

ISSN 1420-3049 http://www.mdpi.org

Full Paper

Synthesis of Some Thienopyrimidine Derivatives

Fatma E. M. El-Baih^{1,*}, Hanan A. S. Al-Blowy¹ and Hassan M. Al-Hazimi²

¹ Women Students-Medical Studies & Sciences Sections, Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia. Tel.: (+966-1) 477-2245, Fax: (+966-1) 477-2245.

² Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. Tel.: (+966-1) 467-5905, Fax: (+966-1) 467-5992. E-mail: hhazimi@ksu.edu.sa

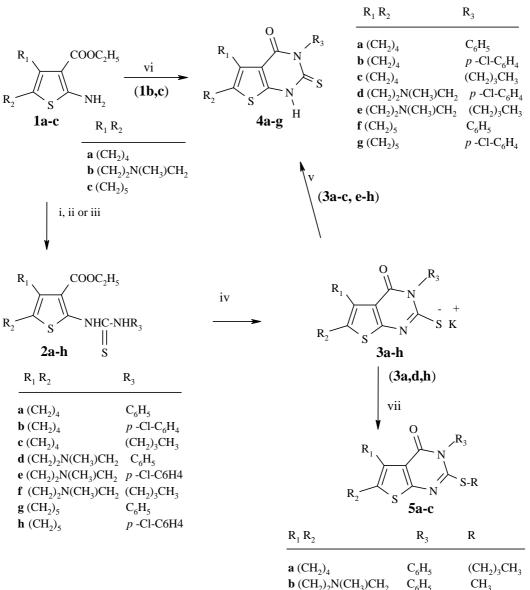
* Author to whom correspondence should be addressed; E-mail: zahraa205@yahoo.com

Received: 12 June 2006; in revised form: 28 June 2006 / Accepted: 2 July 2006 / Published: 5 July 2006

Abstract: Thioxothienopyrimidinones, alkylthio- and arylalkylthiothienopyrimidinones, thienopyrimidines a thienopyrimidined and a thienotriazolo-pyrimidinone were prepared from 2-amino-3-carboethoxy-4,5-disubstituted thiophenes and 2-amino-3-cyano-4,5-disubstituted thiophenes via reactions with different reagents.

Keywords: Thioxothienopyrimidinones, alkyl- and arylalkylthiothienopyrimidinones, thienopyrimidines, thienopyrimidines, thienopyrimidines, thienopyrimidines, pyrimidinones.

Introduction


Many thienopyrimidines are found to exhibit a variety of biological activities, including antiinflammatory [1,2], antimicrobial [3] and analgesic [4] properties, inhibition of cancer cell proliferation [5], antagonism of α_1 adrenoceptors [6] and prevention of cartilage destruction in articular diseases [7]. In continuation with our previous work on the title compounds [8,9], we report herein the synthesis of a series of novel thienopyrimidine derivatives.

Results and Discussion

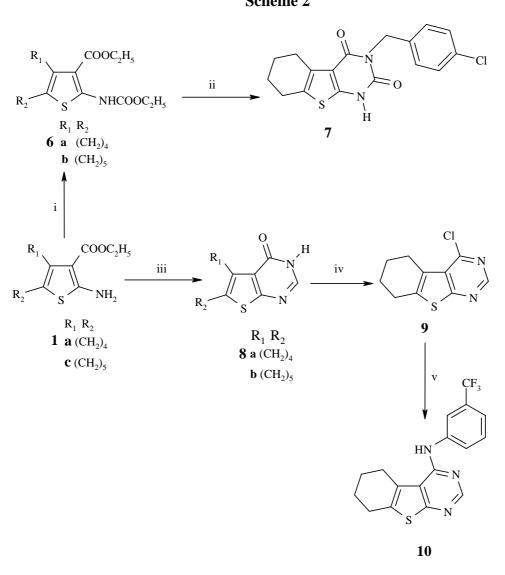
The starting materials, namely 2-amino-3-ethoxycarbonyl-4,5-disubstituted thiophenes **1a-c** and 2amino-3-cyano-4,5-disubstituted thiophenes **1d**,**e** were prepared following the corresponding literature procedures [10-12]. Thienylthiourea derivatives **2a-h** were prepared by condensation of the amino esters **1a-c** with alkyl or aryl isothiocyanates, either by heating at reflux or under microwave irradiation [8, 9, 13]; the latter method afforded higher yields of the desired products in a shorter time.

499

 $\mathbf{c} (CH_2)_2 (CH_3) CH_2 = C_6 H_5 = CH_3 \\ \mathbf{c} (CH_2)_5 = p - Cl - C_6 H_4 = CH_2 C_6 H_5$

i) R₃NCS, EtOH, reflux, 1-4h

ii) R₃NCS, microwave (MW), 45 sec.

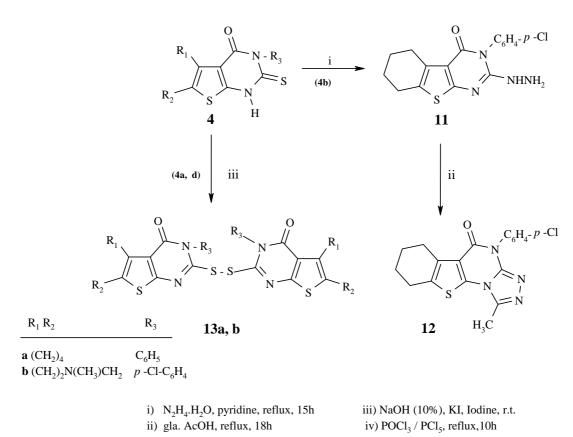

v) H₂O, HCl, r.t. vi) *p* -Cl-C₆H₄NCS, acetonitrile, reflux, 20h

iii) phenylthiourea, EtOH, microwave (MW), 20 sec. vii) R-X, EtOH, reflux, 1-8h

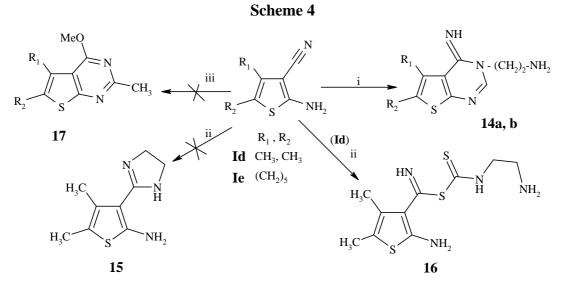
iv) KOH, EtOH, reflux, 2-6h

Compounds **2a**,**d** were also prepared by condensation of the amino esters **1a**,**b** with phenylthiourea under microwave irradiation. Cyclization of **2a**-**h** using alcoholic KOH gave the monopotassium salts of the corresponding 3-substituted-2-thioxo-4,5-disubstituted-thieno[2,3-d]pyrimidin-4-ones **3a**-**h**. 2-Thioxo derivatives **4a**-**g** were prepared either from the appropriate potassium salts **3** by acidification or from the amino ester derivatives **1a**-**c** via condensation with aryl isothiocyanates [14, 15]. Alkylation of **3a**,**d**,**h** with alkyl halides gave 2-alkylthio-derivatives **5a**-**c**.

Condensation of the amino esters **1a**,**c** with ethyl chloroformate gave the carbamate derivatives **6a**,**b**, which were fused with *p*-chlorobenzylamine at 230-240°C to afford the dione derivative **7** [16]. The thienopyrimidinone derivatives **8a**,**b** were prepared by cyclization of the corresponding amino ester with formamide. Nucleophilic aromatic substitution with POCl₃ was carried out on **8a** to give the 4-chlorothienopyrimidine derivative **9**. Further substitution with an aromatic amine was carried out on this chloro derivative **9** to yield the 4-anilino derivative **10** (Scheme 2). The structures of compounds **1-10** were confirmed from their IR, ¹H-NMR, ¹³C-NMR and MS spectral data.



Scheme 2


i) ClCO₂CH₂CH₃, reflux, 3h
ii) *p* -Chlorobenzylamine, fusion, 230-240°C, 8h
iii) HCONH₂, reflux, 1.5h

iv) POCl₃, reflux, 15h v) 3-CF₃C₆H₄NH₂, reflux, 3h Substitution of the mercapto group in 4a,d by hydrazine hydrate afforded the 2-hydrazino derivative 11 which was then cyclized by glacial acetic acid to give the triazolo derivative 12 [17, 18]; the latter compound is sparingly soluble in CDCl₃ and DMSO-d₆, precluding the use of ¹³C-NMR spectroscopy as a characterization tool. Oxidation of 4a,d by iodine (Scheme 3) gave the disulfides 13a,b [19]. The structures of compounds 11-13 were also confirmed by various spectroscopic techniques.

Treatment of **1d**,e with triethyl orthoformate followed by ethylenediamine, yielded the 3-aminoethyl-4-imino-derivatives **14a**,**b** [20]. Compounds **13b** and **14a**,**b** could only be identified by their IR and MS spectra, as they are insoluble in the common solvents used in NMR. An attempt to prepare 2amino-4,5-dimethyl-3-(4,5-dihydro-1*H*-2-imidazolyl)thiophene (**15**) following a published procedure [21], by reacting **1d** with ethylenediamine and carbon disulfide did not yield the expected product **15** and instead the intermediate **16** was obtained (Scheme 4). This intermediate was insoluble in the common solvents used for NMR measurements; but it could be identified by its IR spectrum, which revealed the expected C=S absorption at 1207 cm⁻¹, and by its MS spectral data (the general fragmentation patterns proposed for **16** are shown in Scheme 5). Attempts were also made to prepare 2-methyl-4-methoxythienopyrimidine **17** by reacting **1d**,**e** with acetyl chloride followed with methanol according to a published procedure [20], however, the target compound was not obtained and only the starting material was recovered.

i) a: TEOF, reflux, 4h ; b: $NH_2(CH_2)_2NH_2$, 100°C, 7h ii) a: $NH_2(CH_2)_2NH_2$; b: $CS_2 / 100$ °C, 8h iii) a: CH_3COCl ; b: CH_3OH , K_2CO_3

Scheme 5 +. NΗ H₃C H₃C CH₂ NH, ĥ N H H₃C NH₂ H₂C NH, $m/z = 272 \; (100\%)$ -NH₃ $C_{10}H_{16}N_4S_3$ $C_{10}H_{14}N_3S_3$ +Hfission at c NH, S=C=N NH + H₃C bс $m/z = 102 \; (40\%)$ NH₃ -2H $C_3H_6N_2S$ H fission at a H₂C NH, -H + m/z = 289 (0.2%)HN NH₂ $C_{10}H_{17}N_4S_3$ -H₂S || S fission at b • -H m/z = 162 (58%)+H HN $C_4H_8N_3S_2$ H₃C NH₂ H₃C +Ĥ NH₃ HS m/z = 254 (37%)ĥ $C_{10}H_{14}N_4S_2$ m/z = 137 (35%)-ĊH₃ $C_3H_9N_2S_2$ +2H HN +. H₃C HN + H₂C NH₃ -NH₃ N H N=C=CH₂ -3H m/z = 241 (5%)m/z = 221 (34%) $C_9H_{13}N_4S_2$

 $C_9H_7N_3S_2$

502

Experimental

General

Melting points were determined using an Electrothermal IA9000 series digital capillary melting point apparatus and are uncorrected. IR spectra were obtained as KBr discs on a 1000-Perkin Elmer FT-IR spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded on a JEOL ECP-400 NMR in CDCl₃ (or DMSO-d₆) using TMS as an internal standard. Chemical shifts are given in ppm on the δ scale and coupling constants (*J*) are given in Hz. Electron impact (EI) MS spectra were acquired with the aid of a Shimadzu GCMSQP5050A spectrometer, equipped with a 30 m x 0.25 mm DB-1 glass column, operating with an ionization energy of 70 eV, at the Chemistry Department, College of Science, King Saud University. Compounds **2a-h** were synthesized using the reported methods [8, 9, 13], or in the case of particular examples, by the methods described below.

Method A: Synthesis of 2d:

A mixture of **1b** (0.5 g, 2 mmol) and phenyl isothiocyanate (0.27 g, 2 mmol) was placed in a 50 mL beaker covered with a watch glass and then irradiated with microwaves (600 W) for 45 seconds. The cold reaction mixture was treated with ethanol and the solid product was filtered off and recrystallized.

Method B: Synthesis of 2a,d:

A mixture of **1a**,**b** (2 mmol), phenylthiourea (2 mmol) and 5 drops of dry ethanol was placed in a 50 mL beaker, covered with a watch glass, and was then irradiated with microwave (800 W) for 20 seconds. The cold reaction mixture was treated with crushed ice; the solid product was filtered, dried and recrystallized.

3-Ethoxycarbonyl-2-(3-phenylthioureido)-4,5,6,7-tetrahydrobenzo[b]thiophene (**2a**): Fine pale yellow needles, m.p. 191-193°C (from ethanol); Yield 64%; IR (cm⁻¹): 3416, 3179 (2NH), 1656 (C=O), 1195 (C=S); ¹H-NMR (DMSO-d₆): 1.30 (3H, t, *J* = 7.1, CH₂CH₃), 1.70-1.86 (4H, m, 2CH₂ at C-5, C-6), 2.67-2.80 (4H, m, 2CH₂ at C-4, C-7), 4.52 (2H, q, *J* = 7.1, CH₂CH₃), 7.29-7.33 (2H, m, H-2`, H-6`), 7.52-7.56 (3H, m, H-3`, H-4`, H-5`), 10.21 (1H, br. s, NH), 12.25 (1H, br. s, NH); ¹³C-NMR: 14.31, 60.75 (Et carbons), 22.09, 23.51, 24.43, 26.42 (aliphatic ring sp³ carbons), 113.02, 121.32, 126.94, 127.11, 130.91, 133.15, 149.85, 135.23 (sp² carbons), 166.73 (C=O), 176.25 (C=S).

3-Ethoxycarbonyl-2-[3-(4-chlorophenyl)thioureido]-4,5,6,7-*tetrahydrobenzo[b]thiophene* (**2b**): Colorless needles, m.p. 221-223°C (from ethanol); Yield 70%; IR (cm⁻¹): 3442, 3196 (2NH), 1663 (C=O), 1198 (C=S); ¹H-NMR (DMSO-d₆): 1.27 (3H, t, J = 7.3, CH₂CH₃), 1.68-1.69 (4H, m, 2CH₂ at C-5, C-6), 2.51-2.55 (2H, m, CH₂ at C-4), 2.67-2.68 (2H, m, CH₂ at C-7), 4.18 (2H, q, J = 7.3, CH₂CH₃), 7.23 (2H, d, J = 8.8, H-2[°], H-6[°]), 7.41 (2H, d, J = 8.8, H-3[°], H-5[°]), 10.53 (1H, br. s, NH), 12.02 (1H, br. s, NH); ¹³C-NMR: 14.37, 60.49 (Et carbons), 22.97, 23.04, 24.34, 26.43 (aliphatic ring sp³ carbons),

112.23, 126.24, 128.93, 130.58, 137.24 150.42, 161.32, 125.71, (sp² carbons), 166.66 (C=O), 176.18 (C=S).

2-(3-Butylthioureido)-3-ethoxycarbonyl-4,5,6,7-tetrahydrobenzo[b]thiophene (**2c**): Fine pale yellow needles, m.p. 123-125°C (from ethanol); Yield 59%; IR (cm⁻¹): 3429, 3230 (2NH), 1655 (C=O), 1175 (C=S); ¹H-NMR (CDCl₃): 0.93 (3H, t, J = 8.0, CH₂CH₂CH₃), 1.35 (3H, t, J = 7.1, OCH₂CH₃), 1.40 (2H, sext., J = 8.0, CH₂CH₂CH₃), 1.63 (2H, quint., J = 8.0, CH₂CH₂CH₂), 1.72-1.78 (4H, m, 2CH₂ at C-5, C-6), 2.56-2.61 (2H, m, CH₂ at C-4), 2.71-2.76 (2H, m, CH₂ at C-7), 3.45 (2H, br peak, NHCH₂CH₂), 4.30 (2H, q, J = 7.1, OCH₂CH₃), 6.44 (1H, br. s, NH), 12.10 (1H, br. s, NH); ¹³C-NMR: 14.42, 60.71 (Et carbons), 13.81, 20.11, 30.73, 44.15 (butyl group), 22.92, 23.15, 24.42, 26.51 (aliphatic ring sp³ carbons) 112.01, 126.32, 130.67, 151.43 (thiophene carbons), 167.25 (C=O), 177.03 (C=S).

3-Ethoxycarbonyl-6-methyl-2-(3-phenylthioureido)-4,5,6,7-tetrahydrothieno[*2,3-c*]*pyridine* (**2d**): Fine yellow needles, m.p. 186-188°C (from ethanol/chloroform); Yield 60%; IR (cm⁻¹): 3467, 3175 (2NH), 1658 (C=O), 1195 (C=S); ¹H-NMR (CDCl₃): 1.24 (3H, t, *J* = 7.2, CH₂CH₃), 2.46 (3H, s, CH₃N), 2.66 (2H, t, *J* = 5.9, CH₂ at C-4), 2.85 (2H, t, *J* = 5.8, CH₂ at C-5), 3.49 (2H, s, CH₂ at C-7), 4.12 (2H, q, *J* = 7.2, CH₂CH₃), 7.31-7.36 (3H, m, H-2[°],H-4[°], H-6[°]), 7.47 (2H, t, *J* = 7.4, H-3[°],H-5[°]), 8.01 (1H, br. s, NH), 12.12 (1H, br. s, NH); ¹³C-NMR: 14.25, 60.56 (Et carbons), 45.63 (CH₃N), 52.50, 26.88, 53.24 (aliphatic ring sp³ carbons), 112.54, 124.07, 125.80, 127.95, 129.04, 130.13, 135.81 150.52, (sp² carbons), 166.14 (C=O), 176.29 (C=S); MS: m/z (%) 375 [M⁺] (96) (C₁₈H₂₁N₃O₂S₂), 332 [M-CH₃-C₂H₅] (18), 282 [M-C₆H₅-CH₃-H] (13), 239 [M-C₆H₅NHCS] (100), 166 [M-C₆H₅NHCS-C₂H₅OH-C₂H₄+H] (36).

3-*Ethoxycarbonyl*-2-[3-(4-chlorophenyl)-6-methylthioureido]-4,5,6,7-tetrahydrothieno[2,3-c]pyridine (**2e**): Fine yellow cubes, m.p. 206-208°C (from ethanol/ chloroform); Yield 60%; IR (cm⁻¹): 3415, 3180 (2NH), 1659 (C=O), 1195 (C=S); ¹H-NMR (CDCl₃): 1.27 (3H, t, J = 7.2, CH₂CH₃), 2.46 (3H, s, CH₃N), 2.67 (2H, t, J = 5.7, CH₂ at C-4), 2.86 (2H, t, J = 5.7, CH₂ at C-5), 3.50 (2H, s, CH₂ at C-7), 4.18 (2H, q, J = 7.2, CH₂CH₃), 7.26 (2H, d, J = 8.8, H-2[°], H-6[°]), 7.41(2H, d, J = 8.8, H-3[°], H-5[°]), 7.89 (1H, br. s, NH), 12.21 (1H, br. s, NH); ¹³C-NMR: 14.25, 60.78 (Et carbons), 45.63 (CH₃N), 26.88, 52.46, 53.21 (aliphatic ring sp³ carbons), 112.46, 123.91, 126.92, 129.04, 130.18, 133.17, 134.53, 150.27 (sp² carbons), 166.43 (C=O), 176.17 (C=S); MS: m/z (%) 409 [M⁺] (59) (C₁₈H₂₀³⁵ClN₃O₂S₂), 366 [M-CH₃-C₂H₄] (12), 282 [M-ClC₆H₄-CH₃-H] (37), 239 [M-ClC₆H₄NHCS] (91), 169 [M-ClC₆H₄NHCS-C₂H₅OH-C₂H₄+3H] (58).

2-(3-Butylthioureido)-3-ethoxycarbonyl-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine (**2f**): Fine red needles, m.p. 224-226°C (from ethanol/chloroform);Yield 60%; IR (cm⁻¹): 3434, 3162 (2NH), 1650 (C=O), 1169 (C=S); ¹H-NMR (DMSO-d₆): 0.89 (3H, t, J = 8.0, CH₂CH₂CH₃), 1.09 (3H, t, J = 7.3, OCH₂CH₃), 1.31 (2H, sext., J = 7.3, CH₂CH₂CH₃), 1.62 (2H, quint., J = 7.3, CH₂CH₂CH₂), 2.41 (3H, s, CH₃N), 2.68 (2H, t, J = 5.9, CH₂ at C-4), 2.91-2.95 (2H, m, CH₂ at C-5), 3.47 (2H, s, CH₂ at C-7), 3.52 (2H, t, J = 7.3, NHCH₂CH₂), 4.31 (2H, q, J = 7.1, OCH₂CH₃), 8.85 (1H, br. s, NH), 9.29 (1H, br. s, NH); ¹³C-NMR: 18.59, 57.36 (Et carbons), 13.93, 20.29, 28.69, 45.98 (Bu carbons), 45.28 (CH₃N), 25.47, 51.59, 52.97 (aliphatic ring sp³ carbons), 116.02, 125.17, 129.89, 149.62 (thiophene

carbons), 157.19 (C=O), 174.25 (C=S); MS: m/z (%) 355 [M⁺] (12) (C₁₆H₂₅N₃O₂S₂), 309 [M-C₂H₅OH] (100), 252 [M-C₄H₉-C₂H₅OH] (13), 210 [M-C₄H₉NHCS-2CH₃+H] (35).

General procedure for the preparation of **3a-h**:

A mixture of the compounds $2\mathbf{a}$ -h (13.5 mmol) and potassium hydroxide (0.76 g, 13.5 mmol) in absolute ethanol (55 mL) was heated under reflux with stirring for 1 h. The suspension was filtered while hot and the solid was washed with hot absolute ethanol to give $3\mathbf{a}$ -h.

General procedure for the synthesis of 4a-g: Method A:

A suspension of potassium salts of **3a-c,e-h** in water (50 mL) was acidified with concentrated hydrochloric acid and stirred at room temperature for 30 min. The solid was collected by filtration, washed with water and recrystallized from ethanol to give **4a-g**.

Method B: Synthesis of 4d,g.

A mixture of **1b**,**c** (10 mmol) and the appropriate isothiocyanate (10 mmol) in acetonitrile (30 mL) was heated under reflux for 15 h in the presence of anhydrous potassium carbonate (1.4 g). The reaction mixture was then cooled, filtered, diluted with water (10 mL) and neutralized with 2M hydrochloric acid. The product obtained was filtered, washed with water, dried and recrystallized from ethanol to give **4d**,**g**.

Monopotassium salt of 3-phenyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-benzo[4,5]thieno[2,3-d]-pyrimidin-4-one (**3a**) *and its 2-thioxo derivative* **4a**: Yields: 53% (**3a**) *and 73%* (**4a**), respectively; Compound **4a**: white powder, m.p. 259-261°C; IR (cm⁻¹): 3413 (NH), 1705 (C=O), 1218 (C=S); ¹H-NMR (CDCl₃): 1.77-1.85 (4H, m, 2CH₂ at C-6, C-7), 2.63-2.68 (2H, m, CH₂ at C-5), 2.84-2.91 (2H, m, CH₂ at C-8), 7.24-7.26 (2H, m, H-2`, H-6`), 7.45-7.57 (3H, m, H-3`, H-4`, H-5`), 12.19 (1H, br. s, NH); ¹³C-NMR: 21.96, 22.96, 24.72, 25.14 (aliphatic ring sp³ carbons), 117.53, 128.52, 129.07, 129.49, 129.70, 132.64, 138.56, 148.51 (sp² carbons), 157.37 (C=O), 174.93 (C=S); MS: m/z (%) 314 [M⁺] (100) (C₁₆H₁₄N₂OS₂), 179 [M-C₆H₅NCS] (89), 151 [M-C₆H₅NCS-C₂H₄] (35).

Monopotassium salt of 3-(4-chlorophenyl)-2-thioxo-2,3,5,6,7,8-hexahydro-1H-benzo[4,5]thieno[2,3d]-pyrimidin-4-one (**3b**) and its 2-thioxo derivative **4b**: Yields: 75% (**3b**) and 89% (**4b**), respectively; Compound **4b**: white scales, m.p. 289-292°C; IR (cm⁻¹): 3129 (NH), 1706 (C=O), 1219 (C=S); ¹H-NMR (DMSO-d₆): 1.70-1.71 (2H, m, CH₂ at C-6), 1.77-1.78 (2H, m, CH₂ at C-7), 2.66-2.70 (2H, m, CH₂ at C-5), 2.71-2.75 (2H, m, CH₂ at C-8), 7.28 (2H, d, J = 8.1, H-2[°], H-6[°]), 7.52 (2H, d, J = 8.1, H-3[°], H-5[°]), 13.71 (1H, br. s, NH); ¹³C-NMR: 22.10, 23.02, 24.52, 25.38 (aliphatic ring sp³ carbons), 116.67, 128.97, 129.57, 131.62, 131.69, 133.17, 138.81, 149.92 (sp² carbons), 157.38 (C=O), 174.88 (C=S); MS: m/z (%) 348 [M⁺] (86) (C₁₆H₁₃³⁵ClN₂OS₂), 350 [M+2] (35) (C₁₆H₁₃³⁷ClN₂OS₂), 179 [M-ClC₆H₄NCS] (100), 151 [M-ClC₆H₄NCS-C₂H₄] (38). *Monopotassium salt of 3-butyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-benzo*[*4,5*]*thieno*[*2,3-d*]*pyrimidin-4-one* (*3c*) *and its 2-thioxo derivative* **4c**: Yields: 40% (*3c*) and 78% (*4c*), respectively; Compound **4c**: white scales, m.p. 234-236°C; IR (cm⁻¹): 3254 (NH), 1689 (C=O), 1220 (C=S); ¹H-NMR (CDCl₃): 0.97 (3H, t, J = 7.3, CH₂CH₃), 1.42 (2H, sext., *J* =7.3, CH₂CH₂CH₃), 1.71-1.87 (6H, m, 3CH₂ at C-6, C-7, C-2[°]), 2.66 (2H, t, *J* = 5.8, CH₂ at C-5), 2.91 (2H, t, *J* = 5.8, CH₂ at C-8), 4.43 (2H, t, *J* = 7.7, NCH₂CH₂), 12.31 (1H, br. s, NH); ¹³C-NMR: 13.88, 20.33, 28.82, 46.59, (Bu carbons), 21.99, 22.97, 24.76, 25.31 (aliphatic ring sp³ carbons), 117.31, 129.32 132.29, 147.89 (thiophene carbons), 156.85 (C=O), 173.52 (C=S); MS: m/z (%) 294 [M⁺] (71) (C₁₆H₁₈N₂OS₂), 261 [M-SH] (100), 238 [M-C₄H₉+H] (40), 179 [M-C₄H₉NCS] (75), 151 [M-C₄H₉NCS-C₂H₄] (29).

Monopotassium salt of 7-methyl-3-phenyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-pyrido[3`,4`:5,4]thieno[2,3-d]pyrimidin-4-one (**3d**): Yield 45%; IR (cm⁻¹): 1650 (C=O); ¹H-NMR (DMSO-d₆): 2.31 (3H, s, CH₃N), 3.21 (2H, t, J = 5.9, CH₂ at C-5), 3.38-3.42 (2H, m, CH₂ at C-6), 4.33 (2H, s, CH₂ at C-8), 7.31-7.33 (3H, m, H-2`, H-4`, H-6`), 7.45-7.52 (2H, t, J = 7.8, H-3`, H-5`); ¹³C-NMR: 46.44 (CH₃N), 26.24, 53.50, 54.31 (aliphatic ring sp³ carbons), 118.79,122.37, 128.37, 129.83, 131.45, 131.65, 142.13, 157.74, (sp² carbons), 165.68 (C=O), 176.23 (C=S).

Monopotassium salt of 3-(4-chloro-phenyl)-7-methyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-pyrido-[$3^,4^{:}:5,4$]*thieno*[2,3-d]*pyrimidin-4-one* (**3e**) *and its 2-thioxo derivative* **4d**: Yields: 85% (**3e**) *and 89%* (**4d**), respectively; Compound **4d**: pale orange scales, m.p. 256-258°C; IR (cm⁻¹): 3137 (NH), 1691 (C=O), 1213 (C=S); ¹H-NMR (DMSO-d_6): 2.88 (3H, s, CH₃N), 2.98-3.12 (2H, m, CH₂ at C-5), 3.36-3.46 (2H, m, CH₂ at C-6), 4.39 (2H, s, CH₂ at C-8), 7.29 (2H, d, $J = 8.1, H-2^{\circ}, H-6^{\circ})$, 7.53 (2H, d, $J = 8.1, H-3^{\circ}, H-5^{\circ}$), 11.18 (1H, br. s, NH); ¹³C-NMR: 42.22 (CH₃N), 22.79, 49.89, 50.55 (aliphatic ring sp³ carbons), 115.56, 120.55, 128.83, 129.64, 131.56, 133.31, 138.57, 151.80, (sp² carbons), 157.32 (C=O), 175.38 (C=S); MS: m/z (%) 363 [M⁺] (84) (C₁₆H₁₄³⁵ClN₃OS₂), 365 [M+2] (35) (C₁₆H₁₄³⁷ClN₃OS₂), 193 [M-ClC₆H₄NCS] (21), 151 [M-ClC₆H₄NCS-C₂H₄-CH₃] (100).

Monopotassium salt of 7-*methyl*-3-*butyl*-2-*thioxo*-2,3,5,6,7,8-*hexahydro*-1*H*-*pyrido*[3`,4`:5,4]*thieno*-[2,3-*d*]*pyrimidin*-4-*one* (**3f**) *and its* 2-*thioxo derivative* **4e**: Yields: 51% (**3f**) and 45% (**4e**), respectively; Compound **4e**: yellow scales, m.p. 297-299°C; IR (cm⁻¹): 3176 (NH), 1687 (C=O), 1200 (C=S); ¹H-NMR (DMSO-d₆): 0.92 (3H, t, J = 7.3, CH₂CH₃), 1.32 (2H, sext., J = 7.3, CH₂CH₂CH₃), 1.62 (2H, quint., J = 7.3, CH₂CH₂CH₂), 4.41 (2H, t, J = 7.7 NCH₂CH₂), 2.49 (3H, s, CH₃N), 2.84-2.89 (2H, m, CH₂ at C-5), 3.14-3.20 (2H, m, CH₂ at C-6), 3.34 (2H s, CH₂ at C-8), 13.71 (1H, br. s, NH); ¹³C-NMR: 14.47, 20.25, 28.69, 45.93 (Bu carbons), 45.42 (CH₃N), 26.81, 52.54, 53.22 (aliphatic ring sp³ carbons), 114.42, 124.98, 130.76, 149.81 (thiophene carbons), 156.38 (C=O), 175.94 (C=S); MS: m/z (%) 309 [M⁺] (100) (C₁₄H₁₉N₃OS₂), 193 [M-C₄H₉NCS-H] (15), 151 [M-C₄H₉NCS-C₂H₄-CH₃] (14).

Monopotassium salt of 3-phenyl-2-thioxo-1,2,3,5,6,7,8,9-octahydrocyclohepta[4,5]*thieno*[2,3-*d*]*pyrimidin-4-one* (**3g**) *and its 2-thioxo derivative* **4f**: Yields: 42% (**3g**) and 83% (**4f**); Compound **4f**: pale yellow powder, m.p. 306-308°C; IR (cm⁻¹): 3141 (NH), 1698 (C=O), 1221 (C=S); ¹H-NMR (DMSO-d₆): 1.54-1.62 (2CH₂ m, 4H at C-6, C-7), 1.81 (2H, br. peak, CH₂ at C-8), 2.76 (2H, br. peak, CH₂ at C-5), 3.09 (2H, br. peak, CH₂ at C-9), 7.20-7.21 (2H, d, J = 7.1, H-2^{\check}, H-6^{\check}), 7.38 (1H, t, J =7.3, H-4^{\check}), 7.45 (2H, t, J = 7.3, H-3^{\check}, H-5^{\check}), 13.57 (1H, br. s, NH); ¹³C-NMR: 27.17 (2C), 27.86, 28.95, 32.26 (aliphatic ring sp³ carbons), 117.23, 128.47, 129.38, 129.58, 132.66, 137.20, 139.99, 148.57 (sp² carbons), 157.94 (C=O), 174.87 (C=S); MS: m/z (%) 328 [M⁺] (100) (C₁₇H₁₆N₂OS₂), 193 [M-C₆H₅NCS] (39), 151 [M-C₆H₅NCS-C₂H₄-NH+H] (6).

Monopotassium salt of 3-(4-chlorophenyl)-2-thioxo-1,2,3,5,6,7,8,9-octahydrocyclohepta[4,5]thieno-[2,3-d]pyrimidin-4-one (**3h**) and its 2-thioxo derivative **4g**: Yields: 88% (**3h**) and 85% (**4g**), respectively; Compound **4g**: white scales, m.p. 263-265°C, 3123 (NH), 1710 (C=O), 1220 (C=S); ¹H-NMR (DMSO-d₆): 1.53 (2H, br. peak, CH₂ at C-7), 1.61 (2H, br. peak, CH₂ at C-6), 1.82 (2H, br. peak, CH₂ at C-8), 2.77 (2H, br. peak, CH₂ at C-5), 3.08 (2H, br. peak, CH₂ at C-9), 7.28 (2H, d, J = 8.8, H-2°,H-6°), 7.52 (2H, d, J = 8.8, H-3°,H-5°), 13.68 (1H, br. s, NH); ¹³C-NMR: 27.14 (2C), 27.86, 28.93, 32.33 (aliphatic ring sp³ carbons), 117.20, 129.52, 131.65, 132.79, 133.12, 137.21, 138.95, 148.63 (sp² carbons), 157.90 (C=O), 174.62 (C=S); MS: m/z (%) 362 [M⁺] (100) (C₁₇H₁₅ ³⁵ClN₂OS₂), 364 [M+2] (44) (C₁₇H₁₅ ³⁷ClN₂OS₂), 193 [M-ClC₆H₄NCS] (74), 151 [M-ClC₆H₄NCS-C₂H₄-NH+H] (19).

General procedure for synthesis of **5a-c**:

A mixture of potassium salt of **3a**, **d**, **h** (3.6 mmol) and the appropriate alkyl halide (4.32 mmol) in ethanol (15 mL) was heated under reflux with stirring for 1 h (for compounds **5a**,**b**) and for 8 h (for compound **5c**). The solid obtained was filtered, washed with water, dried and recrystallized from ethanol/chloroform.

2-Butylthio-3-phenyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (**5a**): Colorless scales, m.p. 230-232°C; Yield 90%; IR (cm⁻¹): 1689 (C=O); ¹H-NMR (CDCl₃): 0.90 (3H, t, J = 7.3, CH₂CH₃), 1.39 (sext., 2H, *J* =7.3, CH₂CH₂CH₃), 1.61 (2H, quint., *J* =7.3, CH₂CH₂CH₂), 1.79-1.87 (4H, m, 2CH₂ at C-6, C-7), 2.70-2.76 (2H, m, CH₂ at C-5), 2.91-2.94 (m, 2H, CH₂ at C-8), 3.12 (2H, t, *J* = 7.3, NCH₂CH₂), 7.25-7.27 (2H, m, H-2[°], H-6[°]), 7.51-7.53 (3H, m, H-3[°], H-4[°], H-5[°]); ¹³C-NMR: 13.73, 22.04, 30.59, 32.59 (Bu carbons), 22.38, 23.10, 25.17, 25.46 (aliphatic ring sp³ carbons), 119.15, 129.12, 129.76, 129.89, 131.68, 131.74, 136.04, 157.75 (sp² carbons), 158.69 (C=O), 162.11 (C=S); MS: m/z (%) 370 [M⁺] (100) (C₂₀H₂₂N₂OS₂), 314 [M-C₄H₉+H] (74), 281 [M-SC₄H₉] (39), 253 [M-SC₄H₉-C₂H₄] (6), 179 [M-SC₄H₉-C₂H₄-C₆H₅+3H] (79), 151 [M-C₄H₉-C₂H₄-C₆H₅NCS+H] (16).

3-Phenyl-7-methyl-2-methylthio-5,6,7,8-tetrahydro-3H–pyrido[*3*`,*4*`:*5,4*]*thieno*[*2,3-d*]*pyrimidin-4-one* (**5b**): Fine yellow needles, m.p. 296-298°C; Yield 75%; IR (cm⁻¹): 1692 (C=O); ¹H-NMR (DMSO-d₆): 2.45 (3H, s, NCH₃), 3.17-3.21 (2H, m, CH₂ at C-5), 3.36 (3H, s, SCH₃), 3.71 (2H, t, *J* = 5.9, CH₂ at C-6), 4.75 (2H, s, CH₂ at C-8), 7.41-7.42 (2H, m, H-2`, H-6`), 7.55-7.62 (3H, m, H-3`, H-4`, H-5`); ¹³C-NMR: 15.93 (SCH₃), 51.44 (CH₃N), 22.20, 58.51, 60.01 (aliphatic ring sp³ carbons), 117.88, 121.26, 127.43, 129.71, 130.24, 130.63, , 136.02, 157.84 (sp² carbons), 161.18 (C=O), 163.85 (C=S); MS: m/z (%) 343 [M⁺] (88) (C₁₇H₁₇N₃OS₂), 328 [M-CH₃] (47), 300 [M-CH₃-C₂H₄] (100), 253 [M-CH₃-C₂H₄-SCH₃] (83), 193 [M-CH₃-C₆H₅NCS] (6), 150 [M-2CH₃-C₆H₅NCS-C₂H₄] (27).

2-*Benzylthio-3-(4-chloro-phenyl)3,5,6,7,8,9-hexahydrocyclohepta[4,5]thieno[2,3-d]pyrimidin-4-one* (**5c**): Fine colorless needles, m.p. 264-266°C; Yield 88%; IR (cm⁻¹): 1680 (C=O); ¹H-NMR (CDCl₃): 1.61-1.74 (4H, m, 2CH₂ at C-6, C-7), 1.84-1.88 (2H, m, CH₂ at C-8), 2.82-2.85 (2H, m, CH₂ at C-5), 3.23-3.26(2H, m, CH₂ at C-9), 4.33 (2H, s, SCH₂Ph), 7.19 (2H, d, J = 8.8, H-2[`], H-6[`]), 7.23-7.34 (5H, m, Ar-H), 7.46 (d, 2H, J = 8.8, H-3[`], H-5[`]); ¹³C-NMR: 27.32, 27.78, 27.90, 29.94, 32.69 (aliphatic ring sp³ carbons), 37.31 (SCH₂Ph), 119.70, 127.71, 128.68, 129.44, 130.06, 130.60, 134.33, 135.91, 136.06, 136.60, 137.37, 156.14 (sp² carbons), 159.04 (C=O), 160.90 (C=S); MS: m/z (%) 452 [M⁺] (67) (C₂₄H₂₁³⁵ClN₂OS₂), 454 [M+2] (30) (C₂₄H₂₁³⁷ClN₂OS₂), 419 [M-Cl+2H] (29), 361 [M-CH₂C₆H₅] (6), 326 [M-Cl-CH₂C₆H₅] (9), 201 [M-SHCH₂C₆H₅-ClC₆H₄NH₂] (100).

General procedure for synthesis of **6a**,**b**:

A mixture of **1a**,**c** (15.8 mmol) and ethyl chloroformate (40 mL) was refluxed for 3h. After cooling, the reaction mixture was evaporated under reduced pressure and the residue was recrystallized from ethanol.

2-*Ethoxycarbonylamino-3-ethoxycarbonyl-5,6,7,8-tetrahydrobenzo[b]thiophene* (**6a**): Fine pale brown needles, m.p. 66-68 °C; Yield 87%; IR (cm⁻¹): 3246 (NH), 1724, 1662 (2C=O); ¹H-NMR (DMSO-d₆): 1.25 (3H, t, J = 7.3 CH₂CH₃), 1.28 (3H, t, J = 6.9 CH₂CH₃), 1.68-1.70 (4H, m, 2CH₂ at C-5, C-6), 2.54-2.56 (2H, m, CH₂ at C-4), 2.64-2.66 (2H, m, CH₂ at C-7), 4.19 (2H, q, J = 7.3 OCH₂CH₃), 4.23 (2H, q, J = 7.3 OCH₂CH₃), 10.34 (1H, br s, NH); ¹³C-NMR: 14.56, 62.59 (Et carbons), 14.78, 60.89 (Et carbons), 22.77, 23.01, 24.27, 26.42 (aliphatic ring sp³ carbons), 111.01, 125.69, 131.32, 148.62 (thiophene carbons), 165.85 (C=O), 152.75 (carbamate C=O); MS: m/z (%) 297 [M⁺] (100) (C₁₄H₁₉NO₄S), 251 [M-C₂H₅OH] (89), 223 [M-C₂H₅COOH] (30), 205 [M-2C₂H₅OH] (38), 195 [M-C₂H₅COOH-C₂H₄] (10), 179 [M-COOC₂H₅-C₂H₅O] (54), 151 [M-COOC₂H₅-C₂H₄] (32).

2-*Ethoxycarbonylamino-3-ethoxycarbonyl-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene* (**6b**): Fine pale brown needles, m.p. 78-80 °C; Yield 70%; IR (cm⁻¹): 3241 (NH), 1728, 1662 (2C=O); ¹H-NMR (DMSO-d₆): 1.25 (3H, t, J = 6.9 CH₂CH₃), 1.28 (3H, t, J = 7.1, CH₂CH₃), 1.52-1.58 (4H, m, 2CH₂ at C-5, C-6), 1.76-1.78 (2H, m, CH₂ at C-7), 2.65-2.69 (2H, m, CH₂ at C-4), 2.90-2.93 (2H, m, CH₂ at C-8), 4.18 (2H, q, J = 7.1 OCH₂CH₃), 4.26 (2H, q, J = 7.4 OCH₂CH₃), 10.11 (1H, br. s, NH); ¹³C-NMR: 14.82, 62.40 (Et carbons), 14.53, 61.05 (Et carbons), 27.12, 27.98, 28.14, 28.45, 32.11 (aliphatic ring sp³ carbons), 116.25, 130.13, 137.03, 145.61 (thiophene carbons), 165.55, (C=O), 153.04 (carbamate C=O); MS: m/z (%) 311 [M⁺] (100) (C₁₅H₂₁NO₄S), 283 [M-C₂H₄] (8), 265 [M-C₂H₅OH] (72), 237 [M-HCOOC₂H₅-C₂H₅O-C₂H₄] (17), 151 [M-COOC₂H₅-C₂H₅O-C₂H₄-CH₃+H] (7), 139 [M-COOC₂H₅-C₂H₅O-C₂H₄-HCN+H] (10).

3-(4-Chlorobenzyl)-5,6,7,8-tetrahydro-1H-benzo[4,5]thieno[2,3-d]pyrimidine-2,4-dione (7):

A mixture of **6a** (1.2 g, 3.7 mmol) and 4-chlorobenzylamine (1.0 g, 7.1 mmol) was heated to 230-240 °C for 8 h. After cooling, the crude solid was recrystallized from ethanol/water to give **7** as a brown powder, m.p.236-238 °C; Yield 60%; IR (cm⁻¹): 3232 (NH), 1724 (C=O at 4 position), 1660 (C=O at 2 position); ¹H-NMR (CDCl₃): 1.78-1.85 (4H, m, 2 CH₂ at C-6, C-7) 2.61-2.63 (2H, m, CH₂ at C-5) 2.87-2.89 (2H, m, CH₂ at C-8),5.09 (2H, s, NCH₂C₆H₄Cl), 7.23 (2H, d, J = 8.8, H-2[°], H-6[°]),7.41 (2H, d, J = 8.8, H-3[°], H-5[°]), 10.27 (1H, br. s, NH); ¹³C-NMR: 22.07, 23.15, 24.59, 25.45

(aliphatic ring sp³ carbons), 43.13 (NCH₂ Ar), 113.91, 126.98, 128.57, 130.44, 132.34, 133.84, 135.58, 148.52, (sp² carbons), 152.41 (C=O at C-2), 158.90 (C=O at C-4); Ms: m/z (%) 346 [M⁺] (41) (C₁₇H₁₅³⁷ClN₂O₂S), 348 [M+2] (17) (C₁₇H₁₅³⁵ClN₂O₂S), 179 (30) [M-OCNCH₂C₆H₄Cl], 308 (22) [M-HCl-2H], 221 (61) [M-CH₂C₆H₄Cl], 151 (17) [M-OCNCH₂C₆H₄Cl-CO], 140 (98) [M-C₁₀H₈NO₂S], 125 (100) [M-C₁₀H₉N₂O₂S].

General procedure for synthesis of 8a,b:

A mixture of **1a**,**c** (2 mmol) and formamide (20 mL) was heated under reflux for 1.5 h, then left to cool to room temperature overnight. The solid formed was filtered, washed with water, dried and recrystallized from ethanol.

5,6,7,8-*Tetrahydro-3H-benzo*[4,5]*thieno*[2,3-*d*]*pyrimidin-4-one* (**8a**): Fine pale brown needles, m.p. 255-257 °C; Yield 92%; IR (cm⁻¹): 3415 (NH), 1693 (C=O); ¹H-NMR (DMSO-d₆): 1.73-1.79 (4H, m, 2CH₂ at C-6, C-7), 2.71-2.74 (2H, m, CH₂ at C-5), 2.85-2.87 (2H, m, CH₂ at C-8), 7.99 (1H, s, H-2), 12.29 (1H, br. s, NH); ¹³C-NMR: 22.32, 23.01, 24.99, 25.89 (aliphatic ring sp³ carbons), 123.23, 131.36, 136.77, 145.39 (thiophene carbons), 158.26 (C-2), 162.97 (C=O); Ms: m/z (%) 206 [M⁺] (100) (C₁₀H₁₀N₂OS), 191 [M-NH] (36), 178 [M-CO] (91), 165 [M-CONH+2H] (7), 150 [M-CO-C₂H₄] (7), 136 [M-CONH+HCN] (3).

3,5,6,7,8,9-*Hexahydrocyclohepta*[4,5]*thieno*[2,3-*d*]*pyrimidin-4-one* (**8b**): Fine pale brown needles, m.p. 209-211 °C; Yield 90%; IR (cm⁻¹): 3411 (NH), 1705 (C=O); ¹H-NMR (DMSO-d₆): 1.53-1.65 (4H, m, 2CH₂ at C-6, C-7), 1.80-1.87 (2H, m, CH₂ at C-8), 2.80-2.83 (2H, m, CH₂ at C-5), 3.23-3.26 (2H, m, CH₂ at C-9) 7.98 (1H, s, H-2), 12.31 (1H, br. s, NH); ¹³C-NMR: 27.42, 27.80, 27.86, 29.57, 32.56 (aliphatic ring sp³ carbons), 123.76, 132.15, 137.01,145.07 (thiophene carbons), 158.75 (C-2), 161.39 (C=O); MS: m/z (%) 220 [M⁺] (100) (C₁₁H₁₂N₂OS), 205 [M-NH] (67), 191 [M-CHO] (46), 192 [M-CO] (48), 178 [M-CONH+H] (23), 165 [M-CO-C₂H₄+H] (25), 148 [M-HCONH₂-HCN] (6).

4-Chloro-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (9):

A mixture of **8a** (1 g, 5 mmol) and phosphorus oxychloride (10 mL) was heated under reflux for 15 h. The excess phosphorus oxychloride was removed by distillation under reduced pressure, the residue treated with dry benzene (5 mL) and the solvent distilled under reduced pressure to remove the last traces of phosphorus oxychloride. The residue left was triturated with ice and sodium bicarbonate solution (10 %), the solid thus obtained was collected, washed with water and recrystallized from toluene to give a 48% yield of the title compound **9** as fine pale brown needles, m.p. 90-92 °C; ¹H-NMR (CDCl₃): 1.89-1.91 (4H, m, 2CH₂ at C-6, C-7), 2.86-2.87 (2H, m, CH₂ at C-5), 3.05-3.06 (2H, m, CH₂ at C-8), 8.68 (1H, s, H-2); ¹³CNMR: 22.27, 22.50, 26.12, 26.36 (aliphatic ring sp³ carbons), 127.23, 128.91, 139.72, 153.23, 168.89, 151.57 (sp² carbons); Ms: m/z (%) 224 [M⁺] (65) (C₁₀H₉³⁵ClN₂S); 226 [M+2] (25) (C₁₀H₉³⁷ClN₂S), 196 (100) [M-C₂H₄], 161 (10) [M-HCN-HCI].

4-N-(3-Trifluoromethylphenyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (10):

A mixture of **9** (0.5 g, 2 mmol) and 3-trifluoromethyl aniline (5 g, 40 mmol) was heated under reflux for 3 h and left overnight. The oily product was treated several times with petroleum ether (b.p. 40-60°C) and the separated solid was washed several times with petroleum ether to give a 15% yield of compound **10** as a brown powder, m.p. 224-226 °C; IR (cm⁻¹): 3450 (NH); ¹H-NMR (CDCl₃): 1.91-2.01 (4H, m, 2CH₂ at C-6, C-7), 2.84-2.86 (2H, m, CH₂ at C-5), 3.06-3.07 (2H, m, CH₂ at C-8), 7.29 (1H, s, H-2[°]), 7.35 (1H, d, J = 8.1, H-6[°]), 7.47 (1H, t, J = 7.6, H-5[°]), 7.89 (1H, d, J = 8.1, H-4[°]), 7.95 (1H, br. s, NH); ¹³C-NMR: 22.41, 22.55, 25.62, 26.58 (aliphatic ring sp³ carbons), 120.51 (CF₃), 116.93, 117.69, 117.73, 120.47, 124.22, 124.67, 129.62, 135.78, 139.03, 151.82, 154.67, 165.66 (sp² carbons); MS: m/z (%) 349 [M⁺] (100) (C₁₇H₁₄F₃N₃S), 334 [M-F+4H] (20), 320 [M-C₂H₄-H] (10), 304 [M-C₂H₄-F+2H] (5), 294 [M-3F+2H] (2), 204 [M-C₆H₄CF₃] (16).

3-(4-Chlorophenyl)-2-hydrazino-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (11):

A mixture of **4b** (1.4 g, 4 mmol) and 99% hydrazine hydrate (4 mL, 80 mmol) in pyridine (20 mL) was heated under reflux for 15 h. The mixture was evaporated under reduced pressure and the residue was treated with ethanol. The solid product was filtered and washed several times with ethanol to give a 75% yield of **11** as colorless needles, m.p. 204-204 °C; IR (cm⁻¹): 3488-3272 (NH, NH₂); ¹H-NMR (acetic acid-d₄): 1.74-1.86 (4H, m, 2CH₂ at C-6, C-7), 2.67-2.68 (2H, m, CH₂ at C-5), 2.81-2.83 (2H, m, CH₂ at C-8), 7.38 (1H, br. s, NH), 7.39 (1H, br. s, NH), 7.56 (1H, br. s, NH), 7.43 (2H, d, J = 8.7, H-2[°], H-6[°]), 7.58 (2H, d, J = 8.7, H-3[°], H-5[°]); MS: m/z (%) 346 [M⁺] (89) (C₁₆H₁₅³⁵ClN₄OS), 348 [M+2] (34) C₁₆H₁₅³⁷ClN₄OS), 331 [M-NH₂+H] (100), 316 [M-N₂H₄+2H] (32), 303 [M-NH₂+H-C₂H₄] (63), 220 [M-NH-C₆H₄Cl] (22).

4-(4-Chlorophenyl)-1-methyl-6,7,8,9-tetrahydro-4H-benzo[4,5]thieno[2,3-d][1,2,4]triazolo[3,4-b]-pyrimidin-5-one (**12**):

A mixture of **11** (1.4 g, 4 mmol) and glacial acetic acid (15 mL) was heated under reflux with stirring for 8 h. The reaction mixture was allowed to cool to room temperature and was poured into water (50 mL). The formed solid was collected by filtration, washed with ethanol, dried and recrystallized from ethanol to give **12** as colorless fine needles, m.p. 300-300 °C; Yield 72%; IR (cm⁻¹): 1676 (C=O); ¹H-NMR (CDCl₃): 1.83-1.91 (4H, m, 2CH₂ at C-7, C-8), 2.79- 2.81 (5H, m, CH₃, CH₂ at C-6), 3.00 (2H, t, J = 6.2, CH₂ at C-9), 7.37 (2H, d, J = 8.8, H-2[°], H-6[°]), 7.51 (2H, d, J = 8.8, H-3[°], H-5[°]); MS: m/z (%) 370 [M⁺] (100) (C₁₈H₁₅³⁵ClN₄OS), 372 [M+2] (38) C₁₈H₁₅³⁷ClN₄OS), 355 [M-CH₃] (4), 328 [M-CH₃-C₂H₄+H] (22).

General procedure for synthesis of 13a,b:

A solution of iodine (50.76 g, 20 mmol), in 5% KI solution (100 mL) was added dropwise with stirring to a solution of **4a,d** (10 mmol) in 10% aqueous sodium hydroxide (10 mL) until the color of iodine persisted. The solid formed was filtered and dried.

Bis{3-phenyl-5,6,7,8-tetrahydro-3H-benzo[4,5]*thieno*[2,3-*d*]*pyrimidin-4-on-2-yl*}*disulfide* (**13a**): Pale yellow cubes, m.p. 277-279 °C (from toluene/chloroform); Yield 73%; IR (cm⁻¹): 1651 (C=O); ¹H-NMR (CDCl₃): 1.79-1.87 (8H, m, 4CH₂ at C-6, C-7), 2.74-2.77 (4H, m, 2CH₂ at C-5), 2.91-2.95 (4H, m, 2CH₂ at C-8), 7.39-7.42 (4H, m, H-2`, H-6`), 7.55-7.63 (6H, m, H-3`, H-4`, H-5`), 7.39-7.42 (4H, m, H-2`, H-6`), 7.55-7.63 (aliphatic ring sp³ carbons), 119.98, 129.40, 130.11, 130.60, 131.87, 133.21, 135.28, 153.09, 161.92 (sp² carbons); 158.42 (C=O); (C-2); MS: m/z (%) 626 [M⁺] (0.4) (C₃₂H₂₆N₄O₂S₄); 314 (100) [M-C₁₆H₁₃N₂OS₂]; 281 [M-C₁₆H₁₃N₂OS₂-SH+H] (19).

Bis{3-(4-Chlorophenyl)-7-methyl-5,6,7,8-tetrahydro-3H–pyrido[3`,4`:5,4]thieno[2,3-d]pyrimidin-4-on-2-yl}disulfide (**13b**): Yield 65%; m.p. 254-256 °C; IR (cm⁻¹): 1651 (C=O); MS: m/z (%) 363 (91) [M-C₁₆H₁₃ClN₃OS₂+H].

General procedure for the synthesis of 14a,b:

A mixture of **1d**,**e** (20 mmol) and triethyl orthoformate (20 mL) was heated under reflux for 4h, and then evaporated to dryness under reduced pressure. Ethylenediamine (3 g, 50 mmol) was added dropwise with stirring and the reaction mixture was heated at 100°C for 7 h. The solid product that separated after cooling was collected by filtration, washed with ethanol, dried and recrystallized from DMF.

3-(2-Aminoethyl)-4-imino-5,6-dimethyl-3,4-dihydrothieno[2,3-d]pyrimidine (**14a**): Fine colorless needles, m.p. 300-302 °C; Yield 40%; IR (cm⁻¹): 3437-3312 (NH, NH₂), 1573, 1564 (2C=N); MS: m/z (%) 222 [M⁺] (0.22) (C₁₀H₁₄N₄S), 205 [M-NH₃] (17), 180 [M-NH₃-C₂H₄+3H] (100).

 $\begin{array}{ll} 3-(2-Aminoethyl)-4-imino-3,5,6,7,8,9-hexahydro-4H-cyclohepta[4,5]-thieno[2,3-d]pyrimidine \quad (14b):\\ \mbox{Fine colorless needles, m.p. 218-220 °C; Yield 75%; IR (cm⁻¹): 3371-3319 (NH, NH₂), 1580, 1555 (2C=N); MS: m/z (%) 262 [M⁺] (0.4) (C₁₃H₁₈N₄S), 245 [M-NH₃] (22), 220 [M-NH₃-C₂H₄+3H] (100). \end{array}$

Attempted preparation of 2-amino-4,5-dimethyl-3-(4,5-dihydro-1H-2-imidazolyl)thiophene (15):

Carbon disulfide (1 g, 13 mmol) was added gradually to a suspension of **1d** (0.3 g, 2 mmol) and ethylenediamine (3 g, 50 mmol). The mixture was heated at 100 °C, for 8 h; the solid formed after cooling was filtered off and washed several times with DMF to give **16** as fine yellow needles, m.p. 217-219 °C; Yield 90%; IR (cm⁻¹): 3245-3167 (NH₂, NH), 1207 (C=S); MS: m/z (%) 289 [M+H] (0.2), 272 [M-NH₂] (100), 254 [M-H₂S-H] (37), 241 [M-H₂S-CH₃+2H], 221 [M-H₂S-CH₃-NH₂-2H] (34), 162 [M-C₆H₈NS] (100), 137 [M-C₇H₉N₂S+2H] (35), 102 [M-C₇H₁₀N₂S₂] (40).

References

1. El-Kerdawy, M. M.; Yousif, M. Y.; El-Emam, A. A.; Moustafa, M. A.; El-Sherbeny, M. A. Synthesis and antiinflammatory activity of certain thienopyrimidine derivatives. *Boll. Chim. Farmaceutico* **1996**, *135*, 301-305.

- 2. Modica, M.; Santagati, M.; Santagati, A.; Cutuli, V.; Mangano, N.; Caruso, A. Synthesis of new [1,3,4]thiadiazolo[3,2-a]thieno[2,3-d]pyrimidinone derivatives with antiinflammatory activity. *Pharmazie* **2000**, *55*, 500-502.
- Chambhare, R. V.; Khadse, B. G.; Bobde, A. S.; Bahekar, R. H. Synthesis and preliminary evaluation of some N-[5-(2-furanyl)-2-methyl-4-oxo-4*H*-thieno[2,3-d]pyrimidin-3-yl]carboxamide and 3-substituted-5-(2-furanyl)-2-methyl-3*H*-thieno[2,3-d]pyrimidin-4-ones as antimicrobial agents. *Eur. J. Med. Chem.* 2003, *38*, 89-100.
- 4. Santagati, N. A.; Caruso, A.; Cutuli, V. M.; Caccamo, F. Synthsis and phamacological evaluation of thieno[2,3-d]pyrimidin-2,4-dione and 5H-pyrimido[5,4-b]indol-2,4-dione derivatives. *IL Farmaco* **1995**, *50*, 689-695.
- Jennings, L. D.; Kincaid, S. L.; Wang, Y. D.; Krishnamurthy, G.; Beyer, C. F.; Mginnis, J. P.; Miranda, M.; Discafani, C. M.; Rabindran, S. K. Parallel synthesis and biological evaluation of 5,6,7,8-tetrahydrobenzothieno[2,3-d]pyrimidin-4(3H)-one cytotoxic agents selective for p21deficient cells. *Bioorg. Med. Chem. Lett.* 2005, 15, 4731.
- Meyer, M. D.; Altenbach, R. J.; Basha, F. Z.; Carroll, W. A.; Condon, S.; Elmore, S. W.; Kerwin, J. F.; Sippy, K. B.; Tietje, K.; Wendt, M. D.; Hancock, A. A.; Brune, M. E.; Buckner, S. A.; Drizin, I. Structure-activity studies for a novel series of tricyclic substituted hexahydrobenz[e]isoindole α₁A adrenoceptor antagonists as potential agents for the symptomatic treatment of benign prostatic hyperplasia (BPH). *J. Med. Chem.* 2000, *43*, 1586-1603.
- 7. Panico, A.; Cardile, V.; Santagati, A.; Gentile, B. Thienopyrimidine derivatives prevent cartilage destruction in articular disease. *IL Farmaco* **2001**, *56*, 959-964.
- 8. El-Baih, F. E. M.; Al-Taisan, K. M.; Al-Hazimi, H. M. A. Synthesis of some new thieno[2,3-d]pyrimidines and related heterocyclic systems *J. Saudi Chem. Soc.* **2000**, *4*, 281-290.
- 9. El-Baih, F. E. M. Synthesis of some thiazolidinone and thienotriazolidinopyrimidinedione derivatives *J. Saudi Chem.* Soc. **2003**, *7*, 89-98.
- 10. Gewald, K.; Schinke, E.; Bottcher, H. 2-Amino-thiophene aus methylenaktiven nitrilen, carbnylverbindungen und schwefel. *Chem. Ber.* **1966**, *99*, 94-100.
- Sabins, R. W.; Rangnekar, D. W.; Sonawane, N. D. 2-Aminothiophenes by Gewald reaction. J. *Heterocyclic Chem.* 1999, 36, 333-343.
- 12. Michio, N.; Tesuya, T.; Oita, N.; Hirochi, I.; Yataka. M. 3,6-Disubstituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridines. Ger. Offen, 1,812,404; [*Chem. Abstr.* **1969**, 71: 124402t].
- 13. Devani, M. B.; Shishoo, C. J.; Pathak, U. S.; Parikh, S. H.; Saha, G. F.; Padhya, A. C. Synthesis of 3-substituted thieno[2,3-d]pyrimidin-4(3*H*)-one-2-mercaptoacetic acids and their ethyl esters for pharmacological screening. *J. Pharm. Sci.* **1976**, *65*, 660-664.
- Modica, M.; Santagati, M.; Rosso, F.; Selvaggini, C.; Cagnotto, A.; Mennini, T. High affinity and selectivity of [[(arylpiperazinyl)alkyl]thio]thieno[2,3-d]pyrimidinone derivatives for the 5-HT1A receptor, synthesis and structure-affinity relationships. *Eur. J. Med. Chem.* 2000, 35, 677-689.
- Badawey, E. S. A. M.; Rida, S. M.; Hazza, A. A.; Fahmy, H. T. Y.; Gohar, Y. M. Potential antimicrobials. I. Synthesis and structure-activity studies of some new thiazolo[4,5-d]pyrimidine derivatives. *Eur. J. Med. Chem.* **1993**, 28, 91-96.
- Ogawva, K. I.; Yamawaki, I.; Matsusita, Y. I.; Nomura, N.; Kador, P. F.; Kinoshita, J. H. Syntheses of substituted 2,4-dioxo-thienopyrimidin-1-acetic acids and their evaluation as aldose reductase inhibitors. *Eur. J. Med. Chem.* 1993, 28, 769-781

- Bakite, E. A. A.; Abdel-Rahman, E.; Mohamed O. S.; Thabet, E. A. Synthesis and reactions of new thienopyridines, pyridothienopyrimidines and pyridothienotriazines. *Bull. Korean Chem. Soc.* 2002, 23, 1709-1714.
- 18. El-Gazzar, A. B. A.; Hassan, N. A. Synthesis of polynuclear heterocyclic compounds derived from thieno[2,3-d]pyrimidine derivatives. *Molecules* **2000**, *5*, 835-850.
- 19. Al-Haiza, M. A. Synthesis of some new compounds containing the phenyl-1*H*-indolyl moiety. *J. King Saud Univ.* **2003**, *16*, 63-75.
- 20. Nomoto, Y.; Takai, H.; Ohno, T.; Kuba, K. Studies on cardiotonic agents. VII. Potent cardiotonic agent KF15232 with myofibrillar Ca²⁺ sensitizing effect. *Chem. Pharm. Bull.* **1991**, *39*, 900-910.
- 21. El-Saghier, A. M. M. A simple synthesis of some new thienopyridine and thienopyrimidine derivatives *Molecules* **2002**, *7*, 756-766.

Sample availability: Contact the authors.

© 2006 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.