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Abstract—Traditional optimization methods are not well suitable for
thinning large arrays to obtain a low sidelobe level (SLL). The chaotic
binary particle swarm optimization (CBPSO) algorithm is presented as
a useful alternative for the synthesis of thinned arrays. The proposed
algorithm can be improved by nonlinear inertia weight with chaotic
mutation to increase the diversity of particles. Two examples have been
presented and solved. Simulation results are proposed to compare with
published results to verify the effectiveness of the proposed method for
both linear and planar arrays.

1. INTRODUCTION

Array thinning is related to the removal of radiating elements from
a uniformly spaced or periodic array to create a desired radiation
pattern [1–3]. The main purpose of thinning is to reduce the cost,
weight and power consumption [4, 5]. In thinned array synthesis, the
positions of the elements will be fixed, and each element will present
two states: “on” (when the element is fed) and “off” (when the element
is passively terminated in an impedance equal to the source impedance
of the fed elements). However, synthesis of antenna arrays is a tough
challenge, and it is hard to solve these synthesis problems with simple
analytical methods [6–10].
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In order to reduce the number of elements while keeping
the radiation properties of the original structures, several thinning
techniques have been successfully introduced [11, 12]. In recent
years, the use of global optimization approaches has led to
significant advancements [13]. These methods, such as particle
swarm optimization (PSO) [14, 15], genetic algorithm (GA) [16, 17],
differential evolution (DE) [18–20] and ant colony optimization
(ACO) [21], have already been used to design thinned arrays for various
applications.

The main contribution of this paper is to employ a modified
binary PSO to synthesize thinned arrays with a lower SLL. The chaotic
sequences are embedded in the proposed algorithm to determine the
inertia weight of the binary PSO.

This paper is organized as follows: Section 2 describes the
theoretical formulations for the thinned linear and planar arrays. The
principle of the CBPSO is presented in Section 3. Numerical results
for thinned arrays are given and analyzed in Section 4 while the
conclusions are discussed in Section 5.

2. THINNED ARRAY

2.1. Linear Array

According to the structure shown in Figure 1, where there are 2N
isotropic radiators placed symmetrically along the x-axis, the array
factor AF at an angle θ in xz plane for a linear antenna array can be
expressed as [22, 23]:

AF (I,x,ϕ, θ) =
N∑

n=−N

Inej( 2π
λ

xn sin θ+ϕn) (1)

where I is the vector of the excitation amplitudes of the array elements,
x the vector of the element positions, ϕ is the vector of the excitation
phases, and λ the wavelength. In thinned array synthesis, the
excitation amplitude In is 1 if the state of the nth element is “on”
and 0 if the state of the nth element is “off”.

In our cases, as shown in Figure 1, there is no element located
at the axis origin, the distance between elements is 0.5λ, all elements
have the uniform excitation phase (ϕn = 0). Thus, Equation (1) can
be written as [17]:

AF (I,θ) = 2
N∑

n=1

In cos[π(n− 0.5) sin θ] (2)
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Figure 1. Geometry of a 2N -element symmetric linear array.

Figure 2. Geometry of a 2N × 2M -element symmetric planar array.

where the element number n is sequenced from the array center of the
positive axis.

2.2. Planar Array

Figure 2 shows a planar array structure of 2N × 2M elements.
Assuming the same considerations as in the linear array, the array
factor in this structure is given by [3, 24]:

AF (I, θ, φ) = 4
N∑

n=1

M∑

m=1

Inm cos[π(n− 0.5) sin θ cosφ]

· cos[π(m− 0.5) sin θ sinφ] (3)

where θ is the elevation angle with respect to the z-axis, and φ is
the azimuth angle with respect to x-axis. The interelement spacing is
equal to 0.5λ, and the amplitude of excitations (Inm) and interelement
spacing are both symmetrical about the x and y axes. Thus, the array
factor can be simplified by computing a quarter of the rectangular
array.

Therefore, it is necessary to find out which array elements should
be turned on or off to get the desired radiation pattern characteristics.
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2.3. Fitness Function

The first and most important parameter in antenna pattern synthesis is
the normalized sidelobe level that is desired to be as low as possible [25].

In this paper, the normalized peak sidelobe level (PSLL) of the
antenna array can be formulated as follows

FPSLL(I) = max
∀ θ∈S

{
20 log

∣∣∣∣
AF (I, θ)
AFmax

∣∣∣∣
}

(4)

where S denotes the sidelobe region excluding the main beam, and
AFmax is the peak of the main beam.

To suppress SLL, we use the following objective function:

f(I) = FPSLL(I) (5)

For Equation (3), the fitness function is the sum of the maximum
PSLL in φ = 0◦ and φ = 90◦ planes, that can be expressed as [26]:

f(I) = FPSLL(I) |φ=0◦ + FPSLL(I) |φ=90◦ (6)

Thus, the synthesis problem of the thinned array can be
formulated as 0–1 integer optimization problem for a binary PSO
algorithm:

{ min{f(I)}
s.t. Inm ∈ {0, 1}, n = 1, 2, . . . , N, m = 1, 2, . . . , M
I = (I11, I12, . . . , I1M ; . . . ; IN1, IN2, . . . , INM )

(7)

3. MODIFIED BINARY PSO

3.1. Particle Swarm Optimization

The PSO algorithm was proposed by Kennedy and Eberhart in 1995,
motivated by social behavior of organisms such as bird flocking and
fish schooling [27]. It is not only a tool for optimization, but also
a tool for representing sociocognition of human and artificial agents.
In a PSO system, particles fly around in a multi-dimensional search
space. During the flight, each particle adjusts its position according to
its own experience and the experience of neighboring particles, making
use of the best position encountered by itself and its neighbors The
basic PSO method updates the velocity and position of each particle
according to the equations given below:

vid(t + 1) = w(t)vid(t)+c1r1d[pid(t)−xid(t)]+c2r2d[pgd(t)−xid(t)](8)
xid(t + 1) = xid(t) + vid(t + 1) (9)

where i = 1, . . . , N , d = 1, . . . , D, N is the number of particles; D
represents the number of optimal parameters to be determined; w is
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the inertia weight factor to control the exploration and exploitation;
c1 and c2 are the acceleration constants; r1d and r2d are two random
numbers within the range [0, 1]; vid and xid are the velocity and position
of the current particle i at time step t in the dth-dimensional search
space respectively; pi is the previous best position of particle i, also
called “personal best”; “global best” pg is the best position found in
all particles. The first part of Equation (8) is the momentum, which
prevents velocity from changing abruptly. The inertia weight w is
employed to control the impact of the previous history of velocities
on the current velocity. The second part of Equation (8) is the
“cognition”, which represents the private thinking of the particle itself.
The third part is the “social” part, which represents the collaboration
between the particles.

3.2. Binary PSO

For single objective, PSO algorithms have been classified into two
types, real-number and binary PSO [28]. The binary PSO (BPSO)
was also introduced by Kennedy and Eberhart in 1997 [29]. The BPSO
can cover a wide range of applications as the binary sequences can be
transformed to meet the requirements of combinatorial optimization
problems [30, 31].

In the BPSO, the velocity of a particle in each dimension is
represented by vid, where i is the number of particles, and d is the
number of dimensions of a given data set. The position vector of a
particle is a binary one. The velocity is related to the possibility
that the position of the particle takes a value of 1 or 0. Once the
adaptive values “personal best” pi and “global best” pg are obtained,
the features of the pi and pg particles can be tracked with regard to
their position and velocity. Substituted for Equations (9), the position
of each particle is updated according to the following equations [29].

xid(t + 1) =
{

1, rand() < Sigmoid(vid(t + 1))
0, else. (10)

Sigmoid(x) =
1

1 + exp(−x)
(11)

where rand( ) is a quasirandom number selected from a uniform
distribution in [0, 1].

3.3. Chaotic Binary PSO

Based on the BPSO, we propose the chaotic binary PSO (CBPSO)
algorithm to deal with the synthesis of the thinned array mentioned in
the previous section.
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In order to increase the diversity of the population, the CBPSO
utilizes chaotic mutation to determine the inertia weight. The inertia
weight controls the balance between the local search ability and global
exploration. Appropriate adjustment of the inertia weight value is
very important [32]. In [33], a nonlinear variation of the inertia weight
along with a particle’s old velocity is adopted to improve the speed of
convergence as well as fine tune the search in the multidimensional
space. In [34], chaotic sequences are employed for binary PSO to
prevent the early convergence.

Optimization algorithms based on the chaos theory are stochastic
search methodologies that differ from any of the existing evolutionary
algorithms. Due to the non-repetition of chaos, it can carry out overall
exploration at higher velocities than stochastic and ergodic search that
depend on probabilities [35].

In this paper, chaotic mutation is embedded in the CBPSO. The
chaotic mutation is generated by the logistic map used in [36]. The
equation is the following:

y(t + 1) = µy(t) [1− y(t)] (12)

where y(t) ∈(0,1), µ is usually set to 4 to obtain ergodicity of y(t + 1)
within (0, 1). When the initial value y(0) /∈ {0.25, 0.5, 0.75}, using
Equation (12) we can obtain chaotic sequences.

In [34], the chaotic sequences are used as the substitute for original
inertia weight. However, it is possible that large inertia weight will
appear at the end of iterations. A large inertia weight facilitates
the global search, while a small inertia weight facilitates the local
search [34, 37]. In this paper, in order to achieve refined exploration at
the end of the iterations, we add the chaotic mutation to the nonlinear
inertia weight, as follows:

w(t + 1) =

[(
tmax − t

tmax

)δ

(wstart − wend) + wend

]
y(t) (13)

where t is the iteration number at the present time step, tmax the
maximum number of iterations; wstart and wend are the initial and
final inertia weights at the given run; δ is nonlinear modulation factor.
According to [33], wstart = 0.9, wend = 0.1, δ = 1.2. Figure 3 shows
the comparison between the inertia weight with chaotic mutation and
linear decrease.

From Figure 3, we can see the maximum values of the inertia
weight with chaotic mutation are graduated from large scales to small
ones as iteration time is increasing, and the inertia weight values are
not linearly decreased because of the chaotic mutation. That makes
the particles have larger inertial weight to explore new regions at the
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Figure 3. Comparison between the chaotic mutation w and linearly
decreasing w.

initial iteration time while the particles have smaller inertial weight to
exploit the prominent regions at the end of the iteration time.

In order to limit the exploration to the solution space, a boundary
condition should be discussed. This paper uses the reflecting boundary
conditions analyzed in [38] to enforce particles to search inside the
solution space. The reflecting boundary conditions mean that a
particle is relocated at the boundary of the solution space in one
of the dimensions when the particle is staying outside the solution
space in that dimension. If the velocity of one dimension exceeds
Vmax, the velocity of that dimension is limited to Vmax. In this paper,
Vmax = −Vmin = 6 as mentioned in [34, 39].

A brief description of the CBPSO algorithm is given as follows:
1. Randomly generate an initial population.
2. Evaluate fitness values of all particles.
3. Calculate the inertia weight value with chaotic mutation according

to Equations (12) and (13).
4. Update the pi and pg values. Each particle updates its velocity

and position by the CBPSO through Equations (8) and (10).
5. Check the termination criterion. If the tmax is reached, then end

the algorithm, otherwise go to step 2.

4. NUMERICAL RESULTS

In this section, the capability and versatility of the proposed algorithm
will be assessed by presenting two thinned array cases.
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All simulations are conducted in a Windows 7 Professional OS
environment using 12-core processors with Intel Xeon (R), 3.33 GHz,
72GB RAM and the codes are implemented in Matlab 7.10.

4.1. Linear Array

The first case discussed the geometry of a 100-element thinned linear
array symmetrically spaced 0.5λ apart along the x-axis with its center
at the origin in order to generate a broadside symmetric pattern [3, 17].
In [3], Quevedo-Teruel and Rajo-Iglesias utilize the ACO in the
symmetric linear array synthesis, and Mahanti et al. designed the same
array using a real-coded GA [17].

According to the structure shown in Figure 1, the excitation
amplitude distribution is symmetric with respect to the center of the
linear array. In this case, to take advantage of the entire structure, we
turn all elements on to initialize the array. There is no restriction
imposed on switching on or off the end element of the thinned
array. Because of symmetric structure, only half amplitudes are to
be optimized.

In this case, fitness function shown as Equation (7) is minimized
using the CBPSO. The best radiation pattern is obtained by the
CBPSO with following status table (on = 1, off = 0) for the half
elements.

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1
1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0

Figure 4 shows the pattern results obtain by the CBPSO, and the
results are compared with the initial value that all elements are turned
on.

To further verify the performance of the CBPSO, it is compared
with the ACO [3], GA [17], BPSO (Binary PSO) [29] and BDE
(Boolean Differential Evolution) [18], and the obtained array patterns
using these optimization algorithms are presented in Figure 5.

Table 1 lists the results obtained by the above algorithms. Clearly,
the percentage of thinning obtained by the CBPSO is more than that
of 20% in [3] and 22% in [17] without sacrificing sidelobe level. The
PSLL obtained by the CBPSO is −21.29 dB, which is lower than that
of other algorithms.

In order to test the efficiency and reliability of the proposed
algorithms, the CBPSO is further compared with these before-
mentioned algorithms in terms of convergence speed. All the
experiments have been run 100 times with tmax =300 iterations
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independently. For each iteration step, the average fitness value is
calculated from the 100 fitness values derived at the certain step.
Figure 6 shows the variation of the average SLL value as a function
of the number of iterations. Table 2 shows the comparisons of the
simulation results.

From Table 2, the CBPSO can achieve the best average maximum
|SLL|, and it converges faster than the ACO, BPSO and BDE except
for the GA. More details can be seen from Figure 6. The result of the
unmodified BPSO is worse, and the convergence speed of the CBPSO
is slower than that of the ACO, BDE and GA during the early 70
iterations. On the other hand, the CBPSO can find better solutions
after approximately 120 iterations.
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Table 1. Comparative results in 100-element thinned array.

Design
Parameters

ACO
in [3]

GA
in [17]

BPSO
in [29]

BDE
in [18]

CBPSO

Percentage
of thinning

20 22 20 22 24

PSLL (dB) −20.52 −20.56 −17.92 −18.53 −21.29

Table 2. Comparisons of the simulation results.

Simulation
results

ACO
in [3]

GA
in [17]

BPSO
in [29]

BDE
in [18]

CBPSO

Average maximum
|SLL|(dB)

19.1 19.2 17.6 18.5 20.0

Average convergence
iterations

203 164 236 193 181

4.2. Planar Array

The second case discussed the thinned planar array with 20 × 10
elements in a square lattice [2, 3, 18]. Haupt applied the GA algorithm
to the 20×10 planar array [2], Quevedo-Teruel et al., utilized the ACO
algorithm in the array synthesis [3], and Zhang et al., designed the
same array using the BDE (Boolean Differential Evolution) [18].

In this case, the sidelobe level is suppressed in φ = 0◦ and φ = 90◦
planes. Equation (6) is selected as the fitness function optimized by
the CBPSO. Figure 7 shows the radiation pattern of the optimized
array achieved by the proposed algorithm.
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The obtained solution is given for a quadrant of the array elements
plotted in Figure 8, where the white blocks indicate elements that are
turned on, and the black ones are elements that are turned off.

The array patterns using the CBPSO, ACO [3], GA [2], BPSO [29]
and BDE [18] in the planes φ = 0◦ and φ = 90◦ are shown in Figures 9
and 10, respectively. Table 3 lists the performance comparisons of
various algorithms.
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Figure 8. A quadrant configuration of the thinned planar array with
20× 10 elements.

Table 3. Comparative results in the thinned planar array.

Design
Parameters

ACO
in [3]

GA
in [2]

BPSO
in [29]

BDE
in [18]

CBPSO

Percentage of
thinning

32 46 44 46 46

PSLL (dB)
(φ = 0◦ )

−25.76 −20.07 −21.39 −26.09 −26.39

PSLL (dB)
(φ = 90◦)

−25.674 −19.76 −21.94 −25.09 −26.33
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The comparisons in Table 3 demonstrate that the CBPSO can
achieve the best PSLL in φ = 0◦ and φ = 90◦ planes, and the
percentage of thinning obtained by the CBPSO is as same as the ones
of [2] and [18], and it outperforms the ones of [3] and [29].

Details of comparative studies in terms of the convergence process
are carried out and shown in Figure 11 and Table 4.

Table 4 illustrates that the CBPSO can achieve the best average
maximum |SLL|, and it has a faster convergence speed and outperforms
the GA and BPSO except for the ACO and BDE. As observed in
Figure 11, the result of the unmodified is worse, the convergence speed
of the CBPSO is slower than that of the ACO, BDE and GA during
the early 40 iterations, while the CBPSO can find better solutions after
approximately 170 iterations.
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From the above results, in the synthesis of thinned linear and
planar arrays, it can be observed clearly that the proposed algorithm
improved by nonlinear inertia weight with chaotic mutation can take a
good balance between the local search ability and global exploration.
Thus, the convergence speed of the CBPSO is slower than that of the
ACO, BDE and GA during the early iterations, while the CBPSO can
maintain the persistence of convergence in the later iterations, and it
can achieve better solutions at the end of iterations compared with
above algorithms. Furthermore, the CBPSO is improved based on the
simple binary PSO, the contrast between the worst results obtained by
the unmodified binary PSO and the desirable performance achieved by
the CBPSO can also justify the validity and efficiency of the proposed
strategy.
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Table 4. Comparisons of the simulation results.

Simulation results
ACO
in [3]

GA
in [2]

BPSO
in [29]

BDE
in [18]

CBPSO

Average maximum
|SLL| (dB)

23.1 20.5 19.6 23.8 24.3

Average convergence
iterations

184 210 257 162 206
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5. CONCLUSIONS

This paper describes the use of binary PSO algorithm for pattern
synthesis of thinned arrays with the constraints of sidelobe reduction.
A novel binary PSO algorithm (chaotic binary PSO, CBPSO) has been
presented to improve the convergence speed and accuracy in the array
synthesis. Because of the ergodicity, regularity and pseudo-randomness
of the chaotic sequences embedded in the CBPSO, the proposed
algorithm in a hybrid of the chaos system can avoid entrapment in
local optima.

An extensive numerical analysis has been performed by addressing
thinned linear and planar arrays with SLL suppression. Comparisons
of the CBPSO and other techniques, the ACO, GA, binary PSO and
Boolean DE show the efficiency of the proposed technique.
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