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Synthesis of three-dimensionally interconnected
sulfur-rich polymers for cathode materials of
high-rate lithium–sulfur batteries
Hoon Kim1, Joungphil Lee1, Hyungmin Ahn1, Onnuri Kim1 & Moon Jeong Park1,2

Elemental sulfur is one of the most attractive cathode active materials in lithium batteries

because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur

batteries have suffered from severe capacity fading and limited rate capability. Here we report

facile large-scale synthesis of a class of organosulfur compounds that could open a new

chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous

trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-

opening polymerization of elemental sulfur takes place along the thiol surfaces to create

three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display

discharge capacity of 945mAh g� 1 after 100 cycles at 0.2 C with high-capacity retention of

92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the

crystals increase Liþ -ion transfer rate, affording a rate performance of 1210mAh g� 1 at 0.1 C

and 730mAh g� 1 at 5C.
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A
s lithium-ion batteries (LIBs) become more common in
our daily lives, the demand for high-energy-density LIB
for use in emerging large-scale energy storage systems and

electric vehicles, as well as in small appliances, has increased.
Therefore, the development of new electrode active materials
beyond the graphite1–3 and lithium metal oxides4,5 used in
currently established LIBs is inevitable. Considerable attention
has thus been paid to lithium–sulfur (Li–S) batteries that use
elemental sulfur as a cathode active material6–8 since the Li–S
cells can deliver a fivefold higher energy density than
conventional LIBs by taking advantage of the high specific
capacity of sulfur (B1,675mAh g� 1)9,10. The light weight, low
cost, natural abundance and environmentally benign nature of
sulfur are also desirable properties that make it suitable for
application in future energy materials11,12.

Despite the above-mentioned benefits of sulfur, Li–S batteries
have major drawbacks such as poor long-term performance13

and limited rate capability14. Significant past research has
shown that the dissolution of lithium polysulfides and the
inherently insulating nature of sulfur to both electrons and
lithium ions15–17 are responsible for these obstacles. The large
volume expansion of sulfur, by up to 80% on full lithiation, has
also been identified as an important factor that should be
considered in sulfur electrode design18.

Various methods to resolve these challenges have been
reported over the past decade. Major improvements, inspired
by the work of Nazar et al.19 have been made by exploiting
structured carbon materials that can physically confine sulfur to
mitigate the shuttling of polysulfides, accompanied with
facilitated fast electron transfer18–22. Variation of the type of
carbon, by use of porous carbon23–25, hollow carbon
spheres7,26,27, carbon nanotubes/nanofibres28 and graphene/
graphene oxide29–31, helps in achieving long cycle life (4300
cycles), improved capacity retention (B70 %) and high
Coulombic efficiency6,7,32. Nevertheless, a gradual decrease in
capacity with prolonged battery cycling is still observed. This
decrease in capacity is a consequence of the low binding energy
between sulfur and carbon matrices, and has prompted recent
efforts to intensify specific attractions between sulfur and carbon
frameworks via surface modification of carbon33–35.

While the use of carbon frameworks in Li–S batteries has been
demonstrated to be promising, challenges still remain in the
practical production of such materials using inexpensive and
non-toxic ingredients. This has stimulated a need to develop new,
alternative cathode frameworks, examples of which include
metal� organic frameworks36–38 and conducting polymer
shells39–42. However, to date, better battery performance from
these materials, as compared with that from structured carbon
materials, has only rarely been reported.

In recent reports, Pyun and coworkers43–45 have proposed
a noteworthy strategy to develop high-performance Li–S
batteries by synthesizing sulfur-containing polymers directly
from elemental sulfur in large quantities, at low cost. The
specific capacity of Li–S cells fabricated using these polymers
as the cathode active materials was as high as 1,005mAh g� 1

at 100 cycles, 817mAh g� 1 at 300 cycles and 635mAh g� 1

at 500 cycles (at 0.1 C). These are undoubtedly promising
results for future Li–S battery technologies, but the poor
conducting nature of sulfur-containing polymers appears to be
a fundamental impediment to achieving rate cycling performance,
as revealed by a rapid reduction in the specific capacity
to o400mAh g� 1 with an increase in the cycling rate to 2 C
(refs 44,45). In fact, the high-rate performance of any LIBs based
on organic electrode materials has long been a substantial
challenge that is of importance for fast charging energy storage
systems.

Here we report the development of a new Li–S battery
composed of sulfur-containing polymers as a cathode active
material that demonstrates high specific capacities, lifetimes up to
450 cycles with excellent capacity retention over 83% and notable
rate capability at various current rates from C/10
(1,210mAh g� 1) to 5C (730mAh g� 1). To our knowledge, this
is the best performance of any battery using organosulfur cathode
materials reported to date. The key to this success is a facile
synthesis of organosulfur compounds with controllable morphol-
ogy from elemental sulfur using porous trithiocyanuric acid
(TTCA) crystals as a soft template. This is a unique feature of our
systems relative to other vulcanized polymers reported in the
literature, where the controls of shape and morphology were not
practical. In particular, the amine groups of TTCA were found to
facilitate fast Liþ -ion transport within cathode frameworks
during battery cycling, and are intimately associated with the
improved rate capability of these Li–S cells. The size- and shape-
controlled soft-template synthesis of sulfur-containing polymers
sets new trends and provides ideas for avenues of further research
to advance Li–S battery technologies.

Results
A soft-template synthesis for sulfur-rich polymers. We
employed porous TTCA crystals as a soft template for the
synthesis of sulfur-containing polymers. Figure 1 provides a
schematic description of the synthetic procedures used for sulfur-
rich polymers with controllable morphology in tens of grams,
which can be summarized in the following steps: (1) preparation
of a set of TTCA co-crystals by varying the crystallization
solvents, formed by N�H � � � S hydrogen bonds between TTCA
molecules and N�H � � �O¼C hydrogen bonds between TTCA
and the solvents, (2) creation of porous TTCA frameworks by
removing the solvents via simple heat treatment, (3) impregna-
tion of sulfur into porous TTCA frameworks and (4) ring-
opening polymerization of elemental sulfur at the thiol surfaces of
porous TTCA frameworks, following the equation given in the
figure. Detailed procedures are provided in the Methods.

By using two different solvents, that is, dimethylformamide
(DMF)/water (1:1 vol) co-solvent and acetone, two types of TTCA
co-crystals with different morphologies, rectangular tubes and
splice plates, respectively, were obtained. Hereafter, the co-crystals
are referred to as TTCA-I (DMF/water) and TTCA-II (acetone). As
examined by scanning electron microscopy (SEM) and optical
microscopy (OM), the TTCA-I crystals are B50� 20mm and
hundreds of microns in length, and have a rectangular hole
(Fig. 2a), while the TTCA-II crystals areB1� 1mm rhombi with a
thickness of 150mm (Fig. 2b). Removal of solvent from TTCA-I
and TTCA-II at 160 �C resulted in the appearance of intriguing
rough surfaces, as shown in Fig. 2c,d, which include the formation
of interconnected polydisperse pores in the range of a few tens of
nanometres to a few microns throughout the crystals. The
evolution of porous morphologies can be readily perceived from
the changes in transparency of the crystals, as can be seen from OM
images. The amounts of solvents in TTCA-I and TTCA-II were
determined by thermogravimetric analysis (TGA) to be 30wt% and
14wt%, respectively (Supplementary Fig. 1), implying that the
surface area of the heat-treated TTCA-I and TTCA-II are
fundamentally different. Nevertheless, both crystals are still
described as having the same morphologies, including the
unperturbed rectangular hole of TTCA-I.

Sulfur-containing polymers were synthesized using the porous
TTCA crystals as a soft-template. A two-step vulcanization
process was carried out in a sealed vessel—a low-temperature step
at 160 �C to embed sulfur into the porous TTCA frameworks,
followed by further heating to 245 �C to cause ring-opening
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polymerization of elemental sulfur (S8) into a linear polysulfane
along the thiol surfaces. Hereafter, the vulcanized TTCAs are
denoted as S-TTCA-I and S-TTCA-II. This process was
accompanied by a colour change of the crystals from pale yellow
to dark brown. Since S-TTCA-I and S-TTCA-II are insoluble in
any solvent, it is inferred that the diradical ends of polysulfane
form crosslinks between TTCA molecules. The SEM images in
Fig. 2e,f confirm the restoration of smooth surfaces and
disappearance of most of the pores after the vulcanization. This
includes S-TTCA-I that is devoid of tubular holes after the
reaction, as clearly shown in the inset image.

Molecular and structural characterization of vulcanized TTCAs.
Molecular characteristics of the vulcanized TTCAs were examined
by Raman spectroscopy. Representative spectra of porous TTCA-I
and S-TTCA-I are shown in Fig. 3a. The peak centered at
448 cm� l was attributed to N–C–S deformation and was evident
in porous TTCA-I. After vulcanization, the characteristic N–C–S
deformation peak was shifted to 435 cm� l and was accompanied
by the appearance of new peak at 482 cm� l as evidence for the
formation of the S–S bonds. This indicates that elemental sulfur
(S8) reacts with the thiol groups of TTCA crystals, following the
equation in Fig. 1.

By combining X-ray photoelectron spectroscopy (XPS) and
TGA experiments, the chemical states and sulfur contents in the

vulcanized TTCAs were further investigated. The representative
XPS profile of S-TTCA-I, shown in Fig. 3b, indicates that B60%
of the sulfur is present in the form of the S–S bonds, while 40%
exists in the form of C–S bonds. The total sulfur content in
S-TTCA-I was determined to be 63wt% by TGA analysis
(Fig. 3c), which is not much different in S-TTCA-II (58wt%,
and thus the data are not shown here). Since the vulcanized
TTCAs are insoluble in any solvent, the molecular structure of
S-TTCA-I was further investigated by monitoring the quenched
reaction intermediates using the positive-ion electrospray
ionization time-of-flight mass spectrometry. As shown in
Supplementary Fig. 2, the molar ratio of TTCA and sulfur
was determined to be 1:7 for the major product and thus, the
averaged n value in the –Sn– chains (Fig. 1) for the S-TTCA-I is
inferred to be 7.

Notably, as shown in Fig. 3c, the weight loss of sulfur in
S-TTCA-I starts at 110 �C and continues to 310 �C. This is
considerably different from the evaporation of sulfur in a carbon
framework (S–C, 40wt% of sulfur), where weight loss begins at
around 180 �C, and is complete by 280 �C. The low sublimation
temperature and broad decomposition temperature window of
sulfur in S-TTCA-I indicate that small sulfur molecules are
covalently bound to the TTCA frameworks. Weight loss in TTCA
begins at 360 �C and is complete by 500 �C.

To determine the changes in crystal structures as a result of
heat treatment and vulcanization, a set of powder X-ray
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Figure 1 | Synthetic route of sulfur-rich polymers in tens of grams. Schematic drawings describing the synthetic procedures of sulfur-rich polymers with

controllable morphology; (1) preparation of TTCA co-crystals, (2) creation of porous TTCA frameworks by removing the solvents via heat treatment,

(3) impregnation of sulfur into porous TTCA frameworks and (4) ring-opening polymerization of elemental sulfur at the thiol surfaces of porous TTCA

template, following the equation given in the figure.
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diffraction (XRD) profiles that used a 2y scan range of 5� 35�
with a 0.02� step interval are presented in Fig. 4a–c. As shown in
Fig. 4a, TTCA-I initially had a monoclinic P21/c space group, while
a triclinic P1 space group was determined for TTCA-II. The unit
cell parameters obtained from the Cambridge Structural Database
are a¼ 9.780Å, b¼ 12.755Å, c¼ 9.280Å, a¼ 90.00�, b¼ 91.19�
and g¼ 90.00� for TTCA-I; and a¼ 8.937Å, b¼ 9.985Å,
c¼ 10.447Å, a¼ 95.12�, b¼ 96.79� and g¼ 107.29� for
TTCA-II46. Elimination of solvent from TTCA-I and TTCA-II
then leads to structural transformation into identical triclinic
structures with a P1 space group (Fig. 4b) having the unit cell

parameters a¼ 5.587Å, b¼ 7.047Å, c¼ 8.799Å, a¼ 102.99�,
b¼ 92.87� and g¼ 110.47�. The emergence of porous
morphologies is thus ascribed to shrinkage of the cell volume,
where the degree of reduction for TTCA-I and TTCA-II is
different. This should be closely related with the surface area (pore
volume) of heat-treated TTCA frameworks. Finally, S-TTCA-I and
S-TTCA-II displayed featureless XRD patterns, as shown in Fig. 4c,
denoting that the covalent attachment of sulfur into TTCA
frameworks destroyed the long-ranged p–p stacking of TTCA
rings. Given that the crystalline peaks of both TTCA and elemental
sulfur remain intact after sulfur impregnation at 160 �C
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Figure 2 | Vulcanized TTCAs having different morphologies. (a,b) SEM and OM images of TTCA-I and TTCA-II co-crystals prepared by varying

crystallization solvents, described as rectangular tubes and sliced plates, respectively. (c,d) SEM and OM images of the TTCA-I and TTCA-II after the

removal of solvents at 160 �C, presenting the appearance of interconnected polydisperse pores. (e,f) SEM and OM images of the S-TTCA-I and S-TTCA-II

synthesized at 245 �C using the porous TTCAs as a soft template. The SEM images confirm the restoration of smooth surfaces and disappearance of most

of the pores after the vulcanization.
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(Supplementary Fig. 3), the absence of sulfur crystal peaks after
vulcanization (Fig. 4c) should be noteworthy. This implies that the
sulfur in S-TTCA exists in an amorphous state, as it was involved
in the polymerization. Note that the TTCA crystals were thermally
stable (see the temperature-dependent XRD profiles in
Supplementary Fig. 4), and therefore, the loss of crystallinity of
S-TTCA is not ascribed to the amorphization of TTCA.

Battery performance of the Li-S cells. Sulfur cathodes were
fabricated by integrating S-TTCA-I (or S-TTCA-II), Super P
carbon and polyvinylidene (PVDF) binder. Conventional sulfur
cathodes composed of elemental sulfur, Super P carbon and
PVDF (40wt% of sulfur) were used as controls. After assembling
coin cells containing a Li-metal anode, liquid electrolyte and the
sulfur cathode, discharge/charge cycle properties of the cells at
room temperature were examined. Figure 5a shows representative
galvanostatic discharge/charge voltage profiles of the Li/S-TTCA-
I cell, cycled between 1.7 and 2.7V at 0.2 C (1C¼ 1,675mAg� 1).
Only one distinct plateau at 2.06V (vs. Li/Liþ ) was seen during
the first discharge process for the Li/S-TTCA-I cell, in contrast to
two plateaus for the Li/S–C cell at 2.35 and 2.10V (dashed lines).
This denotes that most of the sulfur in the S-TTCA-I electrode is
bound to TTCA frameworks by forming disulfide bonds. After
the first discharge/charge cycle, two stable discharge plateaus
appeared at 2.33 and 2.06V, ascribed to the appearance of S8 after
electrochemical scission and regeneration of disulfide bonds with
cycling. Overall, the discharge/charge voltage profiles of the Li/S-

TTCA-II cell are similar to those of the Li/S-TTCA-I cell in their
absence of the ring-opening plateau at 2.33V during the first
discharge cycle (see Supplementary Fig. 5).

Figure 5b presents the discharge/charge capacities (based on
sulfur weight) of the Li/S-TTCA-I, Li/S-TTCA-II and Li/S–C cells
at 0.2 C. The Li/S-TTCA-I cell shows a first discharge capacity of
813mAh g� 1, which stabilized around 1,050mAh g� 1 after five
cycles. A high capacity of 945mAh g� 1 was maintained after 100
cycles, corresponding to 92% capacity retention compared with
the second discharge capacity, with a high coulombic efficiency of
499% throughout. It is thus inferred that polysulfide inter-
mediates confined within S-TTCA-I remain impermeable during
cycling. These results are in sharp contrast to the low discharge
capacity and poor capacity retention seen in the Li/S–C cell
(323mAh g� 1, 40%) after 100 cycles, ascribed to the well-known
polysulfide shuttle effects. The Li/S-TTCA-II cell also exhibited a
good capacity retention of 86% (compared with the second
discharge capacity) and a high coulombic efficiency of 99%,
except for considerably lower specific capacities (565mAh g� 1

after 100 cycles) than for the Li/S-TTCA-I cell.
We note that the battery performance of porous TTCA/S

composite cathodes (sulfur was impregnated, but no vulcaniza-
tion reaction was processed) was distinctly different from that
of S-TTCA cathodes, as rapid capacity loss incurred for the
composite cathodes during the initial 20 cycles (Supplementary
Fig. 6). This clearly indicates the role of covalent attachment of
sulfur to the porous TTCA frameworks to improve cycling
performance. We also note that there are slight differences in
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discharge plateaus for S-TTCA (2.06V) and TTCA/S composite
(2.10V), where that of S–C is 2.10V.

To further underpin the improved capacity retention proper-
ties of S-TTCA cathodes, compared with conventional S–C
cathodes, we carried out beaker cell experiments. Representative
results are given in Fig. 5c. The increasingly dark green–yellow
colour of electrolyte was observed for the Li/S–C cell during
discharge, contrary to the colourless electrolytes for the
Li/S-TTCA cells.

The better battery performance with the S-TTCA-I cathode
rather than with the S-TTCA-II cathode was repeatedly observed
at different C rates with an extended life of 300 cycles. Discharge–
charge capacities of the Li/S-TTCA-I and Li/S-TTCA-II cells at
0.2 and 0.5 C are shown in Fig. 6a. The Li/S-TTCA-I cell can
deliver 872mAh g� 1 (at 0.2 C) and 886mAh g� 1 (at 0.5 C) after
300 cycles, with excellent capacity retention of over 85%. In
contrast, low discharge capacities of 513mAh g� 1 (at 0.2 C) and
440mAh g� 1 (at 0.5 C) were attained with the S-TTCA-II
cathode after 300 cycles. This clearly signals the morphological
advantages of S-TTCA-I in enhancing the performance of the
Li–S cells.

Discussion
The markedly improved battery performance of the Li/S-TTCA-I
cell, compared with the Li/S-TTCA-II and Li/S-C cells, was found
to be closely associated with Liþ -ion transport in the sulfur
cathodes. Cyclic voltammetry analysis of the S-TTCA-I, S-TTCA-
II and S–C cathodes was carried out to evaluate the Liþ -ion
diffusion coefficients (DLi) of the cathodes using the Randles–
Sevcik equation, as described below,

Ip ¼ 2:69�105n1:5AD0:5
Li v

0:5CLi ð1Þ

where Ip indicates the peak current, n is the number of electron in
the reaction, A is the electrode area, v is the scanning rate and CLi

is the lithium-ion concentration in the electrolyte. Representative
voltammograms obtained with the S-TTCA-I cathode are shown
in Fig. 6b.

From the linear relationship of Ip and v0.5, DC1
Liþ (hereafter C1,

cathodic peak atB2.3V), DC2
Liþ (C2, cathodic peak atB 1.9V) and

DA
Liþ (A, anodic peak atB2.4V) were obtained. For the S-TTCA-I,

cathode C1¼ 1.0� 10� 9, C2¼ 3.0� 10� 9 and A¼ 4.3� 10� 9

cm2 s� 1 were determined, for which the values were up to 2.7
times larger than those of the S-TTCA-II cathode (C1¼
8.2� 10� 10, C2¼ 1.1� 10� 9 and A¼ 2.4� 10� 9 cm2 s� 1), as
plotted in Fig. 6c. This suggests that the TTCA-I tubular framework
morphology allows easy access of liquid electrolytes to active
materials through three-dimensionally interconnected hierarchical
pores, leading to facilitated fast Liþ -ion transport. Conversely,
expeditious Liþ -ion migration in two-dimensional S-TTCA-II
with a thick wall of 150mm (see, for example, wall thickness of
TTCA-I was 20mm Fig. 1) seemed to be impaired. The lowest DLiþ

values of the S–C cathode, C1¼ 8.0� 10� 10, C2¼ 9.5� 10� 10

and A¼ 1.5� 10� 9 cm2 s� 1 also lead us to conclude that
the organized Liþ -coordination sites (secondary amine groups
and p electrons) of the TTCA rings raised the Liþ -ion transfer
rate.

By virtue of fast Liþ -ion transport in the S-TTCA-I cathode,
noticeable rate capability was demonstrated for the Li/S-TTCA-I
cell. As shown in Fig. 6d, the cell was found to deliver a reversible
capacity of 1,210mAh g� 1 (0.1 C), 1,090mAh g� 1 (0.2 C),
1,030mAh g� 1 (0.5 C), 872mAh g� 1 (1 C), 803mAh g� 1 (3 C)
and 730mAh g� 1 (5 C). Although a further increase in the
current value to 6 C resulted in substantial reduction in the
discharge capacity to 452mAh g� 1, further cycling at low rates
(after cycling at various rates) brought the cell back to a reversible
capacity of 1,053mAh g� 1 at 0.1 C. To the best of our knowledge,
our results represent the best rate performance in any existing
report on organosulfur cathodes. Control experiments using the
S–C cathode are also shown in Fig. 6d, which indicate greatly
decreased capacity values under 1C (125mAh g� 1), 3 C
(117mAh g� 1) and 5C (102mAh g� 1), analogous to most
organosulfur cathodes.

It should be noted that the covalent attachment of sulfur to
TTCA resulted in a large decrease in bandgap of the TTCA
molecule. We carried out quantitative investigation on the
electronic structures of TTCA and S-TTCA by ab initio
calculations at 0 K in a vacuum using a density functional theory
exchange-correlation functional. As shown in Supplementary
Fig. 7, for the neat TTCA, the bandgap of 5.76 eV was determined
at the B3PW91/6-31G** level, which decreased to 4.59 eV as a
result of S6 attachment (the shorter Sn yielded larger bandgap,
that is, 4.84 eV of TTCA-S4). Considering the fact that our
S-TTCA is a polymeric system, many experimental parameters
such as polydispersity in chain length and compositional
fluctuations will lead to additional reduction in the bandgap,
enabling the exceptional high-rate performance of our Li/S-
TTCA cells.
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Currently, the Li/S-TTCA-I cell has been extended to 450
cycles, while retaining a significant capacity of 850mAh g� 1

(capacity retention of 83%) with high coulombic efficiency of 99%
throughout (Supplementary Fig. 8). Experiments on whether the
cathode loading effects are present in the battery performance47

will be a subject of our future studies. Our preliminary
examination indicates analogous battery performance with a
twofold increase in cathode loading. Further improvement of the
specific capacity by optimizing the liquid electrolyte and type of
polymeric binder is currently underway.

In summary, we explored a new methodology to improve the
performance of Li–S batteries based on organosulfur cathodes.
Using porous organic crystal templates, tens of grams of sulfur-
rich polymers with different morphologies were synthesized from

elemental sulfur. This is a unique feature of our system relative to
other vulcanized polymers reported in the literature, where
control of shape and morphology were not viable. The successful
implementation of three-dimensionally interconnected sulfur-
rich phases in the cathode frameworks enabled us to achieve high
specific capacities of 850mAh g� 1 after 450 cycles with an
unprecedented capacity retention of over 83%, attributed to
impermeable polysulfide intermediates confined within the
vulcanized polymers during cycling. Our work demonstrated
one of the highest specific capacities reported for Li–S batteries,
particularly at high current rates, that is, 1 C (872mAh g� 1),
3 C (803mAh g� 1) and 5C (730mAh g� 1). This is ascribed to
the organized Liþ -ion coordination sites of organic crystals,
allowing the seamless transport of Liþ -ion into active materials.
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We also gained a better understanding of the factors affecting
battery performance—organic crystal morphology appears to
play a central role in determining the specific capacity by
providing fundamentally different surface areas, thereby affecting
and Liþ -ion transport rate.

Methods
Preparation of TTCA co-crystals. TTCA-I and TTCA-II co-crystals were pre-
pared by varying crystallization solvent. For the TTCA-I, TTCA (98%, TCI) was
dissolved in 1:1 co-solvent of deionized water and dimethylformamide (DMF, 99%,
Alfa Aesar), followed by crystal growth at 0 �C for 24 h. The resultant crystals were
collected by filtration and vacuum dried at 40 �C for 24 h to remove any residual
solvents. The TTCA-II co-crystals were prepared by dissolving the TTCA in
acetone (HPLC grade, J. T. Baker), followed by slow solvent-evaporation at 50 �C.
Both TTCA-I and TTCA-II co-crystals revealed a clear yellow colour.

Synthesis of S-TTCA-I and S-TTCA-II. S-TTCA-I and S-TTCA-II were synthe-
sized directly from elemental sulfur using the TTCA-I and TTCA-II crystals as a soft
template. A three-step process was applied: (1) The TTCA-I and TTCA-II were
exposed to T¼ 160 �C to remove the solvents in the crystals. The removal of solvents
from TTCA-I and TTCA-II co-crystals resulted in the changes in transparency of
the crystals. (2) On the completion of the solvent removal, predetermined amounts
of sulfur (at 1:3 weight ratio of TTCA:sulfur) are embedded into the TTCA
frameworks at 160 �C for 10 h under an argon atmosphere. (3) The mixture was
further heated at 245 �C for 2 h to stimulate ring-opening polymerization of
elemental sulfur (S8) into a linear polysulfane along the thiol surfaces of TTCA
frameworks. The resultant S-TTCA-I and S-TTCA-II showed a dark brown colour.

Morphology and structure characterization. Morphologies of the TTCA crystals
before/after heat treatment and vulcanization were determined by combining
optical microscope (Zeiss axio scope, A1) and field emission scanning electron
microscope (XL30S FEG, Philips). Powder XRD analysis on each crystal was carried
out at 9B HRPD beamline (l¼ 1.4640Å) of Pohang Accelerator Light Source.

Fourier transform Raman experiments. Confocal Raman spectra were measured
using a WITEC Alpha 300R Raman spectroscope (WITec, Ulm, Germany),
equipped with a HeNe laser. The spatial resolution of the spectrometer was 250 nm.
Laser excitation power was adjusted below 3mW to reduce potential thermal
damage caused by the laser source.

Molecular Characterization of S-TTCA. XPS experiments were conducted by
using an Escalab 250xi spectrometer employing a monochromatic Al-Ka X-ray
source and hemispherical electrostatic analyser. For characterizing the sulfur
weights in the S-TTCA-I and S-TTCA-II, TGA was performed in a temperature
range of 25–550 �C with a heating rate
of 10 �Cmin� 1 under a nitrogen atmosphere. The positive-ion electrospray
ionization time-of-flight (Compact, Bruker) mass spectra of quenched products
were acquired. The mass spectrometer was operated with a source temperature of
180 �C and a capillary voltage of 4,500V. The m/z range of the mass spectrometer
was 50–1,700Da.

Preparation of sulfur cathodes. For the S-TTCA-I and S-TTCA-II cathodes,
60wt% of S-TTCA-I (or S-TTCA-II), 30 wt% of Super P carbon (Alfa Aesar) and
10wt% of PVDF (Solef) binder were dispersed in NMP (Sigma Aldrich) by ball
milling (MillMM400) under an argon atmosphere. The ball-milled slurry was
casted onto Al-foil current collector by a doctor-blade method. The total cathode
loading was 2.0mg cm� 2. The amount of S-TTCA in the cathode was
1.2mg cm� 2, of which sulfur content was 0.8mg cm� 2. Conventional sulfur
cathodes were also prepared according to the same procedures with sulfur powder
(99.998%, Sigma Aldrich), Super P carbon and PVDF binder in weight ratio of
40:50:10. All three sulfur cathodes were dried at 50 �C for 24 h under Ar-blanket,
followed by vacuum drying at 50 �C for 24 h. The dried electrodes were cut by a
disc cutter (MTI, 15mm diameter).

Battery tests. The Li–S cells were assembled in a high-purity Ar-filled glove box
to avoid any possible contamination by moisture and oxygen. Coin type (CR2032,
MTI) cells were fabricated by assembling a Li-metal anode, a porous polypropylene
separator (Celgard 2400) and sulfur cathode. The liquid electrolyte was prepared by
dissolving 1M lithium bis (trifluoromethane)sulfonamide (LiTFSI, 98.0%, TCI)
and 0.2M lithium nitrate (99.999%, Alfa Aesar) in a mixture of tetraethylene glycol
dimethyl ether (TEGDME, Sigma Aldrich) and 1,3-dioxolane (DIOX, 99.8%, Sigma
Aldrich; 33:67 vol%). Galvanostatic discharge/charge tests on the Li–S cells were
performed by cycling between 1.7 and 2.7V at predetermined current rates using
battery cycler (WBCS3000, Wonatech). The cyclic voltammetry analysis on the
sulfur cathodes were performed in the potential range of 1.7–2.7 V by varying the
scan rate.
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