
Synthesis of Winning Attacks on Communication Protocols using

Supervisory Control Theory: Two Case Studies

Shoma Matsui∗ and Stéphane Lafortune†

Abstract

There is an increasing need to study the vulnerability of communication protocols in distributed
systems to malicious attacks that attempt to violate properties such as safety or nonblockingness. In this
paper, we propose a common methodology for formal synthesis of successful attacks against two well-
known protocols, the Alternating Bit Protocol (ABP) and the Transmission Control Protocol (TCP),
where the attacker can always eventually win, called For-all attacks. This extends previous work on
the synthesis of There-exists attacks for TCP, where the attacker can sometimes win. We model the
ABP and TCP protocols and system architecture by finite-state automata and employ the supervisory
control theory of discrete event systems to pose and solve the synthesis of For-all attacks, where the
attacker has partial observability and controllability of the system events. We consider several scenarios
of person-in-the-middle attacks against ABP and TCP and present the results of attack synthesis using
our methodology for each case.

Keywords: distributed protocols, person-in-the-middle attacks, supervisory control, alternating bit protocol, trans-

mission control protocol

Statements and Declarations: The authors declare that they have no conflict of interest.

1 Introduction

Keeping systems secure against attacks and preventing security incidents are challenging tasks due to the
increasing complexity of modern system architectures, where a number of hardware and software components
communicate over potentially heterogenous networks. To analyze systems which are too complex to be fully
described monolithically, abstraction employing formal methods plays a key role and it has been studied
in particular in the computer science literature (see, e.g., Baier and Katoen (2008); Kang et al (2016)). In
networked systems, components with different architectures cooperate with each other using various pre-
designed protocols. Due to the proliferation of communication using standardized protocols, vulnerabilities
or misuses of protocols can result in serious security issues. As a concrete example, Bagheri et al (2015) in-
troduces a formal model and analysis of a protocol used in Android OS, one of the most popular operating
systems for smart phones. In order for components to cooperate with each other without damaging systems
and without data corruption, robustness of protocols against communication failures is essential in modern
system architectures. To ensure such robustness of protocols, relevant properties, such as safety and liveness,
should be satisfied even if packets are dropped for instance. However, the situation is different in the context
of malicious attacks, where an attacker that has infiltrated part of the system (e.g., the network) may be able
to induce a violation of the safety or liveness properties, thereby causing the protocol to enter an abnormal
state.

The development of resilient protocols that satisfy requirements and are applicable to various systems
requires formal methods for modelling, verification, and synthesis. These problems have a long history in com-
puter science as well as in control engineering. The readers are referred to Baier and Katoen (2008) and Holz-
mann and Lieberman (1991) for a comprehensive treatment of modelling and verification by employing formal

∗Department of Electrial and Computer Engineering, Queen’s University, Kingston, Canada. Email: s.matsui@queensu.ca
†Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA. Email:

stephane@umich.edu

1

ar
X

iv
:2

10
2.

06
02

8v
3

 [
cs

.C
R

]
 1

1
O

ct
 2

02
2

methods, such as temporal logic. To prevent systems from being damaged by attacks that exploit vulner-
abilities of protocols, the recent work (Alur and Tripakis, 2017) introduces the process of completing an
incompletely specified protocol so that the completed protocol satisfies required properties and does not
suffer from deadlock. Alur and Tripakis (2017) explains its methodology of protocol completion using the
Alternating Bit Protocol (ABP).

In control engineering, the formalism of of discrete event systems (DES) (Cassandras and Lafortune, 2021)
and its supervisory control theory (SCT) (Wonham and Cai, 2019) are useful tools to treat the problem of
protocol verification as a supervisory control problem (Rudie and Wonham, 1992), so as to determine whether
a given protocol satisfies the required properties. Not only can SCT be used to analyze existing protocols,
it can also be used to synthesize a desired protocol based on given requirements. For instance, Kumar et al
(1997) introduces a systematic approach to design a protocol converter for mismatched protocols so that the
specifications of the entire system and protocols themselves are satisfied simultaneously. On the other hand,
Rudie and Wonham (1990) considers protocols comprising local communicating processes, and formalizes
protocol synthesis as the problem of controlling the local processes so that the global specification of the
entire system is satisfied, employing the decentralized version of SCT. For a comprehensive survey of protocol
synthesis, focusing on the formalization of the design of protocols, the readers are referred to Saleh (1996).

More generally, detection, mitigation, and prevention of attacks on supervisory control systems within
the framework of SCT has been considered in several works, such as Carvalho et al (2018); Wakaiki et al
(2019); Su (2018); Meira-Góes et al (2019). Carvalho et al (2018) presents a methodology of designing
intrusion detectors to mitigate online four types of attacks; actuator enablement/disablement and sensor
erasure/insertion. Focusing on sensor deception attacks under which the attacker arbitrarily edits sensor
readings by intervening between the target system and its control module to trick the supervisor to issue
improper control commands, Wakaiki et al (2019) and Su (2018) study how to synthesize robust supervisors
against sensor deception attacks, while Su (2018) also introduces the synthesis problem of attack strategies
from the attacker’s point of view. Subsequently, a different technique from Su (2018) to compute a solution
of the synthesis problem of robust supervisors was proposed in Meira-Góes et al (2019).

As protection against attacks is one of the main subjects of systems security, methodologies for designing
attack strategies against systems have been reported in the literature (Meira-Góes et al, 2020; Lin et al, 2019;
von Hippel et al, 2020a). Meira-Góes et al (2020) presents how to synthesize an attacker in the context of
stealthy deception attacks, modelled in the framework of SCT, which cannot be detected by the supervisor
and cause damage to the system, as a counter weapon against intrusion detection modules as in Carvalho
et al (2018). While Meira-Góes et al (2020) considers sensor deception attacks as the attacker’s weapon, Lin
et al (2019) introduces the synthesis of actuator attacks under which the attacker has the ability to hijack
the control commands generated by the supervisor, to damage the system.

Formal synthesis of successful attacks against protocols is the problem considered in this paper, in the
context of two case studies. The work in von Hippel et al (2020a) (and its conference version (von Hippel
et al, 2020b)) is of special relevance, as it introduces a methodology of attacker synthesis against systems
whose components are modelled as finite-state automata (FSA). It presents how so-called “There-exists”
attackers can be found (if they exist) using a formal methodology that has been implemented in the software
tool Korg (von Hippel, 2020). In the terminology of von Hippel et al (2020a), “There-exists” refers to
attackers that cannot always lead protocols to a violation of required properties, but sometimes succeed
(“there exists” a winning run for the attacker). von Hippel et al (2020a) formulates the properties that
protocols must protect against as threat models, and it illustrates its methodology with the Transmission
Control Protocol (TCP), specifically connnection establishment using three-way handshake, as standardized
in Postel (1981). The formal model in von Hippel et al (2020a) was inspired by that in Jero et al (2015)
where automated attack discovery for TCP is performed using a state-machine-informed search.

In this paper, we revisit the respective ABP and TCP models of Alur and Tripakis (2017) and von
Hippel et al (2020a) in the standard framework of DES modelled as FSA. In contrast to the feedback-loop
control system architecture in the previously-mentioned works on sensor/actuator deception attacks in SCT,
we consider a network system architecture in which two peers are sending and receiving packets through
channels and/or networks, as explained in Section 3. We consider “person-in-the-middle” (PITM) attacks
as in von Hippel et al (2020a); Jero et al (2015), in a manner reminiscent of deception attacks. Inspired
by and complementary to the approach in von Hippel et al (2020a), we exploit results in SCT and develop
a methodology to synthesize “For-all” attackers, that is, attackers that can always eventually cause a

2

violation of required properties of the system, extending the previous work by von Hippel et al (2020a) on
There-exists attackers. Section 4 will present the details of our methodology, and will state our main results
as Theorem 1. We then apply this methodology to both ABP and TCP, using essentially the same models
as in Alur and Tripakis (2017) and von Hippel et al (2020a). Thus, our results extend those in von Hippel
et al (2020a) by formally considering the synthesis of “For-all” attackers on TCP, since For-all attacks
are more powerful than There-exists attacks. In both of our case studies, we approach attack synthesis
as a supervisory control problem under partial observation from the attacker’s viewpoint, which is then
solved using existing techniques (Cassandras and Lafortune, 2021; Wonham and Cai, 2019). As specifically
discussed in Section 4.3, under the assumptions of our PITM attack model, a “For-all” attacker for a given
threat model is obtained by building the realization of the (partial-observation) nonblocking supervisor that
results in the supremal controllable and normal sublanguage (supCN) of the threat model language with
respect to the system language and to the attacker’s controllable and observable event sets. The supCN
operation was first introduced in Cho and Marcus (1989), and several formulas to compute supCN were
derived in Brandt et al (1990). For each of the two protocols ABP and TCP, respectively in Sections 5
and 6, we analyze several setups capturing different PITM attacker capabilities.

The detailed case studies presented in this paper, based upon established models of ABP and TCP
(three-way handshake part), show the various steps on how to build, in a systematic manner, successful
PITM attacks (if they exist) on these two well-know protocols. We believe they can also serve as inspiration
for similar case studies on other protocols.

The remainder of this paper is organized as follows. Section 2 provides a brief review of the DES
framework and its Supervisory Control Theory employed in this paper. In Section 3, we introduce the
context on modelling of communication protocols and give an overview of the PITM attack model under
consideration, which is based on specifying a safety or nonblockingness property that the attacker is intent
on violating in the context of SCT. Section 4 formulates the SCT-based synthesis problem of a For-all
attacker (if it exists) and presents the features of the common methodology that is used in the subsequent
sections on ABP and TCP, respectively. ABP is considered first in Section 5, and then TCP is considered
in Section 6. Both sections contain sufficient details so that these case studies can be replicated. Finally, we
conclude the paper in Section 7.

2 Preliminaries

In this section, we introduce several notions of the DES framework in Cassandras and Lafortune (2021), lever-
aged to build our models in this paper. The central definitions we need here are automata, nonblockingness
of automata, parallel composition, supervisory control theory and nonblocking supervisor.

In DES, what happens in the system is explained by sequences of predefined events which discretely
occur. Specifically, the system’s behaviour is represented as a set of sequences of events, called a language,
and each sequence is called a string. Namely, a language is a set of strings. Note that strings could be
arbitrary long and languages could be infinite sets.

One of the intuitive methods to represent (regular) languages is finite state automata (FSA), or simply
automata, represented as a quintuple

G = (X,E, f, x0, Xm) (1)

where X is the finite set of states, E is the finite set of events, f : X × E → X is the (partial) transition
function, x0 is the initial state and Xm ⊆ X is the set of marked states. The function f denotes the system’s
behaviour as state transitions defined in the automaton G, e.g., f(x, e) = x′ represents a transition labelled
by event e ∈ E from state x ∈ X to state x′ ∈ X. From (1), the connection between languages and automata
is formally defined as the generated language L(G) := {s ∈ E∗ | f(x0, s) is defined}.

From the perspective of system control, it makes sense to consider that several behaviours of the sys-
tem are acceptable or desired. We call the strings denoting acceptable behaviours marked strings, and the
language consisting of marked strings is called a marked language. To represent the marked language as-
sociated with G, the marked states in Xm come to play that role. Mathematically, the language marked
by G is defined by Lm(G) := {s ∈ L(G) | f(x0, s) ∈ Xm}. However, depending on the structure of G, it
may not be guaranteed that the system G can always eventually reach its marked states. In particular, the
existence of deadlock and livelock in G can prevent the marked states from being reached. Such a property

3

in DES is called nonblockingness. Specifically, G is said to be blocking if Lm(G) ⊂ L(G) and nonblocking if
Lm(G) = L(G). In other words, if G is blocking, then there exists deadlock or livelock in G, that is, there
exists a state from which the marked states cannot be reached, and vice versa.

In many cases, the systems we analyze consist of several subcomponents, or one may want to examine
at once the entire behaviour of multiple system models. The DES framework has an operation of automata
called parallel composition to build models of entire systems from subsystem models. For example, the
parallel composition G′ of system G1 and system G2 is denoted by G′ = G1 ‖ G2. Roughly speaking, a
common event in G1 and G2 can only occur in G′ if both G1 and G2 execute it simultaneously. The private
(unshared) events, on the other hand, can be executed in G′ whenever feasible in either G1 or G2. For the
detailed definition and properties of parallel composition, readers are referred to (Cassandras and Lafortune,
2021, pp. 81–87).

Considering that the given systems do not always follow their specifications, supervisory control is a
concept to control the systems represented as DES, and its mathematical framework is called supervisory
control theory (SCT), which is to synthesize a controller attached to the system so that the given specifications
are satisfied. In the framework of SCT in DES, a system to be controlled is called a plant, and a plant is
controlled by a supervisor that enables or disables particular (controllable) events so that the plant satisfies
a given specification for safety or nonblockingness for instance. The control actions of the supervisor are
determined by observation of the strings generated by the plant; thus the plant and supervisor from a
feedback loop as depicted in Fig. 1. Technically speaking, a supervisor S is defined as a function

Plant G

Supervisor S

Fig. 1: The feedback loop of supervisory control

S : L(G)→ 2E (2)

which takes a string generated by G and returns a set of events permitted to occur in G. In other words,
S(s) is a control action for a string s ∈ L(G). Note that supervisor S is prohibited from disabling a feasible
uncontrollable event at any state. Namely, letting Euc ⊆ E be a set of uncontrollable events in G, for each
s ∈ L(G), it always holds that Euc ∩ {e ∈ E | f(f(x0, s), e) is defined} ⊆ S(s).

In the framework of SCT, it is also considered that the supervisor has a limited observability of events
generated by the plant. This limitation is represented by partitioning the set of events E into two disjoint
subsets: the sets of observable events Eo and of unobservable events Euo, namely E = Eo ∪ Euo. To
implement this property, the supervisor in (2) is extended to the partial-observation supervisor SP defined
by

SP : P [L(G)]→ 2E (3)

where P is the natural projection from domain E∗ to codomain E∗o , removing unobservable events from a
string generated by G. Note that in this scheme, the control action by SP is supposed to always take effect
before any unobservable event occurs.

Given G and SP , the closed-loop behaviour of G controlled by SP is denoted by a DES SP /G, formalized
in the following definition.

Definition 1 (Languages generated and marked by SP /G). (cf. (Cassandras and Lafortune, 2021, p. 151))
The generated language L(SP /G) is recursively defined as

1. ε ∈ L(SP /G)

2. [s ∈ L(SP /G) ∧ sσ ∈ L(G) ∧ σ ∈ SP [P (s)]]⇔ [sσ ∈ L(SP /G)]

4

and the marked language Lm(SP /G) is defined as

Lm(SP /G) := L(SP /G) ∩ Lm(G). (4)

We can also examine the blockingness of SP /G as a meaningful characteristic of the controlled system.
Similarly to the blockingness of G, the DES SP /G is said to be blocking if L(SP /G) 6= Lm(SP /G) and
blocking if L(SP /G) = Lm(SP /G). Since these properties depend on the synthesis result of SP , SP is said
to be blocking if SP /G is blocking and to be nonblocking if SP /G is nonblocking.

The specification that the plant should obey is given as a specification language Lspec ⊆ L(G), or its
automaton representation H such that Lm(H) = Lspec. It is an important point that Lspec may not be
Lm(G)-closed, namely Lspec 6= Lspec ∩ Lm(G), and we may want the supervisor SP to “mark” strings in
L(SP /G) based on Lspec, rather than Lm(G). Therefore, the SCT framework provides an alternative version
of SP , called a marking supervisor, defined as

Lm(SP /G) := L(SP /G) ∩ Lspec. (5)

For the technical details of marking supervisors, the readers are referred to Section 3.9 in Cassandras and
Lafortune (2021). In the rest of this paper, nonblockingness of SP will be defined by either equation (4) or
(5), depending on the properties of the considered specification Lspec (namely, Lspec being Lm(G)-closed or
not).

3 System and Attack Models

Before proceeding to the specific ABP and TCP protocols, we highlight in this section and in the next one
the common elements of our two case studies.

3.1 System Architecture

When modelling communication protocols such as ABP and TCP, we consider a “system” that consists of
peers communicating with each other, channels, and networks. For clarity of presentation, we suppose the
system comprises two peers, two or four channels, and one network. If peers form a small network using
channels, e.g., a local area network (LAN), then networks can be omitted and we consider two channels
connecting each peer, namely, the forward and backward channels. Fig. 2 illustrates an overview of the

A
C1

C2
Network

C3

C4
B

±

(a) With network; C1, C2, C3, and C4 indicate channels

A
Forward

Backward
B

±

±

(b) Without network

Fig. 2: Communication overview

flow of packets between two peers through channels. Peers A and B exchange packets using communication
protocols through the channels and network. In this paper, we consider “person-in-the-middle” (PITM) as
the attack model on the system. In this model, the attacker infiltrates the network or channels, and afterwards
sends fake packets and/or discards genuine ones, exploiting vulnerabilities of the protocol (as captured by
the peer automata), to damage the system. The system may contain other processes for exogenous events,

5

e.g., timers, called environment processes, which are not depicted in Fig. 2. Channels work as interfaces
between the peers and the network, relaying packets to their destinations. Each component of the system is
modelled by a finite-state automaton, and denoted as follows:

GPA: Peer A; GPB : Peer B; GC : Channel; GN : Network; and Ge: Environment processes.

Each channel is represented by one finite-state automaton, thus GC is the parallel composition of the channel
automata. For example, if the system architecture is that in Fig. 2a, then GC = GC1 ‖ GC2 ‖ GC3 ‖ GC4

where GCi (i = [1, 4]) are the respective automata modelling each channel. If the system architecture is
that in Fig. 2b, then GC = GFC ‖ GBC where GFC and GBC are the forward and backward channels,
respectively, and GN is empty since there is no network in such an architecture. In the case where there
exist more than two environment processes in the system, Ge is also constructed as the parallel composition
of all environment processes.

To capture PITM attacks on the above system, we create new versions of the channels and network
automata when they are infiltrated by the attacker and denote them by GC,a and GN,a, respectively. We
consider that the attacker cannot directly tamper the internal codes of peers in our model of PITM attacks,
meaning that the attacker cannot disable nor enable the private events of the peers. Instead, in the infiltrated
channels or network, the attacker intercepts packets and can delete them, and can also insert new packets
to impersonate the sender or receiver, as similarly considered in Jero et al (2015). Thus, we construct GC,a

and GN,a by the addition of new transitions and events that represent the feasible actions of the attacker,
as the addition can capture insertion and replacement of packets, and packet deletion by the attacker can be
captured by disabling transitions which indicate packet transfer. Concrete examples of GC,a and GN,a will
be presented in the case studies in Sections 5 and 6.

Let us define a nominal system model (i.e., without attacker) by

Gnom := (Xnom, Enom, fnom, xnom,0, Xnom,m). (6)

Gnom is the parallel composition of the peers, channels, network, and environment processes, namely

Gnom = GPA ‖ GPB ‖ GC ‖ GN ‖ Ge (7)

As we consider PITM attacks on the system, we enhance Gnom to the new model of the system under attack

Ga := (Xa, Ea, fa, xa,0, Xa,m) (8)

where possible new transitions and events representing the actions of the attacker come from the enhanced
GC,a and GN,a automata described above. The other compoents of Gnom, namely the peer automata GPA

and GPB , as well as Ge, remain unchanged. In our case studies, the plant Ga is acted upon by the attacker;
hence, the plant consists of the entire system under attack:

Ga = GPA ‖ GPB ‖ GC,a ‖ GN,a ‖ Ge

The sending and receiving of packets are represented by events. As we consider PITM attacks, it is
reasonable to assume that an attacker infiltrating the network or channels can only monitor incoming and
outgoing packets at the infiltrated component. In other words, the attacker cannot observe the private events
of the peers. Therefore, we consider that the events in our system model are partitioned into observable
events and unobservable events, based on the system structure and the capability of the attacker. It is
also natural to assume that the attacker cannot prevent the peers from sending packets to the network or
channels, although the attacker can discard their packets. That is, the attacker cannot control the receiving
of packets by the network or channels.

Example 1. Let us consider PITM attacks on the Alternating Bit Protocol (ABP). ABP is a protocol
which defines the communication mechanism between two peers depicted in Fig. 2b. Each peer sends and
receives packets from its counterpart through the forward and backward channels using first-in-first-out
(FIFO) semantics. Inspired by Alur and Tripakis (2017), we consider Gnom as the parallel composition of
the following 7 automata.

• GS = (XS , ES , fS , xS,0, XS,m): ABP sender

6

• GR = (XR, ER, fR, xR,0, XR,m): ABP receiver

• GFC = (XFC , EFC , fFC , xFC,0, XFC,m): Forward channel

• GBC = (XBC , EBC , fBC , xBC,0, XBC,m): Backward channel

• GSC = (XSC , ESC , fSC , xSC,0, XSC,m): Sending client

• GRC = (XRC , ERC , fRC , xRC,0, XRC,m): Receiving client

• GT = (XT , ET , fT , xT,0, XT,m): Timer

Therefore, we have
Gnom = GS ‖ GR ‖ GFC ‖ GBC ‖ GSC ‖ GRC ‖ GT (9)

We also consider that Peer A first sends packets to Peer B, and afterwards Peer B sends an acknowledgement
to Peer A. Since Peer A plays a role of the sender side and Peer B is at the receiver side, GPA = GS ,
GPB = GR, GC = GFC ‖ GBC , and Ge = GSC ‖ GRC ‖ GT , thus (9) reduces to (7). Note that GN in (7)
will be empty in this case.

The various event sets are defined as follows, where synchronization in || will be achieved by common
events:

ES = {send, done, timeout, p0, p1, a′0, a′1} (10)

ER = {deliver, p′0, p′1, a0, a1} (11)

EFC = {p0, p1, p′0, p′1} (12)

EBC = {a0, a1, a′0, a′1} (13)

ESC = {send, done} (14)

ERC = {deliver} (15)

ET = {timeout} (16)

Hence

Enom = ES ∪ ER ∪ EFC ∪ EBC ∪ ESC ∪ ERC ∪ ET (17)

= {send, done, timeout, deliver, p0, p1, p′0, p′1, a0, a1, a′0, a′1}. (18)

The events with prefix “p” indicate that a packet with indicator bit “0” or “1” has been sent from the ABP
sender to the ABP receiver (i.e., from Peer A to Peer B), and prefix “a” indicates an acknowledgement sent
from the ABP receiver to the ABP sender, corresponding to which “0” or “1” has been received by the ABP
receiver. The prime symbol is attached to the events of packets and acknowledgement to distinguish those
before going through the channel from the corresponding ones after the channels, as is done in Alur and
Tripakis (2017).

Fig. 4 shows the models of the ABP components. GS and GR are example solutions of the distributed
protocol completion problem in Alur and Tripakis (2017). Note that we have removed from the models in
Fig. 4 “dead” transitions which are never executed by the system when the attacker is not present. The
terminology “dead” is from Alur and Tripakis (2017). In addition, we mark all the states of the ABP
components, for reasons that will become clear later. Namely,

XS,m = XS , XR,m = XR, XFC,m = XFC , XBC,m = XBC , XSC,m = XSC , XRC,m = XRC , XT,m = XT

In Alur and Tripakis (2017), the forward and backward channels are modelled as nondeterministic finite-state
automata as shown in Figs. 4c and 4d. That nondeterminism is introduced to model nonadversarial errors in
communication channels, such as packet drop and duplication (see Section 4.2 in Alur and Tripakis (2017)).
To construct the system model in (9), we need deterministic finite-state automata as factors of the parallel
composition. Thus, we construct GFC and GBC as observer automata of Gnd

FC and Gnd
BC , depicted in Fig. 5:

GFC = Obs(Gnd
FC) (19)

GBC = Obs(Gnd
BC) (20)

7

where “observers” are as defined in Cassandras and Lafortune (2021) and capture the standard conversion
of a nondeterministic automaton to a deterministic one (often referred to as subset construction). Observe
that GFC and GBC generate exactly the same languages as Gnd

FC and Gnd
BC , respectively.

Let us consider one example case of PITM attacks where a powerful attacker infiltrates the forward
channel. To construct the plant under attack Ga capturing the attacker’s actions, we enhance Gnd

FC to
Gnd

FC,a as depicted in Fig. 8a by adding the new transitions shown as the red arrows. This enhanced channel
model represents the attacker’s capability that can send packets to the recipient with whichever bit 0 or 1,
regardless of the incoming packets from the sender. Letting GFC,a = Obs(Gnd

FC,a) in the same way as (19),
Ga is hereby given by

Ga = GS ‖ GR ‖ GFC,a ‖ GBC ‖ Ge (21)

Section 5 describes in detail the procedure to model the PITM attack against ABP.

In our case studies, Ga is the plant and the attacker plays a role of the supervisor; in this context,
the specification represents what damage the attacker wants to cause to the system. In other words, the
specification should capture violations of a desired property of the communication protocol, such as absence
of deadlock or proper delivery of packets. Therefore, using SCT to synthesize a supervisor that enforces
the violation of a desired property of the communication protocol under consideration means that we have
actually synthesized an attack strategy that indeed causes a violation of that property.

3.2 For-all Attack

One of the contributions of this paper as compared to previous work is that we consider that the attacker
wants to attack the system in a “For-all” manner, to be interpreted in the following sense: the attacker can
always eventually cause a violation of the given property. Such specifications are naturally captured in SCT
using the notion of marked states and nonblockingness. When the marked states capture the violation of the
given property, then a nonblocking supervisory in SCT will exactly achieve the goal of a For-all attacker,
since it will always be possible to eventually reach a marked state. Specifically, consider an attacker’s marked
(i.e., non-prefix-closed) specification language Lspec

a ⊂ L(Ga) which consists of strings that are illegal but
feasible in the system under attack. Let Sa be a supervisor (aka attacker) for Ga that achieves as much of
Lspec
a as possible in the controlled system Sa/Ga. We denote this marked language by K, namely, K ⊆ Lspec

a

and the attacker wants K to be as large as possible. In order to achieve a For-all attack, the attacker
wants Sa to be nonblocking, namely, Lm(Sa/Ga) = K and L(Sa/Ga) = K. Thus, nonblockingness of the
system under attack implies that the attacker can always eventually win; thus, we have indeed obtained a
For-all attack strategy. This is how For-all attacks are defined in this paper.

The above definition of For-all attacks is formalized in Definition 2.

Definition 2 (For-all Attack-Supervisor). Given Lspec
a ⊂ L(G), let K ⊆ Lspec

a be a nonempty sublan-
guage. Sa is said to be a For-all attack-supervisor with respect to Ga and K if

1. Lm(Sa/Ga) = K; and

2. L(Sa/Ga) = K.

3.3 There-exists Attack

If there exists a supervisor Sa not satisfying the condition in Definition 2 but L(Sa/Ga) ∩ K 6= ∅, then
we say that such an Sa achieves a There-exists attack, because in that case the controlled system (under
the actions of the attacker) Sa/Ga will contain deadlocks and/or livelocks (i.e., the system under attack
is blocking in the terminology of SCT); this prohibits the attacker from always being able to eventually
win. Still, the nonemptyness of Lm(Sa/Ga) means that the attacker can sometimes win. This is how
There-exists attacks are defined in this paper.

The above definition of There-exists attacks is formalized in Definition 3.

Definition 3 (There-exists Attack-Supervisor). Given Lspec
a ⊂ L(G), let K ⊆ Lspec

a be a nonempty
sublanguage. Sa is said to be a There-exists attack-supervisor with respect to Ga and K if

8

1. L(Sa/Ga) ∩K 6= ∅; and

2. Sa is not a For-all attack-supervisor.

Now that we have shown how to build the plant model Ga, we address in the next section the construction
of an automaton representation for the (non-prefix-closed) language Lspec

a , which will be the “specification
automaton” for the attacker that is needed in the context of SCT algorithmic procedures.

Remark 1. In the prior work (von Hippel et al, 2020a), mostly analogous definitions of There-exists and
For-all attackers are given, but in the framework of reactive synthesis with infinite strings and temporal
logic (LTL) specifications (see Definition 6 in von Hippel et al (2020a)). The technical difference comes from
requiring “can always eventually win” instead of requiring “will always eventually win” (as is typically done
in LTL and is done in von Hippel et al (2020a)). The latter is expressible in LTL, but not the former. The
reactive synthesis setting is formally compared to that of SCT in Ehlers et al (2017), where it is shown that
nonblockingness in SCT is not expressible in LTL but instead corresponds to “AGEF(marked)” in CTL. In
this paper, since we use SCT, we match the notion of “AGEF(marked)”, i.e., “can always eventually win”.
Moreover, since we are working in the context of SCT, we will use the term “nonblockingness” for the class
of “liveness” properties that will be considered in this paper.

4 Procedure for Synthesis of For-all Attacks on Communication
Protocols

In this section, we discuss the modelling procedure to construct a specification automaton for the attacker
based on the considered properties (instances of safety or nonblockingness) of the communication protocol
that are to be violated by actions of the attacker. Then, we formulate the problem of finding For-all
feasible attacks on the system as a supervisor synthesis problem in SCT which has a known solution. The
SCT-based methodology presented in this section will be applied to ABP and TCP in the next two sections.

4.1 Safety properties

As in Alur and Tripakis (2017), consider a safety property whose violation is modelled by an automaton,
termed a safety monitor Gsm. Gsm captures the violation of the given safety property in terms of illegal
states in its structure. Since the specification for attackers represents a violation of the property, the illegal
states are represented by marked states in Gsm. In other words, Gsm captures the violation of the safety
property of interest when it reaches its marked states. (Note that in our problem context, we do require
marked states to capture violation of safety properties.)

Gsm can be derived from automata composing Gnom, namely, the peers, channels, or network, by modi-
fying state marking for instance. One can also independently design Gsm as a new automaton that we call a
dedicated automaton in this paper. Both instances will occur in our case studies. For example, in Section 5,
the safety monitors Gsm for ABP are given as dedicated automata in Fig. 6. Let Gother be the parallel
composition of the automata in Gnom which are not used to construct Gsm. For example, from (7), if Gsm

is built by modifying GPA ‖ GPB , then Gother = GC ‖ GN ‖ Ge. In Section 6, we will construct Gsm for
the TCP case study using TCP peer models GPA and GPB in Fig. 16 later on.

The specification automaton will in our case studies be the parallel composition of Gother and Gsm, as is
commonly done in SCT. Letting Hnom be the specification automaton with respect to Gnom (system without
attacker), we have that Hnom = Gother ‖ Gsm. Note that since we want marking in Hnom to be determined
by marking in Gsm, all the states of Gother are to be marked. In the absence of attackers, the communication
protocol should ensure the safety property under consideration, which means that its violation should never
occur. This can be verified by confirming that Hnom has no reachable marked states, i.e., Hnom captures no
violations of the given safety property with respect to Gnom.

To represent the specification automaton with respect to the system under attack, namely Ga, we con-
struct Gother,a based on Ga in the same manner as Gother. For instance, if Gsm is a dedicated automaton and
the attacker infiltrates the network, then Gother,a = GPA ‖ GPB ‖ GC ‖ GN,a ‖ Ge. Let Ha = Gother,a ‖ Gsm

9

be the specification automaton under attack. Similarly to marking in Gother, we want Gsm to determine
marking in Ha, thus all the states of Gother,a are to be marked. If there exist no marked states in Ha, then
the attacker is not powerful enough to cause a violation of the safety property. Even if Ha has marked states,
there may not exist For-all attacks (but possibly only There-exists attacks), depending on whether a
nonblocking supervisor can be synthesized with respect to plant Ga and specification automaton Ha; this
will be addressed in the solution of the SCT problem discussed below.

In summary, the procedure to build Ha for a given safety property is presented in Algorithm 1.

Algorithm 1 Attack Specification against Safety (SafeSpec)

Input: Gnom, Ga, Gsm

Output: Ha

1: if Gsm is a dedicated automaton then
2: Gother = Gnom

3: Gother,a = Ga

4: else
5: Φ = {GPA, GPB , GC , GN , Ge}
6: Φa = {GPA, GPB , GC,a, GN,a, Ge}
7: Gother =

f
{G ∈ Φ | G is not used to construct Gsm}

8: Gother,a =
f
{G ∈ Φa | G is not used to construct Gsm}

9: end if
10: Hnom = (Ynom, Enom, gnom, ynom,0, Ynom,m) = Gother ‖ Gsm

11: if Ynom,m 6= ∅ then
12: Terminate with empty solution . The given model is incorrect as the safety property is violated even if

no attacker is present.

13: end if
14: Mark all the states in Gother,a

15: Ha = (Ya, Ea, ga, ya,0, Ya,m) = Trim(Gother,a ‖ Gsm) . Ha should be trim because we want the attacker to

always be able to eventually win, i.e., there should not be any deadlocks/livelocks in the controlled Ga.

16: if Ya,m = ∅ then
17: Terminate with empty solution . The attacker’s actions can never cause a violation of the given safety

property.

18: end if
19: return Ha

Proposition 1. Suppose that Ynom,m = ∅ in Algorithm 1, that is, the given system model is correct in terms
of the safety properties. If Ya,m on line 16 is empty, then no For-all attack exists and no There-exists
attack exists.

Proof. By construction, Gsm captures a violation of the given safety property by reaching its marked states.
Let Xother,a and Xsm be the sets of states of Gother,a and Gsm, respectively. Note that Ya ⊆ Xother,a×Xsm

from line 15 of Algorithm 1. Since all the states in Xother,a are marked, it holds that Ya,m = ∅ iff for
every (xother,a, xsm) ∈ Ya, xsm is not marked. This means that the safety monitor Gsm never captures
the violation iff Ha has no marked states. In other words, the attacker can never cause a violation of the
given safety property. Therefore, if Ya,m = ∅, then no For-all attack exists and no There-exists attack
exists.

We build several instances of Ha for ABP in Section 5.4 and for TCP in Section 6.5. The safety monitors
for ABP are given as dedicated automata in Fig. 6, as will be explained in Section 5.1, while those for TCP
are derived from Ga based on the given safety property, as will be explained in Section 6.2.

4.2 Nonblockingness properties

We examine a “limited” liveness property, called nonblockingness, as expressible in SCT for ∗-languages,
namely, languages of finite strings. Nonblockingness is an adequate tool in many applications, such as in

10

software systems; see, e.g.: deadlock in database concurrency control (Lafortune, 1988); deadlock in multi-
threaded programs (Gadara project) (Liao et al, 2013). Since our approach is based on SCT, nonblockingness
is the only type of liveness property that we consider in our case studies. Thus, the set of marked states used
for nonblockingness will be the “parameter” that captures the desired instance of liveness. In our setting,
in For-all attacks the attacker wants to cause a violation of nonblockingness with respect to the chosen
marked states. First of all, Gnom in (7) should be trim for correctness of the system without attacker, as
otherwise Gnom would contain deadlocks or livelocks. However, Ga should not be trim, meaning that the
system under attack should contain deadlock or livelock states, i.e., be blocking.

As for the case of safety monitors previously considered, in several instances the violation of the nonblock-
ingness property of interest will be modelled using a dedicated automaton, the nonblockingness monitor Gnm;
one such example is shown in Fig. 7, inspired by Alur and Tripakis (2017) and considered in in Section 5.2.
The marked states of Gnm will record the violation of the given nonblockingness property.

On the other hand, if Gnm is not given a priori, then violations of nonblockingness will be captured as
follows: starting from Ga, unmark all states and mark instead the desired (from the viewpoint of the attacker)
deadlock and livelock states in Ga, resulting in a suitable Gnm model. This is done because deadlock and
livelock states are illegal, and the attacker wants the system to reach those illegal states (some or all of them,
depending on the type of attack). This is the approach that we will follow in our case study on TCP, as will
be explained in Sections 6.5.3 and 6.5.4.

Next, we construct Gother,a in the same way as in Section 4.1. That is, we model Gother,a as the parallel
composition of the automata in Ga which are not used to build Gnm, and ensure that all the states in
Gother,a are marked. Note that if Gnm is not given as a dedicated automaton and we derive Gnm from Ga,
then Gother,a is empty.

Finally, we define Ha = Trim(Gother,a ‖ Gnm), to represent the specification for the attacker which leads
the plant to deadlock or livelock states. As a result, we introduce the algorithm to construct Ha in the case
of the nonblockingness properties in Algorithm 2.

Proposition 2. Suppose that Gnom is trim in Algorithm 2, that is, the given system model is correct in
terms of the nonblockingness properties. If Ya,m on line 19 is empty, then no For-all attack exists and no
There-exists attack exists.

Proof. The proof can be done in the same manner as of Proposition 1, replacing Gsm by Gnm.

We will discuss several instances of Ha for ABP in Section 5.4 and TCP in Section 6.5.

4.3 Problem formulation

In this section, we formulate the Attack-Supervisor Synthesis Problem (ASSP), which is an instance of a
standard SCT partial-observation supervisory control problem, but where the attacker plays the role of
“supervisor” and the specification is a violation of a given communication protocol property. ASSP is the
formal statement of the For-all attack synthesis problem that is solved in our case studies on ABP and
TCP.
Attacked-Plant: As was described earlier, GC and/or GN are modified to represent the attacker’s ability
of inserting and/or discarding packets, resulting in new automata denoted by GC,a and GN,a. Next, we form
the plant Ga for ASSP as the parallel composition of nominal and infiltrated automata. For example, if the
network is infiltrated by the attacker, then Ga = GPA ‖ GPB ‖ GC ‖ GN,a ‖ Ge.
Attack Specification: Next, we construct Ha using Algorithm 1 or Algorithm 2 based on the given
safety or nonblockingness property to be violated, as discussed in Section 4.1 and Section 4.2. Since marking
of states in Ha is determined by marking in Gsm or Gnm, the language marked by Ha, Lm(Ha), represents
strings where the attacker wins, because

(i) These strings are feasible in Ga by construction.

(ii) These strings lead the safety or nonblockingness monitor to a marked state.

As we discussed in Section 3.1, it is reasonable to assume that in PITM attacks the attacker cannot disable
or enable the events in the nominal (non-infiltrated) automata, and also that the attacker only observes the

11

Algorithm 2 Attack Specification against Nonblockingness (NonblockSpec)

Input: Gnom, Ga, Gnm

Output: Ha

1: if Gnom is not trim then
2: Terminate with empty solution . The given model is incorrect as the nonblockingness property is

violated even if no attacker is present.

3: end if
4: if Gnm is empty then . Gnm is not given a priori.

5: if Ga is trim then
6: Terminate with empty solution . The attacker’s actions in GC,a and/or GN,a cannot cause a violation

of the nonblockingness properties.

7: else
8: Xa,m = ∅
9: Add target deadlock/livelock states in Xa to Xa,m . Pick the desired (from the viewpoint of the

attacker) deadlock and livelock states.

10: Gnm = Ga

11: Let Gother,a be empty
12: end if
13: else
14: Φa = {GPA, GPB , GC,a, GN,a, Ge}
15: Gother,a =

f
{G ∈ Φa | G is not used to construct Gnm}

16: end if
17: Mark all the states in Gother,a

18: Ha = (Ya, Ea, ga, ya,0, Ya,m) = Trim(Gother,a ‖ Gnm)
19: if Ya,m = ∅ then
20: Terminate with empty solution . The attacker’s actions can never cause a violation.

21: end if
22: return Ha

12

events in the automata of the infiltrated components. Thus we define the two partitions of Ea in (8), from
the viewpoint of the attacker (which plays the role of supervisor):

(i) Controllable events Ea,c and uncontrollable events Ea,uc for controllability.

(ii) Obsevable events Ea,o and unobservable events Ea,uo for observability.

Consequently, we have the following supervisory control problem, under partial observation, for the
attacker.

Problem 1 (Attack-Supervisor Synthesis Problem, or ASSP). Let Ga be a plant automaton, under attack,
as in (8); Ea,c be a set of controllable events; Ea,o be a set of observable events; and Lm(Ha) ⊂ L(Ga) be a
marked (non-prefix-closed) specification language. Find a maximal controllable and observable sublanguage
of Lm(Ha) with respect to L(Ga), Ea,c, and Ea,o, if a non-empty one exists.

The following theorem states that a non-empty output of ASSP will be the controlled behaviour under
a successful For-all attack, highlighting our main results in this paper.

Theorem 1. Let K be a solution of ASSP. Then there exists a For-all attack-supervisor with respect to
Ga and K. Conversely, if ASSP has no non-empty solution, then there does not exist a For-all attack-
supervisor for Lspec

a = Lm(Ha), with the given controllable and observable event sets for the attacker.

Proof. Since K is a controllable and observable sublanguage of Lm(Ha) ⊂ L(Ga), from the “controllability
and observability theorem” (Cassandras and Lafortune, 2021, p. 197), there exists a supervisor SP such
that Lm(SP /Ga) = K and L(SP /Ga) = K. From Definition 2, SP here is a For-all attack-supervisor
with respect to Ga and K. If Lm(Ha) is not Lm(G)-closed, we consider SP to be a marking supervisor, as
mentioned in Section 2. Conversely, if the empty set is the only solution to ASSP, then there is no For-all
attacker: this is because there is no non-empty language satisfying conditions 1 and 2 in Definition 2.

The realization (using standard SCT terminology) of the corresponding (nonblocking) supervisor will
encode the control actions of the attacker. By taking the parallel composition of the supervisor’s realization
with the plant, we obtain an automaton that is language equivalent (generated and marked) to the plant
under supervision. Namely, letting Ra be the realization of SP , it holds that Ra ‖ Ga is language equivalent
to the controlled plant SP /Ga; see Cassandras and Lafortune (2021); Wonham and Cai (2019). Ra therefore
corresponds to a TM-attacker as defined in von Hippel et al (2020a). In ASSP, we require maximalty of
the controllable and observable sublanguage, since this problem is known to be solvable (Yin and Lafortune,
2015).

In the PITM attack model, the assumption of Ea,c ⊆ Ea,o usually holds. In fact, in all of the scenarios
considered in Sections 5 and 6, the condition Ea,c ⊆ Ea,o will hold. In this important special case, the
supremal controllable and observable sublanguage of Lm(Ha) with respect to L(Ga), Ea,c, and Ea,o exists
and is equal to the supremal controllable and normal sublanguage of Lm(Ha), denoted by Lm(Ha)↑CN , with
respect to L(Ga), Ea,c, and Ea,o. If it is empty, then no For-all attack exists for the given safety or
nonblockingness property.

If Lm(Ha)↑CN 6= ∅, then this language represents the largest attacked behaviour which is possible in
the context of a For-all attack against the safety or nonblockingness property. Any marked string in
that language provides an example of a successful attack, which is feasible in Ga and steers Gnm or Gsm

to its marked (illegal) state. Let HCN
a be the trim automaton output by the algorithm for the supremal

controllable and normal sublanguage, namely

Lm(HCN
a) = Lm(Ha)↑CN (22)

and
L(HCN

a) = Lm(Ha)↑CN (23)

From the controllability and observability theorem of SCT, there exists a partial-observation nonblocking
supervisor SP such that

L(SP /Ga) = Lm(Ha)↑CN = L(HCN
a) (24)

13

SP corresponds to a For-all attack-supervisor since every string in the controlled behaviour, SP /Ga, can
be extended to a marked string, by nonblockingness of SP . In other words, it is always eventually possible
for the system under attack by SP to violate the given property.

In the above formulation, Lm(Ha) may not be Lm(Ga)-closed, since it is possible that Ga = Gother,a and
all the states in Ga are marked. Therefore, according to the use of Gsm and Gnm, whenever necessary we
define SP as a marking supervisor by following (5), namely

Lm(SP /Ga) := L(SP /Ga) ∩ Lm(HCN
a) = Lm(Ha)↑CN (25)

As a last step, we need to build a realization of SP as an automaton that: (i) only changes its state upon
the occurrence of observable events, since HCN

a contains transitions with unobservable events; and (ii) whose
active event set at each state of the realization is equal to the events enabled by the supervisor (attacker) at
that state. Noting that marking of states may be relevant in the case of a marking supervisor, the standard
process for automaton realization of a partial-observation supervisor (see Section 3.7.2 in Cassandras and
Lafortune (2021)) can be followed. From (24) and (25), we build an automaton realization of SP using HCN

a ,
where SP is such that

Lm(SP /Ga) = Lm(Ha)↑CN (26)

and
L(SP /Ga) = Lm(Ha)↑CN (27)

First, we build the observer of HCN
a , Obs(HCN

a), with respect to Ea,o, using the standard process of observer
construction (Cassandras and Lafortune, 2021). Next, we add self loops for all events in Ea,c ∩ Ea,uo that
need to be enabled at each state of Obs(HCN

a), obtained by examining the corresponding states of HCN
a .

The attack strategy of the successful For-all attacker is encoded in this realization, as desired.
Based on the above discussion, we introduce Algorithm 3 to synthesize For-all attacks with respect to

the given Gnom, Ga and Gm (either a safety or nonblockingness monitor). We also state in Proposition 3
that Algorithm 3 returns the realization of a For-all attack-supervisor, if it exists, which encodes the
attack strategy in order for the attacker to lead the plant to a violation of the given safety/nonblockingness
monitor.

Algorithm 3 For-all Attack Synthesis

Input: Gnom, Ga, Gm

Output: R
1: if Gm is a safety monitor then
2: Ha = SafeSpec(Gnom, Ga, Gm)
3: else
4: Ha = NonblockSpec(Gnom, Ga, Gm)
5: end if
6: Compute Lm(Ha)↑CN = Lm(HCN

a) from Ga and Ha . HCN
a is the trim automaton output by the standard

algorithm (Cassandras and Lafortune, 2021) for the supremal controllable and normal sublanguage.

7: if Lm(Ha)↑CN is empty then
8: Terminate with empty solution
9: end if

10: Compute the realization R of SP from HCN
a such that Lm(SP /Ga) = Lm(Ha)↑CN and L(SP /Ga) =

Lm(Ha)↑CN

11: return R

Proposition 3. Suppose that Ha on line 2 or line 4 in Algorithm 3 is non-empty, i.e., Algorithm 1 or
Algorithm 2 returns a non-empty solution. If ASSP (Problem 1) is solvable, then Algorithm 3 returns the
realization of a For-all attack-supervisor.

Proof. Since Ea,c ⊆ Ea,o, if there exists a solution of ASSP, then the supremal controllable and observable
sublanguage of Lm(Ha) exists and is equal to Lm(Ha)↑CN , which is a solution of ASSP. Thus from the proof

of Theorem 1, a supervisor SP such that Lm(SP /Ga) = Lm(Ha)↑CN and L(SP /Ga) = Lm(Ha)↑CN is a

14

For-all attack-supervisor. Therefore, if ASSP is solvable, then Algorithm 3 returns the realization of a
For-all attack-supervisor.

As long as Algorithm 3 returns a non-empty automaton, from Proposition 3, the above methodology
results in a closed-loop system that produces For-all attacks, in the presence of the attacker. Since HCN

a

in Algorithm 3 is a trim automaton, we know that at any state in HCN
a , it is possible to reach a marked

state, resulting in a violation of the monitor. Therefore, it is always possible for the attacker to eventually
win.

Remark 2. When Ha output by Algorithm 1 or Algorithm 2 is not empty (i.e., when it has at least one
marked state) but there is no For-all attack-supervisor (i.e., Algorithm 3 returns the empty solution), then
we can conclude that there exists at least one There-exists attack-supervisor, according to Definition 3.
For instance, one can take the supervisor Sall that always enables all events. Then L(Sall/Ga) = L(Ga)
and L(Ga) ∩ Lm(Ha) = Lm(Ha) by construction of Ha. Hence, this attack-supervisor can reach any of
the marked states in Ha where it “wins”, but the closed-loop system will be blocking. Techniques in SCT
for synthesizing blocking supervisors, as described in Section 3.5.5 of Cassandras and Lafortune (2021)
for instance, can be employed to guide the design of There-exists attack-supervisors when no For-all
attack-supervisor exists. Further investigation of There-exists attack-supervisors is beyond the scope of
this paper.

5 ABP Case Study

Our first case study for synthesis of For-all attacks is for the Alternating Bit Protocol (ABP), as studied
and modelled in Alur and Tripakis (2017). The models of ABP components we use in this section are
described in Example 1.

5.1 Safety property models

As introduced in Section 4.1, safety properties are represented by safety monitor automata which define
what states in the system must not be reached, i.e., define illegal states. Alur and Tripakis (2017) provides
two safety monitor automata, G1

sm and G2
sm, capturing the violation of safety properties for ABP, depicted

in Fig. 6. The marked state q2 in G1
sm and G2

sm indicates the illegal state, namely, the safety property is
violated if the monitor reaches this state from the initial state. G1

sm expresses that:

• deliver should happen after send, meaning that deliver of the ABP receiver and the Receiving client
should not happen before the Sending client tells the ABP sender to send a bit to the forward channel.

• After send happens, the next send should not occur before deliver occurs, meaning that the Sending
client should wait for the acknowledgement signal from the ABP receiver.

On the other hand, G2
sm expresses that:

• done should happen after deliver, meaning that done of the ABP sender and the Sending client should
not happen before the ABP receiver receives the signal and sends the acknowledgement to the ABP
sender.

• After deliver happens, the next deliver should not occur before done occurs, meaning that deliver
cannot happen before the Sending client tells the ABP sender to send the next signal to the forward
channel.

Since the safety monitors are provided as dedicated automata, G1
sm and G2

sm, Gother in Algorithm 1 is
equal to Gnom. In our ABP system model, Hnom on line 10 in Algorithm 1 has no marked states, thus we
state that our ABP model is correct in terms of the safety properties. Namely, the nominal system (without
attacker) does not violate the given safety properties.

15

5.2 Nonblockingness property models

The nonblockingness monitor in Fig. 7, Gnm, captures a violation of the nonblockingness property that
the entire system should not get stuck, and should not keep invoking send. Namely, the first send should
eventually be followed by a deliver. Gnm in Fig. 7 is a simplified version of a monitor provided by Alur
and Tripakis (2017) so that our nonblockingness monitor Gnm captures that the first transmission is never
completed, which is adequate for our case study.

5.3 Attack model

As we consider the system architecture in Fig. 2b for ABP, the attacker infiltrates the forward and/or
backward channels. To follow Algorithms 1 and 2, we first construct a modified model of the plant Ga

in (8) under attack. Since the channels of ABP are under attack, we enhance GFC and GBC to those under
attack, GFC,a and GBC,a, by adding new transitions to represent capabilities of the attacker. Note that
if we keep either of the channels nominal, then GFC,a = GFC or GBC,a = GBC accordingly. Therefore,
GC,a = GFC,a ‖ GBC,a.

The PITM attacker is represented by a modified forward or backward channel that can send the recipient
a different packet from the incoming packet. For example, if the attacker has infiltrated the forward channel,
then the attacker can send either p′0 or p′1 to the ABP receiver regardless of which p0 or p1 occurs. Fig. 8
shows the attacked forward and backward channels. Red transitions are added to the original channel
models in Figs. 4c and 4d. These new transitions enable the attacker to send whichever packet they want.
To construct Ga, we model GFC,a and GBC,a as observer automata of Gnd

FC,a and Gnd
BC,a, as was done for

Gnom. Fig. 9 depicts GFC,a and GBC,a, representing new transitions compared to Fig. 5 as red transitions.
As discussed in Section 3.1, we suppose that the attacker cannot control and observe events outside the

channels. Therefore, the event set Ea is partitioned as follows:

• Controllable events: Ea,c = {p′0, p′1, a′0, a′1}

• Uncontrollable events: Ea,uc = {send, done, timeout, deliver, p0, p1, a0, a1}

• Observable events: Ea,o = {p0, p1, p′0, p′1, a0, a1, a′0, a′1}

• Unobservable events: Ea,uo = {send, done, timeout, deliver}.

We consider that in our attack model, the attacker controls the output packets from the channels so that
each safety or nonblockingness monitor in Sections 5.1 and 5.2 reaches its marked state, if possible.

5.4 Examination of the PITM attack for ABP

In this section, we examine the PITM attack for the above safety and nonblockingness properties of ABP
according to the following steps:

1. Construct the plant under attack Ga as the parallel composition of the component models of ABP
under attack, namely

Ga = GS ‖ GR ‖ GC,a ‖ Ge (28)

where GC,a = GFC,a ‖ GBC,a and Ge = GSC ‖ GRC ‖ GT .

2. Using Algorithm 3, compute the realization of a For-all attack-supervisor with respect to Gnom, Ga

and the safety/nonblockingness monitor for ABP.

For illustration purposes, if Algorithm 3 returns the realization of an attack-supervisor, we pick one example
string from the initial state to one marked state in Lm(Ha)↑CN , which represents one system behaviour
under attack that reaches a marked state in the monitor.

Ga varies depending on GC,a, namely which channel is under the PITM attack, so we consider the
following three cases in each setup:

1. The forward channel is under the PITM attack (i.e. GBC,a = GBC):

Ga = GS ‖ GR ‖ GFC,a ‖ GBC ‖ Ge (29)

16

2. The backward channel is under the PITM attack (i.e. GFC,a = GFC):

Ga = GS ‖ GR ‖ GFC ‖ GBC,a ‖ Ge (30)

3. Both channels are under the PITM attack:

Ga = GS ‖ GR ‖ GFC,a ‖ GBC,a ‖ Ge (31)

For clarity of presentation, we henceforth focus on the use of the safety monitor 1 and Ga in (29) in which
the forward channel is under attack, as presented in Example 1. In other words, we consider Ha as the
parallel composition of Ga in (29) and the safety monitor 1 G1

sm. The other cases of (30) and (31) and the
safety monitor 2 can be examined using the same procedure.

5.4.1 Attack against Safety Properties

Setup 1 Consider the PITM channels in Fig. 8 which represent a powerful attacker that can send packets
to the recipient with whichever bit 0 or 1, regardless of the incoming packets.

Following our procedure, we found that Ha has 168 marked states out of 265 states and HCN
a is non-

empty. Here, Lm(HCN
a) = Lm(Ha) and L(HCN

a) = L(Ga), so Ha is already controllable and normal
with respect to Ga, thus the attacker issues no disablement actions. Let us pick the example string
send.p0.p

′
0.deliver.a0.p

′
1.deliver, which means that the attacker sends the correct packet with bit 0 first,

and afterwards sends a fake packet with bit 1 to the ABP receiver when it observes a0. In other words, the
attacker inserts q′1 soon after it observes a0. Consequently, G1

sm captures the violation by reaching q2 with
send.deliver.deliver.

Setup 2 Let us represent a less-powerful attacker by removing additional transitions from the PITM
channels in Fig. 8. First, we remove all red transitions except p′1 from f1 to f0 in Fig. 8a, so that the
attacker can send packets with bit 1 at the particular timing. Let Gnd

FC,wa be the less powerful forward

PITM channel derived from Gnd
FC,a. Fig. 10 shows Gnd

FC,wa and GFC,wa = Obs(Gnd
FC,wa). The red transitions

are new ones compared to Gnd
FC and GFC .

Next, we compute Ga, Ha, and HCN
a by following the steps at the beginning of Section 5.4. Ga = G′S ‖

GR ‖ GFC,wa ‖ GBC ‖ G′e has 248 states, and Ha = Ga ‖ G1
sm has 370 states and 228 marked states.

HCN
a is non-empty and consists of 1099 states and 771 marked states. In every case, L(HCN

a) = L(Ga), so
no disabling happens. As the example string in HCN

a , we pick send.p0.p
′
0.deliver.a0.p

′
1.deliver which is the

same as that in Setup 1, but HCN
a here is not equivalent. Let (HCN

a)2 be HCN
a here and (HCN

a)1 be HCN
a in

Setup 1. Since (HCN
a)comp

2 × (HCN
a)1 is non-empty, we conclude that (HCN

a)2 lacks some attack strategies,
but one additional p′1 in Gnd

FC,wa is enough to cause the violation of the safety property.

Setup 3 Let us make the attacker much less powerful than in Setup 2, by building a new automaton of
the infiltrated forward channel and changing the sets of controllable and observable events.

Consider the new automaton of the infiltrated forward channel, depicted in Fig. 11. We denote this new
automaton by Goneshot,nd

FC,a and its observer by Goneshot
FC,a , namely Goneshot

FC,a = Obs(Goneshot,nd
FC,a). This forward

channel means that the attacker can send a fake packet with bit 1 to the ABP receiver only once (one-shot
attacker). After the fake packet, the channel’s behaviour will get back to normal. Moreover, we consider the
following controllable and observable event sets:

• Controllable events: Ea,c = {p′1}

• Observable events: Ea,o = {p0, p1, p′0, p′1, a0, a1, a′0, a′1}

meaning that the attacker can observe events in both of the channels, but can only control p′1 in the
(infiltrated) forward channel. By following the procedure as we have done, Ga in (29), where GFC,a =
Goneshot

FC,a , has 334 states. Also, Ha = Ga ‖ Gsm1 has 190 marked states out of 431 states, and HCN
a is non-

empty. Moreover, Lm(HCN
a) 6= Lm(Ha) and L(HCN

a) 6= L(Ga), thus the attacker issues event disablement
actions during its attack on the system. For illustration, we pick the following example string in HCN

a :

send.p0.p
′
0.deliver.a0.a

′
0.done.send.p1.p

′
1.deliver.a1.a

′
1.done.send.p0.p

′
0.deliver.a0.a

′
1.p
′
1.deliver.a1

17

By observation, the blue events are nonadversarial error packets which are sent mistakenly, and the red event
p′1 is inserted by the attacker. Note that the attacker can observe p′1 and a′1 here. Accordingly, this string
means that the attacker can lead the system to the undesired state by sending the fake packet p′1 only once
after the observation of one error packet. Moreover, the attacker disables p′1 several times before sending
the fake p′1. Therefore, in this case, the violation is caused “by chance”, since the attacker exploits errors,
but that violation is enabled by the attacker’s intervention. It is worth mentioning that if we remove the
events in the backward channel (i.e., a0, a1, a′0 and a′1) from Ea,o, then HCN

a is empty. This means that
the attacker needs to observe the behaviour of the backward channel so as to exploit nonadversarial errors
to attack. Moreover, if we set Ea,c = ∅ and Ea,o = {p0, p1, p′0, p′1, a0, a1, a′0, a′1}, then HCN

a is empty again,
meaning that the attacker needs to have the controllability of p′1 to attack successfully.

5.4.2 Attack against Nonblockingness Properties

Setup 4 Consider that the attacker wants the system to violate the nonblockingness property represented
by the nonblockingness monitor Gnm in Fig. 7. Let us examine the system under attack where the forward
channels are infiltrated by the attacker, namely Ga in (29). Note that the forward PITM channel here is
that in Fig. 8a which is quite powerful. Since Gnm is given as a dedicated automaton, we build Ha =
Trim(Gother,a ‖ Gnm) where Gother,a = Ga.

In this case, Ga consists of 174 states, and Ha comprises 14 states and 13 marked states. HCN
a is

non-empty and consists of 10 states and 9 marked states. As the example string in HCN
a , we pick string

send.p0.p1′.a1.timeout which means that the attacker sends a fake packet with bit 1 to the ABP receiver after
it observes p0, and expects the system to suffer from timeout. Moreover, from HCN

a , the attacker-supervisor
disables p′0 to prevent deliver, resulting in L(HCN

a) 6= L(Ga). Therefore, there exist no deliver transitions
in HCN

a . This result shows that the attacker successfully leads the system to violate the nonblockingness
property that send should eventually be followed by deliver.

6 TCP Case Study

Our second case study concerns one of the major protocols in the Internet, the Transmission Control Pro-
tocol (TCP) (Postel, 1981). TCP is widely used to communicate through unreliable paths. We consider a
communication architecture as in Fig. 2a. Each peer sends and receives packets to and from channels, and
the network interconnects channels to relay the incoming packets to their destinations. As in von Hippel
et al (2020a), we consider the connection establishment phase of TCP, based on three-way handshake, and
do not model the congestion control part of that protocol.

6.1 Component models of TCP

Let Gnom in (6) be the entire connection establishment part of TCP without an attacker. Based on the
architecture of TCP introduced in von Hippel et al (2020a), we consider Gnom as the parallel composition
of the following components:

• GPA = (XPA, EPA, fPA, xPA,0, XPA,m): Peer A

• GPB = (XPB , EPB , fPB , xPB,0, XPB,m): Peer B

• GC1 = (XC1, EC1, fC1, xC1,0, XC1,m): Channel 1

• GC2 = (XC2, EC2, fC2, xC2,0, XC2,m): Channel 2

• GC3 = (XC3, EC3, fC3, xC3,0, XC3,m): Channel 3

• GC4 = (XC4, EC4, fC4, xC4,0, XC4,m): Channel 4

• GN = (XN , EN , fN , xN,0, XN,m): Network

18

namely
Gnom = GPA ‖ GPB ‖ GC1 ‖ GC2 ‖ GC3 ‖ GC4 ‖ GN (32)

Hence, GC = GC1 ‖ GC2 ‖ GC3 ‖ GC4 and Ge = GN , so (32) reduces to (7).
The event sets are defined as follows:

EPA = {listenA, timeoutA, deleteTCBA, SY NAC1, SY NC2A,

ACKAC1, ACKC2A, F INAC1, F INC2A, SY N ACKAC1, SY N ACKC2A}
(33)

EPB = {listenB , timeoutB , deleteTCBB , SY NBC3, SY NC4B ,

ACKBC3, ACKC4B , F INBC3, F INC4B , SY N ACKBC3, SY N ACKC4B}
(34)

EC1 = {SY NAC1, SY NC1N , ACKAC1, ACKC1N , F INAC1, F INC1N , SY N ACKAC1, SY N ACKC1N}
(35)

EC2 = {SY NNC2, SY NC2A, ACKNC2, ACKC2A, F INNC2, F INC2A, SY N ACKNC2, SY N ACKC2A}
(36)

EC3 = {SY NBC3, SY NC3N , ACKBC3, ACKC3N , F INBC3, F INC3N , SY N ACKBC3, SY N ACKC3N}
(37)

EC4 = {SY NNC4, SY NC4B , ACKNC4, ACKC4B , F INNC4, F INC4B , SY N ACKNC4, SY N ACKC4B}
(38)

EN = {SY NC1N , SY NC3N , SY NNC2, SY NNC4,

ACKC1N , ACKC3N , ACKNC2, ACKNC4,

F INC1N , F INC3N , F INNC2, F INNC4,

SY N ACKC1N , SY N ACKC3N , SY N ACKNC2, SY N ACKNC4}

(39)

Hence
Enom = EPA ∪ EPB ∪ EC1 ∪ EC2 ∪ EC3 ∪ EC4 ∪ EN (40)

The subscripts in the event names indicate the directions of packets. For example, “AC1” means packets
from Peer A to Channel 1. Note that the subscripts “A” and “B” are added to “listen” and “deleteTCB”
to make these events private.

Figs. 12 to 16 depict the models of the above TCP components. GPA and GPB illustrate the sequence of
three-way handshake and cleanup. We mark the states “closed”, “listen”, and “established” in the automata
of the peers, because the peer should not stay in other states during communication, based on Postel (1981).
We also mark all states in the automata of the channels and network, to prevent these automata from
marking the system. Namely,

XC1,m = XC1, XC2,m = XC2, XC3,m = XC3, XC4,m = XC4, XN = XN,m.

6.2 Safety property models

In von Hippel et al (2020a), the safety/liveness property of interest is defined as a threat model (TM). TM
explains the property using Linear Temporal Logic (LTL) (Baier and Katoen, 2008). In this paper, we
represent the required properties in von Hippel et al (2020a) as finite-state automata.

von Hippel et al (2020a) provides one threat model, TM1, for one relevant safety property of TCP. TM1
defines the safety property that if Peer A is at state “closed”, then Peer B should not be at state “established”,
because both peers should consecutively reach their “established” states after beginning the connection hand-
shake. Let GTM1

sm be the safety monitor to capture the violation of TM1. We represent GTM1
sm as the parallel

composition of the automata in Fig. 16 where the marked states are only “closed” in Peer A and “estab-
lished” in Peer B, namely GTM1

sm = GTM1
PA ‖ GTM1

PB , where GTM1
PA = (XTM1

PA , ETM1
PA , fTM1

PA , xTM1
PA,0, X

TM1
PA,m) and

GTM1
PB = (XTM1

PB , ETM1
PB , fTM1

PB , xTM1
PB,0, X

TM1
PB,m). Note that

XTM1
PA = XPA, ETM1

PA = EPA, xTM1
PA,0 = xPA,0, XTM1

PA,m = {closed} 6= XPA,m,

XTM1
PB = XPB , ETM1

PB = EPB , xTM1
PB,0 = xPB,0, XTM1

PB,m = {established} 6= XPB,m

19

Hence, the marked states in GTM1
sm are illegal states, capturing that Peer A is at “closed” and Peer B is at

“established” simultaneously.
Since the safety monitor for TM1, GTM1

sm , is derived from GPA and GPB , Gother in Algorithm 1 is the
parallel composition of the automata of the channels and network, namely Gother = GC1 ‖ GC2 ‖ GC3 ‖
GC4 ‖ GN . Let Hnom in Algorithm 1 be a nominal specification automaton (without attacker) for TM1. In
our system model of TCP, Hnom = Trim(GTM1

nm ‖ Gother) has no marked states, thus we conclude that our
TCP model, without attackers, is correct in terms of TM1.

6.3 Nonblockingness property models

von Hippel et al (2020a) also provides two liveness properties denoted as TM2 and TM3. TM2 defines the
liveness property that Peer 2 should eventually reach the “established” state. TM3 requires that both peers
should not get stuck except at “closed” state, that is, no deadlocks except at “closed” state are allowed. Both
TM2 and TM3 requires the system to remain alive during the communication process. In our case study, we
translate TM2 and TM3 into “equivalent” nonblockingness properties as expressible representations in the
SCT framework, thus slightly abusing the notations “TM2” and “TM3” in von Hippel et al (2020a).

We construct the nonblockingness monitors of TM2 and TM3, GTM2
nm and GTM3

nm , by following Section 4.2.
In this case, the nonblockingness monitors are not given as dedicated automata, thus we construct GTM2

nm

and GTM3
nm based on Gnom and Ga. We discuss the construction of GTM2

nm and GTM3
nm in Section 6.5, because

to build these automata, we rebuild Gnom and Ga as new automata according to TM2 and TM3.

6.4 Attack model

In this section, we explain the attack model for TCP. As we consider the system architecture in Fig. 2a
for TCP, the attacker infiltrates the network. First, we construct a modified model of the plant Ga in (8)
under attack. Since the network of TCP is under attack, we enhance GN to that under attack, GN,a =
(XN,a, EN,a, fN,a, xN,a,0, XN,a,m), by adding new transitions and events to represent the capabilities of the
attacker. Thus,

Ga = GPA ‖ GPB ‖ GC1 ‖ GC2 ‖ GC3 ‖ GC4 ‖ GN,a (41)

Fig. 14 depicts the PITM attacked model of the network, GN,a, where “ATTK” is the set of events of
outgoing packets from the network, namely

ATTK = {SY NNC2, ACKNC2, F INNC2, SY N ACKNC2, SY NNC4, ACKNC4, F INNC4, SY N ACKNC4},
(42)

representing multiple transitions, illustrated as the red transitions, by events in ATTK. Hence, the event
set of GN,a, EN,a, is as follows:

EN,a = ATTK ∪ EN (43)

where EN is in (39). This allows the attacker to be flexible so that the attacker can send any packets and
freely choose the destination of packets. As in the discussion in Section 3.1 and in the ABP model, we
suppose that the attacker cannot control and observe events outside the network. Hence, the event set of
Ga, Ea, is partitioned for controllability and observability of the attacker as follows:

• Controllable events: Ea,c = ATTK in (42)

• Uncontrollable events: Ea,uc = Enom \ Ea,c

• Observable events: Ea,o = EN,a in (43)

• Unobservable events: Ea,uo = Enom \ Ea,o

In our attack model, the attacker controls the outgoing packets from the network, to lead the safety/nonblockingness
monitor to reach its marked (illegal) state.

20

6.5 Examination of the PITM attack for TCP

In this section, we examine whether a For-all attack exists in terms of TM1, TM2, and TM3. As in
Section 5.4, we try to synthesize a For-all attack by the following procedure:

1. Construct the plant under attack Ga in (41).

2. Using Algorithm 3, compute the realization of a For-all attack-supervisor with respect to Gnom, Ga

and the safety/nonblockingness monitor for TCP.

As done in Section 5.4, if Algorithm 3 returns the realization, we pick one example string from the initial
state to one marked state in Lm(Ha)↑CN , which represents one system behaviour under attack that reaches
the marked state in the monitor.

6.5.1 Threat Model 1 with channels

Setup 1 Let us consider a powerful attacker represented by GN,a in Fig. 14. By following the above
procedure, Ga has 118761 states and 6307 marked states, and Ha has 38270 states and 704 marked states.

Next, we compute HCN
a with respect to Ga and Ha by following the procedure for TM1. As a result,

HCN
a is non-empty, having 52783 states and 626 marked states, and Lm(HCN

a) contains the string

SY NBC3.SY NC3N .SY N ACKNC4.SY N ACKC4B .ACKBC3

which steers GTM1
sm to its marked states. Therefore, we conclude that there exists a For-all attacker SP

defined in (25) with respect to Ga and Ha in this setup. From L(Ga) 6= L(HCN
a), the attacker disables some

transitions by controllable events in Ga, to always eventually win.

6.5.2 Threat Model 1 without channels

Setup 2 One may find that in our TCP model, the channels just relay the incoming packets to their
destinations, without any deletion or manipulation of packets. Since we assume ideal channels, we can
reduce the communication architecture in Fig. 2a to that without channels, namely the architecture in Fig. 3.
Due to the removal of the channels, to assure the synchronization of the peers and network in the parallel

A Network B

±

Fig. 3: Communication overview without channels

composition, we rename the subscripts of the events in EPA in (33), EPB in (34), EN in (39), and EN,a

in (43), as follows:
AC1→ AN, C2A→ NA, BC3→ BN, C4B → NB,

C1N → AN, NC2→ NA, C3N → BN, NC4→ NB
(44)

According to this change, the new Gnom and Ga are as follows:

Gnom = GPA ‖ GPB ‖ GN (45)

Ga = GPA ‖ GPB ‖ GN,a (46)

Gnom in (45) is trim, consisting of 41 states and 5 marked states, and Ga in (46) comprises 580 states and
27 marked states, and is not trim. Since we removed the automata of the channels from our system model,
Gother and Gother,a in Algorithm 1 are equal to GN and GN,a, respectively. Even after the removal of the
channels, Hnom has no marked states.

Noting that Ea,c ⊆ Ea,o still holds after renaming, let us revisit the procedure at the beginning of
Section 6.5 for the construction of Ha and the computation of HCN

a with the new Ga. In this setup, Ha

21

consists of 547 states and 3 marked states, HCN
a with respect to Ga and Ha is non-empty with 513 states

and 3 marked states. Lm(HCN
a) contains the following string:

SY NBN .SY NNB .ACKBN .ACKNB (47)

where SY NNB and ACKNB are fake packets inserted by the attacker, tricking Peer B into reaching “estab-
lished” whereas Peer A does not move out from “closed”. Finally, from L(HCN

a) 6= L(Ga) and non-trim Ga,
the attack-supervisor disables several transitions in Ga.

Setup 3 As we have done in the ABP case study, let us consider a less-powerful attacker than the previous
setups. First, we change the controllable events for the attacker, Ea,c, as follows:

Ea,c = {SY NAN , SY N ACKNB} (48)

Ea,uc = Ea \ Ea,c (49)

whereas Ea,o and Ea,uo do not change. Note that Ea,c ⊆ Ea,o still holds. SY NAN in Ea,c means that
the attacker can discard SYN packets coming from Peer A. Next, we redesign the infiltrated network by
the attacker, GN,a, to represent the reduced capability of the attacker. Fig. 15 indicates the model of an
infiltrated network by a less powerful attacker, Gw

N,a. The red transitions are where the attacker can take
action.

From the change of GN,a to Gw
N,a, we change Ga to the entire system under the less powerful PITM

attack, namely Ga = GPA ‖ GPB ‖ Gw
N,a, in this setup. As a result, the new Ga is not trim, consisting of 48

states, 7 marked states, and 1 deadlock state. Because GTM1
sm is not different from Setup 2, Gother,a = Gw

N,a

here. Therefore by following the same procedure as above, Ha comprises 47 states and 1 marked state, and
HCN

a with respect to Ga and Ha here is non-empty with 63 states and 2 marked states, containing the
following string leading GTM1

sm to its marked state:

SY NBN .SY N ACKNB .ACKBN (50)

In conclusion, there still exists a For-all attacker with the less-powerful PITM model.
From Gw

N,a in Fig. 15, the attacker can send a fake SYN ACK packet to Peer B only when Peer B enters
“SYN sent” state, and the attacker must keep Peer A at “closed” state. Hence, the attacker must disable
SY NAN at “closed” state in GPA shown in Fig. 16 where the subscripts of events are changed as in (44),
and L(HCN

a) 6= L(Ga) reflects this disablement action. Therefore, if SY NAN is uncontrollable, then HCN
a

is empty.

6.5.3 Threat Model 2

Consider GPA, GPB , GN , and GN,a in Setup 2. Recall that Threat Model 2 (TM2) requires Peer A to reach
its “established” state eventually. To design the nonblockingness monitor which captures the violation of
TM2, we first unmark all states of GPA and mark its “established” state. Let GTM2

PA be a new automaton
derived from GPA in Fig. 16a by this marking and renaming as in (44). In contrast to the construction of
safety monitors, GTM2

PA captures the desired behaviour where Peer A reaches its “established” state eventually.
Thus we construct Gnom and Ga as follows:

Gnom = GTM2
PA ‖ GPB ‖ GN (51)

Ga = GTM2
PA ‖ GPB ‖ GN,a (52)

To prevent it from marking Gnom and Ga, we mark all states in GPB , so the marked states of Gnom and Ga

are determined by the “established” state in GTM2
PA .

Setup 4 Let us construct Ha by following Algorithm 2. First of all, Gnom in (51) is trim, thus the system
model without attacker is correct in terms of TM2, meaning that Peer A eventually reaches its “established”
state. So, let us proceed to the next step. From the additional transitions of GN,a in Fig. 14, Ga in (52) is
not trim, thus Ga contains several deadlock and/or livelock states. In this scenario, we build GTM2

nm for TM2

22

based on Ga and not as a separate automaton. In Ga, there are 25 deadlock states. These deadlock states
are those the attacker wants Ga to reach so that Peer A cannot always reach its “established” state. To
design GTM2

nm representing the violation of TM2, namely reaching the deadlock states, we unmark all states
in Ga and then mark all the deadlock states. Hence, let GTM2

nm be the new automaton built by the marking
of deadlock states in Ga, so that every string in Lm(GTM2

nm) ends with one of the deadlock states in Ga.
Finally, the specification automaton for the attacker is Ha = Trim(GTM2

nm).
In this case, Ha consists of 580 states and 25 deadlock states which are determined by Ga, and HCN

a

with respect to Ga and Ha is non-empty, where Lm(HCN
a) contains the following string:

SY NAN .SY N ACKNA.ACKAN .F INNA.SY NBN .SY NNB .ACKAN (53)

SY N ACKNA, FINNA, and SY NNB in (53) are fake packets inserted by the attacker. This string makes
Peer A and Peer B stuck at “close wait” state and at “i1” state, respectively. Here, L(HCN

a) = L(Ga), thus
the attacker just inserts fake packets and does not disable any controllable events. In conclusion, there exists
a For-all attack for TM2 in this setup.

6.5.4 Threat Model 3

In this section, we examine whether any For-all attacks against the Threat Model 3 (TM3) exist. TM3
captures the following nonblockingness requirement for the system: the peers should not suffer from any
deadlocks if they leave “closed” state.

ConsiderGPA, GPB , GN , andGN,a in Setup 2 again. Since TM3 is defined by a nonblockingness property,
we design a nonblockingness monitor for TM3 similarly as a monitor for TM2, discussed in Section 6.5.3.
According to TM3, we first unmark all states and mark “closed” state in GPA and GPB . Let GTM3

PA and
GTM3

PB be the new automata derived from GPA and GPB in Fig. 16 by this marking and renaming as in (44),
respectively. Since GTM3

PA and GTM3
PB capture the desired behaviour of the system model, we construct Gnom

and Ga as follows:

Gnom = GTM3
PA ‖ GTM3

PB ‖ GN (54)

Ga = GTM3
PA ‖ GTM3

PB ‖ GN,a (55)

Since all states in GN and GN,a are marked, the marked states in Gnom and Ga are determined by “closed”
state of GTM3

PA and GTM3
PB .

Setup 5 We construct Ha using Algorithm 2. First, Gnom in (54) consisting of 41 states and 1 marked
state is trim, thus our system model without attacker is correct in terms of TM3. This means that neither
Peer A nor Peer B suffers from deadlocks and/or livelocks when they are not at “closed” state. In the next
step, due to GN,a, Ga in (55) comprising 580 states and 3 marked states is not trim, thus Ga contains
deadlock and/or livelock states. In particular, Ga has 25 deadlock states and no livelock states. Since the
nonblockingness monitor for TM3, GTM3

nm , is not given as a dedicated automaton, GTM3
nm is derived from Ga

by unmarking all states and marking the 25 deadlock states in Ga. Finally, we have Ha = Trim(GTM3
nm).

As a result, Ha in this setup consists of 580 states and 25 marked (deadlock in Ga) states, and HCN
a

with respect to Ga and Ha is non-empty with 660 states and 25 marked states. To see a behaviour of the
system under the attack, we pick the following example string in Lm(HCN

a):

listenA.SY NBN .SY NNA.SY N ACKAN .ACKNA.F INAN .ACKNA (56)

where the fifth and seventh ACKNA are fake packets sent from the attacker to Peer A. This string makes
Peer A and Peer B stuck at “FIN wait 2” and “SYN sent”, respectively. Here, L(HCN

a) = L(Ga), thus
the attacker inserts fake packets and does not disable any controllable events. To sum up, there exists a
For-all attack for TM3 in this setup.

7 Conclusion

We investigated the synthesis problem of For-all attacks under which the attacker can always eventually
win, in the specific context of person-in-the-middle attacks on two well-known communication protocols,

23

ABP and TCP, where in each case a sender and a receiver communicate over channels and a network. We
formulated this problem in the framework of discrete event systems in order to leverage its supervisory
control theory for attacker synthesis. We showed that the synthesis of a For-all attack can be formulated
as the problem of finding a maximal controllable and observable sublanguage of the specification language
for the attacker with respect to the given plant and the capabilities of the attacker in terms of controllable
and observable events. The plant is the combination of the models of the sender, receiver, channels, and
network. The specification language for the attacker is derived from a suitable specification automaton; we
described in Sections 4.1 and 4.2 how to construct that automaton for various examples of safety properties
and nonblockingness properties, respectively. The goal of the attacker is to force a violation of the given
safety or nonblockingness property of the communication protocol. We formally derived in Sections 5 and 6,
when they existed, several For-all person-in-the-middle attacks for ABP and TCP under different scenarios
of attacker capabilities and safety or nonblockingness property to be violated. We are not aware of any prior
work where formal methods are used to synthesize attacks on ABP. For the case of TCP, our results extend
the results in von Hippel et al (2020a), where the authors considered the synthesis of There-exists attacks
under which the attacker may not always win, but will sometimes win. In total, we presented four setups
for ABP and five setups for TCP, where the plant, specification, and event partitions vary. Further setups
are discussed in the expanded version of this paper available at Matsui and Lafortune (2022).

In the PITM attack setups we considered, it was reasonable to assume that the attacker observes all the
events it controls. Hence, the synthesis of a For-all attack reduced to the computation of the supremal
controllable and normal sublanguage in supervisory control theory of discrete event systems. This means
that the methodology that we employed for ABP and TCP could be applied to other protocols and other
types of attacks that can be modelled as additional transitions in the transition structure of the protocol.
This shows that formulating attacker synthesis as a supervisory control problem is a powerful approach in
the study of vulnerabilities of distributed protocols. In the future, it would be of interest to investigate how
to make distributed protocols more resilient to both There-exists and For-all attacks.

Acknowledgement

This research was supported in part by the US NSF under grant CNS-1801342. We thank the reviewers for
their pertinent comments that helped to improve the presentation of our results.

24

A Figures of ABP

s0

s1 s2 s3

s4

s5s6s7

a′1

timeout

send

p0

timeout

a′1

a′0

done
a′0

timeout

sendp1

timeout
a′0

a′1

done

(a) ABP sender GS

r0 r1 r2

r3r4r5

p′0 deliver

a0p′0

p′1

deliverp′1a1

(b) ABP receiver GR

f0

f1

f2

p0

p1

p0

p0

p′0

p1
p′0

p1
p0

p′1

p1

p′1

(c) Forward channel Gnd
FC

b0

b1

b2

a0

a1

a0

a0

a′0

a1
a′0

a1
a0

a′1

a1

a′1

(d) Backward channel Gnd
BC

sc0 sc1

send

done

(e) Sending client GSC

rc0

deliver

(f) Receiving client GRC

t0

timeout

(g) Timer GT

Fig. 4: Models of ABP components adopted from Alur and Tripakis (2017)

{f0}

{f0, f1}

{f0, f2}

{f0, f1, f2}

p0

p0

p′0

p1

p′0

p1 p1

p′1

p0

p′1

p0

p1

(a) Forward channel GFC

{b0}

{b0, b1}

{b0, b2}

{b0, b1, b2}

a0

a0

a′0

a1

a′0

a1 a1

a′1

a0

a′1

a0

a1

(b) Backward channel GBC

Fig. 5: Observer automata of channels

25

q0

q1

q2

send

deliver send

deliver

send

deliver

(a) Safety monitor 1 G1
sm; send and deliver should happen in

the right order.

q0

q1

q2

deliver

done
deliver

done

deliver

done

(b) Safety monitor 2 G2
sm; deliver and done should happen in

the right order.

Fig. 6: Safety monitors from Alur and Tripakis (2017)

q0 q1 q2

deliver

send

send

deliver

send

deliver

Fig. 7: Nonblockingness monitor Gnm inspired by Alur and Tripakis (2017); the first send should eventually be
followed by a deliver

f0

f1

f2

p0

p1

p0

p0

p′0

p1
p′0

p1
p0

p′1

p1

p′1

p′1

p′1

p′0

p′0

(a) Forward MITM channel Gnd
FC,a

b0

b1

b2

a0

a1

a0

a0

a′0

a1

a′0

a1
a0

a′1

a1

a′1

a′1

a′1

a′0

a′0

(b) Backward MITM channel Gnd
BC,a

Fig. 8: Channel models under the MITM attack

{f0}

{f0, f1}

{f0, f2}

{f0, f1, f2}

p0

p0

p′0

p1

p′0

p1 p1

p′1

p0

p′1

p0

p1

p′1

p′0

p′0p′1

(a) Foward MITM channel GFC,a

{b0}

{b0, b1}

{b0, b2}

{b0, b1, b2}

a0

a0

a′0

a1

a′0

a1 a1

a′1

a0

a′1

a0

a1

a′1

a′0

a′0a′1

(b) Backward MITM channel GBC,a

Fig. 9: Observer automata of the MITM channels

26

f0

f1

f2

p0

p1

p0

p0

p′0

p1

p′0

p1
p0

p′1

p1

p′1

p′1

(a) Lesspowerful forward MITM channel Gnd
FC,wa

{f0}

{f0, f1}

{f0, f2}

{f0, f1, f2}

p0

p0

p′0p′1

p1

p′0

p1 p1

p′1

p0

p′1

p0

p1

(b) Observer automata of lesspowerful forward MITM channel
GFC,wa

Fig. 10: Lesspowerful forward MITM channel

f0

f1

f2

f ′0

f ′1

f ′2

p0

p1

p0

p0

p′0

p1
p′0

p1
p0

p′1

p1

p′1

p0

p1

p0

p0

p′0

p1
p′0

p1
p0

p′1

p1

p′1

p′1

Fig. 11: One-shot forward MITM channel

27

B Figures of TCP

SYNAC1 SYNC1N

ACKAC1

ACKC1N

SYN ACKAC1SYN ACKC1N

FINAC1

FINC1N

(a) Channel 1 GC1

SYNNC2 SYNC2A

ACKNC2

ACKC2A

SYN ACKNC2SYN ACKC2A

FINNC2

FINC2A

(b) Channel 2 GC2

SYNBC3 SYNC3N

ACKBC3

ACKC3N

SYN ACKBC3SYN ACKC3N

FINBC3

FINC3N

(c) Channel 3 GC3

SYNNC4 SYNC4B

ACKNC4

ACKC4B

SYN ACKNC4SYN ACKC4B

FINNC4

FINC4B

(d) Channel 4 GC4

Fig. 12: Channel models of TCP

SYNC1N
SYNNC4

SYNC3N

SYNNC2

FINC1N

FINNC4

FINC3N
FINNC2

ACKC1N

ACKNC4

ACKC3N

ACKNC2

SYN ACKC1N

SYN ACKNC4

SYN ACKC3N

SYN ACKNC2

Fig. 13: Network model of TCP

SYNC1N
ATTK

SYNC3N

ATTK

FINC1N

ATTK

FINC3N
ATTK

ACKC1N
ATTK

ACKC3N

ATTK

SYN ACKC1N

ATTK

SYN ACKC3N

ATTK

Fig. 14: Network model under the MITM attack GN,a

SYNAN
SYNNB

SYNBN

SYNNA

FINAN

FINNB

FINBN
FINNA

ACKAN

ACKNB

ACKBN

ACKNA

SYN ACKAN

SYN ACKNB

SYN ACKBN

SYN ACKNA

SYN ACKNB

Fig. 15: Network model under the lesspowerful MITM attack Gw
N,a

28

closed
SYN
sent

listen

i0

i1

i2

established

SYN
received

i3
close
wait

last
ACK

FIN
wait 1

FIN
wait 2

i4 i5

closing

time
wait

SYNAC1

SYN ACKC2A

ACKAC1

SYNC2A

ACKAC1

ACKC2A

listenA

SYNC2A

SYN ACKAC1

FINC2A ACKAC1

FINAC1

ACKC2A

FINAC1

ACKC2A

FINC2A FINC2A

ACKAC1ACKC2A

ACKAC1deleteTCBA

timeoutA

(a) Peer A GPA

closed
SYN
sent

listen

i0

i1

i2

established

SYN
received

i3
close
wait

last
ACK

FIN
wait 1

FIN
wait 2

i4 i5

closing

time
wait

SYNBC3

SYN ACKC4B

ACKBC3

SYNC4B

ACKBC3

ACKC4B

listenB

SYNC4B

SYN ACKBC3

FINC4B ACKBC3

FINBC3

ACKC4B

FINBC3

ACKC4B

FINC4B FINC4B

ACKBC3ACKC4B

ACKBC3deleteTCBB

timeoutB

(b) Peer B GPB

Fig. 16: Peers with timeout

29

References

Alur R, Tripakis S (2017) Automatic synthesis of distributed protocols. ACM SIGACT News 48(1):55–90.
https://doi.org/10.1145/3061640.3061652

Bagheri H, Kang E, Malek S, et al (2015) Detection of design flaws in the android permission protocol
through bounded verification. In: International Symposium on Formal Methods, Springer, pp 73–89,
https://doi.org/10.1007/978-3-319-19249-9_6

Baier C, Katoen JP (2008) Principles of model checking. MIT Press

Brandt R, Garg V, Kumar R, et al (1990) Formulas for calculating supremal controllable and normal sublan-
guages. Systems & Control Letters 15(2):111–117. https://doi.org/10.1016/0167-6911(90)90004-E

Carvalho LK, Wu YC, Kwong R, et al (2018) Detection and mitigation of classes of attacks in supervisory
control systems. Automatica 97:121–133. https://doi.org/10.1016/j.automatica.2018.07.017

Cassandras CG, Lafortune S (2021) Introduction to Discrete Event Systems, 3rd edn. Springer International
Publishing AG, Cham, https://doi.org/10.1007/978-3-030-72274-6

Cho H, Marcus SI (1989) On supremal languages of classes of sublanguages that arise in supervisor synthesis
problems with partial observation. Mathematics of Control, Signals and Systems 2(1):47–69. https://
doi.org/10.1007/BF02551361

Ehlers R, Lafortune S, Tripakis S, et al (2017) Supervisory control and reactive synthesis: a com-
parative introduction. Discrete Event Dynamic Systems 27(2):209–260. https://doi.org/10.1007/

s10626-015-0223-0

von Hippel M (2020) Korg. URL https://github.com/maxvonhippel/AttackerSynthesis

von Hippel M, Vick C, Tripakis S, et al (2020a) Automated attacker synthesis for distributed protocols.
arXiv preprint arXiv:200401220

von Hippel M, Vick C, Tripakis S, et al (2020b) Automated attacker synthesis for distributed protocols.
In: International Conference on Computer Safety, Reliability, and Security, Springer, pp 133–149, https:
//doi.org/10.1007/978-3-030-54549-9_9

Holzmann GJ, Lieberman WS (1991) Design and validation of computer protocols, vol 512. Prentice Hall,
Englewood Cliffs

Jero S, Lee H, Nita-Rotaru C (2015) Leveraging state information for automated attack discovery in transport
protocol implementations. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, IEEE, pp 1–12, https://doi.org/10.1109/DSN.2015.22

Kang E, Milicevic A, Jackson D (2016) Multi-representational security analysis. In: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 181–192,
https://doi.org/10.1145/2950290.2950356

Kumar R, Nelvagal S, Marcus SI (1997) A discrete event systems approach for protocol conversion. Discrete
Event Dynamic Systems 7(3):295–315. https://doi.org/10.1023/A:1008258331497

Lafortune S (1988) Modeling and analysis of transaction execution in database systems. IEEE Transactions
on Automatic Control 33(5):439–447. https://doi.org/10.1109/9.1222

Liao H, Wang Y, Stanley J, et al (2013) Eliminating concurrency bugs in multithreaded software: A new
approach based on discrete-event control. IEEE Transactions on Control Systems Technology 21(6):2067–
2082. https://doi.org/10.1109/TCST.2012.2226034

Lin L, Zhu Y, Su R (2019) Synthesis of covert actuator attackers for free. arXiv preprint arXiv:190410159

30

https://doi.org/10.1145/3061640.3061652
https://doi.org/10.1007/978-3-319-19249-9_6
https://doi.org/10.1016/0167-6911(90)90004-E
https://doi.org/10.1016/j.automatica.2018.07.017
https://doi.org/10.1007/978-3-030-72274-6
https://doi.org/10.1007/BF02551361
https://doi.org/10.1007/BF02551361
https://doi.org/10.1007/s10626-015-0223-0
https://doi.org/10.1007/s10626-015-0223-0
https://github.com/maxvonhippel/AttackerSynthesis
https://doi.org/10.1007/978-3-030-54549-9_9
https://doi.org/10.1007/978-3-030-54549-9_9
https://doi.org/10.1109/DSN.2015.22
https://doi.org/10.1145/2950290.2950356
https://doi.org/10.1023/A:1008258331497
https://doi.org/10.1109/9.1222
https://doi.org/10.1109/TCST.2012.2226034

Matsui S, Lafortune S (2022) Synthesis of winning attacks on communication protocols using supervisory
control theory: Two case studies. arXiv preprint arXiv:210206028

Meira-Góes R, Marchand H, Lafortune S (2019) Towards resilient supervisors against sensor deception at-
tacks. In: 2019 IEEE 58th Conference on Decision and Control (CDC), IEEE, pp 5144–5149, https:

//doi.org/10.1109/CDC40024.2019.9029737

Meira-Góes R, Kang E, Kwong RH, et al (2020) Synthesis of sensor deception attacks at the supervisory
layer of cyber-physical systems. Automatica 121:109,172. https://doi.org/10.1016/j.automatica.

2020.109172

Postel J (1981) Transmission control protocol. https://doi.org/10.17487/RFC0793

Rudie K, Wonham WM (1990) Supervisory control of communicating processes. In: Proceedings of the IFIP
WG6. 1 Tenth International Symposium on Protocol Specification, Testing and Verification X, pp 243–257

Rudie K, Wonham WM (1992) Protocol verification using discrete-event systems. In: Proceedings of the
31st IEEE Conference on Decision and Control, IEEE, pp 3770–3777, https://doi.org/10.1109/CDC.
1992.370955

Saleh K (1996) Synthesis of communications protocols: an annotated bibliography. ACM SIGCOMM Com-
puter Communication Review 26(5):40–59. https://doi.org/10.1145/242896.242900

Su R (2018) Supervisor synthesis to thwart cyber attack with bounded sensor reading alterations. Automatica
94:35–44. https://doi.org/10.1016/j.automatica.2018.04.006

Wakaiki M, Tabuada P, Hespanha JP (2019) Supervisory control of discrete-event systems under attacks.
Dynamic Games and Applications 9(4):965–983. https://doi.org/10.1007/s13235-018-0285-3

Wonham WM, Cai K (2019) Supervisory control of discrete-event systems. Springer, https://doi.org/10.
1007/978-3-319-77452-7

Yin X, Lafortune S (2015) Synthesis of maximally permissive supervisors for partially-observed discrete-
event systems. IEEE Transactions on Automatic Control 61(5):1239–1254. https://doi.org/10.1109/
TAC.2015.2460391

31

https://doi.org/10.1109/CDC40024.2019.9029737
https://doi.org/10.1109/CDC40024.2019.9029737
https://doi.org/10.1016/j.automatica.2020.109172
https://doi.org/10.1016/j.automatica.2020.109172
https://doi.org/10.17487/RFC0793
https://doi.org/10.1109/CDC.1992.370955
https://doi.org/10.1109/CDC.1992.370955
https://doi.org/10.1145/242896.242900
https://doi.org/10.1016/j.automatica.2018.04.006
https://doi.org/10.1007/s13235-018-0285-3
https://doi.org/10.1007/978-3-319-77452-7
https://doi.org/10.1007/978-3-319-77452-7
https://doi.org/10.1109/TAC.2015.2460391
https://doi.org/10.1109/TAC.2015.2460391

	1 Introduction
	2 Preliminaries
	3 System and Attack Models
	3.1 System Architecture
	3.2 For-all Attack
	3.3 There-exists Attack

	4 Procedure for Synthesis of For-all Attacks on Communication Protocols
	4.1 Safety properties
	4.2 Nonblockingness properties
	4.3 Problem formulation

	5 ABP Case Study
	5.1 Safety property models
	5.2 Nonblockingness property models
	5.3 Attack model
	5.4 Examination of the PITM attack for ABP
	5.4.1 Attack against Safety Properties
	5.4.2 Attack against Nonblockingness Properties

	6 TCP Case Study
	6.1 Component models of TCP
	6.2 Safety property models
	6.3 Nonblockingness property models
	6.4 Attack model
	6.5 Examination of the PITM attack for TCP
	6.5.1 Threat Model 1 with channels
	6.5.2 Threat Model 1 without channels
	6.5.3 Threat Model 2
	6.5.4 Threat Model 3

	7 Conclusion
	A Figures of ABP
	B Figures of TCP

