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1. Introduction 

Among the many existing approaches to the synthesis of musical sounds, the ones that have had the 

biggest success are without any doubt the sampling based ones, which sequentially concatenate samples from 

a corpus database [1]. Strictly speaking, we could say that sampling is not a synthesis technique, but from a 

practical perspective it is convenient to treat it as such. From what we explain in this article it should become 

clear that, from a technology point of view, it is also adequate to include sampling as a type of sound 

synthesis model.  

The success of sampling relies on the simplicity of the approach, it just samples existing sounds, but most 

importantly it succeeds in capturing the naturalness of the sounds, since the sounds are real sounds.  

However, sound synthesis is far from being a solved problem and sampling is far from being an ideal 

approach. The lack of flexibility and expressivity are two of the main problems, and there are still many 

issues to be worked on if we want to reach the level of quality that a professional musician expects to have in 

a musical instrument. 

Sampling based techniques have been used to reproduce practically all types of sounds and basically have 

been used to model the sound space of all musical instruments. They have been particularly successful for 

instruments that have discrete excitation controls, such as percussion or keyboard instruments. For these 

instruments it is feasible to reach an acceptable level of quality by using large sample databases, thus by 

sampling a sufficient portion of the sound space produced by a given instrument. This is much more difficult 

for the case of continuously excited instruments, such as bowed strings, wind instruments or the singing 

voice, and therefore recent sampling based systems consider a trade-off between performance modeling and 

sample reproduction (e.g. [2]). For these instruments there are numerous control parameters and many ways 

to attack, articulate or play each note. The control parameters are constantly changing and the sonic space 

covered by a performer could be considered to be much larger than for the discretely excited instruments. 

The synthesis approaches based on physical models have the advantage of having the right 

parameterization for being controlled like a real instrument, thus they have great flexibility and the potential 

to play expressively. One of the main open problems relates to the control of these models, in particular how 
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to generate the physical actions that excite the instrument. In sampling these actions are embedded in the 

recorded sounds.  

We have worked on the synthesis of the singing voice for many years now mostly together with Yamaha 

Corp., part of our results having being incorporated into the Vocaloid1 software synthesizer. Our goal has 

always been to develop synthesis engines that could sound as natural and expressive as a real singer (or choir 

[3]) and whose inputs could be just the score and the lyrics of the song. This is a very difficult goal and there 

is still a lot of work to be done, but we believe that our proposed approach can reach that goal. In this paper 

we will overview the key aspects of the technologies developed so far and identify the open issues that still 

need to be tackled. The core of the technologies is based on spectral processing and over the years we have 

added performance actions and physical constraints in order to convert the basic sampling approach to a 

more flexible and expressive technology while maintaining its inherent naturalness. 

In the first part of the article we introduce the concept of synthesis based on performance sampling and the 

specific spectral models that we have developed and used for the singing voice. In the second part we go 

over the different components of the synthesizer and we conclude by identifying the open issues of this 

research work. 

2. Performance based Sampling synthesis 

Sampling has always been considered a way to capture and reproduce the sound of an instrument but in 

fact it should be better considered a way to model the sonic space produced by a performer with an 

instrument. This is not just a fine distinction; it is a significant conceptual shift of the goal to be achieved.  

We want to model the sonic space of a performer/instrument combination. This does not mean that the 

synthesizer shouldn’t be controlled by a performer, it just means that we want to be flexible in the choice of 

input controllers and be able to use high-level controls, such as a traditional music score, or to include lower-

level controls if they are available. Thus taking advantage from a smearing of the traditional separation 

between performer and instrument.   

Figure 1 shows a visual representation of a given sonic space to be modeled. The space A represents the 

sounds that a given instrument can produce by any means. The space B is the subset of the space A that a 

given performer can produce by playing that instrument. The trajectories shown in the space B represent the 

actual recordings that have been sampled. The reality is that this sonic space is an infinite multidimensional 

one but we hope to be able to get away by approximating it with a finite space. The trajectories represent 

paths in this multidimensional space. The size of these spaces may vary depending on the perceptually 

                                                      

1 http://www.vocaloid.com 
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relevant degrees of freedom in a given instrument/performer combination, thus we could say that a 

performed drum can be represented by a smaller space than a performed violin. This is a very different 

concept than the traditional timbre space; here the space is defined both by the sound itself and by the control 

exerted on the instrument by the performer. Thus the sound space of an accomplished performer would be 

bigger than the space of a not so skilled one. 

 

From a given sampled sonic space and the appropriate input controls, the synthesis engine should be able 

to generate any trajectory within the space, thus producing any sound contained in it. The brute force 

approach is to do an extensive sampling of the space and perform simple interpolations to move around it. In 

the case of the singing voice, the space is so huge and complex that this approach is far from being able to 

cover a large enough portion of the space. Thus the singing voice is a clear example that the basic sampling 

approach is not adequate and that a parameterization of the sounds is required. We have to understand the 

relevant dimensions of the space and we need to find a sound parameterization with which we can move 

around these dimensions by interpolating or transforming the existing samples. 

Figure 2 shows a block diagram of our proposed synthesizer. The input of the system is a generalization of 

the traditional score, a Performance Score, which can include any symbolic information that might be 

required for controlling the synthesizer. The Performer Model converts the input controls into lower level 

performance actions, the Performance Trajectory Generator creates the parameter trajectories that express 

the appropriate paths to move within the sonic space, and the Sound Rendering module is the actual synthesis 

engine that produces the output sound by concatenating a sequence of transformed samples which 

approximate the performance trajectory. The Performance Database includes not only the performance 

samples but also models and measurements that relate to the performance space and that give relevant 

information to help in the process of going from the high level score representation to the output sound. 

In the next sections we will present in more detail each of these components for the specific case of a 

singing voice, but considering that most of the ideas and technologies could be applied to any 

performer/instrument combination. 
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3. Modeling the singing voice 

As stated by Sundberg [4], we consider the singing voice as the sounds produced by the voice organ and 

arranged in adequate musical sounding sequences. The voice organ encloses the different structures that we 

mobilize when we produce voice: the breathing system, the vocal folds, and the vocal and nasal tracts. More 

specifically, as shown in Figure 3, voice sounds originate from an airstream from the lungs which is 

processed by the vocal folds and then modified by the pharynx, the mouth and nose cavities. The sound 

produced by the vocal folds is called the Voice Source. When the vocal folds vibrate, the airflow is chopped 

into a set of pulses producing voiced sounds (i.e. harmonic sounds). Otherwise, different parts of the voice 

organ can work as oscillators to create unvoiced sounds. For example, in whispering, vocal folds are too 

much tense to vibrate but they form a narrow passage which makes the airstream become turbulent and 

generate noise.  

The vocal tract acts as a resonator and shapes acoustically the voice source, especially enhancing certain 

frequencies called formants2 (i.e. resonances). The five lowest formants are the most significant ones for 

vowel quality and voice color. It is important to note that the vocal tract cannot be considered a linear-phase-

response filter. Instead, each formant decreases the phase around its center frequency, as can be seen in 

Figure 4. This property is perceptually relevant, especially for middle and low pitch utterances.  

In a broad sense, and according to whether the focus is put on the system or its output, synthesis models 

can be classified into two main groups: spectral models and physical models. Spectral models are mainly 

based on perceptual mechanisms of the listener while physical models focus on modeling the production 

mechanisms of the sound source. Any of these two models are suitable depending on the specific 

requirements of the application or they might be combined for taking advantages of both approaches. 

Historical and in-depth overviews of singing voice synthesis models are found in [5][6][7].  

The main benefit of using physical models is that the parameters used in the model are closely related to 

the ones a singer uses to control his/her own vocal system. As such, some knowledge of the real-world 

mechanism must be brought on the design. The model itself can provide intuitive parameters if it is 

constructed so that it sufficiently matches the physical system. Conversely, such a system usually has a large 

number of parameters and the mapping of those quite intuitive controls of the production mechanism to the 

final output of the model, and so to the listener’s perceived quality, is not a trivial task. The controls would 

be related to the movements of the vocal apparatus elements such as jaw opening, tongue shape, sub-glottal 

                                                      

2 There also exist the antiformants or antiresonances, i.e. frequency regions in which the amplitudes of the voice 

source are attenuated. These are especially present in nasal sounds because nasal cavities absorb energy from the sound 

wave. 
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air pressure, tensions of the vocal folds, etc. The first digital physical model of the voice was based on 

simulating the vocal tract as a series of one-dimensional tubes [8], afterwards extended by means of digital 

waveguide synthesis [9] in SPASM [10]. Physical models are evolving fast and becoming more and more 

sophisticated, 2-D models are common nowadays providing increased control and realism [11][12], and the 

physical configuration of the different organs during voice production is being estimated with great detail 

combining different approaches. For example, 2D vocal tract shapes can be estimated from Functional 

magnetic resonance imaging (fMRI) [13], X-ray computed tomography (CT) [14], or even audio recordings 

and EGG signals by means of genetic algorithms [15]. 

 

Alternatively, spectral models are related to some aspects of the human perceptual mechanism. Changes in 

the parameters of a spectral model can be more easily mapped to a change of sensation in the listener. Yet 

parameter spaces yielded by these systems are not necessarily the most natural ones for manipulation. 

Typical controls would be pitch, glottal pulse spectral shape, formant frequencies, formant bandwidths, etc. 

Of particular relevance is the sinusoidal based system in [16]. 

A typical example of combining both approaches is the one of the formant synthesizers (e.g. [17], 

CHANT system [18]), considered to be pseudo-physical models because even though they are mainly 

spectral models they make use of the source / filter decomposition which considers voice to be the result of a 

glottal excitation waveform (i.e. the voice source) filtered by a linear filter (i.e. the vocal tract). The voice 

model we present here would be part of this group. 

Figure 4 Vocal tract transfer function. 
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3.1 EpR Voice Model 

The EpR3 Voice Model [19] is based on an extension of the well known source/filter approach [20]. It 

models the magnitude spectral envelope defined by the harmonic spectral peaks of the singer’s spectrum. It 

consists of three filters in cascade (see Figure 5). The first filter models the voice source frequency response 

with an exponential curve plus one resonance. The second one models the vocal tract with a vector of 

resonances which emulate the voice formants. The last filter stores the amplitude differences between the 

two previous filters and the harmonic envelope. Hence, EpR can perfectly reproduce all the nuances of the 

harmonic envelope.  

Each of the parameters of this model can be controlled independently. However, whenever a formant 

frequency is modified, the residual filter envelope is scaled taking as anchor points the formant frequencies, 

thus preserving the local spectral amplitude shape around each formant. 

3.2 Audio Processing 

Since our system is a sample based synthesizer in which samples of a singer database are transformed and 

concatenated along time to compose the resulting audio, high quality voice transformation techniques are a 

crucial issue. Thus we need audio processing techniques especially adapted to the particular characteristics of 

the singing voice, using EpR to model voice timbres, and preserving the relationship between formants and 

phase. 

SMS 

We initially used SMS4 [21] as the basic transformation technique [19]. SMS had the advantage of 

decomposing the voice into harmonics and residual, respectively modeled as sinusoids and filtered white 

noise. Both components were independently transformed, so the system yielded a great flexibility. But 

although the results were quite encouraging in voiced sustained parts, in transitory parts and consonants, 

especially in voiced fricatives, harmonic and residual components were not perceived as one, and moreover 

transients were significantly smeared. When modifying harmonic frequencies, for example in a transposition 

transformation, harmonic phases were computed according to the phase rotation of ideal sinusoids at the 

estimated frequencies. Hence, the strong phase synchronization (or phase-coherence) between the various 

harmonics resulting of the formant and phase relationship was not preserved, producing phasiness5 artifacts, 

audible especially at low pitch utterances. 

                                                      

3 EpR stands for Excitation plus Resonances 

4 SMS stands for Spectral Modeling Synthesis. 

5 A lack of presence, a slight reverberant quality, as if recorded in a small room 
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Phase-Locked Vocoder 

Intending to improve our results, we moved to a spectral technique based on the phase-locked vocoder 

[22] where the spectrum is segmented into regions, each of which contains a harmonic spectral peak and its 

surroundings. In fact, in this technique each region is actually represented and controlled by the harmonic 

spectral peak, so that most transformations basically deal with harmonics and compute how their parameters 

(amplitude, frequency and phase) are modified, in a similar way to sinusoidal models. These modifications 

are applied uniformly to all the spectral bins within a region, therefore preserving the shape of the spectrum 

around each harmonic. Besides, a mapping is defined between input and output harmonics in order to avoid 

shifting in frequency the aspirated noise components and introducing artifacts when low level peaks are 

amplified. We improved the harmonic phase continuation method by assuming a perfectly harmonic 

frequency distribution [23]. The result was that when pitch was modified (i.e. transposition), the unwrapped 

phase envelope was actually scaled according to the transposition factor. The sound quality was improved in 

terms of phasiness but not sufficiently, and the relation between formants and phase was not really 

preserved.  
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Several algorithms have been proposed regarding the harmonic phase-coherence for both phase-vocoder 

and sinusoidal modeling (for example [24] and [25]), most based on the idea of defining pitch-synchronous 

input and output onset times and reproducing at the output onset times the phase relationship existing in the 

original signal at the input onset times. However, the results are not good enough because the onset times are 

not synchronized to the voice pulse onsets, but assigned to an arbitrary position within the pulse period. This 

causes unexpected phase alignments at voice pulse onsets which doesn’t reproduce the formant to phase 

relations, adding an unnatural ‘roughness’ characteristic to the timbre (see Figure 6). Different algorithms 

detect voice pulse onsets relying on the minimal phase characteristics of the voice source (i.e. glottal signal) 

(e.g. [26][27]). Following this same idea we proposed in [28] a method to estimate the voice pulse onsets out 

of the harmonic phases based on the property that when the analysis window is properly centered, the 

unwrapped phase envelope is nearly flat with shifts under each formant, thus being close to a maximally flat 

phase alignment (MFPA) condition. By means of this technique, both phasiness and roughness can be greatly 

reduced to be almost inaudible. 

 

Figure 6 Spectrums obtained when the window is centered at the voice pulse onset (left figure), and between two 

pulse onsets (middle figure). In the middle figure harmonics are mapped to perform one octave down 

transposition. In the right figure, spectrum of the transformed signal with the window centered at the voice pulse 

onset. The ‘doubled’ phase alignment adds an undesired ‘roughness’ characteristic to the voice signal. Besides, we 

don’t see only one voice pulse per period as expected, but two with strong amplitude modulation. 

VPM 

Both SMS and phase-vocoder techniques are based on modifying the frequency domain characteristics of 

the voice samples. Several transformations can be done with ease and with good results, for instance 

transposition and timbre modification6. However, certain transformations are rather difficult to achieve, 

especially the ones related to irregularities in the voice pulse sequence, which imply to add and control 

subharmonics [29]. Irregularities in the voice pulse sequence are inherent to roughness or creaky voices and 

appear frequently in singing, sometimes even as an expressive recourse such as growl. 

                                                      

6 Here timbre modification is understood as modification of the envelope defined by the harmonic spectral peaks. 
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Dealing with this issue we proposed in [28] an audio processing technique especially adapted to the voice, 

based on modeling the radiated voice pulses in frequency domain. We call it VPM which stands for Voice 

Pulse Modeling. We have seen before that voiced utterances can be approximated as a sequence of voice 

pulses linearly filtered by the vocal tract. Hence the output can be considered as the result of overlapping a 

sequence of filtered voice pulses. It can be shown that the spectrum of a single filtered voice pulse can be 

approximated as the spectrum obtained by interpolation of the harmonic peaks (in polar coordinates, i.e. 

magnitude and phase), when the analysis window is centered on a voice pulse onset (see Figure 7 and Figure 

9). The same applies if the timbre is modeled by the EpR model exposed in §3.1. Since the phase of the 

harmonic peaks is interpolated, special care must be taken regarding phase unwrapping, in order to avoid 

discontinuities when different integer numbers of 2π periods are added to a certain harmonic in consecutive 
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frames (see Figure 8). Finally, once we have a single filtered voice pulse we can reconstruct the voice 

utterance by overlapping several of these filtered voice pulses arranged as in the original sequence. This way, 

introducing irregularities to the synthesized voice pulse sequence becomes straightforward. 

 

Clearly we have disregarded all the data contained in the spectrum bins between harmonic frequencies, 

which contain noisy or breathy characteristics of the voice. Like in SMS, we can obtain a residual by 

subtracting the VPM resynthesis to the input signal, therefore ensuring a perfect reconstruction if no 

transformations are applied. It is well known that the aspirated noise produced during voiced utterances has a 

time structure, which is perceptually important, and is said to be correlated to the glottal voice source phase 

[30]. Hence, in order to preserve this time structure, the residual is synthesized using a PSOLA method 

synchronized to the synthesis voice pulse onsets. Finally, for processing transient-like sounds we adopted the 

method in [31] which by integrating the spectral phase is able to robustly detect transients and discriminate 

which spectral peaks contribute to them, therefore allowing translating transient components to new time 

instants. 

VPM is similar to old techniques such as FOF [32] and VOSIM [33], where voice is modeled as a 

sequence of pulses whose timbre is roughly represented by a set of ideal resonances. However, in VPM the 

timbre is represented by all the harmonics, allowing capturing subtle details and nuances of both amplitude 

and phase spectra. In terms of timbre representation we could obtain similar results with spectral smoothing 

by applying restrictions to the poles and zeros estimation in AR, ARMA or PRONY models. However, with 

VPM we have the advantage of being able to smoothly interpolate different voice pulses avoiding problems 

due to phase unwrapping, and decomposing the voice into three components (harmonics, noise and 

transients) which can be independently modified. A block diagram of VPM analysis and synthesis processes 

is shown in Figure 10. 

Figure 9 Synthesis of single pulses from the 

analysis of recorded voiced utterances. 
Figure 8 Phase unwrapping problem: different numbers of 2π 
periods are added to the ith harmonic in consecutive frames. 
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4. Performer Model 

From the input score, the Performer Model is in charge of generating lower level actions, thus it is 

responsible of incorporating performance specific knowledge to the system. Some scores might include a fair 

number of performance indications and in these cases the Performer Model would have an easier task. 

However we are far from completely understanding and being able to simulate the music performance 

process and therefore this is still one of the most open ended problems in music sound synthesis. The issues 

involved are very diverse, going from music theory to cognition and motor control problems, and current 

approaches to performance modeling only give partial answers. The most successful practical approaches 

have been based on developing performance rules by an analysis by synthesis approach [34][35]  and more 

recently machine learning techniques have been used for generating these performance rules automatically 

[36].  Another useful method is based on using music notation software which allows interactive playing and 

adjustment of the synthetic performance [37]. 

For the particular case of the singing voice system presented here the main characteristics which are 

determined by the Performer Model are the tempo, the deviation of note duration from the standard value, 

the vibrato occurrences and characteristics, the loudness of each note, and how notes are attacked, connected 

and released in terms of musical articulation (e.g. legato, staccato, etc.). It is beyond the scope of this 

research to address higher levels of performance control such as the different levels of phrasing and their 

influence in all the expressive nuances. 

5. Performance Database 

In this section, we explain how to define the sampling grid of the instrument’s sonic space and the steps 

required to build a database of it. First of all we must identify the dimensions of the sonic space we want to 

play with and the transformations we can do with the samples. For each transformation we need to study as 

well the tradeoff between sound quality and transformation range, preferably in different contexts (for 

Figure 10 VPM analysis and synthesis block diagram 
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example, we can think of a case where transpositions sound acceptable for the interval [-3,+4] semitones at 

low pitches, but the interval becomes [-2,+2] at high pitches). Besides we should also consider the sample 

concatenation techniques to be used in synthesis, and the consequent tradeoff between sample distance and 

natural sounding transitions. Once we have set the sampling grid to be a good compromise for the previous 

tradeoffs, we have to come up with detailed scripts for recording each sample, trying to minimize the score 

length thus maximize the density of database samples in the performance being recorded. These scripts 

should be as detailed as possible in order to avoid ambiguities and assure that the performance will contain 

the target samples. 

In the case of singing voice we decided to divide the sonic space into three subspaces A, B and C, each 

with different dimensions (see Figure 11). Subspace A contains the actual samples which are transformed 

and concatenated at synthesis. Instead, subspaces B and C contain samples which once properly modeled 

specify how samples from A should be transformed to show a variety of specific expressions. 

In subspace A, the phonetic axis has a discrete scale set as units of two allophones combinations (i.e. di-

llophones) plus steady-states of voiced allophones. Using combination of two or more allophones is in fact a 

common practice in concatenative speech synthesis (e.g. [38]). However, not all di-allophones combinations 

must be sampled but only a subset which statistically covers most frequent combinations. For example, 

Spanish language has 29 possible allophones [39] and, after analyzing the phonetic transcription of several 

books containing more than 300000 words, we found out that 521 combinations out of the 841 theoretically 

possible ones were enough to cover more than 99.9% of all occurrences. The pitch axis must be adapted to 

the specific range of the singer. In our case, the sound quality seems to be acceptable for transpositions up to 

+/- 6 semitones, and the sampling grid is set accordingly, being often 3 pitch values enough to cover singer’s 
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Figure 11 Subspaces of the singing voice sonic space. 
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range (excluding falsetto). The loudness axis is set to the interval [0,1], assuming 0 to be the softest singing 

and 1 the loudest one. In our experiments, we decided to record very soft, soft, normal and loud qualitative 

labels for steady-states and just soft and normal for articulations. Finally, for tempo we recorded normal and 

fast speeds, valued as 90 and 120 BPM7 respectively. Summarizing, for each di-allophone we sampled 3 

pitches, 2 loudness and 2 tempo contexts, summing 12 different locations in the sonic space. 

Subspace B contains different types of vibratos. We don’t intend to be exhaustive but to achieve a coarse 

representation of how the singer performs vibratos. Afterwards, at synthesis, samples in B are used as 

parameterized templates for generating new vibratos with scaled depth, rate and tremolo characteristics. 

More precisely, each template stores voice model controls envelopes obtained from analysis, each of which 

can be later used in synthesis to control voice model transformations of samples in A. For vibratos, as shown 

in Figure 12, the control envelopes we use are the EpR (gain, slope, slope depth) and pitch variations relative 

to their slowly varying mean, plus a set of marks pointing the beginning of each vibrato cycle and used as 

anchor points for transformations (for instance time-scaling can be achieved by repeating and interpolating 

vibrato cycles) and for estimations (for example vibrato rate would be the inverse of the duration of one 

cycle). Besides, vibrato samples are segmented into attack, sustain and release sections. During synthesis, 

these templates are applied to flat (i.e. without vibrato) samples from subspace A, and the EpR voice model 

ensures that the harmonics will follow the timbre envelope defined by the formants while varying their 

frequency (see Figure 13). Depending on the singing technique adopted by the singer, it is possible that 

formants vary in synchrony with the vibrato phase. Hence, in the specific case the template was obtained 

from a sample corresponding to the same phoneme being synthesized, we can use as well the control 

envelopes related to the formants location and shape for generating those subtle timbre variations. 

The third subspace C represents musical articulations. We model it with three basic types: note attacks, 

transitions and releases. For each of them we set a variety of labels trying to cover most basic recourses. 

Note we are considering here the musical note level and not higher levels such as musical phrasing or style, 

aspects to be ruled by the Performer Model exposed in section §4. Same as vibratos, samples here become 

parameterized templates applicable to any synthesis context [23]. 

Several issues have to be considered related to the recording procedure. Singers usually get bored or tired 

if the scripts are repetitive and mechanical. Therefore it is recommended to sing on top of stimulating 

musical backgrounds. This in addition ensures an accurate control of tempo and tuning and increases the 

                                                      
7 BPM means beats per minute. In this case it corresponds to the number of syllables per minute, considering a 

syllable is sung for each note. 
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feeling of singing. Besides, using actual meaningful sentences increases further more the feeling of singing. 

We did so for Spanish language, using a script which computed the minimum set of sentences required to 

cover the di-allophone subset out of the Spanish books. An excerpt of the Spanish recording script is shown 

in Figure 14. It took about three or four hours per singers to follow the whole scripts. Another aspect to 

consider is that voice quality often degrades after singing for a long time; therefore pauses are necessary now 

and then. Finally another concern is that high pitches or high loudness levels are difficult to hold 

continuously and exhaust singers.  

 

 

Figure 14 Excerpt from the Spanish recording script. The first line shows the sentence to be sung, the second one 

the corresponding SAMPA8 phonetic transcription, and the third one the list of phonetic articulations to be added to 

the database 

The creation of the singer database is not an easy task. Huge numbers of sound files have to be segmented, 

labeled and analyzed, especially when sampling subspace A. That’s why we put special efforts in automating 

the whole process and reducing manual time-consuming tasks [40] (see Figure 15). Initially, the recorded 

audio files are cut into sentences. For each of them we add a text file including the phonetic transcription and 

                                                      

8 SAMPA (Speech Assessment Methods Phonetic Alphabet) is a computer-readable phonetic alphabet based on the 

International Phonetic Alphabet (IPA), and originally developed in the late eighties by an international group of 

phoneticians. 
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tempo, pitch and loudness values set in the recording scripts. Next we perform an automatic phoneme 

segmentation adapting a speech recognizer tool to work as an aligner between the audio and the 

transcription. Then we do an automatic sample segmentation fixing the precise boundaries of the di-

allophone units around each phoneme onset, following several rules which depend on the allophone families. 

For example, in the case of unvoiced fricatives such as the English ‘s’, we end the *-s articulation just at the 

‘s’ onset, and the beginning of the s-* articulation is set at the beginning of the ‘s’ utterance. We do it like 

this because in our synthesis unvoiced timbres are not smoothly concatenated, thus it is better to synthesize 

the whole ‘s’ from a unique sample. 

In our recording scripts we set tempo, pitch and loudness to be constant along each sentence. One reason 

is that we want to capture loudness and pitch variations inherent to phonetic articulations (see Figure 16), 

and make them independent of the ones related to musical performance. Another reason is that we want to 

constrain the singer’s voice quality and expression to ensure a maximal consistency between different 

samples among the database, intending to help hiding the fact that the system is concatenating samples and 

increasing the sensation of a continuous flow. Another significant aspect is that we detect gaps, stops and 

timbre stable segments (see Figure 17). The purpose is to use this information for better fitting samples at 

synthesis, for example avoiding using those segments in the case of fast singing instead of time-compressing 

samples. Details can be found in [40]. 
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The last step is to manually tune the resulting database and correct erroneous segmentations or analysis 

estimations. Tools are desired to automatically locate most significant errors and help the supervisor to 

perform this tuning without having to check every single sample. 

 

6. Performance Trajectory Generation 

The Performance Trajectory Generator module converts performance actions set by the Performer Model 

into adequate parameter trajectories within the instrument’s sonic space. We characterize singing voice 

Performance Trajectories in terms of coordinates in subspace A: phonetic unit sequences plus pitch and 

loudness envelopes. We assume that the tempo axis is already embedded in the phonetic unit track as both 

timing information and actual sample selection. An essential aspect when computing phonetic timing is to 

ensure the precise alignment of certain phones (mainly vowels) with the notes [41][4]. 

We saw in the previous section how the singing voice sonic space was split into three subspaces, the first 

one A including the actual samples to be synthesized, and the rest B and C representing ways of transforming 

those samples so to obtain specific musical articulations and vibratos. Hence, the Performance Trajectory 

Generator actually applies models from subspaces B and C to the coarse Performance Score coordinates in A, 

in order to obtain detailed trajectory functions within subspace A.  

A representative example is shown in Figure 18, starting with a high-level performance score (top left) of 

two notes with the lyrics fly me. The former note is an Ab2 played forte and attacked softly. The latter a G2 

played piano, ending with a long release and exhibiting a wet vibrato. The note transition is smooth (i.e. 

legato). From this input an internal score (top right) is built which describes a sequence of audio samples, a 

set of musical articulation templates, vibrato control parameters, and loudness and pitch values. Lowering 

another level, musical articulation templates are applied and the resulting Performance Trajectory (bottom 

right) is obtained. In this same figure, we can observe another possible input performance score (bottom left), 

in this case a recorded performance by a real singer, obviously a low-level score. From it we could directly 

generate a performance trajectory with a similar expression by performing phoneme segmentation and 

a                            k                     a 

Figure 17 Gaps, stops and timbre stable 

segments detection 

a                           g                           a 

pitch 

waveform 

Figure 16 Loudness and Pitch variations inherent to 

phonetic articulations. In this figure we can observe a valley 

in waveform amplitude and pitch along a-g-a transition. 
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computing pitch and loudness curves. 

The optimal sample sequence is computed so that the overall transformation required at synthesis is 

minimized. In other words, we choose the samples which better match locally the performance trajectory. 

With this aim, we compute the matching distance as a cost function derived from several transformation 

costs: temporal compression or expansion applied to the samples to fit the given phonetic timing, pitch and 

loudness transformations needed to reach the target pitch and loudness curves, and concatenation 

transformations required to connect consecutive samples.  

7. Sound rendering 

The Sound Rendering engine is the actual synthesizer that produces the output sound. Its input consists of 

the Performance Trajectory within the instrument sonic space. The rendering process works by transforming 

and concatenating a sequence of database samples. We could think of many possible transformations. 

However we are mostly interested in those directly related to the sonic space axes, since they allow us to 

freely manipulate samples within the sonic space, and therefore match the target trajectory with ease (see 

Figure 19).  

However, feasible transformations are determined by the spectral models we use and their 

parameterization. In our case, spectral models have been specially thought for tackling the singing voice (as 

m I phonetic 
transcription

vibrato 

fly 

f l aI 

loudness

me 

long 

wet vibrato 

soft  

Ab2 G2 pitch

f p 

legato articulation

f-l aI-m m-I I sample
track

fly

Sil-f

Ab2 

G2 
Pitch 

Loudness

l-aI

0 

1 

me 

I-Sil 

f-l aI-m I sample
track
note 

track
vibrato 

track

fly

Sil-f

0 

1 

0 

1 

vibrato
 depth

Vibrato 
rate

me 

I-Sil 

release long 

vibrato wet 

attack soft  legato 

high-level 

performance score

performance 

trajectory

time

low-level 

performance score 

Loudness
0 

1 

time

time

Ab2 

G2 
Pitch 

m-I l-aI

Figure 18 From performance score to performance trajectory 



  

 18

seen in section §3) and allow transformations such as transposition, loudness and time-scaling, all of them 

clearly linked to the A sonic subspace axes. Several recourses related to musical articulation are already 

embedded in the Performance Trajectory itself, thus no specific transformations with this purpose are needed 

by the rendering module. Still, other transformations not linked to our specific sonic space axes and 

particular to the singing voice are desired, such as the ones related to voice quality and voice phonation, 

which might be especially important for achieving expressive and natural sounding rendered performances. 

For example, we could think of transformations for controlling breathiness or roughness qualities of the 

synthetic voice. In particular, roughness transformation would be very useful in certain musical styles, such 

as blues, to produce growling utterances. We explore several methods for producing these kinds of 

alterations using our voice models in [29][42]. 

If we restricted our view to the sonic space we deal with, we would reach the conclusion that transformed 

samples do connect perfectly. However, this is not true, because the actual sonic space of the singing voice is 

much richer and complex than our approximation. Thus, transformed samples almost never connect 

perfectly. Many voice features are not described precisely by the coordinates in A subspace, and others such 

as voice phonation modes are just ignored. For example, phonetic axis describes the timbre envelope as 

phoneme labels, so rather coarsely. Hence, when connecting samples with the same phonetic description, 

formants won’t match precisely. Another reason for imperfect connections is that the transposition factor 

applied to each sample is computed as the difference between the pitch specified in the recording scripts and 

the target pitch, with the aim of preserving the inner pitch variations inherent to phonetic articulations (see 

section §5), and therefore pitch rarely match at sample joints.  

In order to smoothly connect samples, we compute the differences found at joint points for several voice 

features and transform accordingly surrounding sample sections by specific correction amounts. These 

correction values are obtained from spreading out the differences around the connection points, as shown in 

Figure 19 Matching a performance trajectory by transforming samples. On the left side we see the tar-

get trajectory in gray and the samples in black. The two selected samples are drawn with wider width. 

On the right side we see how these samples are transformed and approximate the target trajectory. 
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Figure 20. We apply this method to our voice models, specifically to the amplitude and phase envelopes of 

the VPM spectrum, to the pitch and loudness trajectories, and to the EpR parameters, including the controls 

of each formant [43]. Results are of high quality. However, further work is needed to tackle phonation modes 

and avoid audible discontinuities such as those found in breathy to non-breathy connections. 

8. Conclusions 

In this article we have introduced the concept of synthesis based on performance sampling. We have 

explained that although sampling has been considered a way to capture and reproduce the sound of an 

instrument, it should be better considered a way to model the sonic space produced by a performer with an 

instrument. With this aim we have presented our singing voice synthesizer, pointing out the main issues and 

complexities emerging along its design. 

The singing voice is probably the most complex instrument and the richest one on expressive nuances. 

After introducing its particular characteristics, we have detailed several spectral models we developed during 

the last few years which specifically tackle them, and we have pointed out the most relevant problems and 

difficulties we found. 

Then we have discussed the key aspects of the proposed synthesizer and described its components. We 

have distinguished two main processes. The former consists of transforming an input score into a 

performance trajectory within the sonic space of the target instrument, i.e. the singing voice. The latter 

actually generates the output sound by concatenating a sequence of transformed samples which approximates 

the target performance trajectory. We have put special emphasis on the issues involved in the creation of the 

synthesizer’s database, starting with the definition of the singing voice sonic space and ending with our 

efforts in automating the creation process.  

Although the current system is able to generate convincing results in certain situations, there is still much 
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room for improvements, especially in the areas of expression, spectral modeling and sonic space design. 

However, we believe we are not so far from the day when computer singing will be barely distinguishable 

from human performances.  
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