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SYNTHESIS OF THINNED PLANAR CONCENTRIC
CIRCULAR ANTENNA ARRAYS — A DIFFERENTIAL
EVOLUTIONARY APPROACH
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Abstract—Circular antenna array design is one of the most important
electromagnetic optimization problems of current interest. The
problem of designing a large multiple concentric planar thinned circular
ring arrays of uniformly excited isotropic antennas is considered in
this paper. This antenna must generate a pencil beam pattern in the
vertical plane along with minimized side lobe level (SLL). In this paper,
we present an optimization method based on an improved variant of
one of the most powerful real parameter optimizers of current interest,
called Differential Evolution (DE). Two sets of different cases have
been studied here. First set deals with thinned array design with the
goal to achieve number of switched off elements equal to 220 or more.
The other set contains design of array while maintaining side lobe level
(SLL) below a fixed value. Both set contains two types of design, one
with uniform inter-element spacing fixed at 0.5λ and the other with
optimum uniform inter-element spacing. The half-power beam width
of the synthesized pattern is attempted to maintain fixed at the value
equal to that of a fully populated array with uniform spacing of 0.5λ.
Simulation results of the designed thinned arrays are compared with a
fully populated array for all the cases to illustrate the effectiveness of
our proposed method.

1. INTRODUCTION

Circular antenna array, in which antenna elements are placed in a
circular ring, is an array configuration of very practical use among all
other antenna arrays present in modern day. It consists of a number of
elements arranged on a circle [1] with uniform or non-uniform spacing
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between them. It possesses various applications in sonar, radar, mobile
and commercial satellite communications systems [1–5]. They can be
used for beam forming in the azimuth plane for example at the base
stations of the mobile radio communications system [2–5].

Circular array has several advantages over other types of array
antenna configurations such as all-azimuth scan capability, invariant
beam pattern in every φ-cut, i.e., φ symmetric pattern, flexibility in
array pattern synthesis [2–5] etc. For those advantages, design of
circular antennas by different methods is being encouraged in present
days. There are several kinds of circular arrays. Concentric Circular
Antenna Array (CCAA), one of the most important circular arrays,
contains many concentric circular rings of different radii and number
of elements proportional to the ring radii. The main feature of CCAA is
observed in Direction of Arrival (DOA) applications providing almost
invariant azimuth angle coverage. Uniform CCA (UCCA) is one of the
most important configurations of the CCA [2] where the inter-element
spacing in individual ring is kept almost half of the wavelength and all
the elements in the array are uniformly excited. Irrespective of having
high directivity uniformly excited and equally spaced antenna arrays
usually suffer from high side lobe level.

For reduction of the side lobe level further, the array must be
made aperiodic by altering the positions of the antenna elements
while maintaining all excitation amplitudes uniform. There are some
other methods like to use an equally spaced array with radially
tapered amplitude distribution. Thinning a large array will not
only reduce side lobe level further but also reduce the number of
antennas in the array and thereby cut down cost substantially. Due
to the complexity in synthesis problem, use of analytical methods
is not economic and efficient. So they are not generally used in
designing a thinned array. Therefore, global optimization tools
such as Genetic Algorithms (GA) [6], Particle Swarm Optimization
(PSO) [7, 8], and Differential Evolution (DE) [9, 10] etc. are used to
solve these problems. An improved variant of DE, called Differential
Evolution with Global and Local neighborhoods (DEGL) [11] has been
shown to be an effective alternative to other evolutionary algorithms
such as Genetic Algorithms (GA) [12], simple DE and Particle
Swarm Optimization (PSO) [5, 13–17] etc. in handling certain kinds
of optimization problems. There are many published articles dealing
with the synthesis of thinned arrays [18–29]. In this paper, we proposed
a DEGL based method for designing thinned planar circular array and
the effectiveness of this method is shown and explained carefully.

The rest of the paper is arranged in the following way: Section 2
contains a brief account of Thinned Circular Array. Section 3 gives
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a brief overview of classical DE. Section 4 introduces DE with Global
and Local Neighborhood (DEGL) — an efficient variant of DE that has
been used in the present work. Section 5 states the design problem.
Section 6 is the assertion of the results and comparison of these results
with other algorithms and Section 7 concludes this paper.

2. THINNED PLANAR CIRCULAR ARRAY

Thinning an array means turning off some elements in a uniformly
spaced or periodic array to generate a pattern with low side lobe
level. In our method, we kept the antennas positions fixed, and all
the elements can have only two states either “on” or “off” (Similar to
Logic “1” and “0” in digital domain). One can easily interpret that
an antenna will be considered to be in “on” state iff it contributes to
the total array pattern. While an antenna will be considered “off”
iff either the element is passively terminated to a matched load or
open circuited. If an antenna element does not contribute to the
resultant array pattern, they will be considered “off”. As for non-
uniform spacing of the element one has to check an infinite number
of possibilities before final placement of the elements, thinning an
array [19–21] to produce low side lobes is much simpler than the more
general problem of non-uniform spacing the elements.

The arrangement of elements in planar circular arrays [2, 3] may
contain multiple concentric circular rings, which differ in radius and
number of elements. Figure 1 shows the configuration of multiple
concentric circular arrays [2, 3] in XY plane in which there are M
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Figure 1. Multiple concentric circular ring arrays of isotropic
antennas in XY plane.
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concentric circular rings. The m-th ring has a radius rm and number
of isotropic elements Nm, where m = 1, 2, . . . , M . Elements are equally
placed along a common circle.

The far-field pattern [1] in free space is given by:

E(θ, φ) =
M∑

m=1

Nm∑

n=1

Imnej2πrm sin θ cos(φ−φmn) (1)

Normalized absolute power pattern, P (θ, φ) in dB, can be expressed
as follows:

P (θ, φ) = 10 log 10
[ |E(θ, φ)|
|E(θ, φ)|max

]2

= 20 log 10
[ |E(θ, φ)|
|E(θ, φ)|max

]
(2)

where rm = radius of m-th ring = Nmdm/2π, dm = inter-element arc
spacing of m-th circle, φmn = 2nπ/Nm = angular position of mn-th
element with 1 ≤ n ≤ Nm, θ, φ = polar, azimuth angle, k = wave
number = 2π/λ, λ = wave length, Imn = excitation amplitude of mn-
th element. In our case, Imn is 1 if the mn-th element is turned “on”
and 0 if it is “off”. All the elements have the same excitation phase of
zero degree.

3. CLASSICAL DE

DE is a simple real-coded evolutionary algorithm [9]. It works through
a simple cycle of stages, which are detailed below. In this section we
describe the basic operations of DE and introduce necessary notations
and terminologies which facilitate the explanation of the adaptive DE
algorithm used later.

3.1. Initialization of the Parameter Vectors

DE searches for a global optimum point in a D-dimensional continuous
hyperspace. It begins with a randomly initiated population of NP
D dimensional real-valued parameter vectors. Each vector, also
known as genome/chromosome, forms a candidate solution to the
multi-dimensional optimization problem. We shall denote subsequent
generations in DE by G = 0, 1, . . . , Gmax. Since the parameter vectors
are likely to be changed over different generations, we may adopt the
following notation for representing the i-th vector of the population n
at the current generation:

~Xi, G = [x1, i, G, x2, i, G, x3, i, G, . . . , xD, i, G]. (3)

The initial population (at G = 0) should cover the entire search
space as much as possible by uniformly randomizing individuals
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within the search space constrained by the prescribed minimum and
maximum bounds: ~Xmin = {x1, min, x2, min, . . . , xD, min} and ~Xmax =
{x1, max, x2, max, . . . , xD, max}.

Hence we may initialize the j-th component of the i-th vector as:

xj, i, 0 = xj, min + randi, j(0, 1) · (xj, max − xj, min) (4)

where rand is a uniformly distributed random number lying between 0
and 1 (actually 0 ≤ randi, j (0, 1) < 1) and is initialized independently
for each component of the i-th vector.

3.2. Mutation with Difference Vectors

After initialization, DE creates a donor vector ~Vi, G corresponding to
each population member or target vector ~Xi, G in the current generation
through mutation. It is the method of creating this donor vector, which
differentiates between the various DE schemes. The following are the
two most important mutation strategies used in the literature:

1)“DE/rand/1” : ~Vi, G = ~Xri
1, G + F · ( ~Xri

2, n − ~Xri
3, G). (5)

2)“DE/target-to-best/1” : ~Vi, G = ~Xi, G + F · ( ~Xbest, G − ~Xi, G)

+ F · ( ~Xri
1, G − ~Xri

2, G). (6)

The indices ri
1, ri

2, ri
3, ri

4, and ri
5 are distinct integers uniformly

chosen from the set {1, 2, . . . , NP}/{i}. These indices are randomly
generated once for each donor vector. The scaling factor F is a positive
control parameter for scaling the difference vectors. ~Xbest, G is the best
individual vector with the best fitness (i.e., lowest objective function
value for minimization problem) in the population at generation G.
The general convention used for naming the various mutation strategies
is DE/x/y/z, where DE stands for Differential Evolution, x represents
a string denoting the vector to be perturbed and y is the number of
difference vectors considered for perturbation of x. z stands for the
type of crossover being used (exp: exponential; bin: binomial). The
following section discusses the crossover step in DE.

3.3. Crossover

To enhance the potential diversity of the population, a crossover
operation comes into play after generating the donor vector through
mutation. The donor vector exchanges its components with the target
vector ~Xi, G under this operation to form the trial vector ~Ui, G =
[u1, i, G, u2, i, G, u3, i, G, . . . , uD, i, G]. The DE family of algorithms can use
two kinds of crossover methods — exponential (or two-point modulo)
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and binomial (or uniform). In this article we focus on the widely
used binomial crossover that is performed on each of the D variables
whenever a randomly generated number between 0 and 1 is less than or
equal to the Cr value. In this case, the number of parameters inherited
from the donor has a (nearly) binomial distribution. The scheme may
be outlined as:

uj, i, G =
{

vj, i, G, if (randi, j(0, 1)) ≤ Cr or j = jrand

xj, i, G, otherwise (7)

where, as before, randi, j(0, 1) is a uniformly distributed random
number, which is called anew for each j — the component of the i-th
parameter vector. jrand ∈ [1, 2, . . . , D] is a randomly chosen index,
which ensures that ~Ui, G gets at least one component from ~Vi, G.

3.4. Selection

The next step of the algorithm calls for selection to determine whether
the target or the trial vector survives to the next generation, i.e., at
G = G + 1. The selection operation is described as:

~Xi, G+1 = ~Ui, G, if f(~Ui,G) ≤ f( ~Xi, G)

= ~Xi, G, if f(~Ui, G) > f( ~Xi, G), (8)

where f( ~X) is the objective function to be minimized.

4. DE WITH GLOBAL AND LOCAL NEIGHBORHOODS
(DEGL)

At the very beginning let us assume that we have a DE population
PG = [ ~X1, G, ~X2, G, ~X3, G, . . . , ~XNP, G] in which each ~Xi, G(i =
1, 2, 3, . . . , NP ) is a parameter vector with D dimensions. Now, for
each vector ~Xi, G we define a neighborhood of radius k (where k is
defined as a nonzero integer from 0 to (NP−1)/2, as the neighborhood
size must be smaller than the total population size, i.e., 2k+1 ≤ NP ),
consisting of vectors ~Xi−k, G, . . . , ~Xi, G, . . . , ~Xi+k, G. We assume the
vectors to be machinated on a ring topology with respect to their
indices, such that vectors ~XNP, G and ~X2, G are the two immediate
neighbors of vector ~X1, G. For each member of the entire population,
a donor vector is created locally by employing the best (fittest) vector
in the neighborhood of that particular member and any two other
vectors randomly chosen from the same neighborhood. The model can
be expressed as

~Li, G = ~Xi, G + α · ( ~Xn besti, G − ~Xi, G) + β · ( ~Xp, G − ~Xq, G), (9)
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where the subscript n besti designates the best vector in the
neighborhood of ~Xi, G and p, q ∈ [i−k, i+k] with p 6= q 6= i. Similarly,
the global donor vector is created by using the following equation.

~gi, G = ~Xi, G + α · ( ~Xn gbest, G − ~Xi, G) + β · ( ~Xr1, G − ~Xr2, G), (10)

where the subscript g best designates the best vector in the integral
population at generation G and r1, r2 ∈ [1, NP ] with r1 6= r2 6= i. α
and β are the scaling factors. Note that in (9) and (10), the first
disruption term on the right-hand side (the one multiplied by α) is
an arithmetical recombination operation, while the second term (the
one multiplied by β) is the differential mutation. Thus in both the
global and local mutation models, we fundamentally generate mutated
recombinants, not pure mutants.

Now we merge the local and global donor vectors using a scalar
weight ω ∈ (0, 1) to generate the actual donor vector of the proposed
algorithm

~Vi, G = ω · ~gi, G + (1− ω) . . . ~Li, G (11)

Clearly, if ω = 1 and in addition α = β = F , the donor vector
generation scheme in (11) abridges to that of DE/target to-best/1.
Hence the latter may be considered as a special case of this more
general strategy involving both global and local neighborhood of each
vector synergistically. From now on, we shall refer to this version
as DEGL (DE with global and local Neighborhoods). The rest of the
algorithm is exactly similar to DE/rand/1/bin. DEGL uses a binomial
crossover scheme.

4.1. Control Parameters in DEGL

DEGL introduces four new parameters. They are: α, β, ω and the
neighborhood radius k. In order to lessen the number of parameters
further, we take α = β = F . The most important parameter in DEGL
is perhaps the weight factor ω, which controls the balance between the
exploration and exploitation capabilities. Small values of ω (close to
0) in (7) favor the local neighborhood component, thereby resulting in
better exploration. There are three different schemes for the selection
and adaptation of ω to gain intuition regarding DEGL performance.
They are Increasing weight Factor, Random Weight Factor, Self-
Adaptive Weight Factor respectively. But we have used only Random
Weight Factor for this design problem as it gives better results over
the other schemes. So we will describe only the incorporated method
in the following paragraphs.

Random Weight Factor : In this scheme the weight factor of
each vector is made to vary as a uniformly distributed random number
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in (0, 1), i.e., ωi, G ≈ rand(0, 1). Such a choice may decrease the
convergence speed (by introducing more diversity). But the minimum
value is 0.15.

Advantage of Random Weight Factor : This scheme have
been empirically proved to be the best scheme among all three schemes
defined in original DEGL article for this kind of design problem.
The most important advantage in this scheme lies on the process of
crossover. Due to varying weight factor the number of possible different
vector increases. So the searching is much wider than using other two
schemes.

5. DESIGN PROBLEM

Here we present two sets of design problems, one with number of
switched “off” element fixed or more than 220 and other with SLL
equal to or below a certain level (−25 dB). So we have used two different
fitness functions.

For the fixed number of switched “off”, the fitness function to be
minimized with the proposed DEGL algorithm for optimal synthesis
of thinned array is given in Equation (12).

Fitness = k1(SLLmax) + k2(HPBWo −HPBWr)2

+k3(T off
o − T off

r )2H(T ) (12)

For the second problem the fitness function to be minimized is given
in Equation (13).

Fitness = k1(SLLmax − SLLr)2 + k2(HPBWo −HPBWr)2

+k3(T on
o /T total

o )2H(T ) (13)

where, SLLmax is the value of maximum side lobe level; SLLr is
the value of required side lobe level; HPBWo, HPBWr are obtained
and desired value of half-power beam width respectively; T off

o , T off
r

are obtained and desired value of number of switched off element
respectively; T on

o , T total
o are obtained and max value of number of

switched on element respectively. k1, k2, k3 are weighting coefficients
to control the relative importance given to each term of Equations (12)
and (13). H(T ) is Heaviside step functions defined as follows:

H(T ) =
{

0 if T ≤ 0
1 if T > 0 (14)

where T = T off
o − T off

r .
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6. NUMERICAL RESULTS

6.1. Parameter Initializations

Before performing the design operation we have to set up the required
parameters. We set the Searching Upper Bound at 1 and Searching
Lower bound at 0. The required Function Bound Constraint is set as 0.
Maximum number of generation for our design procedure is made fixed
at 50 along with maximum number of vectors at 50. As described in the
DEGL method we have chosen to update the weight factor according
to the following equation.

ωi,G = 0.15 + rand(0, 1); (15)

Now values of k1, k2, k3 are to be set. From the knowledge of
thinned array and antenna synthesis, we have empirically determined
the values. The values are given below.

For Equation (12) we have taken

k1 = 0.5 k2 = 2 k3 = 2

For Equation (13) we have taken

k1 = 2 k2 = 2 k3 = 1

With these values the best designing is achieved.

6.2. Results

We consider a planar array of ten concentric circular rings. In the
example, each ring of the antenna contained 8m equi-spaced isotropic
elements (a total of 440), where m is the ring number counted from

Table 1. Excitation amplitude distributions (Imn) using DEGL with
fixed d = 0.5λ.

n 

m 01111010  

0111101100101001 

101011001111010110111000  

11010010100100011011101011010000 

0000011010100100100000000111000010100010 

000011000100000011001001010011101010101101010001 

00000000011011001100010000010010000111100001110101101111 

1101000011011001111001011101111000011110111011000000011001001100 

010111000110110110001100111101101010101010100101001111110110110011111000  

01010001011101101111110110111011111000111011011011101010011011000111100110100110
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the innermost ring 1. Four cases have been studied and presented with
results in the following section.

Case-I: In this case, inter-element arc spacing (dm) in all the
rings is fixed at 0.5λ. For such a fully populated and uniformly excited
array, the maximum side lobe level is calculated to be −17.37 dB and
half-power beam width is approximately 4.5 degree. Problem is now
to find the optimal set of “on” and “off” elements that will generate
a pencil beam in the XZ plane keeping the half-power beam width
unchanged, fixing the number of switched off elements to be equal to
220 or more and reducing the maximum side lobe level further.

Number of vectors is taken to be 50 and the algorithm is run for
50 generations. The maximum number of generation is kept at a value
when there is no further update of best fitness value. Table 1 shows
the resultants array elements in which “1” means “on” state and “0”

Table 2. Excitation amplitude distributions (Imn) using DEGL with
fixed d = 0.5285λ.

n 

m 01100101 

1001011011111011 

111000110111011000111111 

01010001001110110111100010101111 

0010011001101000000100001001001011010100 

000001000001100011110001100010100010111111111100 

00010100000001011111011011001011011111101110001010010000 

0001011011010011110101000011000000111011111011001111000110011001 

011111111100001100101100010010011101011010100100101100100010010100011001 

01111000101110001010000101111100000100111110010010100110000100001111011010111110

Table 3. Obtained results for Case I and Case II.

Design

parameters

Synthesized

thinned array

with optimum

d = 0.5285λ

Synthesized

thinned array

with fixed

d = 0.5λ

Fully populated

array with

d = 0.5λ

Side lobe level

(SLL, in dB)
−24.81 −21.91 −17.37

Half-power beam

width (HPBW,

in degree)

4.5 4.5 4.5

Number of switched

off elements
220 220 0
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represents “off” state.
Case-II: In the second case, inter-element arc spacing (dm) in all

the rings is made uniform and same but not fixed. Optimum value
of inter-element arc spacing along with optimal set of “on” and “off”
elements are found out using this DEGL that will generate a pencil
beam in the XZ plane with reduced side lobe level. The desired
half-power beam width is kept at 4.5 degree and the desired number
of switched off elements is made equal to 220 or more. Number of
vectors in this case is also taken to be 50 and the algorithm is run
for 50 generations. Obtained results for the above two cases and its
comparison to a fully populated array are shown in Table 3. Results
clearly show that the synthesized pattern of thinned array using DEGL
and optimum inter-element arc spacing is better than a fully populated
array in terms of side lobe level and number of elements switched off
with little compromise on half-power beam width in the fixed case.

Optimized inter-element arc spacing is found to be d = 0.5285λ.
Table 2 shows the “on” “off” pattern of the concentric planar circular
array. “1” means “on” state and “0” represents “off” state.

Figure 2 shows the convergence characteristics of our designing
method, and Figure 3 presents normalized absolute power patterns in
dB in XZ plane for fully populated array, thinned array with fixed
inter-element spacing and thinned array with optimized inter-element
spacing using DEGL (Case I and II).

Figure 2. Convergence curves for thinned array design using DEGL
(Case I and II).
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Figure 3. Normalized absolute power patterns in dB in XZ plane for
fully populated array, thinned array with fixed inter-element spacing
and thinned array with optimized inter-element spacing using DEGL
(Case I and II).

Figure 4. Convergence curves for thinned array design using DEGL
(Case III and IV).



Progress In Electromagnetics Research B, Vol. 29, 2011 75

Table 4. Comparison table for Case I and Case II.

Design parameters

Synthesized thinned array with

optimum value of d obtained

Our Result Simple DE CLPSO

Optimum value of d d = 0.5285λ d = 0.5659λ d = 0.4987λ

Side lobe level

(SLL, in dB)
−24.81 −22.5603 −23.6538

Half-power beam width

(HPBW, in degree)
4.5 4 4

Number of switched

off elements
220 204 228

Design parameters

Synthesized thinned array

with fixed d = 0.5λ

Our Result Simple DE CLPSO

Optimum value of d - - - - - - - - -

Side lobe level

(SLL, in dB)
−21.91 −15.58 −20.25

Half-power beam width

(HPBW, in degree)
4.5 4 4.3

Number of switched

off elements
220 205 230

A brief comparison is presented in Table 4 to show the effectiveness
of our proposed algorithm. Comparisons are made with simple
DE [9, 10] and CLPSO [30] under similar conditions.

Case-III: In this case, inter-element arc spacing (dm) in all the
rings is fixed at 0.5λ. For such a fully populated and uniformly excited
array, the maximum side lobe level is calculated to be −17.37 dB and
half-power beam width is approximately 4.5 degree. Problem is now
to find the optimal set of “on” and “off” elements that will generate
a pencil beam in the XZ plane keeping the half-power beam width
unchanged, fixing the side lobe level (SLL) to be equal to −25 dB
or less while the number of turned on elements in maintained at
some reasonable value. Number of vectors is taken to be 50 and the
algorithm is run for 50 generations. Table 5 shows the designed array
pattern for this case in which “1” means “on” state and “0” represents
“off” state.

Case-IV: In the fourth case, inter-element arc spacing (dm) in all
the rings is made uniform and same but not fixed. Optimum value
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Table 5. Excitation amplitude distributions (Imn) using DEGL with
fixed d = 0.5λ.

n 

m 11011111 

1101111011111011 

111010000111111100011111 

10111110110110101101001101100100 

0101000010110001001001001100110101010100 

000010110111110001000011101001011000010100110111 

10110101111000101101100011110001011110000111000101000100 

1111001000010000011011010101111111010010111100011010000010101100  

101100000011011011111000111010011000100000001111100100010100000000011001 

01100101000101100001101011010100101101110111111011001010011011101010010110011011

Table 6. Excitation amplitude distributions (Imn) using DEGL with
fixed d = 0.5138λ.

n 

m 01110011 

0111111111111111 

110001110111001101101011 

10110011111010010100101011000111 

0000100001111001010100000110001011111000 

011110011110000110010000000000001101001100010111 

11110010011010111000001000011110000110100010100011000001 

0111110111110100000011000011110101010011000010010000110011101000 

101111100101010010100101010001011111100110110010110011111001100110001010 

11101100110110101111000101010000110000010010001000010000100000011100001111110101

of inter-element arc spacing along with optimal set of “on” and “off”
elements are found out using this DEGL that will generate a pencil
beam in the XZ plane with desired half-power beam width is kept at
4.5 degree and the desired side lobe level equal to −25 dB or less and
also reduce number of switched on elements. Number of vectors in this
case is also taken to be 50 and the algorithm is run for 50 generations.
Obtained results for the above two cases and its comparison to a fully
populated array are shown in Table 7. Results clearly show that the
synthesized pattern of thinned array with optimum inter-element arc
spacing using DEGL is better than the synthesized pattern of thinned
array with fixed inter-element arc spacing in terms of side lobe level,
half-power beam width. Optimized inter-element arc spacing is found
to be d = 0.5138λ. Table 6 shows the resultant array. “1” means “on”
state and “0” represents “off” state.

Figure 4 shows the convergence graph of our designing method,
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Table 7. Obtained results for Case III and Case IV.

Design

parameters

Synthesized

thinned array

with optimum

d = 0.5138

Synthesized

thinned array

with fixed

d = 0.5λ

Fully populated

array with

d = 0.5λ

Side lobe

level (SLL,

in dB)

−25.00 −24.93 −17.37

Half-power

beam width

(HPBW, in degree)

4.5 4.5 4.5

Number of switched

off elements
223 213 0

Figure 5. Normalized absolute power patterns in dB in XZ plane for
fully populated array, thinned array with fixed inter-element spacing
and thinned array with optimized inter-element spacing using DEGL
(Case III and IV).

and Figure 5 presents normalized absolute power patterns in dB in XZ
plane for fully populated array, thinned array with fixed inter-element
spacing and thinned array with optimized inter-element spacing using
DEGL (Case III and IV).

A brief comparison is presented in Table 8 to show the effectiveness
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Table 8. Comparison table for Case III and Case IV.

Design parameters

Synthesized thinned array with

optimum value of d obtained

Our Result Simple DE CLPSO

Optimum value of d d = 0.5138 d = 0.5212λ d = 0.5300λ

Side lobe level

(SLL, in dB)
−25.00 −23.8660 −24.6538

Half-power beam width

(HPBW, in degree)
4.5 4 4

Number of switched

off elements
223 216 219

Design parameters

Synthesized thinned array

with fixed d = 0.5λ

Our Result Simple DE CLPSO

Optimum value of d - - - - - - - - -

Side lobe level

(SLL, in dB)
−24.93 −24.20 −24.12

Half-power beam width

(HPBW, in degree)
4.5 4.2 4

Number of switched

off elements
213 201 214

of our proposed algorithm. Comparisons are made with simple
DE [9, 10] and CLPSO [30] under similar conditions.

7. CONCLUSION

This paper proposes a new technique for designing a thinned concentric
planar circular antenna array of isotropic elements to generate a pencil
beam in the vertical plane with reduced side lobe level and increasing
number of switched “off” elements based on optimization tool termed
as DEGL. Four examples have been presented in the paper with
different objectives. Two of the objectives are to reduce the number
of switched off to a fixed value of 220 or above. Other two handle
the reduction of side lobe level to a fixed level of −25 dB or below
it. Results clearly show a very good agreement between the desired
and synthesized specifications for all the cases. This method is very
effective and can be applied in practice to thin an array of other
shapes. The synthesized thinned pattern with fixed inter-element arc
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spacing has half-power beam width very close to the value of a fully
populated array of same size and shape and yet has better side lobe
level. First two cases’ results show that this algorithm can design a
thinned array with any desired number of switched off elements. In
this paper, the desired number is 220. The designed results consist
of exactly 220 switched off elements, i.e., a reduction of 50% of the
total elements used in case of a fully populated array while the SLL
is also considerably reduced. This will reduce the cost of designing
the arrays substantially. Case III and IV results shows that designed
antenna consists maximum side lobe level equal to the desired SLL,
i.e., −25 dB. Also from Tables 4 and 8 we can verify that the thinned
array designed by using our method is much more efficient in terms
of SLL, HPBW and number of switched off elements. According to
the tables the arrays designed using CLPSO and simple DE may seem
better in terms of only one design parameters like number of switched
off elements. But on the aggregate basis our designed array is the best
among them as it successfully achieves almost all the assigned design
parameter values. From Table 4 we can assay that our designed array
maintains the required HPBW maintaining the number of switched off
element and side lobe level to the corresponding desired values while
other two methods are unable.

So our method can also be used to design antenna with any
desired SLL while maintaining the number of switched off element to a
reasonable value. Results for thinned large multiple concentric circular
ring isotropic antenna arrays have illustrated the performance of this
proposed technique. Our further work will be focused on the design of
more complex practical antenna problems.
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