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Abstract: GaN nanowires (NWs) grown on silicon via atmospheric pressure chemical vapor de-
position were doped with Cobalt (Co) by ion implantation, with a high dose concentration of
4 × 1016 cm−2, corresponding to an average atomic percentage of ~3.85%, and annealed after the
implantation. Co-doped GaN showed optimum structural properties when annealed at 700 ◦C for
6 min in NH3 ambience. From scanning electron microscopy, X-ray diffraction, high resolution trans-
mission electron microscope, and energy dispersive X-ray spectroscopy measurements and analyses,
the single crystalline nature of Co-GaN NWs was identified. Slight expansion in the lattice constant
of Co-GaN NWs due to the implantation-induced stress effect was observed, which was recovered by
thermal annealing. Co-GaN NWs exhibited ferromagnetism as per the superconducting quantum
interference device (SQUID) measurement. Hysteretic curves with Hc (coercivity) of 502.5 Oe at 5 K
and 201.3 Oe at 300 K were obtained. Applied with a magnetic field of 100 Oe, the transition point
between paramagnetic property and ferromagnetic property was determined at 332 K. Interesting
structural and conducive magnetic properties show the potential of Co-doped GaN nanowires for
the next optoelectronic, electronic, spintronic, sensing, optical, and related applications.

Keywords: cobalt-doped GaN nanowires; atmospheric pressure chemical vapor deposition; scanning
and transmission electron microscopy; X-ray diffraction; energy dispersive X-ray spectroscopy;
superconducting quantum interference device

1. Introduction

Great breakthroughs on gallium nitride (GaN)-based material and devices as well as
industrial applications have been of recent interest [1,2]. GaN-based one dimensional (1D)
nanostructure, such as GaN nanowire, etc., has attracted much research attention [3–22].
These types of GaN-based nanowires (NWs) possess unique electronic, optical, magnetic,
and catalytic features, and exhibit numerous novel and interesting properties [3–29]. Com-
pared to conventional planar films, NWs, with characteristics of a high surface-to-volume
ratio and uniaxial charge transport path, provide a better choice for multiple nanoscale ap-
plications. GaN NWs possess a semi-discrete density of states with a continuous transport
path for carriers, due to its 1D configuration [3].

GaN NWs are good candidates for photocatalytic applications. Their energy positions
and band edges are aligned with redox levels in electrolytes, leading to an improved and
controllable photocatalytic activity [7]. The large surface-to-volume ratio of GaN NWs
allows a high integration density on devices and systems. An enhanced light extraction
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efficiency and light out-coupling could be achieved in GaN NWs in comparison with the
planar counterparts [6].

GaN NWs can be prepared on low-cost substrates, because nanowires possess prop-
erties less prone to dislocations and strain. NWs with small strains could have a smaller
polarization field leading to a large electron-hole wave function overlap [9]. GaN NWs
on Si (111) showed a better electron spin relaxation as compared to bulk GaN, because
electrons were limited in quasi one-dimensional semiconductor channels [8].

III-nitride NWs with features of high radiative recombination rates, small Auger
effects, high electron mobility, and tunable energy band gaps from near infrared (InN,
0.64 eV) to ultraviolet (AlN, 6.2 eV) could lead to future applications for light-emitting
diodes (LEDs), photodetectors, and lasers [6,19]. NWs’ 1D nature is beneficial for epitaxial
growth on dissimilar substrates (such as glass), because of the reduced strain from lattice
mismatches and different thermal expansion coefficients [14].

GaN NWs are also beneficial for new optoelectronic and photonic devices, such as
flexible LEDs, single photon sources or even photons, and plasmon and polariton nano-
lasers. One-dimensional NW-sensors have been employed to detect low concentration gas
species [15]. GaN NWs can be applied to improve the performance of field emission scan-
ning probe lithography (FE-SPL) in the AFM-in-SEM probe lithography instrument [10].

GaN NWs are favorable for p-doping and achieving dislocation-free growth on a
variety of lattice-mismatched substrates like Si [24,26,27] or other nonconventional sub-
strates for GaN [16]. AlGaN NWs on Si with AlN buffer provide a good internal quantum
efficiency (IQE) for deep ultraviolet (DUV) LEDs [17].

GaN NWs are suitable for gas-sensing applications, to sensitively detect noxious gases
such as NO2, SO2, and so on [18]. GaN NWs on Si have been used for the detection of
SO2 gas [20]. GaN NWs with good PL response in acidic and related solutions could be
applied to measure pH and bias response with potential applications in harsh chemical
environments [22].

In the field of electronic device application, the emission properties of GaN nanowires
(NWs) can be improved with a larger current density and a lower applied voltage. This
is attractive for vertical GaN NW vacuum field emission diodes (VFEDs) and GaN NW
vacuum field emission transistors (VFETs). Devices possessing enhanced FE characteristics
with low turn-on voltage, high doping concentration, small diameter, and increased height
could be achieved [19].

GaN NWs have promising structures for applications of light-emitting diodes (LEDs),
laser diodes (LDs), solar cells, and photocatalysts [6,13,20,25–27]. One-dimensional (1D)
semiconductor nanowire structure is recognized as a core technology that can overcome
the limitations of existing technologies in optoelectronics, and the display, bio, and environ-
mental fields [21]. In comparison with bulk material, one-dimensional nanowires exhibit
good lattice relaxation and can be grown with a low level of defects. Long-length nanowires
provide larger surfaces, which could be used for sensor and chemistry applications [22].

Intense research on GaN NWs is currently being enhanced [23–29], with good re-
search accomplishments such as photoelectrochemical water splitting using GaN NWs [23],
selective area epitaxy of GaN NWs on Si for microsphere lithography [24], N-polar In-
GaN/GaN NWs for red-emitting micro-LEDs [25], InGaN/GaN NW LEDs on microsphere-
lithography-patterned Si [26], GaN NWs/Si photocathodes for CO2 reduction [27], bending
strain effects of GaN NWs [28], GaN NWs with excellent UV luminescence [29], and so on.

GaN NWs doped with 3d-transition metal ions (Mn, Fe, Cr, Co, and Ni) are attractive
dilute magnetic semiconductors (DMSs). Partially filled d-states have unpaired electrons
that can introduce spin properties in GaN NWs. This spin due to the hybridization of
the magnetic impurity in s- and p-states of the semiconductor, is beneficial for spintronic
applications. In comparison with III-V semiconductors of GaAs, InAs, and InP, the transi-
tion metal (TM)-doped GaN possesses a Curie temperature (Tc) beyond RT. However, it
is still controversial and the origin of ferromagnetism in these semiconductors is not well
understood [30].
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In Co-doped GaN, it has been indicted that Co atoms are located at Ga sites of the GaN
lattice and cause part of the ferromagnetism at RT [31]. Co does not show site preference
in GaN crystal, while in GaN NW, Co substitutes preferably surface sites [32]. Gd-doped
GaN (Gd:GaN) and Cu–Gd co-doped GaN NWs are also promising for RT ferromagnetism
and spintronic applications [33]. Co-GaN NWs with a diameter of 60–200 nm and length in
microns did not change the GaN wurtzite structure and did not add any secondary phases
(Ga2O3 or Co2O3); it showed magnetism that is directly dependent on Co content [34].
Co-doped GaN NWs can be used for optoelectronics and spintronic devices.

Co-doped GaN NWs have shown attractive structural, magnetic, and optical proper-
ties recently. Based on Raman analysis, Co dopant in GaN NW causes a strong electron-
phonon coupling with the (LO) mode, leading to the enhancement and up-shift of LO-
phonon [35]. GaN NWs exhibit the ferromagnetic (FM) coupling between the neighboring
TM ions, which could be responsible for the ferromagnetism. First principal calculations
show that TM dopants are able to incorporate on the outermost surface of GaN NWs [36].
The polarization of 3d electrons of TM atoms and 2p electrons of N atoms could induce
the magnetic moments. Mn-doped GaN NWs with 100% spin polarization characteristics
could be good candidates in spin-polarized electron photocathode applications.

Co-doped ZnO NWs, like Co-doped GaN NWs, have also attracted much research
attention for spintronics and other applications [37–39]. TM dopants may extend the
optical absorption edge and move the semiconductor density of states (DOS) to near its
Fermi level of TMs. Additionally, d and f electrons in TMs cause a strong spin−orbit
interaction, producing spin-polarized semiconductor bands [37]. The radius of the Co++ ion
(0.72 Å) is very close to that of the Zn++ ion (0.74 Å), which makes them a unique material
combination. In ZnO, Co is predicted to form a single-phase Co++ form and substitute the
Zn++ position [38]. Ga and Zn are close within the periodic table. It is reasonable to expect
similar behavior for Co++ and Ga+++.

Briefly, the literature up-to-now has shown that transition metal Co- and TM-doped
GaN NWs can exhibit dilute magnetism with potential applications in spintronics and other
fields [30–36]. However, a systematic investigation on the magnetic behavior of Co-GaN
NWs is essential to realize these applications.

This work is focused on a systematic investigation of the structural and magnetic
properties of Co-GaN NWs. The carriers spin and conductive properties in the Co-GaN
NWs are discussed. Experimental samples of Co-doped GaN NWs were grown on Si
by atmospheric pressure chemical vapor deposition (APCVD) using a resistive heated
furnace system. Co-doping was achieved using ion implantation. Samples were annealed
in a thermal furnace to reduce possible defects. A variety of characterization techniques,
including scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence
(PL), high resolution transmission electron microscope (HR-TEM), and energy dispersive
X-ray spectroscopy (EDX) were used for measurements and analyses, from which the single
crystalline nature of cobalt-doped gallium nitride nanowires was identified.

Surface morphology from SEM of Co-doped GaN nanowires shows that the wires bent
and the surface was damaged if the samples were not properly thermal-annealed. XRD
scans show no secondary phase formation after ion implantation. A slight expansion in
the lattice along the a-axis is observed. This phenomenon is ascribed to an implantation-
induced stress within the nanowires. After thermal annealing, the structure resumes
the original crystallinity as revealed from XRD data. HRTEM measurements and EDX
atomic analysis on the surface show no clusters. A SQUID system was used for magnetic
measurement, and a hysteretic curve was obtained at 300 K. Our results indicate that the
cobalt-doped gallium nitride nanowires possess interesting RT ferromagnetic properties.

2. Experiment
2.1. Atmospheric Pressure Chemical Vapor Deposition (APCVD) of GaN NWs

In this work, GaN NWs were prepared using atmospheric pressure chemical vapor
deposition (APCVD) based on the catalytic enhanced vapor–liquid–solid (VLS) growth
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mechanism. Ga and Ga2O3 powders were mixed in a vessel and served as the source
materials. After placing the gold-patterned silicon substrate into the quartz tube of the
APCVD system, a base pressure of 100 mTorr and an Ar gas flow rate at 80 sccm were
set. Temperature in the growth chamber was gradually raised to 920 ◦C at 30 min before
initiating the VLS process of GaN NW growth. We then switched on the NH3 precursor
with a flow rate of 10 sccm at 920 ◦C for 1 h with N2 for carrier gas.

The VLS of GaN NWs could be elaborated. Ga metal and Ga2O3 were mixed in
the vessel. Ga atoms reacted with Ga2O3 to produce Ga2O, which, via carrier gas, was
transported to the deposition zone. Ga2O reacted with N at sites of gold-patterned Si
substrates in the deposition zone via the reaction: 3Ga2O(g) + 4N→ 4GaN(s) + Ga2O3(g).
Several parameters such as gas flow rates, temperature, pressures, and group V to III
ratio can be used to handle the growth of NWs. The effects of these parameters have been
investigated and optimized for the growth of various nanostructures with a suitable growth
mechanism. This is demonstrated in Section 3.1 in detail.

After the growth, NH3 precursor and N2 carrier gas flows are stopped, and the
temperature is gradually decreased to RT. Using SEM examination, formation of GaN
nanowires is observed, as shown in Figure 1 of Section 3.1, where the surface morphology
of as-grown GaN NWs is displayed with two magnification factors of ×10 K and ×100 K.

2.2. Ion Implantation

A 9SDH-II tandem accelerator, with a high terminal voltage of 3 MV, at National
Tsing Hua University, was used for the Co implantation. In this process, the Co atoms
were placed in the chamber, and an acceleration of 72 keV was achieved using appropriate
negative electrodes. Theoretical simulation by a program of TRIM (Transport of Ions in
Matter) was performed, which is described in Section 3.2. Through ion implantation,
selective-area p-type doping can be realized [40]. Selective area doping in GaN enables
planar process technology, and to avoid the complications from the etch/regrowth process,
with the subsequent annealing to activate dopant species and repair the damage to a
crystal [41]. In rare earth (RE) ion-implanted GaN nanowires, the NW core is of high
crystalline quality with the extended defect concentration lower than that of ion-implanted
thin films. Additionally, the implantation-caused strain in NWs is efficiently relaxed and
the deformation is also below that of thin films implanted under the same conditions [42].
The cobalt ion implantation at a high-fluence (5 × 1016 cm−2) into n-GaN epilayer on
sapphire was studied previously [43]. When the accelerating cobalt ions hit into the GaN
nanowires, it would induce collision until the bombardment energy is reduced to zero.
During the implantation, the dose concentration and ion current could be controlled and
adjusted. This is based on the simulation of the mechanism process of the incident ion, and
it helps to control the distribution of the bombardment.

In the present work, according to the simulation for 72 keV, Co ions were distributed as a
Gaussian distribution. The peak was at about 51.5 nm with a covering range of about 100 nm.
Average atomic percentage was about 3.85% for a dose concentration of 4 × 1016 cm−2.

2.3. Annealing

After ion implantation, annealing was used to recover the structure’s crystallinity. A
rapid thermal annealing (RTA) furnace was used for the annealing.

Four RTA temperatures of 500 ◦C, 600 ◦C, 700 ◦C, and 800 ◦C were first tested for
optimizing a suitable temperature parameter. NH3 ambient was used, and annealing
duration was 6 min. Nitrogen vacancy is a common defect in GaN material, so NH3
ambience was used for preventing nitrogen vacancies. Based upon the photolumines-
cence (PL) and SEM measurements on four samples annealed from lowest temperature
(500 ◦C) to highest temperature (800 ◦C), the best conditions for annealing temperature
were obtained (see Section 3.3).
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2.4. Characterization Techniques

A series of techniques including SEM, XRD, PL, HRTEM, EDX, and SQUID were
applied for characterization in this work. XRD measurements were done using a Bruker
D8 Advance XRD (Billerica, MA, USA). PL spectra were measured by using a Renishaw
micro-Raman system with the 325 nm excitation from a He-Cd laser. SEM measure-
ments were conducted using a JEOL JSM-6700F (Akishima, Japan). HR-TEM measure-
ments were performed using a JOEL JEM-2010F under an accelerating voltage of 200 kV
and with a magnification of 1.5 M. A SQUID equipment MPMS-XL7 was employed for
magnetic experiments.

3. Results and Discussion
3.1. As Grown Undoped GaN NWs and Cobalt Ion Implantation

GaN NWs were grown on gold-coated Si substrate. After the gold-coated silicon
substrate was put into APCVD quartz tube, three process stages of alloying, nucleation,
and axial growth were followed.

(i) Alloying process: Au clusters stayed in the solid state up to 920 ◦C without the
Ga vapor condensation. When the Ga vapor condensation and dissolution appeared,
Ga and Au formed an alloy and liquefied. Due to the dilution of Au with Ga, the al-
loy droplets increased, and the elemental contrast decreased as the alloy composition
changed sequentially.

(ii) Nucleation: After the composition of alloy crossed the second liquidus line, NW
nucleation starts at this step, indicating that the nucleation occurred in a supersaturated
alloy liquid.

(iii) Axial growth: After the liquid droplet was supersaturated, the target material
condensed and formed nucleation sites. Further condensation/dissolution in the system
then increased the amount of target material precipitation from the alloy. The material is
diffused to condense at the formed liquid/solid interface, because less energy is required
for crystal growth in comparison with the case of creating another nucleation site. The
secondary nucleation is suppressed, and no new solid/liquid interface is created. The
interface is pushed forward (or backward) to form a NW.

Growth parameters varied included (1) carrier gas, (2) growth temperature, and
(3) growth time. These experiments were tested by changing one parameter while keeping
the other parameters constant.

Effects of different carrier gas were investigated using SEM; GaN nanowires images
with different length and structures by changing the carrier gas were obtained. GaN NWs
grown using nitrogen carrier gas seemed to be shorter than when using Argon gas. GaN
NWs were not formed effectively using nitrogen carrier gas. Dissociation of nitrogen
suppresses the gallium source from forming gallium nitride nanowires. GaN NWs grown
using argon gas showed improved structural and morphological properties compared to
using nitrogen gas. Argon gas is a common noble gas and is stable to reaction at high
temperatures. Argon has the same solubility in water as oxygen gas and is 2.5 times more
soluble in water than in nitrogen gas. The stable Ar element is colorless, odorless, tasteless,
and nontoxic in both its liquid and gaseous forms. It is inert under most conditions and
does not form stable compounds at RT. Argon was chosen to be the carrier gas in the next
sets of experiments.

Effects of growth temperatures were also examined. At 700 ◦C, the wires rolled
up; the structure seemed to have worse quality. At an increased growth temperature of
950 ◦C, one-dimensional zigzag nanostructures were formed. This result is like refer-
ence [44]. Growth temperature was optimized at 920 ◦C.

Different growth times were also used and their effects on GaN NWs formation was
studied. The density of nanowires increased with the growth time. If the nanowires density
was too high, the bottom of the nanowires would form a nucleation layer; this factor
would affect the nanowires’ morphology and crystallinity. Hence, 1 h was chosen as the
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growth duration for GaN NWs and the formation of a nucleation GaN layer was prevented.
Appropriate APCVD growth key parameters are listed as (Table 1):

Table 1. APCVD growth key parameters.

Parameters Values

Carrier Flow Rate 80 sccm
Carrier gas Argon

NH3 Flow Rate 10 sccm
Growth Temperature 920 ◦C

Growth Time 1 h
Growth Pressure 760 torr

Switching Temperature 920 ◦C

These parameters were used to grow the GaN nanowires in Figure 1a,b. From the
SEM image, the diameter of the GaN NWs is about 40~120 nm, with an average width of
about 80 nm, and the length of NWs ranged from 3 to 5 µm.

Cobalt ion implantation was performed on as-grown GaN NWs. TRIM is the most
comprehensive program included for compound materials and is used in this study. Con-
sidering the diameter of nanowires as 40~120 nm, 72 keV was used as the implantation
energy. Figure 1c is the result of simulation over 1,000,000 (1 million) ions. According to the
simulation for 72 keV, the cobalt ions distributed following a Gaussian distribution. The
peak was at about 51.5 nm, and the covering range was about 100 nm. The average atomic
percentage was about 3.85% for a dose concentration of 4 × 1016 cm−2.
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3.2. Optimization of Annealing Temperature from Photoluminescence and SEM

After ion implantation, annealing is commonly used to recover the crystalline structure.
In this study, we used an RTA furnace. Four RTA temperatures of 500 ◦C, 600 ◦C, 700 ◦C,
and 800 ◦C were used in NH3 ambient for 6 min each. Photoluminescence (PL) intensity
was increased with temperature from 500 ◦C to 800 ◦C, as shown at Figure 2a.

Photoluminescence (PL) characteristic spectra of Co-doped GaN nanowires or related
NWs have been studied recently [30,34,35]. M.U. Farooq et al. reported [30] that a strong
band-edge emission centered at 364.5 nm (3.402 eV) was observed for undoped GaN NWs.
Extra peaks were found at 376.7 nm (3.29 eV) and 383.5 nm (3.22 eV), assigned to bound
magnetic polaron (BMP) and exciton magnetic polaron (EMP), respectively. They also
studied [35] that Co-GaN NW has an emission peak at 363.9 nm (3.408 eV), corresponding
to band-to-band edge transition of GaN, with a shoulder luminescence band at lower
energy (382.9 nm, 3.24 eV). A peak at 421.1 nm (2.94 eV) was observed, assigned as a d-d
transition, related to 4T1(H)→ 4A2(F) of the isolated Co2+ ion [35], confirming the presence
of Co ions in the GaN lattice. M. Maraj, et al. reported on Co-doped NWs [34], with the
band-edge (BE) emission at 368.85 nm (3.361 eV) and 370.26 nm (3.348) for 6% and 8%
cobalt doping, respectively. An additional peak at 455 nm (2.725 eV) was ascribed to the
nitrogen vacancies in GaN.
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Figure 2. (a) Photoluminescence spectra (RT, 325 nm excitation) of a Co-GaN NW/Si sample with
dose concentration 4 × 1016 cm−2 and annealed at different temperatures of 500, 600, 700, and 800 ◦C;
SEM images from the Co-GaN NW/Si sample annealed at temperatures of (b) 800 ◦C and (c) 700 ◦C.

Correspondingly, we carefully analyzed our PL spectra in Figure 2a for Co-doped
GaN NWs with different RTA annealing temperatures, 500–800 ◦C. Under lower annealing
temperatures of 500–600 ◦C, the strongest PL bands at near 2.9 eV were observed, and
assigned as a d-d transition, related to 4T1(H)→ 4A2(F) of isolated Co2+ ion [35], confirming
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the presence of Co ions in the GaN lattice. Weaker bands near 3.43 eV were seen, from the
cross-band gap emission of GaN. With higher annealing temperatures of 700–800 ◦C, the
dominant peaks appeared at ~3.33 eV, due to band-edge (BE) emission [34], accompanying
with a peak at ~3.43 eV from cross-gap emission of GaN. Our PL results have revealed the
effects of optimized annealing temperatures of 700–800 ◦C.

From SEM examination, it was observed that surface damage increased with tem-
perature. Figure 2b shows SEM morphology on the Co-GaN NW/Si sample with dose
concentration 4 × 1016 cm−2 and annealed at highest temperature (800 ◦C); the nanowires
were damaged and bent. Figure 2c shows SEM morphology of the sample annealed at
the second highest temperature (700 ◦C), in which the nanowires are better structured. A
temperature of 700 ◦C was chosen as the optimizing annealing temperature.

3.3. X-ray Diffraction Analysis

X-ray diffraction (XRD) measurements were performed on as-grown GaN NWs and
Co-doped GaN NWs before and after annealing, simply noted as as-grown, before anneal-
ing, and after annealing, respectively, in Figure 3. From a wide range scan (Figure 3a), there
are six major peaks of GaN (100), (002), (101), (102), (110), and (103) because of the NW
structures. Compared with the as-grown GaN NWs, the Co-implanted ones before anneal-
ing had their peaks weaker and broader, while after annealing, the annealed Co-doped GaN
NW sample recovered its six peaks similar to the as-grown one. A previous investigation
for Co-doping in GaN predicted some extra peaks at 65◦ and 44◦, corresponding to CoGa
(200) and CoGa (110), or hcp-Co (0002), respectively [45]. There are no such peaks observed
in Figure 3a, so these compounds did not exist in our Co-GaN NWs. XRD shows a peak
shift to lower angles and has short range distortions [46,47].

Narrow XRD scans were performed on as-grown GaN NWs and Co-doped GaN
NWs before and after annealing. Figure 3b exhibits the comparative narrow scans of the
GaN (002) plan for as-grown GaN NWs and for Co-implanted GaN NWs with a dose
concentration of 4 × 1016 cm−2 and annealed at 700 ◦C. Undoped as-grown GaN NWs
show the GaN (002) 2θ peak at ~34.7◦. After ion implantation, it shifts to ~34.5◦, and with
the intensity decreased to ~70%. After annealing at 700 ◦C, it shifts back to the position as
was observed in as-grown GaN NWs and increases its intensity over ~30% in comparison
with the as-grown sample.

Figure 3c shows the comparative narrow scans of the GaN (110) plan on the same
three samples of as-grown GaN NWs, Co-implanted GaN NWs, and ones annealed at
700 ◦C. Undoped as-grown GaN NWs have the GaN (110) 2θ peak at near 57.8◦. After
ion implantation, it shifts to 57.5◦, but the shift is recovered after annealing. Experimental
results from Figure 3b,c clearly indicate the lattice constant extended after ion implantation,
with the peak intensity increased a little in comparison with the as-grown case. These
observations indicate that the ion implantation damaged the crystalline structure in some
way and the proper annealing at the optimized conditions recovered and improved the
crystalline perfection along both the (002) and (110) plane for Co-doped GaN NWs.

All above XRD peaks were fitted by the Lorentz model for calculation. For GaN
nanowires, a = 3.182 Å and c = 5.178 Å are two axes of the lattice constants. Figure 3d shows
the calculated lattice constants of a and c for as-grown GaN NWs and Co-doped GaN
NWs before annealing and after annealing. The a-axis from our sample expanded after
ion implantation and shifted to low angle of about 0.284%. After the annealing process,
the peak shifted back to a higher angle. For the lattice constant c fitting, c increased about
0.173% after ion implantation and shifted back to peak position as was observed in as-
grown GaN NWs. Ion implantation usually affects the lattice constant, but the destructed
lattice structure was recovered with annealing.
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3.4. High-Resolution Transmission Electron Microscope and Energy Dispersive X-ray
Spectroscope Analysis

High-Resolution transmission electron microscope (HR-TEM) was used to investigate
the structural characteristics. Figure 4 exhibits experimental results for three samples
of [A] the as-grown GaN NWs, [B] the cobalt implanted GaN NWs, and [C] the sample
after annealing with (a1–a3) for low magnification TEM images, with (b1–b3) for high
magnification TEM images, with (c1–c3) for select area diffraction pattern (SADP), and
(d1–d3) for EDX spectra.

From Figure 4A for the as-grown GaN nanowires, the SADP at (c1) indicates wurtzite
structure with high crystallinity. The TEM image shows a series of SADP spots, each
spot at (c1) revealing a satisfied diffraction condition of the sample’s crystal structure.
Lattice-resolved view shows a highly crystalline (100) planes along the wire axis. The
nanowire was observed to have a triangle-like shape and a diameter of about 80–100 nm.
EDX spectrum at (d1) exhibits the elements existed in the as-grown Co-GaN NWs. Gallium
and nitrogen are clearly observed in the GaN NWs as expected.

Figure 4B shows TEM images of Co-implanted GaN NWs sample with the highest
dose concentration of 4 × 1016 cm−2 at low magnification (a2) and high magnification
(b2). Slight defects caused by ion implantation were observed, especially on the surface of
the nanowire. These defects seem to have different directionalities. SADP at (c2) shows
wurtzite structure after ion implantation. From EDX spectral analysis at (d2), a clear peak
indicating Co after implantation is seen. Although defects were generated in the ion
implantation process, the structure remained wurtzite.

TEM images of Co-GaN NWs after annealing revealed interesting features,
in Figure 4C. Amorphous structure on the surface was observed from high magnifica-
tion image of (b3). SADP at (c3) showed extra spots indicating cubic structure which were
not present in Co-GaN NWs before annealing in Figure 4B (c2). The EDX analysis at (d3)
displays an almost similar result before and after annealing (Figure 4B (d2)).

From HR-TEM, no clusters were observed in the nanowires. The magnetic properties
to be discussed in next Section 3.3, if any, may not be related to secondary phases.
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3.5. Magnetic Properties

The dilute magnetic properties of Co-GaN NWs are investigated by the superconduct-
ing quantum interference device (SQUID) technique. The SQUID is a technique highly
sensitive to weak magnetic fields [48]. It has been used to study the Cu-doped InxGa1−xN
NWs at RT and the effects of annealing [49], GaN magnetic high electron mobility transis-
tors (MagHEMTs) [50], the ferromagnetism in GaN doped with Cu and Mn [51], and the
SQUID magnetometry of (Ga,Mn)N thin films and Mg-doped GaN [52]. For the current
work, the SQUID technique was used for investigation of the magnetization. The resolution
of the SQUID setup is about 10−8 emu (electromagnetic unit), suitable for detecting small
and dilute magnetic signals. Samples with size of 5 × 5 mm2 were prepared and placed in
the plastic tube.

Background signal from the silicon substrate was checked, and the pure diamagnetic
signal of M-H (magnetization M vs. magnetic field H) was observed as shown in Figure 5a.
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Figure 5. (a) M–H measurement from Si background at 5 K and 300 K, (b) M–T measurement
with applied field of 0–100 Oe from a cobalt-doped GaN Nanowire before annealing with dose
concentration of 4 × 1016 cm−2.

Figure 5b presents the measured M-H hysteresis at lowest (5 K) and room temperature
(300 K) with applied field of 0–100 Oe (Oersted) on a cobalt-doped GaN Nanowire with
dose concentration of 4 × 1016 cm−2 before annealing. After analysis of the results, it is
found that the sample became diamagnetic with a small ferromagnetic behavior at 5 K, and
only showed diamagnetic behavior at 300 K. After the silicon background was removed,
paramagnetism overlapped with ferromagnetism at 300 K was observed



Materials 2023, 16, 97 14 of 17

The sample annealed at 700 ◦C in NH3 was measured. Clear ferromagnetism was
seen at 5 K and 300 K (Figure 6a) with varying hysteresis patterns. The Hc (coercivity) was
502.5 Oe at 5 K, and 201.3 Oe at 300 K.
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The M–T relationship for the annealed Co-GaN NW with dose concentration of
4 × 1016 cm−2 was analyzed for determining the Curie temperature using the SQUID.
A 100 Oe was applied for the zero-field cooling and field cooling (Figure 6b). The result
shows the transition point between the paramagnetic property and ferromagnetic property
at 332 K for the sample after annealing.

Overall, the SQUID was used to investigate the dilute magnetic properties and to
check whether the ferromagnetic in Co-NWs is achieved or not by the cooling processes in
the weak magnetic field. It is confirmed that the weak intrinsic magnetic properties can be
maintained near room temperature.

4. Conclusions

Gallium nitride nanowires have been successfully grown on a Si substrate by atmo-
spheric pressure chemical vapor deposition (APCVD) at room temperature. Samples were
implanted with cobalt magnetic atoms using ion implantation and annealed by RTA at
700 ◦C for 6 min at NH3 ambience. A variety of characterization techniques, including SEM,
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photoluminescence (PL), XRD, HR-TEM, EDX, and superconducting quantum interference
device (SQUID), were employed for characterization measurements and analyses, from
which the single crystalline nature of cobalt-doped gallium nitride (Co-GaN) nanowires
(NWs) was identified.

Surface morphology from SEM of Co-doped GaN nanowires shows the wires bent
and the surface was damaged. XRD scans show no secondary phase formation after
ion implantation. The lattice was extended and distorted in the short-range scale. This
phenomenon may be induced by stress within the nanowires. After thermal annealing,
the structure shows recrystallization from XRD data, and defects such as interstitials were
recovered after the annealing process. TEM image and EDX results show no clusters
but EDX atomic analysis on the surface shows slight structural defects from the cobalt
implanted into the nanowires. From SAEDP, the wurtzite structure was still maintained.

The SQUID measurements showed M–H curves with hysteresis at 5 K and 300 K after
the implantation process. Magnetic measurements show that Co-doped GaN NWs have
room temperature ferromagnetic properties. These results are significant in the understand-
ing of Co-doped GaN NWs and will be a useful reference in the next developments of GaN
for optoelectronic, spintronic, electronic, sensing, optical, and related applications.
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