Synthesis of various 2 H -benzopyran compounds and their kinetic resolution by asymmetric hydrolysis of their racemic acetates mediated by lipases

J. Y. Goujon, F. Zammattio* and B. Kirschleger
Laboratoire de Synthèse Organique, CNRS UMR 6513, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, 44072 Nantes Cedex 03, France

Received 21 April 2000; accepted 5 May 2000

Abstract

The preparation of 2 H -benzopyrans from bromophenols and tertiary allylic alcohols is described. The reaction is characterised by its mildness, good yields and ease of work-up. Kinetic resolution of the latter up to 95% ee was obtained by using enzyme-catalysed enantioselective hydrolysis. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The central role of heterocycles in life sciences and natural product chemistry provides a constant drive for the development of even more efficient methods for their preparation. Among them, benzopyran and 3,4-dihydrobenzopyran nuclei are present in many biologically active compounds, such as α-tocopherol or vitamin E, ${ }^{1}$ levcromakalim, ${ }^{2}$ cannabichromene ${ }^{3}$ and ubichromenol or cordiachromene 1e. ${ }^{4}$ This latter compound was first isolated from Cordia alliodora, which is a tropical American tree whose wood is known for its durability in marine use. Moreover, cordiachromene exhibits high anti-inflammatory activity, ${ }^{5}$ which seems to be due to a selective inhibition of cyclooxygenase. ${ }^{5}$

In the course of our interest concerning the development of new methods for the construction of benzopyran nuclei, we became interested in the preparation of substituted-3,4-dihydrobenzopyrans of type 1, $\mathbf{2}$ and $\mathbf{3}$ with various R substituents. In addition, we also wanted to study the influence of relative and absolute stereochemistry of the stereogenic centre on the inhibition of cyclooxygenase.

[^0]

$\begin{array}{ll}(R S) \mathbf{1 a}: \mathrm{R}=\mathrm{OBn} & (R S) \mathbf{2} \mathbf{a}: \mathrm{R}=\mathrm{OBn} \\ (R S) \mathbf{1 b}: \mathrm{R}=\mathrm{OMe} & (R S) \mathbf{2} \mathbf{b}: \mathrm{R}=\mathrm{OH} \\ (R S) \mathbf{1 c}: \mathrm{R}=\mathrm{Me} & \\ (R S) \mathbf{1 d}: \mathrm{R}=\mathrm{CN} & \\ (R S) \mathbf{1 e}: \mathrm{R}=\mathrm{OH}=\mathrm{OBn} \\ & \end{array}$

The most used strategies for the synthesis of 3,4-dihydrobenzopyran nuclei involve a Claisen rearrangement of propargyl ethers ${ }^{6}$ or a cyclisation of substituted quinones in refluxing pyridine. ${ }^{7}$

To try to introduce aryl diversity using readily available phenols, we envisaged a particularly attractive approach, similar to the one reported by Saà, ${ }^{8}$ based on a palladium-catalysed reaction of a tertiary allylic alcohol with an ortho-bromophenol. This strategy has been used in order to circumvent the lack of availability of 2-iodophenols, which are the starting materials in the Saà ${ }^{8}$ route. Moreover, to explore the scope and limitations of this process as well as its ability to facilitate the synthesis of various 3,4-dihydrobenzopyran, we systematically investigated the reaction of various tertiary allylic alcohols with diverse ortho-bromophenols using palladium acetate as the precatalyst.

In this paper, we are reporting our results concerning syntheses of compounds $\mathbf{1 , 2}$ and $\mathbf{3}$ and enzymatic kinetic resolution of $\mathbf{1 e}$ and $\mathbf{2 b}$ as an alternative for their stereocontrolled construction.

2. Results and discussion

2.1. Synthesis of 2H-1-benzopyran derivatives $\mathbf{1}$ to $\mathbf{3}$

Chiral racemic allylic alcohols $\mathbf{9}, \mathbf{1 0}$ and $\mathbf{1 1}$ were prepared as shown in Scheme 1. The treatment of $\mathbf{4}$ with bromine ${ }^{9}$ in methylene chloride provided the desired 2-bromophenols 5 in high yields. Heck reaction of $\mathbf{5}$ with 2 mol equiv. linalool $\mathbf{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of CsCO_{3} (0.5 equiv.)

9:n=1
1 : $\mathrm{n}=1$
$10: n=2$
2: $n=2$
$11: n=3$
3 : $n=3$

Scheme 1. Synthesis of compounds 1,2 and 3
and $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ at $100^{\circ} \mathrm{C}$ for 3 h gave the corresponding allylic alcohols 9 in satisfactory yields (Table 1: entries 1-4). These results show that the Heck coupling reaction works well with 2-bromophenols bearing electron withdrawing or donating groups. On the other hand, it is noteworthy that the same conditions could be applied to the preparation of analogues $\mathbf{1 0}$ and $\mathbf{1 1}$ (Table 1: entries 5 and 6) from the nerolidol 7 or the geranyl linalool 8, respectively.

Table 1
Heck reaction of bromophenols $\mathbf{5}$ with allylic alcohols $\mathbf{6 , 7} \mathbf{7}$ and $\mathbf{8}$

Entry	Bromophenols	Allylic alcohols	Products yields* (\%)
1	$\mathbf{5 a}: \mathrm{R}=\mathrm{OBn}$	$\mathbf{6}$	$\mathbf{9 a}$ (77)
2	$\mathbf{5 b}: \mathrm{R}=\mathrm{OMe}$	$\mathbf{6}$	$\mathbf{9 b}$ (78)
3	$\mathbf{5 c}: \mathrm{R}=\mathrm{Me}$	$\mathbf{6}$	$\mathbf{9 c}(76)$
4	$\mathbf{5 d}: \mathrm{R}=\mathrm{CN}$	$\mathbf{6}$	$\mathbf{9 d}$ (52)
5	$\mathbf{5 a}: \mathrm{R}=\mathrm{OBn}$	$\mathbf{7}$	$\mathbf{1 0}(65)$
6	$\mathbf{5 a}: \mathrm{R}=\mathrm{OBn}$	$\mathbf{8}$	$\mathbf{1 1}(60)$

Finally, conversion of $\mathbf{9 , 1 0}$ and $\mathbf{1 1}$ to the corresponding $2 H$-1-benzopyrans $\mathbf{1 , 2}$ and $\mathbf{3}$ was simply achieved in quantitative yields by heating pure $\mathbf{9 , 1 0}$ or $\mathbf{1 1}$ at $120^{\circ} \mathrm{C}$, under vacuum for 30 min.

2.2. Kinetic resolution of $1 \boldsymbol{e}$ and $2 \boldsymbol{b}$

With the desired 1a and $\mathbf{2 a}$ in hand, we turned our attention to their kinetic resolution as an alternative to their asymmetric synthesis. With this aim, removal of the benzyl-protecting group was first undertaken. The Lewis acid deprotection ${ }^{10}$ of $\mathbf{1 a}$ and $\mathbf{2 a}$ afforded compounds $\mathbf{1 e}$ and $\mathbf{2 b}$ (Table 2) which served as key starting materials for our enzymatic resolution. Then, three lipases were tested for the enantioselective hydrolysis of racemic acetate (\pm)- $\mathbf{1 2}$ generated from $\mathbf{1 e}$ (Table 2). As shown by the results listed in Table 2, the lipase from Candida cylindracea (CCL) was found to be the most effective one, even if $(+)-\mathbf{1 2}$ and $(-)-\mathbf{1 2}$ were not resolved with the same efficiency, leaving the enantiopure acetate (-)-12 in satisfactory chemical yield and enantiomeric excess (Table 2: entry 2). Acetate (-)-12 gave 2H-1-benzopyran (-)-1e in quantitative yield on $\mathrm{K}_{2} \mathrm{CO}_{3}$ mediated methanolysis. With the success of this kinetic resolution, we applied this methodology to the trans racemic acetate $(\pm)-\mathbf{1 3}$ generated from the trans $(\pm)-\mathbf{2 b}$ (Table 2). Subsequently, enzymatic hydrolysis and methanolysis of the pure trans enantiomer (-)-13 afforded the corresponding trans $2 H-1$-benzopyran (-)-2b ($>98 \%$ ee) in 20% yield (Table 2: entry 4). The hydrolysis of substrates was followed by HPLC analysis. As an example, the HPLC analysis of a sample of acetate $\mathbf{1 2}$ is reported in Figs. 1 and 2.

2.3. Absolute configuration of $\mathbf{1 e}$ and $\mathbf{2 b}$

Since optically active $2 H$-1-benzopyrans $\mathbf{1 e}, \mathbf{2 b}, \mathbf{1 2}$ and $\mathbf{1 3}$ have never been described, we could not, at this stage of our study, assign the absolute configuration of the stereogenic centre (C2). Nevertheless, the (S) preference observed with lipase AY in the case of enantioselective hydrolysis of $(R S)$-tocol acetate, ${ }^{11}$ which is very similar to substrates $(R S)$ - $\mathbf{1 2}$ and ($R S$) - $\mathbf{1 3}$, supports the hypothesis that these latter substrates could be hydrolysed with the same enantioselectivity. To

Table 2
Lipase-catalysed kinetic resolution of 2H-1-benzopyran acetates (\pm) - $\mathbf{1 2}$ and $\mathbf{1 3}$

a : $\mathrm{AlCl}_{3}, \mathrm{EtSH}, \mathrm{Et}_{2} \mathrm{O},-30^{\circ} \mathrm{C} ; \mathrm{b}: \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, 25^{\circ} \mathrm{C}$; c : enzyme, $\mathrm{H}_{2} \mathrm{O}, \mathrm{IPE} ; \mathrm{d}: \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{CH}_{3} \mathrm{OH}$

Figure 1. HPLC analysis of racemic acetate $\mathbf{1 2}$

Figure 2. HPLC analysis of hydrolysis reaction mixture containing (-)-12 and (\pm)-1e (Chiralcel OD-H, hexane:propan-2-ol, 95:5, flow $0.5 \mathrm{ml} / \mathrm{min}, \lambda 254 \mathrm{~nm}$)
confirm the enantiopreference of lipases AY and CCL, kinetic resolution of racemic acetate 15, of which both the relative and absolute configuration of each enantiomer were known, ${ }^{12 \mathrm{~b}}$ was carried out. Racemic acetate 15 was prepared as reported ${ }^{12 a}$ and submitted to lipase hydrolysis. From the reaction mixture, recovered (+)-15 could be isolated in 15% yield and 70% ee (Scheme 2). The configuration of the pure enantiomer (+)-15 was unequivocally established as (R) by comparison of its specific rotation with that of an authentic sample of $(R)-(+)-15 .{ }^{12 b}$ This result confirmed the (S) enantiopreference of the enzyme and allows us to assign the (R) configuration at C 2 for $(-)-\mathbf{1 2}$ and (-)-13 as well as for (-)-1e and (-)-2b.

Scheme 2. Lipase-catalysed kinetic resolution of ($R S$)-15. (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (b) lipase CCL, IPE/ $\mathrm{H}_{2} \mathrm{O}$

In conclusion, we have developed a practical and efficient general route to 2 H -1-benzopyrans in quite good yields and up to 95% enantioselectivity by using lipase-mediated kinetic resolution as an alternative to their asymmetric synthesis.

3. Experimental

3.1. Apparatus

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Bruker AC 200 and Bruker AMX 400 spectrometers in chloroform- d^{1}; chemical shifts are expressed in ppm. IR spectra were recorded on a Bruker vector 22 spectrometer. Mass spectra (m / e ($\%$ base peak)) were recorded on HP 5889A spectrometer EI $(70 \mathrm{eV})$. For high performance liquid chromatography (HPLC) analysis a HewlettPackard model (HP 1050) equipped with a UV detector (254 nm) and a Chiralcel OD-H column were employed. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. Melting points were determined on a C. Reichert microscope apparatus and are uncorrected. Elemental analyses were carried out on a Perkin-Elmer $2400 \mathrm{C}, \mathrm{H}, \mathrm{N}$ elemental analyser.

3.2. Chemicals

Dichloromethane and ethyl acetate were dried by distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$. Hexane was dried by distillation over CaCl_{2}. Lipase from Candida rugosa (AY) and porcine pancreas (PPL, type II) were obtained from Sigma. Lipase from Candida cylindracea (CCL, type VII) was obtained from Aldrich. Linalool, nerolidol and geranyl-linalool were purchased from Acros. Bromophenols 5 were prepared following classical procedures. ${ }^{9}$

3.3. General procedure for the preparation of tertiary allylic alcohols 9, $\mathbf{1 0}$ and $\mathbf{1 1}$

To a solution of 2-bromophenol $5(3.5 \mathrm{mmol})$ in acetonitrile $(9 \mathrm{ml}), \mathrm{CsCO}_{3}(0.7 \mathrm{~g}, 1.5 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.03 \mathrm{~g}, 0.13 \mathrm{mmol})$ and $1.1 \mathrm{~g}(7.0 \mathrm{mmol})$ of linalool were added. The reaction mixture was stirred under argon at $100^{\circ} \mathrm{C}$ for 3 h , then diluted with dichloromethane and finally washed with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and chromatographed on silica gel, eluting with a $80: 20(\mathrm{v} / \mathrm{v})$ mixture of hexane:EtOAc.

3.3.1. 1-(2-Hydroxy-5-benzyloxyphenyl)-3,7-dimethylocta-1,6-dien-3-ol 9a

Compound 9a was obtained as a brown solid from 5a in $77 \% ; \mathrm{mp} 42^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.08-5.15(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=), 6.16-6.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz},=\mathrm{CH}-), 6.71(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 6.79-6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz},=\mathrm{CH}-), 6.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.28-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.7,22.9,25.6,28.2,42.5,70.7,74.1,113.2,115.0,116.8,121.8,124.2,124.2,127.5$, $127.8,128.4,130.7,132.2,137.9,147.5,152.7$; IR 3355, 3033, 2965, 2926, 2856, 1500, 1445, 1196 $\mathrm{cm}^{-1} ; \mathrm{MS}(m / e) 352\left(\mathrm{M}^{+}, 0\right), 334$ (14), 251 (100), 91 (20).

3.3.2. 1-(2-Hydroxy-5-methoxyphenyl)-3,7-dimethylocta-1,6-dien-3-ol 9b

Compound $\mathbf{9 b}$ was obtained as a white solid from $\mathbf{5 b}$ in 78% yield; $\mathrm{mp} 41^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.04-2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$,
$3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.10(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=), 6.19-6.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz},=\mathrm{CH}-), 6.62-6.65(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 6.72-6.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 6.82-6.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz},=\mathrm{CH}-), 6.87-6.88(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.6,22.9,25.6,28.0,42.5,55.7,74.0,111.7,114.1,116.9,121.9,124.2,125.1$, 131.8, 147.4, 153.4; MS (m/e) $276\left(\mathrm{M}^{+}, 0\right), 258$ (8), 175 (100).

3.3.3. 1-(2-Hydroxy-5-methylphenyl)-3,7-dimethylocta-1,6-dien-3-ol 9c

Compound $9 \mathbf{c}$ was obtained as a white solid from $\mathbf{5 c}$ in 76% yield; $\mathrm{mp} 37^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02-2.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.04-5.08(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=), 6.14-6.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.2 \mathrm{~Hz},=\mathrm{CH}-), 6.68-$ $6.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 6.72-6.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.2 \mathrm{~Hz},=\mathrm{CH}-), 7.10-7.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 17.6, 20.4, 22.9, 25.6, 27.9, 42.4, 74.2, 115.9, 122.1, 124.1, 124.1, 127.3, 128.9, 128.9, 131.7, 137.0, 153.4; MS (m/e) $260\left(\mathrm{M}^{+}, 0\right), 242(3), 202(18), 159$ (27), 43 (100).

3.3.4. 1-(2-Hydroxy-5-cyanophenyl)-3,7-dimethylocta-1,6-dien-3-ol 9d

Compound 9d was obtained as a yellow oil from 5 d in 52% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.42(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.04-2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 5.07-5.14 (m, 1H, $-\mathrm{CH}=), 6.26-6.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.3 \mathrm{~Hz},=\mathrm{CH}-), 6.79-6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.3 \mathrm{~Hz}$, $=\mathrm{CH}-), 6.90-6.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.30-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.6$, $22.8,25.6,27.8,42.3,74.4,102.3,116.7,119.4,120.6,123.0,125.8,131.2,132.1,132.2,138.7$, 158.1; IR 3300, 2971, 2928, 2226, 1601, $1277 \mathrm{~cm}^{-1}$; MS (m/e) $271\left(\mathrm{M}^{+}, 0\right), 253(19), 210(33), 170$ (100), 43 (24), 41 (26).

3.3.5. 1-(2-Hydroxy-5-benzyloxyphenyl)-3,7,11-trimethyldodeca-1,6,10-trien-3-ol 10

Compound 10 was obtained as a brown oil from 5 a in 65% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.63-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.98-2.06\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $4.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.07-5.14(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}=), 6.14-6.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz},=\mathrm{CH}-), 6.70-6.71$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 6.79-6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.1 \mathrm{~Hz},=\mathrm{CH}-), 6.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.31-7.47(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.0,17.5,22.6,25.6,26.4,28.0,39.6,42.3,70.7,73.9,113.2,115.0,116.8$, $121.8,124.0,124.2,125.0,127.4,127.8,128.4,131.3,135.2,137.2,137.8,147.5,152.7$; IR 3355, 3032, 2966, 2925, 2856, 1503, 1437, $1196 \mathrm{~cm}^{-1}$; MS (m/e) $420\left(\mathrm{M}^{+}, 0\right), 402$ (19), 251 (100), 91 (50).

3.3.6. 1-(2-Hydroxy-5-benzyloxyphenyl)-3,7,11,15-tetramethylhexdeca-1,6,10,14-tetraen-3-ol 11

Compound 11 was obtained as a brown oil from 5 a in 65% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.02\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 4.96(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.05(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}=), 5.93(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.0 \mathrm{~Hz},=\mathrm{CH}-), 6.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 6.44(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=13.0 \mathrm{~Hz},=\mathrm{CH}-), 6.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.9,17.6,22.9$, $23.4,25.6,25.9,26.7,28.1,31.9,39.7,42.5,70.7,74.0,113.2,115.0,116.8,121.8,124.0,124.1$, $124.9,124.9,127.5,127.8,128.5,130.5,131.5,135.8,137.8,138.6,147.5,152.7$; IR 3356, 3033, 2965, 2925, 2855, 1499, 1453, $1196 \mathrm{~cm}^{-1}$; MS (m/e) $488\left(\mathrm{M}^{+}, 0\right), 470(9), 317$ (21), 251 (37), 91 (100), 41 (62).
3.4. General procedure for the cyclisation of tertiary allylic alcohols 9,10 and 11 to $2 \mathrm{H}-1$-benzopyran

The tertiary allylic alcohol was warmed at $120^{\circ} \mathrm{C}$ under vacuum to obtain the corresponding pure racemic 2 H -1-benzopyran without any further purification.
3.4.1. 6-Benzyloxy-2-methyl-2-(4-methylpent-3-enyl)-2H-1-benzopyran 1a

Compound 1a was obtained from 9a as a brown oil in 95% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.11-2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.98$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.04-5.13(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=), 5.54-5.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.26-6.31(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.61-6.73\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.28-7.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.5,14.7$, $20.5,20.9,35.8,65.4,72.9,107.6,110.1,111.4,116.6,117.7,119.0,122.3,122.4,123.3,125.6$, 126.4, 132.2, 142.1, 147.7; IR 3033, 2968, 2924, 2856, 1489, 1267, $1225 \mathrm{~cm}^{-1} ; \operatorname{MS}(m / e) 334\left(\mathrm{M}^{+}, 11\right)$; 251 (100); 91 (38); anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 82.60 ; H, 7.84; O, 9.57. Found: C, 82.51; H, 7.80.
3.4.2. 6-Methoxy-2-methyl-2-(4-methylpent-3-enyl)-2H-1-benzopyran 1b

Compound 1b was obtained from 9b as a brown oil in 92% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.04-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.04-5.13(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=), 5.55-5.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.27-6.32(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.52-6.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.5,22.7,25.6,26.0,40.9,55.6,78.0$, $111.5,114.1,116.5,121.7,122.8,124.1,130.1,131.5,146.9,153.5$; IR 2968, 2925, 2856, 1492, 1266, 1226, 1198, $1041 \mathrm{~cm}^{-1}$; MS (m/e) $258\left(\mathrm{M}^{++}, 10\right) ; 175(100) ; 41$ (9); anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}$: C, 79.03; H, 8.58; O, 12.39. Found: C, 79.00; H, 8.48.

3.4.3. 2,6-Dimethyl-2-(4-methylpent-3-enyl)-2H-1-benzopyran 1c

Compound 1c was obtained from 9c as a yellow oil in 95% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.00-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.09-5.12(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=), 5.51-5.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.28-6.32(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.64-6.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.6,20.4,22.7,25.6,26.3,41.1,78.2$, $115.8,120.8,122.8,124.1,126.7,129.4,129.5,129.7,131.5,150.9$; IR 2969, 2923, 2860, 1492, 1256 cm^{-1}; MS (m/e) $243\left(\mathrm{M}^{+\cdot}, 2\right), 159$ (100), 41 (14); anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 84.25 ; \mathrm{H}, 9.15$; O, 6.60. Found: C, 84.14; H, 9.11.

3.4.4. 6-Cyano-2-methyl-2-(4-methylpent-3-enyl)-2H-1-benzopyran 1d

Compound 1d was obtained from 9d as a yellow oil in 94% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.33(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95-2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 4.95-5.03 (m, 1H, - CH=), 5.54-5.59 (d, 1H, J = 10.1 Hz, $=\mathrm{CH}-), 6.21-6.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.1 \mathrm{~Hz}$, $=\mathrm{CH}-), 6.67-6.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.13-7.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.25-7.30(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.6,22.5,25.5,27.0,41.2,80.2,103.4,116.8,121.1$, $121.4,123.4,130.0,131.0,131.9,146.9,133.2,157.0$; IR 3301, 2971, 2927, 2857, 2226, 1601, 1487, $1276 \mathrm{~cm}^{-1}$; MS (m/e) $253\left(\mathrm{M}^{+}, 13\right) ; 170(100) ; 41(22)$; anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 80.60 ; \mathrm{H}$, 7.56; N, 5.53; O, 6.32. Found: C, 80.49; H, 7.58; N, 5.45.

3.4.5. 6-Benzyloxy-2-methyl-2-(4,8-dimethylnona-3,7-dienyl)-2H-1-benzopyran $2 \boldsymbol{a}$

Compound 2a was obtained from 10 as a brown oil in 90% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.66-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-2.09\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$, $4.98\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.06-5.13(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}=), 5.54-5.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.26-6.31(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.6-6.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.36-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.0,17.6$, $22.7,23.3,25.6,26.4,31.8,39.6,70.6,78.0,112.5,115.2,116.5,122.8,124.0,125.0,127.4,127.5$, $128.4,130.6,132.1,135.5,137.0,145.9,153.3$; IR 3034, 2966, 2924, 2856, 1489, $1222 \mathrm{~cm}^{-1}$; MS (m / e) $402\left(\mathrm{M}^{+}\right.$, 12); 251 (100); 91 (21); anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{2}$: C, 83.54; H, 8.51; O, 7.95. Found C 83.45; H, 8.48.

3.4.6. 6-Benzyloxy-2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-2H-1-benzopyran 3

Compound 3 was obtained from 11 as a brown oil in 88% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.56\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.66-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94-2.06\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{CH}_{2}\right), 4.96$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.09-5.11(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}=), 5.55-5.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.26-6.28(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.59-6.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 7.32-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 15.9,17.5$, $22.0,23.3,25.6,26.0,26.2,26.6,31.8,39.6,41.1,70.6,77.9,112.6,115.2,116.5,121.2,122.8$, $123.9,124.3,124.9,127.3,127.7,128.3,130.6,131.0,134.9,135.6,137.4,147.1,152.7$; IR 3033, 2965, 2924, 2856, 1489, 1452, $1224 \mathrm{~cm}^{-1}$; MS (m / e) $470\left(\mathrm{M}^{+}, 8\right), 251(100), 91$ (24); anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{2}$: C, 84.21; H, 8.99; O, 6.80. Found: C, 84.15 ; H, 8.89.

3.5. General procedure for debenzylation of $2 \mathrm{H}-1$-benzopyran

To a solution of benzylated compound (2 mmol), $\mathrm{EtSH}(6 \mathrm{ml})$ in diethylether, was added AlCl_{3} $(6 \mathrm{mmol})$ at $-30^{\circ} \mathrm{C}$. After stirring for 30 min , the reaction mixture was poured into water and extracted with diethylether. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated under vacuum and chromatographed on silica gel, eluting with a 80:20 (v/v) mixture of hexane:EtOAc.

3.5.1. 6-Hydroxy-2-methyl-2-(4-methylpent-3-enyl)-2H-1-benzopyran 1e (cordiachromene)

Compound 1e was obtained from 1a as a brown oil in 82% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66-2.06\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.08(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}=), 5.60-5.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.28-6.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.62-6.71$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.5,22.5,25.5,25.8,40.7,78.0,112.8,115.6,121.8,122.5,124.0$, $130.8,131.5,146.7,149.1$; IR 3394, 3017, 2971, 2920, 2853, 1620, 1580, 1490, 1455, $1221 \mathrm{~cm}^{-1}$; MS (m/e) $244\left(\mathrm{M}^{+}, 41\right), 161$ (100); anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 78.65 ; \mathrm{H}, 8.25 ; \mathrm{O}, 13.10$. Found: C, 78.56; H, 8.33.
3.5.2. 6-Hydroxy-2-methyl-2-(4,8-dimethylnona-3,7-dienyl)-2H-1-benzopyran $\mathbf{2 b}$ (dictyochromenol)

Compound 2b was obtained from 2a as a brown oil in 80% yield; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.58\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68-2.10\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 4.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.00-$ $5.15(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}=), 5.54-5.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.22-6.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-)$, 6.47-6.62 (m, 3H, $\left.\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 16.3,18.0,22.9,26.0,26.3,27.0,40.0,41.2,78.5,113.2$, $115.7,117.0,115.6,122.3,124.3,124.6,131.3,132.6,135.6,147.2,149.6$; IR 3350, 2966, 2923, 2855, 1590, 1495, $1240 \mathrm{~cm}^{-1}$; MS (m/e) $312\left(\mathrm{M}^{+}, 41\right), 203$ (100), 161 (70); anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$: C, 80.73; H, 9.03; O, 10.24. Found C 80.65; H, 8.96.

3.6. 6-Acetoxy-2-methyl-2-(4-methylpent-3-enyl)-2H-1-benzopyran 12

To a solution of $\mathbf{1 e}(490 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{ml}, 2.5 \mathrm{mmol})$, and DMAP ($12 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in dichloromethane (6 ml) was added acetic anhydride ($0.24 \mathrm{ml}, 2.5 \mathrm{mmol}$) dropwise. The reaction mixture was stirred for 3 h at room temperature. The reaction was then diluted with brine, and the organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}, 10 \% \mathrm{NaHCO}_{3}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under vacuum, yielding $550 \mathrm{mg}(96 \%)$ of 12 as a brown oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68-2.06\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.25(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 5.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 5.55-5.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz},=\mathrm{CH}-), 6.26-6.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8 \mathrm{~Hz}$, $=\mathrm{CH}-), 6.68-6.77\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.5,20.9,22.7,25.6,26.4,41.2,78.7,116.4,119.0$,
$121.5,122.2,123.3,124.0,130.5,131.5,143.9,150.7$; IR 2966, 2922, 2856, 1763, 1486, $1204 \mathrm{~cm}^{-1}$; MS (m / e) $286\left(\mathrm{M}^{+}, 7\right), 203(100), 161$ (94), 69 (6); anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 75.50 ; \mathrm{H}, 7.74 ; \mathrm{O}$, 16.76. Found: C, 75.09; H, 7.83.

3.7. 6-Acetoxy-2-methyl-2-(4,8-dimethylnona-3,7-dienyl)-2H-1-benzopyran 13

To a solution of $\mathbf{2 b}(624 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{ml}, 2.5 \mathrm{mmol})$, and DMAP ($12 \mathrm{mg}, 0.1$ mmol) in dichloromethane (6 ml) was added acetic anhydride ($0.24 \mathrm{ml}, 2.5 \mathrm{mmol}$) dropwise. The reaction mixture was stirred for 3 h at room temperature. The reaction mixture was then diluted with brine, and the organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}, 10 \% \mathrm{NaHCO}_{3}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under vacuum, yielding $686 \mathrm{mg}(97 \%)$ of $\mathbf{1 3}$ as a brown oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68-2.10(\mathrm{~m}, 8 \mathrm{H}$, $\left.4 \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 5.00-5.15(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}=), 5.56-5.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-)$, 6.26-6.31 (d, $1 \mathrm{H}, \mathrm{J}=9.9 \mathrm{~Hz},=\mathrm{CH}-), 6.68-6.77\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.9,21.0,21.1,25.6$, $26.4,26.6,39.6,41.4,78.7,80.2,116.5,115.7,118.9,121.5,123.0,123.1,123.8,124.3,124.6,135.7$, 143.9, 150.7, 169.8; IR 2967, 2924, 2856, 1764, 1486, $1204 \mathrm{~cm}^{-1}$; MS (m/e) $354\left(\mathrm{M}^{+}, 9\right), 312(13)$, 203 (92), 161 (100), 69 (33), 41 (58); anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3}$: C, 77.93; H, 8.53; O, 13.54. Found: C, 77.88; H, 8.48.

3.8. Kinetic resolution of $2 \mathrm{H}-1$-benzopyran acetate (R)-12

Racemic acetate $12(400 \mathrm{mg}, 1.4 \mathrm{mmol})$ was dissolved in diisopropyl ether (26 ml) saturated with water and lipase CCL (200 mg) was added. The reaction was followed by HPLC and stopped at 60% of hydrolysis (reaction time: 1.05 h). Then, the enzyme was filtered off, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and chromatographed on silica gel, eluting with a $90: 10(\mathrm{v} / \mathrm{v})$ mixture of hexane:EtOAc to provide $R-(-) \mathbf{- 1 2}(60 \mathrm{mg}, 0.42 \mathrm{mmol}$, ee 95%, $[\alpha]_{\mathrm{D}}=-75.7(c 1.18$, acetone $)$) and $(S)-(+)-1 \mathbf{e}\left(187 \mathrm{mg}, 0.76 \mathrm{mmol}\right.$, ee $13 \%,[\alpha]_{\mathrm{D}}=+22.0(c 1.38$, acetone)).

3.9. Deacetylation of $2 \mathrm{H}-1$-benzopyran acetate 12

Compound R-(-)-12 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) was dissolved in 2 ml of MeOH and sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{ml})$ was added. The reaction mixture was stirred for 4 h until the analysis by TLC revealed complete disappearance of starting material. The reaction was then acidified with 1 N HCl and diluted with diethyl ether $(20 \mathrm{ml})$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum, yielding (R)-1e($42.2 \mathrm{mg}, 99 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}=-109.1\left(c 0.95, \mathrm{CHCl}_{3}\right)$; ee 95%.

3.10. Kinetic resolution of $2 \mathrm{H}-1$-benzopyran acetate (R)-13

Racemic acetate $\mathbf{1 3}(1 \mathrm{~g}, 2.82 \mathrm{mmol})$ was dissolved in diisopropyl ether (55 ml) saturated with water and lipase CCL (485 mg) was added. The reaction was followed by HPLC and stopped at 60% of hydrolysis (reaction time: 1.10 h). Then the enzyme was filtered off, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and chromatographed on silica gel, eluting with a $90: 10(\mathrm{v} / \mathrm{v})$ mixture of hexane:EtOAc to provide $(R)-\mathbf{1 3}(200 \mathrm{mg}, 0.56 \mathrm{mmol}$,
ee $\left.98 \%,[\alpha]_{\mathrm{D}}=-74.3\left(c 1.24, \mathrm{CHCl}_{3}\right)\right)$ and $(S)-(+)-\mathbf{2 b}\left(520 \mathrm{mg}, 1.6 \mathrm{mmol}\right.$, ee $18 \%,[\alpha]_{\mathrm{D}}=+19.0$ (c $\left.1.20, \mathrm{CHCl}_{3}\right)$).

3.11. Deacetylation of 2H-1-benzopyran acetate 13

Compound (R)-13 (190 mg, 0.53 mmol) was dissolved in 3 ml of MeOH and sat. $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{ml})$ were added. The reaction mixture was stirred for 4 h until the analysis by TLC revealed complete disappearance of starting material. The reaction was then acidified with 1 N HCl and diluted with diethyl ether $(30 \mathrm{ml})$.The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum, yielding $(R) \mathbf{- 2 b}(164 \mathrm{mg}, 98 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}=-103.8\left(c 1.21, \mathrm{CHCl}_{3}\right)$; ee 98%.

3.12. 9-Hydroxy-3-methyl-(4-methylpent-3-enyl)-3H-naphtho[2,1-b]pyran 14

A mixture of 2,7-naphthalenediol (5 g, 31.2 mmol) and citral (4.9 g, 32 mmol) in 4-picoline (10 ml) was heated to reflux for 20 h . After cooling to room temperature, the reaction mixture was diluted with EtOAc (80 ml), and then washed with 1 N HCl and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and chromatographed on silica gel, eluting with a 80:20 (v/v) mixture of hexane:EtOAc to provide $\mathbf{1 4}(8.2 \mathrm{~g}, 90 \%)$ as an orange oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.44$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.71-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.13-2.17(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 5.08-5.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 5.63-5.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz},=\mathrm{CH}-), 6.88-6.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}$, $=\mathrm{CH}-), 6.90-7.65\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.5,22.7,25.6,40.7,78.4,103.9,112.4,115.9$, $118.5,124.0,124.5,127.9,129.0,130.3,131.6,151.8,154.2$; IR 3386, 2968, 2924, 2855, 1636, 1210 $\mathrm{cm}^{-1} ; \mathrm{MS}(m / e) 294\left(\mathrm{M}^{+}, 12\right), 211$ (100), 41 (5).

3.13. 9-Acetoxy-3-methyl-(4-methylpent-3-enyl)-3H-naphtho[2,1-b]pyran 15

To a solution of $\mathbf{1 4}(4 \mathrm{~g}, 13.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{ml}, 17 \mathrm{mmol})$, and DMAP $(81 \mathrm{mg}, 0.68 \mathrm{mmol})$ in dichloromethane $(40 \mathrm{ml})$ were added dropwise acetic anhydride $(1.6 \mathrm{ml}, 17 \mathrm{mmol})$. The reaction mixture was stirred for 1 h at room temperature. The reaction mixture was then diluted with brine, the organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}, 10 \% \mathrm{NaHCO}_{3}$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under vacuum, yielding $4.47 \mathrm{~g}(98 \%)$ of 15 as a yellow oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.43(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, 1 \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.67-1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.12-2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 5.07-5.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 5.63-5.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz},=\mathrm{CH}-), 6.90-6.92(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz},=\mathrm{CH}-), 7.00-7.72\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{ar}} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 17.6,21.2,22.7,25.6,26.0,40.8$, $78.5,112.5,113.5,118.3,118.4,124.1,127.0,128.4,129.0,129.9$, 131.8, 169.5; IR 2968, 2925, 2856, 1764, 1674, $1206 \mathrm{~cm}^{-1}$; MS (m/e) $336\left(\mathrm{M}^{+}, 12\right), 253$ (100), 211 (75), 43 (12), 41 (14).

3.14. Kinetic resolution of 15

Racemic acetate 15 ($900 \mathrm{mg}, 2.6 \mathrm{mmol}$) was dissolved in diisopropyl ether (60 ml) saturated with water and lipase CCL (1.8 g) was added. The reaction was followed by HPLC and stopped after 96 h of hydrolysis. Then the enzyme was filtered off, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and chromatographed on silica gel, eluting with a 90:10 (v/v) mixture of hexane:EtOAc to provide $(R)-(+)-\mathbf{1 5}\left(140 \mathrm{mg}, \mathrm{mmol}\right.$, ee $70 \%,[\alpha]_{\mathrm{D}}=+3.3(c 1.38$, acetone)) and $(S)-(-)-\mathbf{1 4}\left(630 \mathrm{mg}, \mathrm{mmol}\right.$, ee $7 \%,[\alpha]_{\mathrm{D}}=-0.3(c 1.20$, acetone $)$).

References

1. (a) Ames, S. R.; Ludwig, M. I.; Nelan, D. R; Robeson, C. D. Biochemistry 1963, 2, 188-190. (b) Machin, L. J.; Gabriel, E.; Brin, M. J. Nutr. 1982, 112, 1437-1440.
2. Ashood,V. A.; Buckingham, R. E.; Cassidy, F.; Evans, J. M.; Faruk, E. A.; Hamilton, T. C.; Nash, D. T.; Stemp, G.; Wihcoks, K. J. Med. Chem. 1986, 29, 2194-2201.
3. Holley, J. H.; Hadley, K. W.; Turner, C. E. J. Pharm. Sci. 1975, 892-985.
4. Mc Hale, D.; Green, J. Chem. \& Ind. 1962, 1867.
5. Benslimane, A. F.; Pouchus, Y. F.; Le Boterff, J.; Verbist, J. F.; Roussakis, C.; Monniot, F. J. Nat. Prod. 1988, 51, 582-583.
6. (a) Iwai, I.; Ide, J. Chem. Pharm. Bull. 1962, 10, 926-933. (b) Iwai, I.; Ide, J. Chem. Pharm. Bull. 1963, 11, 10421049. (c) Anderson, W. K.; Lavoie, E. J. J. Org. Chem. 1973, 38, 3832-3835. (d) Anderson, W. K.; Lavoie, E. J.; Whitkop, P. J. J. Org. Chem. 1974, 39, 881-884. (e) Brown, P. E.; Lewis, R. A. J. Chem. Soc., Perkin Trans. 1 1992, 573-577. (f) Zsindley, J.; Schmid, H. Helv. Chim. Acta. 1968, 51, 1510-1514. (g) Kahn, H. P.; Cossy, J. Tetrahedron Lett. 1999, 40, 8113-8114.
7. (a) Elsohly, M. A.; Boeren, E. G.; Turner, C. E. J. Heterocyclic Chem. 1978, 15, 699-700. (b) Kane, V. V.; Razdan, R. K. J. Am. Chem. Soc. 1968, 90, 6551-6553. (c) Crombie, L.; Ponsford, R. J. Chem. Soc., Chem. Commun. 1968, 894-895. (d) Crombie, L.; Ponsford, R. J. Chem. Soc. (C) 1971, 796-804.
8. Garcias, X.; Ballester, P.; M. Saà, J. Tetrahedron Lett. 1991, 52, 7739-7742.
9. (a) Hoger, S. Liebigs Ann./Recueil 1997, 273-277. (b) Oberhausser, T. J. Org. Chem. 1997, 62, 4504-4506.
10. Fuji, K.; Ichikawada, K.; Node, N.; Fujita, E. J. Org. Chem. 1979, 1661-1663.
11. Mizuguchi, E.; Takemoto, M.; Achiwa, K. Tetrahedron: Asymmetry 1993, 4, 1961-1964.
12. (a) Cannon, J. R.; Joshi, K. R.; McDonald, I. A.; Retallack, R. W.; Sierakowski, A. F.; Wong, L. C. Tetrahedron Lett. 1975, 32, 2795-2798. (b) Jacobsen, E. N.; Vander Velde, S. L. J. Org. Chem. 1995, 60, 5380-5381.

[^0]: * Corresponding author. Fax: 02511254 12; e-mail: fancoise.zammattio@chimie.univ-nantes.fr

