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Abstract—In this paper, discrete-time switched linear systems  switching signals for a given collection of dynamical sys-
affected by both parameter variations and exterior disturbances tems. The first stability analysis problem is usually dealt with
are considered. The problem of synthesis of switching control using Lyapunov method, such as common Lyapunov func-

laws, which assure that the system state is ultimately bounded fi ltible L functi a1 17 d ref
within a given compact set containing the origin with an ion, multiple Lyapunov functions, see [4], [7] and references

assigned rate of convergence, is investigated. The method is therein. Notice that usually (piecewise) quadratic Lyapunov(-
based on set-induced Lyapunov functions. Based on these Lya- like) functions were considered, because of comparable sim-

punov functions, we compose a global Lyapunov function which plicity for calculation by employing LMI techniques. There
guarantees ultimate boundedness for the switched system. The yre |ess results for the second problem, stabilization switch-
switching laws are characterized by computing conic partitions . . . e
of the state space. ing control for switched s_ystems_. Quadr_anc s_tab|!|zat|on
for LTI systems was considered in [10], in which it was
|. INTRODUCTION shown that the existence of a stable convex combination
A switched system is a dynamical system that consistsf the subsystem matrices implies the existence of a state-
of a finite number of subsystems described by differentialependent switching rule that stabilizes the switched system
or difference equations and a logical rule that orchestratedong with a quadratic Lyapunov function. There are exten-
switching between these subsystems. Properties of this typiens of [10] to the case of output-dependent switching and
of model have been studied for the past fifty years to considdiscrete-time case [7], [12]. The switching stabilization of
engineering systems that contain relays and/or hysteress&cond-order LTI systems was considered in [11] via vector
Recently, there has been increasing interest in the stabilifigld analysis. For robust stabilization of polytopic uncertain
analysis and switching control design of switched systemswitched systems, a quadratic stabilizing switching law was
see for example [7], [4], [9], [1] and the references citedlesigned for polytopic uncertain switched systems based on
therein. The motivation for studying such switched systemisMI techniques in [12].
comes partly from the discovery that there exist large class Because of parameter variations and exterior disturbances
of nonlinear systems which can be stabilized by switchingonsidered in this paper, it is only reasonable to stabilize
control schemes, but cannot be stabilized by any smoothe system within a neighborhood region of the equilibrium,
state feedback control law. In addition, switched systemshich is the so called practical stabilization or ultimate
and switched multi-controller systems have numerous appldoundedness control in the literature. In [2], the ultimate
cations in control of mechanical systems, process control, abeundedness control problem for uncertain discrete-time
tomotive industry, power systems, aircraft and traffic controljinear systems was studied based on set-induced Lyapunov
and many other fields. Switched systems with all subsysterfisnctions, and the methods were extended to the continuous-
described by linear differential or difference equations aréme case in [3]. The problem studied here usiformly
called piecewise linear/affine systems or switched lineartimate boundedness switching conttblat is, to synthesize
systems, and have gained the most attention [9], [5], [1witching control laws assuring that the system state will be
Recent efforts in switched linear system research typicallyitimately bounded within a given compact set containing the
concentrate on the analysis of the dynamic behaviors, likarigin with an assigned rate of convergence. The motivation
stability [5], [7], [4], controllability and observability [1], [9] for considering this problem comes from the following fact.
etc., and aim to design controllers with guaranteed stabilits explained in [6], switching control design methods have
and performance [9], [5]. become more and more popular. However, switching among
In this paper, we will concentrate on robust stabilizationhese multi-controllers, which are designed with respect
problem for the switched linear systems affected by botto different performance criteria respectively, may leads to
parameter variations and exterior disturbances. The stabilitndesirable or even unbounded trajectories [4]. Therefore,
issues of switched systems have been studied extensivelytire stabilizing switching sequences design is not a trivial
the literature [7], [4], and can be roughly divided into twotask and is the central problem in switching control design
kinds of problems. One is the stability analysis of switchednethod. In addition, by switching among multi-controllers,
systems under given switching signals (maybe arbitrary, slowe can achieve better closed-loop performance than a single
switching etc.), and the other is the synthesis of stabilizingontroller.
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This paper is an extension of our group’s recent work [6] Definition 1: The uncertain switched system (1)-(2) with
to uncertain switched systems. In [6], a class of stabilizatiothe switching lawd(-) is Uniformly Ultimately Bounded
switching law for switched autonomous linear time-invarianfUUB) in the C-seftS iff for every initial conditionz(0) = x,
systems is considered. In the present paper, not only timthere existsT(zy), such that fort > T(zq), we have
variant parameter uncertainties in the state matrices buft) € S.
also exterior persistent disturbances are considered in theThe problem being addressed can be formulated as fol-
model. In Section Il, a mathematical model for discretelows:
time switched linear system affected by both parametd?roblem: Given the discrete-time uncertain switched linear
variations and exterior disturbances is described, and tegstems (1)-(2), design switching la¥-) to assure that the
ultimate boundedness control problem is formulated. Sesystem statex(¢) is uniformly ultimately bounded within a
tion Il presents the necessary background for set-inducefiven compact set containing the origin with an assigned rate
Lyapunov functions. Based on these Lyapunov functiongf convergence.
we compose a global Lyapunov function which guarantees Our methodology for computing switching sequences that
ultimate boundedness of the switched systems. The switchiggarantee ultimate boundedness is basedseninduced
sequences are characterized by computing conic partitionslgfapunov functionsvhich will be derived in the next section.
the state space in Section IV. For systems with linearly constrained uncertainties, it is

In this paper, we use the lettefsP,S - - - to denote sets. shown that such a function may be derived by numerically
OP stands for the boundary of sBt andint{P} its interior. efficient algorithms involving polyhedral sets. Based on
For any real\ > 0, the set\S is defined as{z = \y, y € these Lyapunov functions, we compose a global Lyapunov
S}. The term C-set stands for a convex and compact sfinction which guarantees uniformly ultimate boundedness
containing the origin in its interior. of the switched linear system. It is shown that the UUB
switching law for switched linear systems is characterized

) ) ] ) . by computing conic partitions of the state space.
In this paper, we consider a collection of discrete-time

linear systems described by [1l. SET-INDUCED LYAPUNOV FUNCTIONS

r(t+1) = Ay(w)z(t) + E,d(t), ge Q={1,--- ,N} (1) In this section, we briefly present some background ma-
terial necessary for the set-induced Lyapunov functions for
where z(t) € R", d(t) € D C R", t € Z* (the set of yncertain discrete-time linear systems.
nonnegative integers) and state matrickgw) € R"*", Following the notation of [2], we call a functiol : R™ —
Eq € R™*". Assume thaD is a C-set, and that the entries ofR 5 gauge functiorif U(z) >0, U(z) =0 < z = 0; for
Aq(w) are continuous function ob € W, whereW Cc R* |, ~ U(px) = p¥(z); and U(z + y) < U(z) + V(y),
is an assigned compact set. Note that the origin= 0 is an Vz,y € R". A gauge function is convex and it defines a
equilibrium for the systems described in (1). distance ofr from the origin which is linear in any direction.
The particular mode; at any given time instant may |f ¢ is a gauge function, we define the closed set (possibly
be selected by a decision-making process, which can lgnpty) N[U,¢] = {& € R : U(z) < £} It is easy to
represented by a switching law of the form: show that the selN[¥, ¢] is a C-set for allé > 0. On the
g(t) = 6(x(t)) ) other hand, any C-sef induces a gauge functio®s(z)
(Known as Minkowski function ofS), which is defined as
The discrete mode is determined by the continuous variabig(z)=inf{y > 0 : * € uS}. Therefore a C-sef can be
state, in fact the partition of the state space. Therefore, we gébught of as the unit balf = N[V, 1] of a gauge function
a class of piecewise constant functions of timeZ* — Q. ¥ andz € S < U(z) < 1.
Then we can define the following time-varying system as a Consider the subsystem of mogefor the discrete-time
discrete-time switched linear system uncertain switched linear systems (1)-(2) as

Il. PROBLEM FORMULATION

2t +1) = Agry(w)a(t) + Egd(t), t€ZT 2(t+1) = Ag(w)a(t) + E,d(t) 3)

The signalo(?) is called aswitching sequence for which the UUB in a C-setS is guaranteed by the
For this uncertain switched system (1)-(2), we are ingyistence of a Lyapunov function outside[3].

terested in characterizing the switching las#) such that In particular, a Lyapunov function outsids for the

the statex(t) asymptotically converges to the equilibrium,subSystem (3) can be defined as a continuous funckian

z. = 0. Because of the uncertainty and disturbance, we cag. _, p+ gych thatN [T, x] C S, for somex > 0, for

not drive the stater(t) to the origin exactly, and it is only \\hich the following conditions hold:

reasonable to converge into a neighborhood region of the;; . ¢ N[V, ]

origin. In particular, we introduce the following definition

for uniformly ultimate boundedness (UUB). U(A(w)z + Ed) — ¥(z) < —f;

then there exist® > 0 such that
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if € N[V, k] then the literature concerning the control of systems with input
(A Ed) < and state constraints [2]. Their main advantage is that they
(A(w)z + Ed) < 5. are suitable for computation. In the sequel, let us assume

Lemma 1:[3] If there exists a Lyapunov function outside Polytopic uncertainty in4,(w). In particular,

S for the system (3), then it is uniformly ultimately bounded v ' v

(UUB) in S. Ag(w) = wiAl, w; >0, Y w; =1 (6)
In the following, we will assume that for each subsystem j=1 j=1

(3) there exist a corresponding Lyapunov functibp, with —\ynich provides a classical description of model uncertainty.

N[¥y,1] € S. Under this a§sumption, we will review th.e Notice that the coefficientsu; are unknown and possibly
procedure for the construction of such Lyapunov functm@ime varying

V¥, for each subsystem (3). For notational simplicity, we will For computational efficiency, we assume tHatand S

drop the Zubzcripd] g] ;chis sur::)sedctif(_) n. £ th to be polyhedral C-sets, convex and compact polyhedrons
It can be derived from the definition of the I‘yapunovcontaining the origin, and in additiod, contains the origin
function & that in its interior. A convex polyhedral sef in R™ can be

U(z(t)) < min{A"¥(z(0)), 1} represented by a set of linear inequalities

for some\ with 0 < A < 1. This property motivates the S={zeR": fix<gy, i=1,---,m} (7)

following concept of contractive set. . .
Definig'][ion 2: Gpiven %0 < A< 1, a sets is said\- and for brevity, we denoté as{x : Fx < g}, where< is

contractivewith respect to subsystem (3), if for anye S  With respect to componentwise. The s&i, A > 0, is given
such thatpost, (z, W, D) C AS. Herepost,(-) is defined as by {z : Fx < Ag}. Consider the vectaf whose components
;o are
postq(x, W, D) = {z' : 2’ = Ag(w)z + Eqd,YVw € W, d € D}, 51-:1;13%(fiEqd20, i=1.m ®)
which represents all the possible next step states of system c
(3), given current state(t). The vectors incorporates the effects of the disturbanie).
Let S be an assigned C-set iR". We say that a\- For A >0, we haveposty(x, W, D) C AS iff FA,(w)z <
contractive setP,, C S is maximalin S if every A- Ag— 94, for all w € W, which is equivalent to:
contractive sef contqmed inS is also contained irP,,. FAig<\g—6, j=1,-v )
Consider the following sequence of sets: 4
The above constraints define a convex polyhedron in the
(X} Xo =8, Xy =preg(A\Xe—1)NS; k=1,2,--- (4) spaceR™ which is exactly the sepre,(\S) by definition.
wherepre,(S) is defined as Note that the intersection of finite convex polyhedra produces
. a convex polyhedron. Therefore, the 8gt= pre,(AS)NS
preq(S) ={z € R" : posty(x, W, D) CS}. (5) s a convex polyhedron, which is denoted a5 = {z :

1 1 H H H
Then the maximal\-contractive setP,, C S is given by FWa < g}, Following the procedure described in (4),

Py = N2 X [2] the setX),; = {z : F*+Dg < ¢(++1} can be generated
Propoks:i'?ion LIf Py = (72, Xy is nonempty, then the inductively as the intersection @f-e,(AAX}) with S. In view
k=0" " of the convergence of the sequentg k£ = 0,1, - - -, we may

system (3) is uniformly ultimately bounded (UUB) &.
Proof : It can be shown thafP, is a C-set, when it is
nonempty. Let)(z) = ¥p, (z) be its Minkowski functional.
We havey(z(t + 1)) < M(z(t)) for all z(t) ¢ int{Pr},

derive an arbitrarily close external polyhedral approximation
of Py by A, as follows. For everyA* : A < \* < 1,
a \*-contractive polyhedral C-seP,- can be obtained as

and N[+, 1] € S. Thenv is a Lyapunov function outsid& Pa- - X fo*r a finite .k [2]. ITrTerefT)re, we can always
for the system (3). By Lemma 1, the existence of a Lyapunoqletermlne aA"-contractive polyhedral C-sePy. S S in

function outsideS implies the UUB of (3) inS. finite number of ste_ps for alh™, A < /\* < 1’.if S k_las
g honempty)\-contractive subsets. The Minkowski function of

Lyapunov functiony is uniquely generated from the targeta polyhedral C-seP, which can be canonically represented

setS for any fixed\. Such a function has been named Set?Y
induced Lyapunov Function (SILF) in the literature [3].

A. Linearly Constrained Case has the following expression

It is known that in practice uncertainties often enter lin- Up(z) = max {f;z}. 11
early in the system model and they are linearly constrained. lsism
To handle this particular but interesting case, we consider the this case, the Minkowski functio®» of P is called as
class of polyhedral sets. Such sets have been consideredbolyhedral Lyapunov function or piecewise-linear Lyapunov

P={zeR": fixr<l, i=1,---,m}, (10)
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function in the literature [8]. In [3], it was shown that if Next we will characterize a conic partition of the state
a Lyapunov function exists and solves the uniform ultimatspace based on these polyhedral Lyapunov functigis).
boundedness problem in a certain convex neighborhood @bnsider any pair of subsystems with modesind s, with
the origin then there exists a polyhedral Lyapunov funcg; # ¢2 € Q, we want to compute the region

tion that solves the problem in the same neighborhood. In

other words, the polyhedral Lyapunov function is universal QF ={z € R" : g, () < g, ()} (14)

[3]. Therefore, without loss of generality, we will restrict hi p id i of fade® and
to polyhedral Lyapunov functions in the sequel. AnotheFort IS purpose, we first consider a pair o a(_fél an
2 of the polyhedral C-set®,, andP,, respectively and

advantage of the polyhedral Lyapunov functions is that it caﬁz

be determined by numerical methods within finite number o onsider )

iterations under mild assumption. In addition, the polyhedral Carrit = cone(F}') N cone(F}?) (15)

Lyapunov functions is suitable for control design, which will )

be explored in the following sections. Thevsethf:;f is either empty or a polyhedral cone. If
CI2 £ (), then all the stater € C?*/* has the property

IV. ULTIMATE BOUNDEDNESSSWITCHING LAW 1,1 gq1,01 .
that, 1, (z) = f'z and v, () = f?z. Next, we intersect

It is known that the stability (or UUB) of all the sub- o setc®72 with the half-space defined by
systems (3) can not guarantee the stability (or UUB) of the am
switched system (1)-(2). Such a switched system might be- HF®2 — {z € R": (f& — f2)z < 0} (16)
come unboundedness for certain switching sequences [7], [4]. o " T
Therefore, it is important to characterize switching sequenceg,q get the Seﬂgié? — 032’32 N HF(;D:ZQ. The reason for
that result in ultimately bounded trajectories. In this sectio e D gyin oo g .
we will present an approach to design the ultimately boundqrb meﬁllfgl[g.the regionl,, i, can be clarified by the following
switching law for the uncertain switched system (1)-(2). This

; . ) WS ) emma 2:For everyz € Q%2 we have tha <
method is based on set induced Lyapunov functions derlv%i (z) ye ah Yo (7) <
q2 .

in the previous section. ) - a2,ia _ Gayia iz

Recall the problem we concerned is to synthesize switcﬁ—r(ggz + By def|n|t|;)1n, Qoiin = (E‘Ml NHE, " where
ing law 6() so as to assure that the system stae) is  Car.is - cone(E') N cone(F?). The Cogle(Fil ) and
uniformly ultimately bounded within a given compact setcf;?e(Fiz ) have the proqeerty thatr € ngle(Fil )s Vg, (x) =
containing the origin, say a polyhedral C-s&t with an Ji &+ @ndVa € cone(E3F), vy, () = fi7z. Note thatve &
assigned rate of convergence, $ay. A < 1. In the sequel, g fi (¥) < fi7 (x). Therefore, for all: € Q7*%, we
we assume that each individual subsystem admits,a Nave thatby, (z) < vg, ().

contractive polyhedral C-set\f < \), which is described , U
by The illustration of the conic regiof2{*";* is shown in

P,={zeR":Fx<1}CT (12) Figure 1. From this figure, an important observation can
be made, that is the hyperpladé((;’i’i"f)) = {r € R" :
L{Jﬁj — fi")xz = 0} goes through the origin and the inter-
ections of the faced}!' and F;>. This is simply comes
from the fact thatiy,, (0) = %4,(0) = 0, and forz €
FIYMF2 = ahg, (z) = 1bg, (x) = 1. We will show later that

where F? € R™«*" and1 = [1,---,1]T € R™. Such
P, can be generated by the procedure described in (
We denote the rows of the matrix? by fI € R!*",
i = 1,---,mg. By Equation (11), the Lyapunov function

induced by the polyhedral C-sé?, can be described by this observation dramatically simplify the design procedure

= ) g ) .. T
Wq(w) = maxi<i<m, 1 fi' 2} _ for conic partition based switching law.
First, we briefly describe the necessary notations from Based on the above lemma. we have

convex analysis in order to construct the conic partition.
Given a polyhedral C-s&®, letvert{P} = {v1,v2,--- ,un} 0% — U Q212 17)
stands for the vertices of a polytoge, while face{P} = « o
{F1, Fy,--- ,Fy} denotes its faces. The hyperplane that
corresponds to thé-th face F}, is defined by wherei; andi, go through all the faces’ index d?,, and
n P4, respectively. And the following corollary holds.

Hy ={z € R": frz =1} (13) Corollary 1: For everyz € Qg2, we have that, (z) <
wheref;, € R is the corresponding gradient vector of faceyq, (). _
Fy. The set of vertices of}, can be found asert(Fy) = Becauseﬂgfﬁ is an intersection of a polyhedral cone with
vert(P) N Fy. Finally, we denote the cone generated by tha half-space, so it is either an empty set or a polyhedral
vertices of Fy, by cone(Fy,) = {z € R" : }, aug,, a; >0, cone. Hencen?2 is finite union of polyhedral cones. And it
vk, € vert(Fy)}. The cone(Fy) has the property thatz €  is obvious that forr ¢ Q22, we have that)y, (z) > v, (z).
cone(Fy), ¥(z) = fra. Therefore Q2 | J QdL = R™.

91,12
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Else, if switching occur at time, say z(t + 1) € Q,
then V(z(t + 1)) = mingeq ¥q(z(t + 1)) = g (z(t + 1))
< g(z(t + 1)) < Agthg(z(t)) < AV (x(t)). Therefore, for
o £ 2 ¢ int(U,eo(Py)), We haveV (z(t + 1)) < AV (a(t)).

X Similarly, it can be shown that far € int( . (P;)), we
\ < haveV (z(t+1)) < A. Therefore, by definition, the uncertain
A switched system (1)-(2) is UUB with convergence index

B \ with the class of switching law defined y-) = ¢ for = €
e

,,,,,,,,,,,,,,,,,

Q,.
O

A. Simplified Design Procedure

As it has been pointed out that some geometric character-
istics can be used to simplify the determination of the conic
partition 2,. In the following, we will describe the simplified
design procedure through an example.

Fig. 1. The conic region of2.

Finally define Consider a second order three mode discrete-time switched
system, and assume that the target region is given as a
Q= ﬂ Ql:, polyhedral C-sef/’, and the assigned rate of convergence is
GEQ, aiFaq 0 < A < 1. Assume that each individual subsystem admits a
which has the property as follows. Ag;-contractive polyhedral C-s@t,,, A, < Afori=1,2,3.
Lemma 3:For everyz € ,, we have thaty,(z) < SUChP,, can be generated by the procedure described in (4).
g, (), Vg; € Q andg; # q. In Figure 2, the two dimensional ca%g,, for i = 1,2,3, is

Proof : For everyz € Q, =, co. 4.2, 2, thenz € Qg plotted.
for all ¢, € Q and ¢, # g. Therefore,,(x) < g, (x),
Vq; € () because of Corollary 1.
O

Some observations abodi, are important for the fol-
lowing design procedure. First, in the region Qf, ¢ €
arg minge g ¥q(x). Secondlyf, is finite union of polyhedral
cones. FinallyJ ., 2q = R", s0Q, ¢ € Q, serves as a
conic partition of the state space.

Define the following switching law based on the conic
partition of the state spade,, ¢ € Q.

r€EQ,=0(-)=¢q (18)

For the caser € 2, N §,, one simply remains the previous
modeg.

It can be shown that the switching law defined as abougg. 2. The),,-contractive polyhedral C-s@,,, A,, < A fori = 1,2, 3.
can guarantee the UUB for the uncertain switched system

1)-(2). Next, in order to calculate the regiofti2, we simply
Theorem 1:Consider the class of switching law defineddraw some radii which star from the origin and go through
in (18), the uncertain switched system (1)-(2) is UUB. the intersection points of faces &f,, andP,,. These radii
Proof : Define the functionV (z) = mingeq ¥q(x). In the partition the state space into finite union of conic regions.
following, we will prove that sucli/(z) is a Lyapunov func- Notice that on these radiityg, (z) = g4, (z), and that

tion for the switched system (1)-(2)with the above switchingvithin each conic region partitioned by these radii either
law. First, it is straightforward to verify that' (x) is positive  v,, (z) > 1y, (x) OF ¥y, () < by, (x) holds. Therefore(22
definite, V(x) = 0 iff = 0 etc. The key point is to show is just the union of some of these conic regions. To determine
thatV'(x) decreases along all the trajectories of the switcheathether one of these polyhedral cones is containe@in
systems under above switching law. First, for the case @ie simply check whether there exists one point in this cone
z ¢ int(U,eq(Pg)). Assume that at time, z(t) € €, whichis on the edge dP,, but not contained itint(Py, ). If

and current mode;(t) = g¢. If no switching occur, i.e. such points exist in the cone, then include this cone into the
z(t+1) € Qq, thenV (x(t)) = mingeq 1q(z(t)) = Y4(x(t))  regionQZ (from the geometric interpretation of Minkowski
andV (z(t+1)) = thg(x(t +1)) < Agthg(x(t)) < AV(x(t)). function). The regior2% is just the union of such cones.
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Similarly, we getQd:. And the regionQ,, = Q% (\Qds, uncertain switched linear system, a systematic method for
which is illustrated in the leftmost plot in Figure 3. Thecomputing switching control laws that guaranteed ultimately
middle plot of Figure 3 illustrates the regidn,,, while £2,,  boundedness was proposed. The method was based on set-
is the rightmost plot of Figure 3. And the conic partitioninduced Lyapunov functions. For systems with linearly con-
of the state space is plotted in Figure 4. From this conistrained uncertainties, it was shown that such a function
partition, the UUB switching lawg(-) = ¢; for z € Q,,, can  could be derived by numerically efficient algorithms involv-

be easily implemented. ing polyhedral sets. Based on these set-induced Lyapunov
functions, a procedure to construct UUB switching control
laws based on the conic partition of the state space was
presented.
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