-step synthesis method of Ag, Au, and Pt-doped ZnO nanoparticles. First step is
(a) pulsed laser deposition (PLD) of Ag, Au, and Pt on the ZnO substrate. As result, (b) a two-layered
target (ZnO-metallic film) is formed. In the second step, (c,d) a two-layer target is ablated in water,
forming (e) Ag, Au, and Pt-doped ZnO NPs.
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2.2. Material Characterization

The optical absorption properties of the X: ZnO (X-Ag, Au, Pt) nanoparticles in the
colloidal solution were obtained via a UV-Vis spectrophotometer (Lambda 25, Perkin Elmer,
Waltham, MA, USA) in the wavelength range from 220–800 nm. The UV-Vis absorption
spectra were measured for nanoparticle colloidal solutions using a UV cuvette with a path
length of 10 mm. Furthermore, optical properties were observed by photoluminescence
(PL) spectroscopy. The photoluminescence measurements were obtained using a spec-
trofluorophotometer (RF-6000, Shimadzu, Kyoto, Japan) under an Xe lamp at the excitation
energy of 3.54 eV (wavelength of 350 nm). Moreover, the colloidal solutions were dropped
on silicon wafers and dried in a dryer (SP-25 Easy, Kambič, Semič, Slovenia) at 40 ◦C for
30 min for further characterization.

Structural analysis was carried out with the grazing incidence X-ray diffraction
(GIXRD) technique. The measurements were performed in a diffractometer containing a Cu
X-ray (λ = 1.5406 Å) tube and a W/C multilayer for monochromatization and beam shaping
(D5000, Siemens, Karlsruhe, Germany). A curved position sensitive detector (RADICON)
collected the diffracted spectra in the angular range 2θ = 30–85◦. For all measurements, we
used a fixed grazing incidence angle of αi = 1.5◦. The following JCPDS cards were used for
crystallographic analysis: JCPDS 36-1451 (ZnO), JCPDS 04-0783 (Ag), JCPDS 04-0784 (Au),
and JCPDS 01-087-0640 (Pt).

The detailed morphology and size distribution of the nanoparticles were studied using
a scanning electron microscope (SEM, Joel 7600F, Tokyo, Japan) and a transmission electron
microscope (TEM, JEOL JEM-1400 Flash, Tokyo, Japan). The SEM measurements were
obtained by dropping a colloidal solution on a 5 × 5 mm2 Si wafer, while for the TEM
images, samples were prepared by dropping one drop of a colloidal solution onto the TEM
grid. All colloidal solutions were sonicated for 5 min before the dropping.

The chemical compositions were analyzed using an X-ray photoelectron spectro-
scope (PHI-TFA XPS, Physical Electronics Inc., Chanhassen, MN, USA) equipped with a
monochromatic Al source at the photon energy of 1486.6 eV. The analyzed area and depth
were 0.4 mm (in diameter) and 3–5 nm, respectively. The high-energy resolution spectrum
was obtained with an energy analyzer, operating at a resolution of about 0.6 eV and pass
energy of 29 eV. During data analysis, the spectrum was calibrated by setting the C 1s peak
at 284.8 eV, characteristic of the C-C/C-H bonds. Quantification of surface composition was
performed from XPS peak intensities, considering the relative sensitivity factors provided
by the instrument manufacturer [43].

3. Results and Discussion
3.1. Mass and Atomic Fractions

Weighing the doped ZnO target before and after laser ablation reveals the mass and
atomic fractions of dopants in the ZnO matrix. Table 1 shows masses of deposited Ag, Au,
and Pt thin film on ZnO substrates. Pulsed laser deposition was the most effective for Ag
thin film. The thickest film deposits in the case of silver. The amount of ablated material
depends on the composition, geometry, and ablation threshold of the target, the focus
and wavelength of the laser, the number of pulses, and the surrounding fluid in which
the ablation takes place [34]. The pulsed laser ablation process was the most effective for
Pt-doped ZnO nanoparticles, producing 1.925 mg in 6 min and 40 s. However, in this paper,
we are focused on 2000 pulses (6 min and 40 s) for all three samples. From the obtained
masses, we calculated the mass and atomic fractions of Ag, Au, and Pt in relation to the
ZnO. The atomic fractions of Ag, Au, and Pt in ZnO were 2.32, 0.55, and 0.41%, respectively.
Since the band-gap tuning of a semiconductor depends on the atomic fraction of impurity
introduced into the crystal lattice, we can conclude that in this case, Ag would have the
most effect on the band-gap narrowing.
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Table 1. Mass measurements of deposited metal layers involved in ablation and ablated doped ZnO
nanoparticles (NP). Also, the mass (w) and atomic (at.) fractions of Ag, Au, and Pt in the produced
nanoparticles were calculated.

PLD PLAL w (%) at. (%)

m (Ag) 0.036 mg m (Ag: ZnO) 1.171 mg Ag 3.37 ± 0.2 2.32 ± 0.2
m (Au) 0.024 mg m (Au: ZnO) 1.798 mg Au 1.33 ± 0.1 0.55 ± 0.1
m (Pt) 0.019 mg m (Pt: ZnO) 1.925 mg Pt 1.01 ± 0.1 0.42 ± 0.1

3.2. Optical Analysis

Using the UV-Vis spectrophotometer, we obtained the absorption spectra of the sam-
ples and extracted information about the optical band-gap energy. Figure 2 shows the
UV-Vis absorption spectra of the pure and Ag, Au, and Pt doped ZnO nanoparticles in
colloidal solution. We can distinguish characteristic ZnO peaks in the UV region between
300–400 nm due to intrinsic absorption when electrons transition from the valence band to
the conduction band (O2p→Zn3d) [44]. By introducing Ag, Au, and Pt into the ZnO lattice,
we have a broad absorption peak at about 335, 331, and 328 nm, respectively. We observed
a red-shift of the Ag: ZnO and Au: ZnO NP absorption peaks compared to the Pt: ZnO
peak. This implies a narrower optical band-gap in the case of Ag- and Au-doped ZnO [45].
A red-shift of the absorption peak can be connected to the development of shallow levels
inside the band-gap due to the presence of impurity atoms present in the ZnO lattice [46].
From Table 1, we can notice that the highest atomic content of dopant in ZnO is in the
case of Ag. This strongly indicates that Ag-doped ZnO will have the narrowest band-gap.
Moreover, we do not see characteristic peaks of the Ag, Au, and Pt in ZnO spectrums,
signifying the fact that these metals are incorporated into the crystal lattice of ZnO. We
have different intensities in absorbance due to different solution densities.
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Direct band-gap energies were obtained by extrapolating the linear part in a plot
(αhν)2 versus Eg = hν (inset in Figure 2) following equation:

(αhν)2 = A
(
hν− Eg

)
(1)

where α is the absorption coefficient, h is Planck’s constant, hν is the photon energy, A is a
constant, and Eg is the optical band-gap. The estimated band-gap energies are 3.06± 0.02 eV,
3.08 ± 0.02 eV, 3.15 ± 0.03 eV, and 3.20 ± 0.04 eV for the Ag: ZnO, Au: ZnO, Pt: ZnO, and
pure ZnO, respectively. There is a decrease in the band-gap energies in the case of the doped
ZnO NPs showing changes in the nanocrystal electronic structure of the doped ZnO [46]
and more efficient light absorption. The narrowest band-gap energy has Ag-doped ZnO
NPs because of the highest atomic content inside ZnO. Also, our synthesized ZnO has
lower band-gap energy compared to the literature value of 3.37 eV [27].

The photoluminescence (PL) spectra (Figure 3) obtained at room temperature offer
an insight into the optical properties of the pure and doped ZnO NPs. Typical PL ZnO
spectra consist of the peaks in the UV region related to the near-band-edge emission and
the visible region attributed to the deep-level emissions. The peak at 3.26 eV (380 nm) for
pure and doped ZnO is ascribed to the recombination of the electron and hole pairs (exciton
recombination) aligning with the near-band edge of ZnO [47,48]. For doped ZnO NPs,
the peak decreases compared to the pure ZnO, implying a decrease in the recombination
rate of the electrons and holes. The emission peak at 3.12 eV (398 nm) can be attributed
to the electronic transition from a lower energy excitonic state or to the Zn interstitial,
which lies ~0.22 eV below the conduction band [49]. As it can be seen from the inset in
Figure 3, the emission peak at 3.12 eV is well fitted with Zni interstitial [50]. Pure ZnO
displays a yellow emission with a maximum at ~2.11 eV (~588 nm), which is related to
the exciton transition between charged oxygen vacancy in the valence band and the photo-
accelerated electrons [51]. To understand the origin of such a broad emission, the fit with
several Gaussian components was performed. It was found that all peaks are related to the
emission from ZnO, while the doped ZnO emission was too low to be fitted. In the inset in
Figure 3, a deconvolution of the visible peak (yellow emission) for pure ZnO is shown [50].
It is deconvoluted into four Gaussian sub-peaks assigned to oxygen interstitial Oi, oxygen
vacancy double charge VO

++, oxygen vacancy single charge VO
+, and oxygen vacancy

VO with the following shares in the total emission 26%, 42%, 24%, and 8%, respectively.
The calculation of shares for VO

++ and Oi is done by extrapolating Gaussian fits, as they
are obstructed by the second order of initial irradiation, which appears below 1.9 eV (the
peak is at 1.77 eV). It was widely accepted that VO

++ is mainly responsible for the yellow
emission, as is the case here where it dominates over the emission of other defects [52].
Doping ZnO with Ag, Au, and Pt decreases the visible emission, implying a low defect
concentration. As said, the decrease in the PL peaks indicates a lower recombination rate
of the excitons and improves their optical properties. This happens because dopants create
band levels that act as traps for charge carriers, thus decreasing the recombination rate of
the electrons and holes. Comparing PL intensities, Pt-doped ZnO NPs have the lowest
recombination rate of the excitons. Since the exciton recombination rate decreases with the
ZnO doping, a better photocatalytic power of ZnO in the degradation of organic pollutants
is expected [53].
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3.3. Structural Analysis

The XRD patterns reveal the crystal structure, purity, and crystallinity of the synthe-
sized X: ZnO (X-Ag, Au, and Pt) nanoparticles. In Figure 4, all peaks are indexed as the
hexagonal wurtzite structure of ZnO. The XRD peaks are relatively sharp indicating that X:
ZnO nanoparticles are crystalline. Also, the XRD patterns are relatively broad because the
crystals are randomly oriented, and we cannot exclude that a certain amount of amorphous
ZnO and/or Zn(OH)2 is present in the main phase [44]. There are no characteristic peaks
of impurities in the pattern. The absence of Au, Ag, and Pt characteristic peaks in the X:
ZnO nanoparticles excludes the existence of the Au-, Ag-, and Pt-based clusters within the
detection limit. This strongly implies that Ag, Au, and Pt have been incorporated into the
crystal structure of ZnO and that high-quality doped nanoparticles were produced.

The average crystallite size (D) was calculated using Debye–Scherrer’s formula using
data from the XRD patterns [54]:

D =
0.9·λ
β·cosθ

(2)

where λ is the wavelength of the X-ray beam (1.5406 Å), β is the full width at half maximum
(in radians), and θ is the angle between the plane and the incident ray (Bragg’s angle, in
radians). The calculated crystallite sizes are 50 nm, 24 nm, 25 nm, and 24 nm for pure ZnO,
Ag: ZnO, Au: ZnO, and Pt: ZnO, respectively. Doped ZnO nanoparticles have smaller
crystallites (half as small) compared to pure ZnO.
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We observed shifts in the peaks of the hexagonal wurtzite structure (Figure 5) into
smaller angles for the Ag: ZnO, Au: ZnO, and Pt: ZnO compared to the pure ZnO. These
average shifts were 0.26◦ for Ag: ZnO, Au: ZnO, and Pt: ZnO. These shifts toward the
smaller angles are attributed to the larger ionic radii of Ag+ (1.15 Å), Au+ (1.37 Å), and
Pt2+ (0.8 Å) than Zn2+ (0.74 Å), which implies that Ag+, Au+, and Pt2+ substituted fraction
of Zn2+ ions in the ZnO lattice. The sum of ionic radii (Ag + O, Au + O, Pt + O) is
greater than the sum of ionic radii of Zn and O. Also, the bond lengths of Ag-O, Au-O,
and Pt-O are longer than Zn-O in a hexagonal structure. This means that the unit cell
should expand, and consequently, XRD peaks shift towards smaller angles. Similarly,
Anugrahwidya et al. reported a shift in the main peak towards the smaller Bragg angles
when Ag atoms substituted Zn atoms [39]. According to the literature, when a dopant
has a bigger ionic radius than the matrix atom, then peaks shift towards smaller angles
(e.g., Fe, Mn, In) [38,55,56]. On the contrary, when a dopant has a smaller ionic radius than
the matrix atom, then peaks move towards higher values (e.g., Mg, Cu, Co, Ni) [35,37,55].

Lattice constants a (for (100) plane) and c (for (200) plane) can be calculated using the
following formulae [54]:

a =
λ√

3·sinθ
(3)

c =
λ

sinθ
(4)

From Table 2, it is apparent that the lattice constants a and c are larger for Ag-, Au-,
and Pt-doped ZnO NPs compared to pure ZnO. With this calculation, we are confirming
the lattice expansion of the doped ZnO NPs.
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Table 2. Comparison of the calculated lattice constants a and c with the respected c/a ratio.

a (Å) c (Å) c/a (Å)

pure ZnO 3.226 5.170 1.603
Ag: ZnO 3.250 5.207 1.602
Au: ZnO 3.252 5.206 1.601
Pt: ZnO 3.251 5.207 1.603

The strain and average crystallite size can be determined from the Williamson-Hall (W-
H) and strain-size (S-S) plots (Figure 6). The W-H plot (Figure 6a) uses the following relation:

(βcosθ) =
0.94λ

D
+ ε(4sinθ) (5)

where ε is a microstrain. Crystallite size and microstrain are obtained from the intersection
and slope value, respectively. The S-S plot (Figure 6b) is based on the relation:

(dhkl βhklcosθ)2 =
0.94λ

D

(
d2

hkl βhklcosθ
)
+

ε2

4
(6)

where dhkl is interplanar spacing. Crystallite size and strain are obtained from the slope
and intersection, respectively.

Table 3. Comparison of the obtained crystallite sizes (D) using the Debye–Scherer formula (D-S),
Williamson-Hall (W-H), and size-strain (S-S) plots. Corresponding dislocation densities (δ) and
strains (ε) are presented.

DD-S (nm) DW-H (nm) DS-S (nm) δ(D-S) × 10
−3

(nm−2)
δ(W-H) × 10

−4

(nm−2)
δ(S-S) × 10

−4

(nm−2) ε(W-H) × 10
−4 ε(S-S) × 10

−4

ZnO 50 44 ± 8 35 ± 6 0.04 0.05 0.08 1.4 ± 0.4 1.1 ± 0.7
Ag: ZnO 24 24 ± 5 25 ± 4 0.17 0.17 0.16 2.1 ± 0.1 0.2 ± 0.1
Au: ZnO 25 30 ± 7 24 ± 5 0.16 0.11 0.17 5.2 ± 2.3 0.8 ± 0.2
Pt: ZnO 24 39 ± 7 21 ± 6 0.17 0.06 0.23 1.5 ± 0.3 1.3 ± 0.4
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Table 3 presents the values of the crystallite size, strain, and dislocation density.
Dislocation density is obtained using the following formulae [52]:

δ =
1

D2 (7)

From Table 3, it is apparent that the Ag:ZnO and Au:ZnO crystallite sizes obtained
from three different methods are approximately the same, while for pure ZnO, a value
between 35 and 50 nm is obtained. With Pt:ZnO, a larger crystallite size is obtained using
the W-H method, which can give a larger number of crystallites because the broadening of
the peak due to microstrains and crystallites is taken into account. Doped nanoparticles
have a higher dislocation density than pure ZnO, which means that lattice defects occur
and atoms in crystal cells are displaced from an ideal position due to the smaller crystallite
size. The strains obtained for pure ZnO and Pt:ZnO are approximately the same, while for
Ag:ZnO and Au:ZnO, there are deviations between the values.

3.4. Chemical Composition Analysis

To obtain further insight into the chemical composition and formation of doped ZnO
nanoparticles, XPS analysis was applied to analyze the surface composition of such nanoparticles.

In Figure 7, wide XPS spectra are shown for ZnO nanoparticles doped with Ag, Au,
and Pt. The presence of characteristic peaks can be identified for zinc (Zn 2p, Zn 3s, Zn 3p,
Zn 3d, and Auger peaks Zn LMM), oxygen (O 1s and Auger peak O KLL), and carbon (C
1s). Peaks for Ag 3d, Au 4f, and Pt 4f can also be identified. Wide XPS spectra indicate that
ZnO nanoparticles are doped and hence successfully synthesized.

The XPS high-resolution spectra are shown in Figure 8. Deconvolution of the Zn
2p3/2 peak (Figure 8a) reveals a gaussian distribution with a maximum at 1021.5 eV which
corresponds to Zn2+ states in the ZnO crystal lattice [57]. Deconvolution of the O 1s
(Figure 8b) peak results in two gaussian fits, first with a maximum at 529.6 eV and the
second with a maximum at 531.4 eV. The first peak is related to a O2− state that is built up
in the ZnO crystal lattice, and the second peak is related to hydroxyl radical (O-H) [58].
Deconvolution of C 1s states (Figure 8c) results in two gaussian fits with maxima at 289.1 eV
and 284.8 eV, related to C=O bonds and to C-C bonds, respectively [59]. Carbon occurs
as a sample impurity, as samples were exposed to the atmosphere (C-H) after drying and
before any analysis. The deconvolution of Ag 3d states (Figure 8d) resulted in two peaks
at 373.5 eV and 367.4 eV related to 3d3/2 and 3d5/2 states, respectively. Those peaks are
related to Ag-O bonding, as the same binding energies are characteristic for Ag2O [60].
The absence of a pure metallic Ag state expected at 368.3 eV (marked in spectrum) implies
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that all silver is incorporated in the ZnO lattice rather than in a separate nanoparticle form.
The deconvolution of the Au 4f state (Figure 8e) resulted in two overlapping peaks at
91.8 eV (related to the Zn 3p1/2 state) and at 85.8 eV (related to the Au 4f5/2 state). The
absence of the Au 4f7/2 state at 84 eV (marked in spectrum) implies that there is no Au in
the metallic state and hence that Au is incorporated into the ZnO lattice rather than being
attached to the ZnO NP surface as a pure nanoparticle [61–63]. The deconvolution of Pt
4f states (Figure 8f) resulted in two peaks at 76.1 eV and 72.9 eV, related to 4f5/2 and 4f7/2
states, respectively. Those states are related to metallic Pt, but they also exhibit a shift of
1.9 eV towards higher binding energies than that of pure metallic Pt [64]. This may be an
indication that a Pt-Zn alloy is formed [65] beside the Pt incorporation into the ZnO lattice,
as was revealed with XRD. It is known that Zn and Pt can be mixed together in a variety of
different alloy compositions [66].
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3.5. Morphological Analysis

Morphological analysis (using TEM and SEM) of the samples revealed obtained
nanoparticles and their size range. In Figure 9, TEM images for pure (a, b) and Pt-doped
(c, d) ZnO NP are presented. The morphology of the nanoparticles is independent of the
dopant material; therefore, we revealed TEM images of ZnO doped with gold (Figure 9c,d),
which also describe the morphology of ZnO NPs doped with Ag and Pt. Figure 9a,c
shows different-sized spherical nanoparticles and irregular material, which are formed
during the laser ablation process. The surface morphology of the obtained NPs is shown
in Figure 9b,d. The surface is relatively smooth with some roughness because the edges
are not perfectly sharp. Figure 10 shows the SEM images of Ag-, Au-, and Pt-doped ZnO
structures with their respective size distributions. Spherical nanoparticles from 50 nm up to
200 nm dominate in each sample. During the ablation process, some micro-sized particles
and debris formed. Also, amorphous parts occurred, which agrees with the relatively broad
XRD patterns. From SEM images, we determined the size distribution of nanoparticles.
Size distribution is fitted as a log-normal function with maxima at diameters 51 nm, 71 nm,
73 nm, and 89 nm for the pure ZnO, Ag: ZnO, Au: ZnO, and Pt: ZnO, respectively. Pt-
doped ZnO nanoparticles are slightly larger compared to the Ag- and Au-doped ZnO
nanoparticles, while all doped ZnO NPs are larger than pure ZnO.
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4. Conclusions

We demonstrated a novel two-step process using PLD and PLAL techniques for the
production of Ag, Au, and Pt-doped ZnO NPs. The band-gap energies, calculated from
the UV-Vis spectra, are 3.2 eV, 3.15 eV, 3.08 eV, and 3.06 eV for pure and silver, gold, and
platinum-doped ZnO, respectively. The decrease in the band-gap energy implies changes in
the nanocrystal electronic structure and more efficient light absorption. PL measurements
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showed that doped ZnO NPs have a lower recombination rate of the excitons compared
to pure ZnO. Doped ZnO has no emission in the visible region compared to pure ZnO,
implying low defect concentration. The XRD patterns showed that Ag-, Au-, and Pt-doped
ZnO NPs maintained a hexagonal wurtzite structure without any Ag, Au, and Pt peaks.
This, together with the fact that peaks are shifting towards smaller Bragg’s angles, confirms
that Ag, Au, and Pt are well incorporated inside the ZnO lattice. It is also confirmed with
the XPS study (to some minor extent only Pt appears in metallic form). Synthesized doped
ZnO NPs are spherical-shaped with smooth surfaces, while morphology is independent of
the dopant material. This study could provide a new way for the quick and clean synthesis
of various doped materials.

5. Patents

Krstulović, N.; Blažeka, D.; Car, J.; Maletić, D.; Rakić, M. Method of Production of
Two-Component Nanoparticles Using Laser. Croatian Patent P20211098A, 9 July 2021.
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hybrid ZnO thin films produced by a combination of atomic layer deposition and wet-chemistry using a mercapto silane as single
organic precursor. Nanotechnology 2020, 31, 185603. [CrossRef]

19. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc
Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [CrossRef] [PubMed]

20. Espitia, P.J.P.; Soares, N.F.F.; Coimbra, J.S.R.; Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Zinc Oxide Nanoparticles: Synthesis,
Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [CrossRef]

21. Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and
Potential for Drug Delivery Applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [CrossRef] [PubMed]

22. Bhatia, D.; Sharma, H.; Meena, R.S.; Palkar, V.R. A Novel ZnO Piezoelectric Microcantilever Energy Scavenger: Fabrication and
Characterization. Sens. Bio-Sens. Res. 2016, 9, 45–52. [CrossRef]

23. Wang, Z.; Yu, R.; Pan, C.; Li, Z.; Yang, J.; Yi, F.; Wang, Z.L. Light-Induced Pyroelectric Effect as an Effective Approach for Ultrafast
Ultraviolet Nanosensing. Nat. Commun. 2015, 6, 8401. [CrossRef] [PubMed]

24. Chi, D.; Huang, S.; Yue, S.; Liu, K.; Lu, S.; Wang, Z.; Qu, S.; Wang, Z. Ultra-Thin ZnO Film as an Electron Transport Layer for
Realizing the High Efficiency of Organic Solar Cells. RSC Adv. 2017, 7, 14694–14700. [CrossRef]

25. Ahmad, M.; Ahmed, E.; Hong, Z.L.; Ahmed, W.; Elhissi, A.; Khalid, N.R. Photocatalytic, Sonocatalytic and Sonophotocatalytic
Degradation of Rhodamine B Using ZnO/CNTs Composites Photocatalysts. Ultrason. Sonochem. 2014, 21, 761–773. [CrossRef]
[PubMed]

26. Carofiglio, M.; Barui, S.; Cauda, V.; Laurenti, M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use
in Nanomedicine. Appl. Sci. 2020, 10, 5194. [CrossRef] [PubMed]

27. Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A Comprehensive Review
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