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Abstract— In this paper, discrete-time switched linear systems
affected by both parameter variations and exterior disturbances
are considered. The problem of synthesis of switching control
laws, which assure that the system state is ultimately bounded
within a given compact set containing the origin with an
assigned rate of convergence, is investigated. The method is
based on set-induced Lyapunov functions. Based on these Lya-
punov functions, we compose a global Lyapunov function which
guarantees ultimate boundedness for the switched system. The
switching laws are characterized by computing conic partitions
of the state space.

I. I NTRODUCTION

A switched system is a dynamical system that consists
of a finite number of subsystems described by differential
or difference equations and a logical rule that orchestrates
switching between these subsystems. Properties of this type
of model have been studied for the past fifty years to consider
engineering systems that contain relays and/or hysteresis.
Recently, there has been increasing interest in the stability
analysis and switching control design of switched systems,
see for example [7], [4], [9], [1] and the references cited
therein. The motivation for studying such switched systems
comes partly from the discovery that there exist large class
of nonlinear systems which can be stabilized by switching
control schemes, but cannot be stabilized by any smooth
state feedback control law. In addition, switched systems
and switched multi-controller systems have numerous appli-
cations in control of mechanical systems, process control, au-
tomotive industry, power systems, aircraft and traffic control,
and many other fields. Switched systems with all subsystems
described by linear differential or difference equations are
called piecewise linear/affine systems or switched linear
systems, and have gained the most attention [9], [5], [1].
Recent efforts in switched linear system research typically
concentrate on the analysis of the dynamic behaviors, like
stability [5], [7], [4], controllability and observability [1], [9]
etc., and aim to design controllers with guaranteed stability
and performance [9], [5].

In this paper, we will concentrate on robust stabilization
problem for the switched linear systems affected by both
parameter variations and exterior disturbances. The stability
issues of switched systems have been studied extensively in
the literature [7], [4], and can be roughly divided into two
kinds of problems. One is the stability analysis of switched
systems under given switching signals (maybe arbitrary, slow
switching etc.), and the other is the synthesis of stabilizing

switching signals for a given collection of dynamical sys-
tems. The first stability analysis problem is usually dealt with
using Lyapunov method, such as common Lyapunov func-
tion, multiple Lyapunov functions, see [4], [7] and references
therein. Notice that usually (piecewise) quadratic Lyapunov(-
like) functions were considered, because of comparable sim-
plicity for calculation by employing LMI techniques. There
are less results for the second problem, stabilization switch-
ing control for switched systems. Quadratic stabilization
for LTI systems was considered in [10], in which it was
shown that the existence of a stable convex combination
of the subsystem matrices implies the existence of a state-
dependent switching rule that stabilizes the switched system
along with a quadratic Lyapunov function. There are exten-
sions of [10] to the case of output-dependent switching and
discrete-time case [7], [12]. The switching stabilization of
second-order LTI systems was considered in [11] via vector
field analysis. For robust stabilization of polytopic uncertain
switched systems, a quadratic stabilizing switching law was
designed for polytopic uncertain switched systems based on
LMI techniques in [12].

Because of parameter variations and exterior disturbances
considered in this paper, it is only reasonable to stabilize
the system within a neighborhood region of the equilibrium,
which is the so called practical stabilization or ultimate
boundedness control in the literature. In [2], the ultimate
boundedness control problem for uncertain discrete-time
linear systems was studied based on set-induced Lyapunov
functions, and the methods were extended to the continuous-
time case in [3]. The problem studied here isuniformly
ultimate boundedness switching control, that is, to synthesize
switching control laws assuring that the system state will be
ultimately bounded within a given compact set containing the
origin with an assigned rate of convergence. The motivation
for considering this problem comes from the following fact.
As explained in [6], switching control design methods have
become more and more popular. However, switching among
these multi-controllers, which are designed with respect
to different performance criteria respectively, may leads to
undesirable or even unbounded trajectories [4]. Therefore,
the stabilizing switching sequences design is not a trivial
task and is the central problem in switching control design
method. In addition, by switching among multi-controllers,
we can achieve better closed-loop performance than a single
controller.



This paper is an extension of our group’s recent work [6]
to uncertain switched systems. In [6], a class of stabilization
switching law for switched autonomous linear time-invariant
systems is considered. In the present paper, not only time-
variant parameter uncertainties in the state matrices but
also exterior persistent disturbances are considered in the
model. In Section II, a mathematical model for discrete-
time switched linear system affected by both parameter
variations and exterior disturbances is described, and the
ultimate boundedness control problem is formulated. Sec-
tion III presents the necessary background for set-induced
Lyapunov functions. Based on these Lyapunov functions,
we compose a global Lyapunov function which guarantees
ultimate boundedness of the switched systems. The switching
sequences are characterized by computing conic partitions of
the state space in Section IV.

In this paper, we use the lettersE ,P,S · · · to denote sets.
∂P stands for the boundary of setP, andint{P} its interior.
For any realλ ≥ 0, the setλS is defined as{x = λy, y ∈
S}. The term C-set stands for a convex and compact set
containing the origin in its interior.

II. PROBLEM FORMULATION

In this paper, we consider a collection of discrete-time
linear systems described by

x(t + 1) = Aq(w)x(t) + Eqd(t), q ∈ Q = {1, · · · , N} (1)

where x(t) ∈ Rn, d(t) ∈ D ⊂ Rr, t ∈ Z+ (the set of
nonnegative integers) and state matricesAq(w) ∈ Rn×n,
Eq ∈ Rn×r. Assume thatD is a C-set, and that the entries of
Aq(w) are continuous function ofw ∈ W, whereW ⊂ Rv

is an assigned compact set. Note that the originxe = 0 is an
equilibrium for the systems described in (1).

The particular modeq at any given time instant may
be selected by a decision-making process, which can be
represented by a switching law of the form:

q(t) = δ(x(t)) (2)

The discrete mode is determined by the continuous variable
state, in fact the partition of the state space. Therefore, we get
a class of piecewise constant functions of timeσ : Z+ → Q.
Then we can define the following time-varying system as a
discrete-time switched linear system

x(t + 1) = Aσ(t)(w)x(t) + Eσ(t)d(t), t ∈ Z+

The signalσ(t) is called aswitching sequence.
For this uncertain switched system (1)-(2), we are in-

terested in characterizing the switching lawδ(·) such that
the statex(t) asymptotically converges to the equilibrium,
xe = 0. Because of the uncertainty and disturbance, we can
not drive the statex(t) to the origin exactly, and it is only
reasonable to converge into a neighborhood region of the
origin. In particular, we introduce the following definition
for uniformly ultimate boundedness (UUB).

Definition 1: The uncertain switched system (1)-(2) with
the switching lawδ(·) is Uniformly Ultimately Bounded
(UUB) in the C-setS iff for every initial conditionx(0) = x0,
there existsT (x0), such that for t ≥ T (x0), we have
x(t) ∈ S.

The problem being addressed can be formulated as fol-
lows:
Problem: Given the discrete-time uncertain switched linear
systems (1)-(2), design switching lawδ(·) to assure that the
system statex(t) is uniformly ultimately bounded within a
given compact set containing the origin with an assigned rate
of convergence.

Our methodology for computing switching sequences that
guarantee ultimate boundedness is based onset-induced
Lyapunov functions, which will be derived in the next section.
For systems with linearly constrained uncertainties, it is
shown that such a function may be derived by numerically
efficient algorithms involving polyhedral sets. Based on
these Lyapunov functions, we compose a global Lyapunov
function which guarantees uniformly ultimate boundedness
of the switched linear system. It is shown that the UUB
switching law for switched linear systems is characterized
by computing conic partitions of the state space.

III. SET-INDUCED LYAPUNOV FUNCTIONS

In this section, we briefly present some background ma-
terial necessary for the set-induced Lyapunov functions for
uncertain discrete-time linear systems.

Following the notation of [2], we call a functionΨ : Rn →
R a gauge functionif Ψ(x) ≥ 0, Ψ(x) = 0 ⇔ x = 0; for
µ > 0, Ψ(µx) = µΨ(x); and Ψ(x + y) ≤ Ψ(x) + Ψ(y),
∀x, y ∈ Rn. A gauge function is convex and it defines a
distance ofx from the origin which is linear in any direction.
If Ψ is a gauge function, we define the closed set (possibly
empty) N̄ [Ψ, ξ] = {x ∈ Rn : Ψ(x) ≤ ξ}. It is easy to
show that the set̄N [Ψ, ξ] is a C-set for allξ > 0. On the
other hand, any C-setS induces a gauge functionΨS(x)
(Known as Minkowski function ofS), which is defined as
Ψ(x)=̇ inf{µ > 0 : x ∈ µS}. Therefore a C-setS can be
thought of as the unit ballS = N̄ [Ψ, 1] of a gauge function
Ψ andx ∈ S ⇔ Ψ(x) ≤ 1.

Consider the subsystem of modeq for the discrete-time
uncertain switched linear systems (1)-(2) as

x(t + 1) = Aq(w)x(t) + Eqd(t) (3)

for which the UUB in a C-setS is guaranteed by the
existence of a Lyapunov function outsideS [3].

In particular, a Lyapunov function outsideS for the
subsystem (3) can be defined as a continuous functionΨ :
Rn → R+ such thatN̄ [Ψ, κ] ⊆ S, for someκ > 0, for
which the following conditions hold:

if x /∈ N̄ [Ψ, κ] then there existsβ > 0 such that

Ψ(A(w)x + Ed)−Ψ(x) ≤ −β;



if x ∈ N̄ [Ψ, κ] then

Ψ(A(w)x + Ed) ≤ κ.

Lemma 1: [3] If there exists a Lyapunov function outside
S for the system (3), then it is uniformly ultimately bounded
(UUB) in S.

In the following, we will assume that for each subsystem
(3) there exist a corresponding Lyapunov functionΨq, with
N̄ [Ψq, 1] ⊆ S. Under this assumption, we will review the
procedure for the construction of such Lyapunov function
Ψq for each subsystem (3). For notational simplicity, we will
drop the subscriptq in this subsection.

It can be derived from the definition of the Lyapunov
function Ψ that

Ψ(x(t)) ≤ min{λtΨ(x(0)), 1}
for someλ with 0 < λ < 1. This property motivates the
following concept of contractive set.

Definition 2: Given λ, 0 < λ < 1, a setS is said λ-
contractivewith respect to subsystem (3), if for anyx ∈ S
such thatpostq(x,W,D) ⊆ λS. Herepostq(·) is defined as

postq(x,W,D) = {x′ : x′ = Aq(w)x + Eqd, ∀w ∈ W, d ∈ D},

which represents all the possible next step states of system
(3), given current statex(t).

Let S be an assigned C-set inRn. We say that aλ-
contractive setPm ⊆ S is maximal in S if every λ-
contractive setP contained inS is also contained inPm.

Consider the following sequence of sets:

{Xk} : X0 = S, Xk = preq(λXk−1)∩ S; k = 1, 2, · · · (4)

wherepreq(S) is defined as

preq(S) = {x ∈ Rn : postq(x,W,D) ⊆ S}. (5)

Then the maximalλ-contractive setPm ⊆ S is given by
Pλ =

⋂∞
k=0 Xk [2].

Proposition 1: If Pλ =
⋂∞

k=0 Xk is nonempty, then the
system (3) is uniformly ultimately bounded (UUB) inS.
Proof : It can be shown thatPλ is a C-set, when it is
nonempty. Letψ(x) = ΨPλ

(x) be its Minkowski functional.
We haveψ(x(t + 1)) ≤ λψ(x(t)) for all x(t) /∈ int{Pλ},
andN̄ [ψ, 1] ⊂ S. Thenψ is a Lyapunov function outsideS
for the system (3). By Lemma 1, the existence of a Lyapunov
function outsideS implies the UUB of (3) inS.
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Lyapunov functionψ is uniquely generated from the target
setS for any fixedλ. Such a function has been named Set-
induced Lyapunov Function (SILF) in the literature [3].

A. Linearly Constrained Case

It is known that in practice uncertainties often enter lin-
early in the system model and they are linearly constrained.
To handle this particular but interesting case, we consider the
class of polyhedral sets. Such sets have been considered in

the literature concerning the control of systems with input
and state constraints [2]. Their main advantage is that they
are suitable for computation. In the sequel, let us assume
polytopic uncertainty inAq(w). In particular,

Aq(w) =
v∑

j=1

wjA
j
q, wj ≥ 0,

v∑

j=1

wj = 1 (6)

which provides a classical description of model uncertainty.
Notice that the coefficientswj are unknown and possibly
time varying.

For computational efficiency, we assume thatD and S
to be polyhedral C-sets, convex and compact polyhedrons
containing the origin, and in addition,S contains the origin
in its interior. A convex polyhedral setS in Rn can be
represented by a set of linear inequalities

S = {x ∈ Rn : fix ≤ gi, i = 1, · · · ,m} (7)

and for brevity, we denoteS as {x : Fx ≤ g}, where≤ is
with respect to componentwise. The setλS, λ > 0, is given
by {x : Fx ≤ λg}. Consider the vectorδ whose components
are

δi = max
d∈D

fiEqd ≥ 0, i = 1, · · · ,m (8)

The vectorδ incorporates the effects of the disturbanced(t).
For λ > 0, we havepostq(x,W,D) ⊆ λS iff FAq(w)x ≤
λg − δ, for all w ∈ W , which is equivalent to:

FAj
qx ≤ λg − δ, j = 1, · · · , v (9)

The above constraints define a convex polyhedron in the
spaceRn which is exactly the setpreq(λS) by definition.
Note that the intersection of finite convex polyhedra produces
a convex polyhedron. Therefore, the setX1 = preq(λS)∩S
is a convex polyhedron, which is denoted asX1 = {x :
F (1)x ≤ g(1)}. Following the procedure described in (4),
the setXk+1 = {x : F (k+1)x ≤ g(k+1)} can be generated
inductively as the intersection ofpreq(λXk) with S. In view
of the convergence of the sequenceXk, k = 0, 1, · · · , we may
derive an arbitrarily close external polyhedral approximation
of Pλ by Xk as follows. For everyλ∗ : λ < λ∗ < 1,
a λ∗-contractive polyhedral C-setPλ∗ can be obtained as
Pλ∗ = Xk for a finite k [2]. Therefore, we can always
determine aλ∗-contractive polyhedral C-setPλ∗ ⊆ S in
finite number of steps for allλ∗, λ < λ∗ < 1, if S has
nonemptyλ-contractive subsets. The Minkowski function of
a polyhedral C-setP, which can be canonically represented
by

P = {x ∈ Rn : fix ≤ 1, i = 1, · · · ,m}, (10)

has the following expression

ΨP(x) = max
1≤i≤m

{fix}. (11)

In this case, the Minkowski functionΨP of P is called as
polyhedral Lyapunov function or piecewise-linear Lyapunov



function in the literature [8]. In [3], it was shown that if
a Lyapunov function exists and solves the uniform ultimate
boundedness problem in a certain convex neighborhood of
the origin then there exists a polyhedral Lyapunov func-
tion that solves the problem in the same neighborhood. In
other words, the polyhedral Lyapunov function is universal
[3]. Therefore, without loss of generality, we will restrict
to polyhedral Lyapunov functions in the sequel. Another
advantage of the polyhedral Lyapunov functions is that it can
be determined by numerical methods within finite number of
iterations under mild assumption. In addition, the polyhedral
Lyapunov functions is suitable for control design, which will
be explored in the following sections.

IV. U LTIMATE BOUNDEDNESSSWITCHING LAW

It is known that the stability (or UUB) of all the sub-
systems (3) can not guarantee the stability (or UUB) of the
switched system (1)-(2). Such a switched system might be-
come unboundedness for certain switching sequences [7], [4].
Therefore, it is important to characterize switching sequences
that result in ultimately bounded trajectories. In this section,
we will present an approach to design the ultimately bounded
switching law for the uncertain switched system (1)-(2). This
method is based on set induced Lyapunov functions derived
in the previous section.

Recall the problem we concerned is to synthesize switch-
ing law δ(·) so as to assure that the system statex(t) is
uniformly ultimately bounded within a given compact set
containing the origin, say a polyhedral C-setT , with an
assigned rate of convergence, say0 < λ < 1. In the sequel,
we assume that each individual subsystem admits aλq-
contractive polyhedral C-set (λq ≤ λ), which is described
by

Pq = {x ∈ Rn : Fqx ≤ 1̄} ⊆ T (12)

where F q ∈ Rmq×n and 1̄ = [1, · · · , 1]T ∈ Rmq . Such
Pq can be generated by the procedure described in (4).
We denote the rows of the matrixF q by fq

i ∈ R1×n,
i = 1, · · · ,mq. By Equation (11), the Lyapunov function
induced by the polyhedral C-setPq can be described by
ψq(x) = max1≤i≤mq{fq

i x}.
First, we briefly describe the necessary notations from

convex analysis in order to construct the conic partition.
Given a polyhedral C-setP, let vert{P} = {v1, v2, · · · , vN}
stands for the vertices of a polytopeP, while face{P} =
{F1, F2, · · · , FM} denotes its faces. The hyperplane that
corresponds to thek-th faceFk is defined by

Hk = {x ∈ Rn : fkx = 1} (13)

wherefk ∈ R1×n is the corresponding gradient vector of face
Fk. The set of vertices ofFk can be found asvert(Fk) =
vert(P) ∩ Fk. Finally, we denote the cone generated by the
vertices ofFk by cone(Fk) = {x ∈ Rn :

∑
i αivki , αi ≥ 0,

vki ∈ vert(Fk)}. The cone(Fk) has the property that∀x ∈
cone(Fk), ψ(x) = fkx.

Next we will characterize a conic partition of the state
space based on these polyhedral Lyapunov functionsψq(x).
Consider any pair of subsystems with modesq1 andq2, with
q1 6= q2 ∈ Q, we want to compute the region

Ωq2
q1

= {x ∈ Rn : ψq1(x) ≤ ψq2(x)} (14)

For this purpose, we first consider a pair of facesF q1
i1

and
F q2

i2
of the polyhedral C-setsPq1 andPq2 respectively and

consider

Cq2,i2
q1,i1

= cone(F q1
i1

) ∩ cone(F q2
i2

) (15)

The set Cq2,i2
q1,i1

is either empty or a polyhedral cone. If
Cq2,i2

q1,i1
6= ∅, then all the statex ∈ Cq2,i2

q1,i1
has the property

that, ψq1(x) = fq1
i1

x andψq2(x) = fq2
i2

x. Next, we intersect
the setCq2,i2

q1,i1
with the half-space defined by

HF q2,i2
q1,i1

= {x ∈ Rn : (fq1
i1
− fq2

i2
)x ≤ 0} (16)

and get the setΩq2,i2
q1,i1

= Cq2,i2
q1,i1

∩ HF q2,i2
q1,i1

. The reason for
specifying the regionΩq2,i2

q1,i1
can be clarified by the following

lemma [6].
Lemma 2:For everyx ∈ Ωq2,i2

q1,i1
, we have thatψq1(x) ≤

ψq2(x).
Proof : By definition, Ωq2,i2

q1,i1
= Cq2,i2

q1,i1
∩ HF q2,i2

q1,i1
, where

Cq2,i2
q1,i1

= cone(F q1
i1

) ∩ cone(F q2
i2

). The cone(F q1
i1

) and
cone(F q2

i2
) have the property that∀x ∈ cone(F q1

i1
), ψq1(x) =

fq1
i1

x, and∀x ∈ cone(F q2
i2

), ψq2(x) = fq2
i2

x. Note that∀x ∈
HF q2,i2

q1,i1
, fq1

i1
(x) ≤ fq2

i2
(x). Therefore, for allx ∈ Ωq2,i2

q1,i1
, we

have thatψq1(x) ≤ ψq2(x).
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The illustration of the conic regionΩq2,i2
q1,i1

is shown in
Figure 1. From this figure, an important observation can
be made, that is the hyperplaneH(q2,i2)

(q1,i1)
= {x ∈ Rn :

(fq2
i2
− fq1

i1
)x = 0} goes through the origin and the inter-

sections of the facesF q1
i1

and F q2
i2

. This is simply comes
from the fact thatψq1(0) = ψq2(0) = 0, and for x ∈
F q1

i1

⋂
F q2

i2
⇒ ψq1(x) = ψq2(x) = 1. We will show later that

this observation dramatically simplify the design procedure
for conic partition based switching law.

Based on the above lemma, we have

Ωq2
q1

=
⋃

i1,i2

Ωq2,i2
q1,i1

(17)

wherei1 and i2 go through all the faces’ index ofPq1 and
Pq2 respectively. And the following corollary holds.

Corollary 1: For everyx ∈ Ωq2
q1

, we have thatψq1(x) ≤
ψq2(x).

BecauseΩq2,i2
q1,i1

is an intersection of a polyhedral cone with
a half-space, so it is either an empty set or a polyhedral
cone. HenceΩq2

q1
is finite union of polyhedral cones. And it

is obvious that forx /∈ Ωq2
q1

, we have thatψq1(x) > ψq2(x).
Therefore,Ωq2

q1

⋃
Ωq1

q2
= Rn.
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Fig. 1. The conic region ofΩ.

Finally define

Ωq =
⋂

qi∈Q, qi 6=q

Ωqi
q ,

which has the property as follows.
Lemma 3:For every x ∈ Ωq, we have thatψq(x) ≤

ψqi(x), ∀qi ∈ Q andqi 6= q.
Proof : For everyx ∈ Ωq =

⋂
qi∈Q, qi 6=q Ωqi

q , thenx ∈ Ωqi
q

for all qi ∈ Q and qi 6= q. Therefore,ψq(x) ≤ ψqi(x),
∀qi ∈ Q because of Corollary 1.
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Some observations aboutΩq are important for the fol-
lowing design procedure. First, in the region ofΩq, q ∈
arg minq∈Q ψq(x). Secondly,Ωq is finite union of polyhedral
cones. Finally,

⋃
q∈Q Ωq = Rn, so Ωq, q ∈ Q, serves as a

conic partition of the state space.
Define the following switching law based on the conic

partition of the state spaceΩq, q ∈ Q.

x ∈ Ωq ⇒ δ(·) = q (18)

For the casex ∈ Ωq ∩Ωq′ , one simply remains the previous
modeq.

It can be shown that the switching law defined as above
can guarantee the UUB for the uncertain switched system
(1)-(2).

Theorem 1:Consider the class of switching law defined
in (18), the uncertain switched system (1)-(2) is UUB.
Proof : Define the functionV (x) = minq∈Q ψq(x). In the
following, we will prove that suchV (x) is a Lyapunov func-
tion for the switched system (1)-(2)with the above switching
law. First, it is straightforward to verify thatV (x) is positive
definite,V (x) = 0 iff x = 0 etc. The key point is to show
thatV (x) decreases along all the trajectories of the switched
systems under above switching law. First, for the case of
x /∈ int(

⋃
q∈Q(Pq)). Assume that at timet, x(t) ∈ Ωq

and current modeq(t) = q. If no switching occur, i.e.
x(t+1) ∈ Ωq, thenV (x(t)) = minq∈Q ψq(x(t)) = ψq(x(t))
andV (x(t + 1)) = ψq(x(t + 1)) ≤ λqψq(x(t)) ≤ λV (x(t)).

Else, if switching occur at timet, say x(t + 1) ∈ Ωq′ ,
then V (x(t + 1)) = minq∈Q ψq(x(t + 1)) = ψq′(x(t + 1))
≤ ψq(x(t + 1)) ≤ λqψq(x(t)) ≤ λV (x(t)). Therefore, for
x /∈ int(

⋃
q∈Q(Pq)), we haveV (x(t + 1)) ≤ λV (x(t)).

Similarly, it can be shown that forx ∈ int(
⋃

q∈Q(Pq)), we
haveV (x(t+1)) ≤ λ. Therefore, by definition, the uncertain
switched system (1)-(2) is UUB with convergence indexλ
with the class of switching law defined byδ(·) = q for x ∈
Ωq.
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A. Simplified Design Procedure

As it has been pointed out that some geometric character-
istics can be used to simplify the determination of the conic
partitionΩq. In the following, we will describe the simplified
design procedure through an example.

Consider a second order three mode discrete-time switched
system, and assume that the target region is given as a
polyhedral C-setT , and the assigned rate of convergence is
0 < λ < 1. Assume that each individual subsystem admits a
λqi

-contractive polyhedral C-setPqi
, λqi

≤ λ for i = 1, 2, 3.
SuchPqi can be generated by the procedure described in (4).
In Figure 2, the two dimensional casePqi

, for i = 1, 2, 3, is
plotted.

q
1q

2

q
3

Fig. 2. Theλqi -contractive polyhedral C-setPqi , λqi ≤ λ for i = 1, 2, 3.

Next, in order to calculate the regionΩq2
q1

, we simply
draw some radii which star from the origin and go through
the intersection points of faces ofPq1 andPq2 . These radii
partition the state space into finite union of conic regions.
Notice that on these radii,ψq1(x) = ψq2(x), and that
within each conic region partitioned by these radii either
ψq1(x) ≥ ψq2(x) or ψq1(x) ≤ ψq2(x) holds. Therefore,Ωq2

q1

is just the union of some of these conic regions. To determine
whether one of these polyhedral cones is contained inΩq2

q1
,

one simply check whether there exists one point in this cone
which is on the edge ofPq1 but not contained inint(Pq2). If
such points exist in the cone, then include this cone into the
regionΩq2

q1
(from the geometric interpretation of Minkowski

function). The regionΩq2
q1

is just the union of such cones.



Similarly, we getΩq3
q1

. And the regionΩq1 = Ωq2
q1

⋂
Ωq3

q1
,

which is illustrated in the leftmost plot in Figure 3. The
middle plot of Figure 3 illustrates the regionΩq2 , while Ωq3

is the rightmost plot of Figure 3. And the conic partition
of the state space is plotted in Figure 4. From this conic
partition, the UUB switching law,δ(·) = qi for x ∈ Ωqi

, can
be easily implemented.

q
1q

2

q
3

q
1q

2

q
3

q
1q

2

q
3

Fig. 3. Determine the region ofΩq as finite union of polyhedral cones.

q
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q
3

Fig. 4. Conic partition based switching law.

In [6], Ωq′
q was obtained based on the computation ofΩq′,j

q,i

of all possible pairs of faces,F q
i and F q′

j , of Pq and Pq′

respectively. Therefore, it may be computationally expensive
to calculateΩq′

q . In the present paper, a simplified method is
developed to obtain the conic partitionΩq′

q by employing ge-
ometric characteristics ofPq andPq′ as explained above. In
addition, the stabilization switching sequences in [6] is based
on partition Ωq′

q , which leads to possibly nondeterministic
switching law. However, in this paper the UUB switching
law is based on the conic partitionΩq of the state space, and
switching is deterministic.

V. CONCLUDING REMARKS

In this paper, discrete-time switched linear systems af-
fected by both parameter variation and exteriors disturbance
were considered. The problem of switching control law
synthesis, assuring that the system state is ultimately bounded
within a given compact set containing the origin with an
assigned rate of convergence, was investigated. Given an

uncertain switched linear system, a systematic method for
computing switching control laws that guaranteed ultimately
boundedness was proposed. The method was based on set-
induced Lyapunov functions. For systems with linearly con-
strained uncertainties, it was shown that such a function
could be derived by numerically efficient algorithms involv-
ing polyhedral sets. Based on these set-induced Lyapunov
functions, a procedure to construct UUB switching control
laws based on the conic partition of the state space was
presented.
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