
Sadhana, Vol. 21, Part 3, June i 996, pp. 345-362. © Printed in India.

Synthesis of unlimited speech in Indian languages using
formant-based rules

XAVIER A FURTADO t and ANIRUDDHA SEN

Computer Systems and Communications Group, Tata Institute of Fundamental
Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
email : asen@tifrvax.tifr.res.in

Abstract. Synthesis of continuous and unlimited speech is a matter of theo-

retical as well as technological interest. Independent efforts are needed for syn-
thesis in Indian languages which are substantially different from English and

other European languages. The paper discusses basic synthesis issues like text-

to-phoneme and phoneme-to-speech conversion and incorporation of prosody.

The three commonly adopted methodologies of concatenation, formant and ar-

ticulatory syntheses are compared. The TIFR phoneme-to-speech synthesizer
which utilizes a standard formant synthesizer as a speech production model

is described and the methodology for evolving and organizing formant-based

rules to drive the used synthesizer is emphasized. The results of some per-

ception tests are reported and a few potential applications are suggested. The

direction of the future work for enhancing the quality and expanding the scope

of the synthesizer is indicated.

Keywords. Speech synthesis; computer speech; Indian language synthesis.

1. Introduction

Incorporation of human faculties like speech and vision into machines is a basic issue of

artificial intelligence research. The capabilities of a computer to accept spoken input and

generate speech output are termed as speech recognition and synthesis respectively.

Speech synthesis requires a profound understanding of speech production and percep-

tion, and has always been a topic of great interest in speech and cognitive sciences. Recent
advances in computer, communication and information technologies have considerably

enhanced its technological motivations, particularly for fast and automatic access of infor-

mation through telephone.

In its simplest form, 'computer speech' can be produced by playing out a series of digi-

tally stored segments of natural speech. The segments may be coded for storage efficiency.

f Deceased

345

346 X A Furtado and A Sen

The technique involved is elementary. However, it cannot be extended for producing con-

tinuous speech with unlimited vocabulary because the context sensitivity of speech makes

simple merging of stored speech segments into larger utterances unacceptable. 'Unlimited'

speech synthesis, to which we will restrict our subsequent discussions, has to deal with

this and several other issues.

Over the years, several independent methodologies for unlimited speech synthesis in

English and other European languages have evolved. Although speech synthesis research

in India has greatly benefited from such work, substantial differences in phoneme sets and

stress patterns in Indian languages rule out direct adoption of the techniques and makes

indigenous development mandatory.

This paper presents a phoneme-to-speech synthesizer developed by the authors in the

speech laboratory of the Tata Institute of Fundamental Research (TIFR). It can synthesize

unlimited speech in Hindi and English as spoken by typical Indians. From among sim-

ilar synthesizers in Indian languages, it stands unique in its methodology of generating

speech wholly by a production model whereas other synthesizers utilize stored speech

in some way or the other. The speech production model used is a standard formant syn-

thesizer suggested by Klatt (1980) and it is driven by formant-based rules developed

indigenously.

The following sections briefly discuss the issues involved in speech synthesis and various

methodologies which can be applied to tackle its core problem - phoneme-to-speech

conversion. The TIFR synthesizer is then described in some detail and its performance

reported.

2. Issues related to unlimited speech synthesis

The basic issues related to unlimited speech synthesis can be categorized as: (a) Text-

to-phoneme conversion (b) phoneme-to-speech conversion and (c) application of prosody.

Such categorization breaks down the synthesis problem into fairly independent components

and allows reasonably modular solution.

2.1 Text-to-phoneme conversion

An 'unlimited' speech synthesizer has to accept any arbitrary input message which is

to be converted to speech. In most practical situations, it is convenient to specify the

messages in textual form. Text is acceptable to most people and can be easily processed by a

computer.

Text-to-phoneme conversion means the conversion of the textual input message into its

corresponding pronunciation which is specified by means of a string of phonemes. The task

is comparatively easy for the languages where the written text and the pronunciation are

related in a simple and straightforward manner (e.g. Hindi) and is non-trivial where they

are not (e.g. English). The conversion, in general, involves derivation of letter-to-phoneme

rules, dictionary formation and look-up, and morphological analysis. As the input text is

analyzed by the text-to-phoneme module, it should preferably extract information related

to prosody (§ 2.3) which is derivable from such analysis. Clearly, there can be nothing like

Speech synthesis in Indian languages 347

a 'perfect' analysis of text. Text-to-phoneme conversion, therefore, is an open problem

and requires continous research and development.

As stated earlier, ours is presently a phoneme-to-speech synthesizer. However, it can be

converted to a complete text-to-speech system by adding any appropriate text-to-phoneme

module at the front end. Such modules, with acceptable quality, have already been devel-

oped for some Indian languages (Bhaskararao & Mathew 1992; Bhaskararao et al 1994).

But until now, precisely little work has been done on text-to-phoneme conversion for Indian

English.

2.2 Phoneme-to-speech conversion

Phoneme-to-speech conversion can be termed as the 'essence' of speech synthesis and the

work presented here is mostly concerned with this. Various phoneme-to-speech conversion

methodologies in general are discussed in § 3, whereas our specific work is described in

§§ 4, 5 and 6.

2.3 Application of prosody

Prosody, in simple acoustic terms, means the variation of pitch, intensity and (intrinsic)

duration of the utterances with time. Proper prosody is to be applied for making the

synthetic speech natural sounding and at least a minimal amount is needed to make the

speech even intelligible. Determination of proper prosody depends on analysis of syntax

(grammar), semantics (meaning) and pragmatics (linguistic context). Therefore, this is

also an open research problem.

In our synthesizer, only elementary prosodic rules have been applied so far. (These

are discussed in § 6.7.) The immediate emphasis was on making the synthetic speech

intelligible. As this was done with reasonable degree of success, incorporating better

prosodic rules for making the speech more natural-sounding is the next step.

3. Various methodologies for phoneme-to-speech conversion

For phoneme-to-speech conversion in an unlimited speech synthesizer, the related prob-

lems can be broken down into the following sub-problems: (i) selection of basic units

(ii) generation of the selected basic units and (iii) concatenation of the basic units for

synthesizing continuous speech.

The methodologies for synthesis may vary, but in order to generate unlimited speech out

of a limited corpus of stored information, (i) the selected basic units must be small enough

(e.g. phonemes, syllables) so that the total inventory is limited and (ii) rules of some kind or

the other are to be applied for concatenating such units into continuous speech, irrespective

of the methodology adopted.

The methodologies commonly used can be divided into two broad categories: (a) synthe-

sis by concatenating stored natural speech segments (coded or uncoded) and (b) synthesis

by generating speech from a speech production model. The latter, in turn, can be clas-

sifted into (i) formant synthesis, where the model is based on several formant frequency

resonators and (ii) articulatory synthesis, where effort is made to mathematically model

348 X A Furtado and A Sen

the static and dynamic characteristics of various articulators. A brief description of these

three methodologies along with their comparative study follows.

3.1 Synthesis by concatenatioJ~

A fundamental problem of speech synthesis is that the acoustic manifestations of basic

units of the utterances, i.e pt, onemes, are very much sensitive to the phonemic context.

Also, the transition from one phoneme to another carries substantial amount of information

necessary for the perception of both the phonemes.

In concatenation synthesis, a limited number of stored segments obtained from real

speech are used. However, in view of the above mentioned reasons, the inventory cannot

be just a set of single phonemes. A phoneme cut out from a context would most probably

not fit into another and a sequence generated by pasting such phoneme splices would be

completely unintelligible. In order to capture the contextual variations and transitions,

splices at least equivalent to diphones are to be taken as basic units. In addition, if the

transitions are not to be missed, the end-points of the splices must be in the 'steady' region

of speech.

Diphones, demi-syllables are some of the basic units normally selected for the purpose

(Dan et al 1990; Bhaskararao & Mathew 1992). For Indian languages, even 'characters'

from the written scripts (consisting of CV syllables like 'koo', vowels like 'ee' and conso-

nants like 'p' which can be represented by a single written character) were used as basic

units (Rajesh Kumar et al 1989). In general, ifn is the total number of phonemes, the num-

ber of elements in a diphone-type of inventory will be of the order of n 2. With a typical

number of phonemes like 5(1, the inventory will run to 2500 or so. However, as all diphone

combinations do not occur and as a single splice can often be made to represent 'a group'

with minimal degradation of quality, sizable pruning of the inventory is possible.

The basic advantage of the concatenation method is its simplicity. As the units are taken

from real speech, the cumbersome task of 'generating' them is obviated. Complicated

transitions like CV are automatically 'captured' in totality by the actual speech data and the

'rules' for concatenating the basic units are therefore elementary. This allows development

of acceptable systems with limited investment of time and specialized skill. If the original

time waveforms are stored, the processing is basically in the time domain and the synthesis

is very fast. It is then possible to make real-time synthesizers on general-purpose machines

like PCs.

Some problems, however, are associated with this method. During data collection, it is

not easy to ensure that all the steady-state ends of the segments (e.g. all demi-syllables

ending and beginning with/i/) are exactly matching in formant frequencies etc. This can

lead to 'jerks' at the joints. Also, it is obvious that this method needs some 'steady' segments

of speech. However, in fluent speech with substantial co-articulation, such steady-states

will often be non-existent and it is difficult to capture such fluency with this method. Many

consonants are almost completely 'transitory' in nature. It is difficult to reconstruct various

clusters of such consonants from segments with steady-state end-points. Another problem

is that while storing segments, the allophones also should be added to the list of phonemes

and this increases the inventory (proportional to the square of phonemes plus allophones)

Speech synthesis in Indian languages 349

substantially. Also, in this method, the voice is 'personalized' and a totally new segment

inventory is to be prepared for generating a different voice.

3.2 Formant synthesis

This method, adopted by us and described later in detail (§§ 4,5,6), is based on the gener-

ation of speech from a production model which has formant frequencies, energies, voice

source control parameters (e.g. pitch) and few other acoustic-phonetic parameters as con-

trol variables. It is possible to generate any arbitrary speech by applying a set of context-

sensitive rules on the stored phonemic data for enacting contextual modifications and for

generating transition segments.

This method can overcome many of the limitations of the concatenation method. With

single phonemes as the basic units, rules for smooth concatenations can be formulated. With

only a few additional rules and little additional data, consonant clusters and allophones can

be handled elegantly. Presence of a 'steady-state' is not mandatory, hence co-articulations

can be incorporated. Also, as the model abstracts the mechanism of speech production,

the resulting voice is not personalized and can be altered easily by changing a few control

parameters. The effort needed to switch over to another similar language with a marginally

different phoneme set is also minimal and this is very important in a multi-lingual country

like India. Overall, this synthesizer has the potential to surpass a concatenation synthesizer

in both quality and versatility.

However, in order to realize such potential, a set of appropriate rules are to be derived

and this is not a trivial task, particularly because such rules are basically 'heuristic' in

nature. The time and specialized skill needed to develop such a synthesizer is therefore

high. In spite of the best of efforts, there will be approximations at two levels: in modelling

the speech production as well as in capturing the model control parameter variations by

a finite set of rules. A continuous effort to minimize the deviations are therefore called

for. Fortunately, the synthesizer framework can be made flexible enough to allow gradual

improvements. As the model uses a number of resonators, it is computationally expensive.

But with the current 'hardware revolution', affordable and near real-time synthesizers

using this technique are now in the realm of possibility.

3.3 Articulatory synthesis

For generating various utterances, the formant synthesizers control acoustic-phonetic fea-

tures like formant frequencies, energies, pitch etc., whereas when we speak, we have no

independent control over them. This necessitates 'heuristics' for rule formation. Articu-

latory synthesis strives to eliminate the problem by modelling the actual mechanism of

speech production through the articulators and their movements. Thus it is expected that

more elegant and conceptually clearer rules can be formulated. It should also be easier

to capture the production mechanism in totality if the lnodelling is done on the basis of

a finite and exhaustive set of articulatory movements rather than on the basis of the vari-

ation of a subjectively selected set of acoustic-phonetic features (as is done in formant

synthesis).

350 X A Furtado and A Sen

Here, too, the problem is to realize the theoretical potential by optimizing the mathemat-

ical model and collecting sufficient data (including X-ray data of articulator movements

during production of various types of utterances). This method is also computationally

very expensive. Overall, although this can be described as the synthesis strategy of the

future, at the moment it is more a research issue than a commercial reality and more so in

India.

4. TIFR synthesizer overview

The phoneme-to-speech synthesizer developed at TIFR is completely a software synthe-

sizer. The only special hardware it needs is a D/A converter, along with de-aliasing filters,

for playing back the synthetic speech. A sampling frequency of 10 kHz and a de-aliasing

low-pass filter cut-off frequency of about 4.7 kHz is used. The synthesizer was imple-

mented on a Microvax II computer where it ran at around 24 times real time (i.e. 24 s was

needed to synthesize 1 s of speech). A demonstration version was also implemented on a

PC-386, where it ran at around 13 times real time.

As input, the synthesizer accepts a string of phonemes from a repertoire that is made

up of 57 phonemes normally used in Hindi and Indian English, and markers for silence

and question mark. Figure 1 lists these phonemes (and their classes) along with their one

or two character symbols which can be entered from an English keyboard. (Note: If the

second character of the symbol is '1' it can be optionally omitted. Thus 'k l ' and 'k'

1. Silence

2. Vowels

3. S tops

4. Alh ' ica tes

5. Nasuls

{~. Semi-vowels

7. q_2"ills/Flaps

8. LateraLs

9. Fr ica t ives

u h ~ a~l~ ~2¢ b ~{3~ u q l 00~

u h $, a a $, e q $, ~ $, u q $, o o $,

al xl- ~ ~lr
kl, k2, gl, g2,

t l , t2, dl, d2,

t3, t4, d3, d4,

p l , p2 , b l , I)2
"w -~ w $r
cl~ c 2 ~ j l , j 2

i11~ I l l I 11'2~ II~l
7:1" ,'T "in" ~-.

y , w

r , d5

1
ra"

ss , s h t h , z, t', v ,
~r ~r ~ ..ff.~ Figure 1. Phoneme repertoire.

Speech synthesis in Indian languages 351

phonemes Synthesis- I parameters I Aeoustlo-phonetl: j
by-rule >i speech production;
module [/ model [

speech

Figure 2. Block diagram of the TIFR synthesizer.

are equivalent.) The synthetic speech output can be generated in any of the four voices:

(i) low-pitched male voice (ii) high-pitched male voice (iii) high-pitched female voice and

(iv) low-pitched female voice. However, only the male voices have been fine-tuned.

The synthesizer (figure 2) is made up of two fairly independent modules: (i) The acoustic-

phonetic speech production module or the parameter-to-speech module (§ 5) accepts a

number of acoustic-phonetic parameters updated at regular intervals as input and generates

corresponding synthetic speech. This is essentially the formant-based speech production

model. (ii) The synthesis-by-rule module or the phoneme-to-parameter module (§ 6) gen-

erates the input parameters needed by the parameter-to-speech module. It is basically the

formant-based rule module which takes the current and adjacent phonemes into consider-

ation while generating each parameter contour. Currently, each parameter is updated at an

interval of 5 ms, which is small enough to capture most of the variations in speech.

An important aspect of any synthesis or recognition methodology is to what extent it

is language-independent. The extent to which the advanced techniques developed interna-

tionally can be utilized depends on this. For the currently described synthesis methodology,

whereas the speech production model can be considered to be reasonably valid for any lan-

guage, the phoneme to parameter conversion rules, which have to capture the variation of

acoustic-phonetic features corresponding to the specific articulations of a given languages,

should be language specific.

To start with, it was therefore decided to have a speech production model similar to the

one described by Klatt (1980). The set of rules for generating the time variations of its

control parameters was developed fully at TIFR.

5..Parameter to speech conversion

The main components of this module are: (i) Voicing source, (ii) noise source, and (iii) a

series of resonators and anti-resonator(s). By proper arrangement of these components,

virtually any speech sound can be faithfully synthesized.

The voicing source used is an impulse train with a periodicity corresponding to the given

pitch period. It is then shaped by an appropriate low pass filter. Provision for incorporating

a more 'natural' voicing source exists. This source is used to generate vowel as well as

voiced consonants.

The noise-like sounds (e.g. frication or a burst from the release of a stop consonant)

require a different type of source. It is implemented by a random noise generator and the

output is again shaped by 'soft filtering'.

352 X A Furtado and A Sen

A series of resonators model the vocal tract. An anti-resonator is incorporated to facilitate

the generation of nasal vowels and nasal consonants and provision exists for adding more,

if the need arises.

A digital resonator is implemented (Klatt 1980) by the equation

y (n T) = A x (n T) + B y (n T - T) + C y (n T - 2T), (1)

where y (n T), y (n T - T) and y (n T - 2 T) are the current and two previous output samples

and x (n T) is the current input sample. The resonator coefficients A, B, C can be computed

by

C = - exp(2zr Bw T),

B = 2 exp(~ Bw T) cos(2rr F T) ,

A = I - B - . C ,

(2)

(3)

(4)

where F is the central frequency of the resonator (i.e. the formant frequency), Bw is its

bandwidth and T which is l/(sampling rate) is equal to 0.0001 second at the used sampling

rate of 10 kHz.

For anti-resonators, the equation (Klatt 1980) is

y (n T) = A ' x (n T) + B ' x (n T - T) + C ' x (n T - 2T), (5)

where x (n T - T) and x (n T - 2 T) are the previous two samples of the input x (n T). The

coefficients are determined by

A ' = 1.0/A, B f = - B / A a n d C ' = - C A ,

where A, B and C are obtained by using the antiresonance center frequency F and band-

width Bu, in (2), (3) and (4).

The resonators can be connected in cascade or in parallel. Both type of synthesizers

were previously used with good effect. For example, while Klatt (1980) used cascade

synthesizer, Holmes used the parallel one (Holmes et al 1964; Holmes 1983). As our idea

was to waste least effort on the topics already worked on, we started simply by adopting

the cascade synthesizer methodology used by Klatt and pursued it, as no serious problem

was faced.

In this method, the resonators are connected in cascade for generating voiced sounds.

In other words, the first resonator receives the source pulse train as input and then the

output of a resonator is fed as the input to the next one. The output of the last resonator is

the resulting voice output, having spectral poles at all the resonance frequencies. Spectral

zeros can be similarly incorporated by adding anti-resonators.

A minor problem associated with cascade synthesizers is that the amplitudes of different

resonance peaks cannot be directly controlled. However, it can be controlled indirectly by

adjusting the bandwidths of the resonators. Furthermore, there is a provision to 'tilt' the

spectrum i.e. to attenuate the higher frequency components by appropriate filtering. Proper

use of these controls are essential especially for generating voiced consonants (e.g. voice

bars, nasals).

For generating the noise spectra, however, the resonators are connected in parallel. This

gives a more realistic noise spectra. The filtered random noise is passed through these

Speech synthesis in Indian languages 353

parameters from
synthesis-by-rule

module
% /

pitch d

formant frequencies[

. _ ~ Fricotion J Formant Resonators
Source -I in Parallel

energies

soeec;

f

Figure 3. Acoustic-phonetic speech production module schematic.

parallel resonators and the amplitude of each resonator is tuned to generate the desired

noise spectra with specific energy concentration patterns.

For generating 'aspiration' sound (the one found i n / h / o r in aspirated consonants), the

random noise is instead passed through the cascade resonators. As aspiration is essentially

frication near the vocal fold and the noise passes through the entire vocal tract (unlike other

constrictions which are made somewhere within the vocal tract), it is better modelled this

way.

Currently, six resonators and one anti-resonator are being used.

Figure 3 gives a block level representation of the parameter to speech conversion

scheme.

6. Formant based rules

For parameter to speech conversion, the production model needs control parameter streams

whose time-varying values correspond to any arbitrary input phoneme sequence. To pro-

duce the streams automatically, a comprehensive set of rules are employed. The techniques

for their formulation and organization are described hereafter in some detail.

6.1 Indigenous development

The rules are evidently language-dependent. To state a few differences between Indian

languages and English: (i) Many Indian languages (e.g. Hindi) have separate aspirated and

unaspirated consonants. (ii) Likewise, there are separate retroflexed and non-retroflexed

354 X A Furtado and A Sen

consonants in Indian languages. (iii) The criteria for distinguishing voiced and unvoiced

consonants are not identical for Indian languages and English. (iv) Most Indian languages

have nasalized vowels, which .do not feature in English (although they are present in

some European languages like French). (v) Also, the American/British accent is not fully

acceptable to native Indian listeners.

As a result, a totally indigenous set of rules had to be evolved and this activity was at

the centre of our attention from the start. The task was made even more difficult due to

the lack of adequate information regarding the organization of rules in other languages,

presumably because of proprietary problems.

6.2" Classifying phonemes and parameters for reducing rules

As mentioned earlier, the acoustic-phonetic manifestations of phonemes are context de-

pendent. In order to capture their variations, the rules must also be context sensitive. If we

consider even a diphone context and consider the independent variation of each and every

parameter, clearly a combinatorial explosion will result.

The speech production model has about 40 control variables. However, quality synthesis

is possible by keeping many of them constant throughout the utterance and varying about 15

to 20 parameters only. Even then, if there is a rule for concatenating each varied parameter

for each diphone context, more than 50,000 rules would be needed.

Fortunately, phonemes can be classified into types which exhibit similar transition char-

acteristics. This was first shown by Liberman et al (1959). Rao & Thosar (1974) extended

the concept to Indian phonemes. Phonemes can be classified according to their manners

of articulation or places of articulation or both. We have classified them according to their

manners of articulation in order to take advantage of the obvious similarities in steady-state

and transition characteristics of phonemes thus classified.

Theoretically, further reduction of rules and phoneme data storage by classifying the

consonants according to their places of articulation (velar, palatal, retroflex, dental, labial) is

possible. The resulting reduction can be cost-effective in the methods where stored speech

segments are used. However, in our method which organizes the rules in a compact manner

(§ 6.4) and uses minimum amount of data for each phoneme, the gain is insignificant. For

example, phonemes with the same place of articulation can use the same locus equations

(§ 6.6). The saving in memory storage for the locus equation coefficients would be very

small and would hardly compensate for the sacrifice of the accurate representation of the

formant movements of these phonemes.

After considering the costs and benefits, further sub-classification of the phonemes ac-

cording to their places of articulation was not attempted. The phoneme classes selected

solely on the basis of the manners of articulation are: (i) silence (ii) vowels (iii) stops

(iv) affricates (v) nasals (vi) semi-vowels (vii) trills/flaps (viii) laterals (ix) fricatives

(figure I).

Consequently, concatenation rules are to be formed according to the classes of adjacent

phonemes and this results in a phenomenal reduction in the number of rules. Further

reduction was also done by dividing the control parameters into groups which exhibit

similar variation patterns in any given context (e.g. frequencies and bandwidths of all

formants).

Speech synthesis in Indian languages 355

6.3 Steady-state and transition segments

For convenience of design, the duration of each phoneme is divided into a central steady-

state segment and a transition segment at each end. The 'steady state' is steady in a

comparative manner only. It is like a central reference segment for a phoneme from where

we can proceed to construct parameter trajectories at each end. The steady-state segments

may also be influenced by context and may embody transitions, but to a lesser degree

in comparison with the transition segments. The transition segments, on the other hand,

connect the steady-state segments of adjacent phonemes. For example, for a vowel-vowel

combination the transition is done by directly interpolating the steady-state formant values

of one to the other. In the case of stop consonants and affricates, the closure period is

considered as the steady-state segment while the burst/frication and the formant-movement

regions are collectively designated as the transition segment. Separate sets of rules are

applied for constructing parameter trajectories in steady-state and transition segments.

6.4 Compact and flexible organization of rules

In anticipation of substantial additions and refinements of rules, these were organized in

such a way as to give substantial amount of flexibility as well as compactness and this is

one of the salient features of our synthesizer. This is implemented essentially by means

of a set of two-dimensional tables (corresponding to each parameter class) which control

the selection of 'interpolation types' (both for steady-state as well as transition segments)

depending upon the classes of the adjacent phonemes. An 'interpolation type' specifies

the mannerin which a specific parameter in a specific context will vary. For example, it

can linearly interpolate to the next target (as formant frequencies mostly do), can have

a sharp change followed by a more gradual change (as does amplitude of voicing for a

stop-vowel combination) or can just jump to the next target (as the amplitude of frication

does at the plosive burst of a stop consonant). The interpolation type at a given context can

be changed by just altering a few table entries. New interpolation types can be added, if

needed, with little extra effort. It is even possible to change the classification of phonemes

and paranleters (e.g. if we want to put voiced and unvoiced stops as different 'types', a few

more entries are to be added). In this way, a high degree of flexibility is attained. It is also

clear that it makes the 'rules' very compact, as they are basically embodied into tables and

the implementation of a handful of interpolation types.

However, it will be often necessary to recognize the 'independent' feature(s) of some

phonemes which could not be captured by the class characteristic. Such situations are

taken care of by 'exception' rules. For example, from among the fricatives, the formant

frequencies of only/h /show an affinity towards the adjacent vowels and this 'allophonic

variation' is to be taken care of by rules explicit to/11/. As the number of exception rules

could be kept quite small, the general organization, based on the classification of phonemes

and parameters, is vindicated.

Whereas the bulk of the rules in this system are implicitly embodied into tables and their

implementations, only the 'exception' rules are specified in explicit if-then-else constructs.

356 X A Furtado and A Sen

6.5 Derivation of rules and extraction of phoneme data

Rules are mainly derived using the following steps:

1. Formation of the framework for rule organization by the selection of suitable groups

for phonemes and parameters.

2. Selection of a set of 'interpolation types' for capturing the variation of the parameters

in the contexts of all possible phonemic classes.

3. Provision of a means of determining which 'interpolation type' is to be selected in

a given phonemic context. This is done for each parameter group by means of a two-

dimensional table for the steady-state segments and another for the transition segments.

4. Implementation of the 'interpolation types'.

5. Derivation of 'exception' rules.

Each of these tasks calls for suitable acoustic-phonetic knowledge. No doubt, analysis

of speech and measurement of its features form the basis of acquisition of such knowledge.

However, the rules and their framework cannot be directly constructed from the measured

data. They are rather obtained by the interpretation of data and application of intuition

(heuristics). The rules thus theorized are validated and refined by actually using them for

synthesis and testing the output by means of perception experiments.

The rules need data, pertaining to each phoneme, to operate on. A table, containing

steady-state parameters for each phoneme is maintained. Other important types of data

stored are: (a) The burst spectra (amplitudes for each formant frequency during the noise

burst) for each stop consonant. If needed, different entries are stored for front, mid and

back vowel contexts. (b) Normal steady-state duration of each phoneme. (c) Transition

time for each phonemic context and (d) Voice-onset-time (VOT) for each stop consonant.

This is the time difference between the noise burst and the starting of voicing.

Most of these data are initially estimated from spectrographic analysis of real speech.

They are however refined through trial and error for best quality synthesis.

6.6 Locus equations

Among the variable parameters, formant frequencies are the most important ones for the

perception of particular utterances. Generating formant trajectories accurately is therefore

of utmost importance.

It is observed that the terminal (entry/exit) formant frequencies for a phonemic segment

are not fixed, but are considerably influenced by the context. For example, if a phonemic

segment/pl is preceded by the vowel/u/, then the second formant frequency at the onset

of stop will be very low (about 600 Hz) whereas it will be considerably higher (about

1400 Hz) if the preceding vowel is/i/. Several methods to capture this variation of the

terminal formant frequencies for a consonant corresponding to different vowels have been

described in literature. We used Klatt's (1987) 'modified locus equation', which is given

by:

Fonset = Flocus + k(Fvowel - Flocus) . (6)

Speech synthesis in Indian languages 357

Here, Fonset is the formant frequency either while entering into a vowel from a given

consonant or while exiting from a vowel into the same consonant. Fvowe~ is the steady-

state formant frequency of the vowel. Frequency Flocus and constant k are characteristic

features for any given consonant. To find them, Fonset corresponding to as many Fvowel

frequencies as possible are found and plotted for each consonant. As (6) is linear, the best

straight line through all the plotted points gives the best estimate for Flocus and k. Set of

values for k and Flocus are kept for all consonants and for each variable formant. Separate

values can be stored for CV and VC contexts. Also, provision for keeping separate values

for front, back and rounded vowels exists.

6.7 Duration rules and intonation

A few elementary duration rules which depend on the phonemic context and not much on

the linguistic context were applied. These include rules for shortening of a vowel adjacent

to a stop consonant and for pre-pausal lengthening of a phoneme.

As for intonation, a flat pitch is used except for the last vowel when the pitch is raised or

dropped, depending on whether it is an interrogative or assertive sentence (it is determined

by the presence/absence of an interrogation mark).

6.8 Steps for generating parameters by rule

After briefly viewing the different aspects of the rule system, now we finally come to the

various steps for generating the parameter streams (figure 4):

1. The phoneme string is parsed, each phoneme is identified and associated with its class.

Silence is implied both at the beginning and at the end of the phoneme string. Elementary

rules like the singling out of geminates are applied. (Each geminate is replaced by a

single phoneme, with increased duration).

2. The intrinsic steady-state and transition durations for each phoneme are found from

tables. Rules are then applied to modify them according to the context.

3. For a given variable parameter and for a given phoneme, the transition segment is first

interpolated between the steady-state of the previous phoneme and the steady-state

phonemesl Phoneme
Decoder an(

[Clauifier

I L - b) Parameter
Cancatenati°n Rules I -

1
Parameter Stream

Generator

Intonation control

I' Phoneme
I Data

1

Figure 4. Synthesis-by-rule module schematic.

parameters

t

358 X A Furtado and A Sen

of the current one. This is done by using the interpolation type corresponding to the

phoneme class context (i.e. previous phoneme class and current phoneme class). Then

the steady-state segment is interpolated. This too is done by taking the phonemic context

into consideration.

4. Step 3 is repeated for all the variable parameters for the same given phoneme.

5. Steps 3 and 4 are repeated for the first to the last phoneme.

6. Ultimately, the pitch contour is superimposed on the utterance.

There are many important deviations from this general framework, which are taken care

of independently. For example, as mentioned earlier, the allophonic variations of /h /have

to be handled as exceptions. Also, the burst energy contour for a stop consonant is fairly

complex. So, these are generated by explicit amplitude rules corresponding to the place of

articulation of the stop.

Figure 5 shows an example of the operation of the synthesis-by-rule module. The word

'out' in the form of the phoneme string 'aauqt' is given as input. The phoneme string is

parsed into its components 'aa', 'uq' and 't' and their corresponding classes (vowel, vowel

and stop) are identified. The phoneme durations (which include the steady-state durations)

and the transitions are shown. Out of a set of about 20 parameters which are varied in time

by rules, the variations of four selected ones (av - the amplitude of voicing and F1, F2,

F3 - the first three formants) are illustrated in the figure. The spectrogram of the synthetic

speech is shown at the bottom.

Figure 6 shows the spectrograms of the word 'Bambai' spoken naturally (at the top) and

synthesized by our system (at the bottom) for comparison.

7. Performance

Unfortunately, no clear standard for evaluating the performance of a synthesizer has

evolved internationally, with the leading laboratories conducting performance evaluations

suiting their own requirements. For synthesis of Indian speech, any performance evaluation

result is yet to be published.

The performance of a synthesizer can be described in terms of intelligibility, quality

and speed. As we have emphasized on intelligibility at the current stage, we evaluated

it in somewhat rigorous manner with the 'segmental intelligibility test' as performed by

Carlson and Granstrom of KTH (Carlson et al 1990). For this, 102 VCV syllables were

synthesized with three 'extreme' vowels /a/, /i/ and /u/ and 34 consonants (including

semi-vowels) which are acceptable to our synthesizer. (We left out /v/because in Indian

languages it is quite often pronounced as/w/.) The syllables were played in a random

sequence to 8 listeners who were not much exposed to synthetic speech earlier and who

were given the opportunity to listen to each utterance only once. The listeners were asked

to identify the consonants and the error rate in identifying them was 45.7%.

To compare with the internationally reported results, the KTH synthesizer, under similar

test conditions, had an initial error rate of about 42% which was improved to about 12%

over several years (Carlson et al 1990). Under less stringent closed response (multiple

Speech synthesis in Indian languages 359

Phonemes

Classes

Durations

Transitions

av

F5

F2

FI

oa

vowel

E
uq

II
vowel

J
11

t

stop

! i

i

i

Spictogram

Figure 5. Synthesis-by-rule: an example.

X A Furtado and A Sen 360

Figure 6. Spectrograms of the word 'Bambai': natural speech (at the top) and syn-

thetic speech (at the bottom).

choice) tests, the error rate in identifying consonants varied from 27% (e.g. Type-n-talk)

to 3% (e.g. DECtalk)(Klatt 1987).

As mentioned earlier, there is no previously reported result on Hindi speech to compare

with. However, it can be argued that the error rates are likely to be more for Hindi due to the

presence of many more consonants (e.g. there are 16 stop consonants in Hindi as against

6 in English) and their greater confusabilities (e.g. between the retroflexed and dental

consonants and also between the aspirated and non-aspirated consonants). All considered,

the error rate of our synthesizer is moderately high, but compares favourably with the

initial error rate of the KTH synthesizer under similar test conditions.

From among the errors, some are due to inexact implementation (e.g. the error rates for

nasals and affricates were high) and improvements were undertaken as per the perception

test results. However, the closeness of some phoneme pairs [e .g . / r /and the retroflexed

Speech synthesis in Indian languages 361

flap (d5 in figure 1) , / f / and the voiceless, aspirated labial stop (p2 in figure 1)] puts a

practical limit on the reduction of error rate at syllable level. They are expected to be better

perceived at a word or sentence context.

It is expected that, in general, the perception accuracy for nonsense syllables will be much

less than the corresponding value for meaningful sentences generated by the synthesizer.

To test this, we played out the synthesized address of an unfamiliar building and the

error rate in identifying the phonemes in this 'global acceptance test' was 6.8%. This

establishes our estimation that for any practical use, the intelligibility of the synthesizer is

acceptable.

8. AppHcafions

Speech synthesizers, especially in the form of comprehensive text-to-speech systems, have

a wide range of potential applications. These include public announcements, voice-mode

computer tutors (specifically, language tutors) and various aids for the speech handicapped

and the blind. The last mentioned category of applications is described in some detail in

Klatt's (1987) review paper.

However, one category of potential applications we want to particularly emphasize is the

access to information over telephone from a computerized information base. With the cur-

rent 'information revolution' and the explosion of computer and communication networks,

the demand for automatic access to information of public utility (e.g. railway reservation

status, flight schedules, latest stock market quotations) by dialling will rapidly increase.

The real-time update of the information base will rule out pre-recorded messages or even

manual response. The usage of fast and quality synthesizers will be the only solution. Even

when the information base is not updated very fast, a text-to-speech synthesizer may be

advisable because text occupies much less storage than the speech waveform. The access

to the specific information needed can be done by a multi-level menu system and can

be implemented by either touchtone buttons or by a small vocabulary voice recognition

system.

9. Conclusions

This paper describes our source-filter model-based synthesizer against the backdrop of

the current advances in the area of speech synthesis in Indian languages. At least one

concatenation-based real time text-to-speech system is now available (Bhaskararao et al

1994). It is expected that the work reported here will clear the way for formant synthesizers,

with better potential for quality and versatility, to appear in the scene.

The major hurdle has been successfully overcome with the development of a comprehen-

sive set of rules for synthesizing unlimited speech in some Indian language(s). A standard

implementation of the source-filter model was found to be adequate as the basic tool for

such synthesis. A formant-based text-to-speech synthesizer should be the next logical step.

For that, incorporation of text-to-phoneme conversion is necessary. Initiating research

and development in that direction is in our future agenda. Any readily available module

can also be plugged in.

362 X A Furtado and A Sen

For meaningful applications, the synthesis should be done in real or near real time. This

is a hardware engineering problem and an acceptable solution with the current state-of-

the-art is possible.

That a rule-driven formant synthesizer can generate quality speech in Indian languages

has been amply demonstrated by our work. However, we feel that the full potential of the

synthesizer is far from being utilized. Taking advantage of the flexible rule structure, quality

is being improved continually. The work includes refinement of phoneme concatenation

rules, and better incorporation of prosody and co-articulatory effects.

The satisfactory synthesis of the female voice poses many additional problems in any

language. Detailed study of the female voice is being done by us for better implementation.

Taking advantage of the versatility of the synthesis techniques employed, extension of

the synthesizer to other Indian languages is being contemplated.

We gratefully acknowledge the support provided through the Knowledge Based Computer

Systems (KBCS) project in carrying out this work. We thank the late Dr D H Klatt,

Prof. K N Stevens and other members of the Speech Communications Group, MIT, USA

for helping us to learn the latest techniques of speech synthesis when we visited their

laboratory. We also thank Prof. P V S Rao for his support and encouragement.

References

Bhaskararao P, Mathew S 1992 Phonemic transcription rules for text-to-speech synthesis of Hindi.

Computer processing of Asian languages (ed.) R M K Sinha (New Delhi: Tata-Mcgraw Hill)
pp 310-311

Bhaskararao P, Peri V N, Udpikar V 1994 A text-to-speech system for application by visually

handicapped and illiterates. Proc. of the ICSLP 94, Tokyo, Japan, pp 1239-1241

Carlson R, Grantstrom B, Nord L 1990 Evaluation and development of the KTH text-to-speech

system on the segmental level. Proc. Int. Conf. Acoust., Speech Signal Process. 90, Toronto,
vol. 1, pp 317-320

Dan T, Datta A K, Mukherjee B 1990 Speech synthesis using signal concatenation. Presented at

the Workshop on speech technology for man-machine interaction, Tata Inst. Fundam. Res.,

Bombay

Holmes J N 1983 Formant synthesizers: cascade or parallel. Speech Commun. 2:251-273

Holmes J N, Mattingly L, Shearme J 1964 Speech synthesis by rule. Language Speech 7:127-143

Klatt D H 1980 Software for a cascade/parallel formant synthesizer. J. Acoust. Soc. Am. 67:

971-995

Klatt D H 1987 Review of text-to-speech conversion for English. J. Acoust. Soc. Am. 82:737-793

Liberman A M, Ingemann F, Lisker L, Delattre P, Cooper F 1959 Minimal rules for synthesizing

speech. J. Acoust. Soc. Am. 31:1490-1499
Rajesh Kumar S R, Sriram R, Yegnanarayana B 1989 A new approach to develop a text-to-

speech conversion system for Indian languages. Proc. of the regional workshop on computer

processing of Asian languages, Bangkok, pp. 102-109

Rao P V S, Thosar R B 1974 A programming system for studies in speech synthesis. IEEE Trans.

Acoust., Speech Signal Process. ASSP-22:217-225

	Untitled

