
 of squəuoduos xəjduos əıow pue əIow of yooi isnu sis!

 Introduction

Mots clés : ligands azoté hétérocycliques, couplage Stille, structure hélicoidale, chimie supramoléculaire la forme hélicoidale aussi en solution. Les études d'électrochimie et d'absorption d'UV indiquent que la plus basse orbitale
inoccupée est localisée principalement sur le groupe pyrimidine. ligand tris-tridentate $2 a$ révèle sa forme helicoidale. Les groupes pyridine terminaux s empilent 1 un sur 1 autre à une distance
centre-centre de $4.523 \AA$ avec un angle de 38.8° entre les planes. Le spectre de RMN du proton est en accord avec l'existence de

Electrochemical and UV absorption measurements indicate that the LUMO resides on the pyrimidine moiety of the ligands

 organized and rigidly spaced metal ions. Peripheral functionalization of the basic bis-tridentate framework was explored. The
heterocycles in the ligands are in an all-trans conformation about the interannular bonds as indicated by comparison of their ${ }^{1} \mathrm{H}$

sКеде uO! еu!pa009 10 saosanooad

Synthesis, structure, and properties of

 dative and reductive conditions $(18,19)$, and has accessible
 an octahedral metal ion (16). Terpyridine (tpy) forms stable
 properties than ladder- (14) and grid-type (15) complexes with
tetrahedral metal ions. The two ligand moieties, therefore geometry are expected to cover a wider range of elements and
 The metal-directed self-assembly of molecules of rack, lad-
der, and grid type requires judicious choice of metal and bindrange of electrochemical, photochemical, and reactional prop
erties.

 and grids $[m \times n] G$ (Fig. 1), where the nuclearity of the R, L,
and G species is given by $[n],[2 n]$, and $[m \times n]$, in sequence of
 nuclearity and geometry, in particular inorganic architectures
of two-dimensional geometries and $[m \times n]$ nuclearity. The on coordination arrays, multimetallic complexes of precise

 иәр!
 2,2-Bipyridine- N-oxide (22), 6-chtylstannylpyridine (24), 2-bromo-5-methylpyridine

 tris-tridentate ligands $(2 a-c)$ based on pyridine and pyrimidineis presented in the present work.

 graphed on alumina, eluting with DCM, to afford $8 b(5.09 \mathrm{~g}$
$84 \%)$ as a colourless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}, \delta(\mathrm{ppm}): 8.58\left(\mathrm{~d}, \mathrm{H}_{6}, J=0.5\right.$
 bined organic phases were dried and evaporated. The residue water (50 mL) was added and the phases separated. The aque perature was left to rise to room temperature, at which time mixture, which was further stirred for 4 h at $-78^{\circ} \mathrm{C}$. The tem $(18.5 \mathrm{~mL}, 0.068 \mathrm{~mol})$ was added during 15 min to the reaction $-78^{\circ} \mathrm{C}$. After stirring 75 min at $-78^{\circ} \mathrm{C}$, tributyltin chloride $\mathrm{M}, 0.060 \mathrm{~mol}$) while the solution temperature was kept at
 Preparation of 2-tributylstannyl-5-methylpyridine $(\mathbf{8 b})$ $R_{\mathrm{f}}: 0.68$ on alumina (DCM) 121.7, 119.9. MS $m / z+(\mathrm{EI}): 235(\mathrm{M}+1,6 \%), 234(\mathrm{M}, 52 \%)$,
$155(\mathrm{M}-79(-\mathrm{Br}), 100 \%), 128(\mathrm{M}-107(-\mathrm{CNH}, \mathrm{Br}), 14 \%)$. NMR (DEPT), δ (ppm): $149.0,139.3,137.4,128.1,124.4$ 4
0
0
 $70-71^{\circ} \mathrm{C}(\mathrm{lit} .(23) \mathrm{mp}$
$\left.\mathrm{H}_{6}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.41\left(\mathrm{dt}, \mathrm{H}_{3}, J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.37$ $\left.75^{\circ} \mathrm{C}\right)$ of the residue gave $6 a(10.0 \mathrm{~g}, 36 \%)$ as a white solid, mp combined, dried, and evaporated. Sublimation (0.75 Torr, green colour persisted. The aqueous solution was reextracted
with DCM $(7 \times 200 \mathrm{~mL})$ and the latter organic phases were To the aqueous solution was added $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ until a deep extracted with DCM ($5 \times 100 \mathrm{~mL}$) and basified with ammonia reflux for 72 h . The solvent was evaporated and $\mathrm{HCl}(6 \mathrm{M}, 100$
mL) was added to the remaining tar. The aqueous phase was added THF (100 mL) and the reaction mixture was stirred at
reflux for 72 h . The solvent was evaporated and $\mathrm{HCl}(6 \mathrm{M}, 100$ nylphosphine) palladium $\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)(1.86 \mathrm{~g}, 1.4 \mathrm{~mol} \%)$ was dibromopyridine $9(48.0 \mathrm{~g}, 0.205 \mathrm{~mol})$, and tetrakis(triphe To 2-(tributylstannyl)pyridine $8 a(43.0 \mathrm{~g}, 0.117 \mathrm{~mol}), 2,6$
$133.3 \mathrm{~Pa}), 75^{\circ} \mathrm{C}$) giving $\mathbf{6} a(2.30 \mathrm{~g}, 93 \%)$ as a white solid. resulting pale, yellow solid was sublimed (0.75 Torr (1 Torr $=$ dried and evaporated. The black residue was extracted with with ether ($4 \times 50 \mathrm{~mL}$). The combined organic phases were continuous addition of crushed ice required), and extracted room temperature, poured on crushed ice, carefully basicifitied
with ammonia to basic pH (Caution: exothermic reaction, stirred at $165^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was cooled to To 6 -chloro-2, 2, -bipyridine $5(2.00 \mathrm{~g}, 10.5 \mathrm{mmol})$ was added
phosphorous tribromide (50 mL) and the reaction mixture was
 iliary electrode was a coiled platinum wire, and the reference with a Tacussel IG5-LN integrator and IFELEC-IF 3802
recorder: the working electrode was a platinum disc, the aux-
(M - 175 (bpy), 100%). Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}$.
$59.34, \mathrm{H} 7.71, \mathrm{~N} 6.29$; found: C $59.04, \mathrm{H} 7.66, \mathrm{~N} 6.44 . R_{\mathrm{f}}: 0.78$ $(\mathrm{M}-58(\mathrm{Bu}+\mathrm{H}), 65 \%), 333(\mathrm{M}-112(-2 \mathrm{Bu}), 18 \%), 275$
$\left(\mathrm{M}-175(\right.$ bpy), $100 \%)$. Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N} \mathrm{Sn}: \mathrm{C}$ 27.3, 13.7, 10.1. MS $m / z+$ (FAB): 447 (M + 2, 90%), 389 6H55.9, 136.6, $134.0,132.3,123.4,121.1,119.2,119.1,29.1$, ${ }_{6 \mathrm{H})}, 0.90\left(\mathrm{t}, \mathrm{H}_{\mathrm{CH}}, 9 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta(\mathrm{ppm}): 173.2,157.0$,
 $7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63\left(\mathrm{dd}, \mathrm{H}_{4}, J=8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40(\mathrm{dd}$, (ppm): $8.66\left(\mathrm{~d}, \mathrm{H}_{6}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.53\left(\mathrm{~d}, \mathrm{H}_{3}, J=8.0,1.0\right.$ IR (neat): 2925, 1574, 1549, 1421, 1074, 770, 691 . 'HNMR, δ dried and evaporated. The residue was distilled (0.5 Torr,
$\left.135-140^{\circ} \mathrm{C}\right)$ to afford $10 a(5.09 \mathrm{~g}, 89 \%)$ as a pale brown oil. with ether ($3 \times 50 \mathrm{~mL}$). The combined organic phases were room temperature, at which time water (30 mL) was added
and the phases separated. The aqueous phase was extracted 10 min . The temperature of the solution was left to rise to ($3.63 \mathrm{~mL}, 0.0128 \mathrm{~mol}$) was added to the reaction mixture over tained at $-90^{\circ} \mathrm{C}$. After stirring 30 min , tributyltin chloride $\mathrm{mol})$ in ether $(80 \mathrm{~mL})$ was added n-butyllithium ($8.0 \mathrm{~mL}, 1.6$
$\mathrm{M}, 0.0128 \mathrm{~mol})$ while the solution temperature was mainTo a solution of 6 -bromo-2, 2, -bipyridine $6 a(3.02 \mathrm{~g}, 0.0128$ Preparation of 6-tributylstannyl-2,2'-bipyridine (10a) ${ }^{11} \mathrm{H}_{9} \mathrm{BrN}_{2}: \mathrm{C}^{2} 11.39 . R_{f} 0.86$ on alumina (DCM). $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{2}$: C 53.04, H 3.64, N 11.25 ; found: C 53.09 , H 3.59, 137.9, 134.1, $127.6,121.0,119.4,18.4 . \mathrm{MS} m / z+$ (FAB): 249
(M, 100%), 169 (M-79 (-Br), 28\%). Anal. calcd. for NMR (DEPT), δ (ppm): $157.5,152.0,149.7,141.5,139.1$, $7.64\left(\mathrm{t}, \mathrm{H}_{4}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61\left(\mathrm{dd}, \mathrm{H}_{4}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
$7.45\left(\mathrm{~d}, \mathrm{H}_{3}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39\left(\mathrm{~s}, \mathrm{H}_{\text {mehthy }}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ $\mathrm{mp} 126-128^{\circ} \mathrm{C} . \mathrm{V}^{\mathrm{H}} \mathrm{NMR}, \delta(\mathrm{ppm}): 8.48\left(\mathrm{~d}, \mathrm{H}_{6^{\prime}} J=1.6 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 8.33\left(\mathrm{~d}, \mathrm{H}_{5}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.29\left(\mathrm{~d}, \mathrm{H}_{3^{\prime}}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 99: 1\right)$ gave $6 b(8.82 \mathrm{~g}, 72 \%)$ as a white solid, 200 mL) and the latter organic phases were combined, dried, sisted. The aqueous solution was reextracted with DCM ($5 \times$ tion was added $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ until a deep-green colour perremaining tar. The aqueous phase was extracted with DCM (5
$\times 100 \mathrm{~mL})$ and basified with ammonia. To the aqueous soluwas evaporated and $\mathrm{HCl}(6 \mathrm{M}, 50 \mathrm{~mL})$ was added to the $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}(1.84 \mathrm{~g}, 2.7 \mathrm{~mol} \%)$ was added toluene $(150 \mathrm{~mL})$ and
the reaction mixture was stirred at reflux for 72 h . The solvent $\mathrm{mol}), 2,6$-dibromopyridine $9(27.25 \mathrm{~g}, 0.116 \mathrm{~mol})$, and
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.84 \mathrm{~g}, 2.7 \mathrm{~mol} \%)$ was added toluene $(150 \mathrm{~mL})$ and Preparation of 6-bromo- $\mathbf{5}^{\prime}$-methyl-2,2'-bipyridine ($\mathbf{6 b}$)
To 2-tributylstannyl-5-methylpyridine $\mathbf{8} b \quad(18.69 \mathrm{~g}, 0.0$
 $(\mathrm{M}-58(\mathrm{Bu}+\mathrm{H}), 17 \%), 268(\mathrm{M}-112(-2 \mathrm{Bu}), 14 \%), 212$
$(\mathrm{M}-170(-3 \mathrm{Bu}), 100 \%)$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{3} \mathrm{NSn}:$
N 18.5, 13.7, 9.7. MS $m / z+(\mathrm{FAB}): 384(\mathrm{M}+1,11 \%), 326$
$(\mathrm{M}-58(\mathrm{Bu}+\mathrm{H}), 17 \%), 268(\mathrm{M}-112(-2 \mathrm{Bu}), 14 \%), 212$
$\mathrm{N} 3.25 . R_{\mathrm{f}}: 0.46$ on silica (DCM/hexane, 1:1). $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Cl}_{2}: \mathrm{C} 66.48$, $\mathrm{H} 3.11, \mathrm{~N} 8.62$; found: $\mathrm{C} 66.42, \mathrm{H} 8.53$,
 (DEPT), δ (ppm): $168.5,162.4,131.2,129.6,129.5,128.7$ $8.60\left(\mathrm{~s}, \mathrm{H}_{\mathrm{A} 10}, 1 \mathrm{H}\right), 8.06\left(\mathrm{~m}, \mathrm{H}_{\mathrm{Al}}, 2 \mathrm{H}\right), 7.60\left(\mathrm{~m}, \mathrm{H}_{\mathrm{A} 4}, 2 \mathrm{H}\right), 7.59$ (11.1), $256(15.0), 366(1.01), 385(1.04) .{ }^{\mathrm{H}} \mathrm{HMR}, \delta(\mathrm{ppm})$: 1306, 1276, 1106, 894, 862, 847, 820, 730, 637. UV-VIS: 249 40%) as a pale-yellow solid, mp $188.8-190.8^{\circ} \mathrm{C}$. IR: 1529 bined organic phases were dried, concentrated, and chromato aqueous phase was extracted with ether ($3 \times 50 \mathrm{~mL}$). The com was added to the solution, the phases were separated, and the added while vigorously stirring the solution. Water (20 mL) ture for 10 min , brought to $0^{\circ} \mathrm{C}$, and $\mathrm{NaOH}(3 \mathrm{M}, 8 \mathrm{~mL}$) was $\mathrm{mL})$, water $(0.2 \mathrm{~mL})$, and THF (4 mL) followed by DDQ (4.50 left to rise to $0^{\circ} \mathrm{C}$. To this mixture was added acetic acio (1.2
$\mathrm{mL})$, water $(0.2 \mathrm{~mL})$, and $\mathrm{THF}(4 \mathrm{~mL})$ followed by DDQ (4.50 min. After stirring at $-30^{\circ} \mathrm{C}$ for 20 min , the temperature was dichloropyrimidine $(2.99 \mathrm{~g})$ in diethyl ether (30 mL) over 15
min. After stirring at $-30^{\circ} \mathrm{C}$ for 20 min , the temperature was then was cooled to $-35^{\circ} \mathrm{C}$. To this mixture was added 4,6 $\mathrm{mL}, 0.022 \mathrm{~mol}$) was added while maintaining the tempera-
ture below $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min and $\mathrm{mL}, 0.0221 \mathrm{~mol}$) was added while maintaining the temperathermometer and Ar inlet was added diethyl ether (150 mL). 250 mL , round-bottom flask fitted with a low-temperature To 9 -bromoanthracene ($5.42 \mathrm{~g}, 0.0211 \mathrm{~mol}$) in a two-necked Preparation of 2-(9-anthryl)-4,6-dichloropyrimidine (11d)
${ }^{\prime} \mathrm{H}$ NMR, $\delta(\mathrm{ppm}): 7.20\left(\mathrm{~s}, \mathrm{H}_{5}, 1 \mathrm{H}\right), 2.65\left(\mathrm{~s}, \mathrm{H}_{\mathrm{a}}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$
NMR, $\delta(\mathrm{ppm}): 169.7,161.5,118.3,25.6$. crude solid was sublimed $\left(0.1\right.$ Torr, $\left.40^{\circ} \mathrm{C}\right)$ to afford $11 b$ (3.40
$\mathrm{~g}, 64 \%)$ as a white solid, $\mathrm{mp} 46-47^{\circ} \mathrm{C}$ (lit. $\left.(32) \mathrm{mp} 46-48^{\circ} \mathrm{C}\right)$. combined organic phases were dried and evaporated. The
crude solid was sublimed $\left(0.1\right.$ Torr, $40^{\circ} \mathrm{C}$) to afford 111 (3.40 due, and the mixture was extracted with ether ($4 \times 50 \mathrm{~mL}$). The POCl_{3} was evaporated, water (100 mL) was added to the resiA solution of 2 -methyl-4,6-dinydroxypyrimidine $(4.11 \mathrm{~g}, 32.6$

$\mathrm{C} 59.92, \mathrm{H} 7.78, \mathrm{~N} 5.99 . R_{\mathrm{f}}: 0.73$ on alumina $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

 (ppm): 173.1, 156.0, $154.5,149.3,137.3,134.0,133.0,132.0$, $2.39\left(\mathrm{~s}, \mathrm{H}_{\text {methyl }}, 3 \mathrm{H}\right), 1.62\left(\mathrm{~m}, \mathrm{H}_{\mathrm{CH}_{2}}, 6 \mathrm{H}\right), 1.37\left(\mathrm{~m}, \mathrm{H}_{\mathrm{CH}_{2}}, 6 \mathrm{H}\right)$,
$1.15\left(\mathrm{~m}, \mathrm{H}_{\mathrm{CH}_{2}}, 6 \mathrm{H}\right), 0.89\left(\mathrm{t}, \mathrm{H}_{\mathrm{CH}_{3}}, 9 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta$ $=8.0,2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37\left(\mathrm{ddd}, \mathrm{H}_{3}, J=8.0,7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61\left(\mathrm{td}, \mathrm{H}_{4}, J=8.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61$ (ddd, H_{4}, J colourless oil. $\mathrm{HNMR}, \delta(\mathrm{ppm}): 8.48\left(\mathrm{dd}, \mathrm{H}_{6^{\prime}}, J=2.0,0.8 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 8.42\left(\mathrm{~d}, \mathrm{H}_{3^{\prime}}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.20\left(\mathrm{ddd}, \mathrm{H}_{5}, J=8.1,8.0\right.$ alumina, eluting with DCM to afford $10 b(10.55 \mathrm{~g}, 82 \%)$ as phases were dried and evaporated. The residue was distilled
(Kugelrohr, 0.5 Torr, $150-155^{\circ} \mathrm{C}$) and chromatographed on
alumina, eluting with phases were dried and evaporated. The residue was distilled was added and the phases separated. The aqueous phase was was added and the phases separated. The aqueous phase was temperature of the solution was left to rise to room temperature over 15 min , while the solution warmed up to $-78^{\circ} \mathrm{C}$. The

 3
0

 IR: $1560,1532,1474,1429,1380,827,763,653 .{ }^{1} \mathrm{H}$ NMR
$(400 \mathrm{MHz}) \delta(\mathrm{ppm}): 9.78(\mathrm{~d}, \mathrm{H}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.40(\mathrm{~d}, \mathrm{H}$,
 white solid. The combined filtrates were concentrated and

 bis(triphenylphosphine) dichloropalladium $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.1$ әр! ^ ‘иu! General procedure for the preparation of the bis-
tridentate ligands (1a,e)

 General procedure for the in situ preparation of 6-
tributylstannyl-2,
2'-bipyridines ($10 a, b$)

 $(1.66 \mathrm{~g}, 60 \%)$ as a pale-yellow solid. The filtrates were comsolid was recrystallized from chloroform-hexane to afford 1 d washed with boiling ethanol $(3 \times 25 \mathrm{~mL})$ and filtered. The bined filtrates were evaporated and the resulting solid was
 DMF was evaporated and the resulting residue was extracted was added to the reaction mixture. After an additional 24 h , the
 TLC indicated the presence of starting material as well as
 2 -(9-anthryl)-4,6-dichloropyrimidine $11 d(1.60 \mathrm{~g}, 0.00492$
$\mathrm{mol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.72 \mathrm{~g}, 9 \mathrm{~mol} \%)$ was added DMF (30

> Preparation of 2-(9-anthryl)-4,6-bis(2", 2^{\prime}-bipyrid- $\left.6^{\prime}-y l\right)-$
pyrimidine $(1 \mathrm{~d})$ 0.65 on alumina $\left(\mathrm{CHCl}_{3}\right)$.

Q
B
0
0
0
0
0 $m / z^{+}(\mathrm{FAB}): 403.2(\mathrm{M}+1,100 \%)$. Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{6}: \mathrm{C}$
$74.60, \mathrm{H} 4.52, \mathrm{~N} 20.88$; found: $\mathrm{C} 74.57, \mathrm{H} 4.49, \mathrm{~N} 20.79 . R_{\mathrm{f}}$: $149.3,138.2,136.8,124.1,122.5,121.8,121.3,111.1$. MS $\left.\mathrm{H}_{4^{\prime \prime}}, \delta=1.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38\left(\mathrm{ddd}, \mathrm{H}_{5^{\prime \prime}}, J=7.5,4.8,1.1 \mathrm{~Hz}\right.$,
$2 \mathrm{H}), 2.94\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\mathrm{DEPT}, \mathrm{CH}), \delta(\mathrm{ppm}):$ $8.80\left(\mathrm{~d}, \mathrm{H}_{3^{\prime \prime}}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.2\left(\mathrm{H}_{3^{\prime}, 5^{\prime}}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.03\left(\mathrm{t}, \mathrm{H}_{4^{\prime}}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.89(\mathrm{td}, ~$ $8.80\left(\mathrm{~d}, \mathrm{H}_{3^{\prime \prime}}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.74\left(\mathrm{~d}, \mathrm{H}_{6^{\prime \prime}}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.58$

 dichloropyrimidine $11 a(1.15 \mathrm{~g}, 7.74 \mathrm{mmol})$, and

 Preparation of 4 -($2^{\prime \prime}, 2^{\prime}$-bipyrid- $\boldsymbol{6}^{\prime}$ - $\mathbf{y l}$)-6-chloropyrimidine
$(12 a)$ $573.0036 . R_{\mathrm{f}}: 0.42$ on alumina (DCM with $1 \% \mathrm{MeOH}$). :punof $6^{6 \varepsilon 00 \varepsilon L S}:^{2}$ Ig $g^{9} \mathrm{~N}^{81} \mathrm{H}^{92}$ ว Iof pore (${ }_{+}$W) SWUH (\%St) $134.0,122.8,121.9,121.2,114.1,29.7 . \mathrm{MS} m / z+(\mathrm{FAB}): 575$
$(\mathrm{M}+1,100 \%), 496(\mathrm{M}-\mathrm{Br}, 29 \%), 415(\mathrm{M}-2 \mathrm{Br}, 24 \%), 242$ $\left(\mathrm{dd}, \mathrm{H}_{4}, J=7.7,2.1,2 \mathrm{H}\right), 4.61\left(\mathrm{~s}, \mathrm{H}_{\mathrm{CH}_{2}}, 4 \mathrm{H}\right) .{ }^{\circ}\{\mathrm{H}\} \mathrm{NMR}$,
$(\mathrm{ppm}): 163.0,158.6,155.8,155.2,153.5,149.3,138.3,137.5$, $\mathrm{H}_{3^{\prime}}$ or $\left.5^{\prime}, J=7.7,0.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.05\left(\mathrm{t}, \mathrm{H}_{4^{\prime}}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.94$
$\left(\mathrm{dd}, \mathrm{H}_{4^{\prime}}, J=7.7,2.1,2 \mathrm{H}\right), 4.61\left(\mathrm{~s}, \mathrm{H}_{\mathrm{CH}_{2}}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.75\left(\mathrm{~d}, \mathrm{H}_{6^{\prime \prime}}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.75\left(\mathrm{~d}, \mathrm{H}_{3^{\prime \prime}}\right.$, $J=7.7$
$\mathrm{Hz}, 2 \mathrm{H}), 8.60\left(\mathrm{dd}, \mathrm{H}_{3^{\prime}}\right.$ or $\left.5^{\prime}, J=7.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.57(\mathrm{dd}$, NMR, $\delta(\mathrm{ppm}): 9.72\left(\mathrm{~d}, \mathrm{H}_{5}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 9.40\left(\mathrm{~d}, \mathrm{H}_{2}, J=\right.$
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.75\left(\mathrm{~d}, \mathrm{H}_{6^{\prime \prime}}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.75\left(\mathrm{~d}, \mathrm{H}_{3^{\prime \prime}}, J=7.7\right.$ $1-5 \% \mathrm{MeOH})$, giving $1 f(39 \mathrm{mg}, 27 \%) ; \mathrm{mp} 231-233^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ tered hot and the filtrate was cooled to $0^{\circ} \mathrm{C}$. The white precip-
itate was collected and chromatographed on silica (DCM with reflux for 70 min (monitored by TLC). The mixture was fil$\mathrm{g}, 0.13 \mathrm{mmol}$) in 20 mL carbon tetrachloride was heated under dine $1 e(0.106 \mathrm{~g}, 0.25 \mathrm{mmol}), N$-bromosuccinimide $(0.460 \mathrm{~g}$, A mixture of 4,6 -bis($5^{\prime \prime}$-methyl- $2^{\prime \prime}, 2^{\prime}$-bipyrid- 6^{\prime}-yl) pyrimiPreparation of 4,6 -bis $\left(5^{\prime \prime}-(\right.$ bromomethyl $)-2^{\prime \prime}, 2^{\prime}$-bipyrid- $\left.6^{\prime}-y l\right)$ $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{6}: \mathrm{C} 74.98, \mathrm{H} 4.84, \mathrm{~N} 20.18$; found: $\mathrm{C} 74.70, \mathrm{H}$
$\mathrm{N} 20.35 . R_{\mathrm{f}}: 0.41$ on alumina (DCM with $1 \% \mathrm{MeOH}$).

 H_{3} ors, $\left.{ }^{5} J=7.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.57\left(\mathrm{dd}, \mathrm{H}_{3},{ }_{2}, 5, J=7.8,1.0 \mathrm{~Hz}\right.$,
$2 \mathrm{H}), 8.05\left(\mathrm{t}, \mathrm{H}_{4}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.94\left(\mathrm{t}, \mathrm{H}_{4}, J=7.8,2 \mathrm{H}\right), 7.39$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.31\left(\mathrm{~d}, \mathrm{H}_{2}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.9\left(\mathrm{dt},, \mathrm{H}^{\prime \prime}\right.$
$8.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.7\left(\mathrm{~d}, \mathrm{~d}_{0^{\prime}}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}\right) 8.61(\mathrm{dd}$,
 ica (DCM with $1-5 \% \mathrm{MeOH}$) and alumina (DCM), giving $1 e$ the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 h . The DMF
was evaporated and the residue was chromatographed on sil$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.75 \mathrm{~g}, 9 \mathrm{~mol} \%)$ was added DMF $(20 \mathrm{~mL})$ and
 in situ from $6 b(6.94 \mathrm{~g}, 0.028 \mathrm{~mol})$, n-butyllithium $(18.2 \mathrm{~mL}$, To 6-tributylstannyl-5'-methyl-2,2'-bipyridine $10 b$ (prepared $\left(\mathrm{t}, \mathrm{H}_{4^{\prime}}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.95\left(\mathrm{td}, \mathrm{H}_{4^{\prime \prime}}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.86$
$\left(\mathrm{~d}, \mathrm{H}_{\mathrm{A} 4}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45\left(\mathrm{~m}, \mathrm{H}_{5^{\prime \prime}}, \mathrm{A} 2, \mathrm{~A}^{\mathrm{A}}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{\mathrm{I}} \mathrm{H}\right\}$
$\mathrm{NMR}, \delta(\mathrm{ppm}): 167.0,164.8,156.1,155.9,153.7,149.4(\mathrm{CH})$,
$138.3(\mathrm{CH}), 136.9(\mathrm{CH}), 134.2,131.6,130.0,128.7(\mathrm{CH})$,
$128.3(\mathrm{CH}), 126.2(\mathrm{CH}), 126.1(\mathrm{CH}), 125.3(\mathrm{CH}), 124.1(\mathrm{CH})$,
$122.8(\mathrm{CH}), 122.4(\mathrm{CH}), 121.3(\mathrm{CH}), 112.0(\mathrm{CH}) . \mathrm{MS} \mathrm{m} / \mathrm{z}+$
$(\mathrm{FAB}): 565.1(\mathrm{M}+1,100 \%)$, Anal. calcd. for $\mathrm{C}_{38} \mathrm{H}_{24} \mathrm{~N}_{6}: \mathrm{C}$
$80.82, \mathrm{H} 4.29, \mathrm{~N} 14.89 ;$ found: C $80.81, \mathrm{H} 4.35, \mathrm{~N} 14.78 . R_{\mathrm{f}}$:
0.48 on alumina (DCM).

The mixture was stirred vigorously for 1 h . Water (100 mL)
was added and the mixture was extracted with diethyl ether (3
 quently cooled to room temperature. To the mixture was added
 dichloro-2-phenylpyrimidine $11 b(0.42 \mathrm{~g}, 6.04 \mathrm{mmol})$, and
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.42 \mathrm{~g}, 10 \mathrm{~mol} \%)$ was added DMF $(25 \mathrm{~mL})$; the $\mathrm{mmol})$, and tributyltin chloride $(2.16 \mathrm{~g}, 6.64 \mathrm{mmol})), 4,6-$
dichloro-2-phenylpyrimidine $11 b(0.42 \mathrm{~g}, 6.04 \mathrm{mmol})$, and
 woı Preparation of 4-($2^{\prime \prime}, 2^{\prime}$-bipyrid- 6^{\prime}-yl)-6-chloro-2-
phenylpyrimidine ($12 c$)
 $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{4}: \mathrm{C} 63.72$, H 3.92, N 19.82; found: C $63.61, \mathrm{H}$ $283.1(\mathrm{M}+\mathrm{H}, 100 \%), 206.1(\mathrm{M}-76$ (py), 6%). Anal. calcd. for
 $4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{\mathrm{l}} \mathrm{H}\right\} \mathrm{NMR}, \delta(\mathrm{ppm}):$ $=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35\left(\mathrm{~s}, \mathrm{H}_{5}, 1 \mathrm{H}\right), 7.97\left(\mathrm{t}, \mathrm{H}_{4^{\prime}}, J=7.8 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 7.87\left(\mathrm{dt}, \mathrm{H}_{4}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{ddd}, \mathrm{H}_{5^{\prime \prime}}, J=7.3\right.$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.55\left(\mathrm{~d}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{5^{\prime}}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.48\left(\mathrm{dd}, \mathrm{H}_{3^{\prime \prime}}, J\right.$ $1472,1424,1393,1344,1324,1260,1154,1068,876,848$,
$834,787,761,740,666 .{ }^{1} \mathrm{H}$ NMR, $\delta(\mathrm{ppm}): 8.69\left(\mathrm{~d}, \mathrm{H}_{6 \prime \prime}, J=\right.$ low powder. Recrystallization from acetonitrile afforded white
needles of $12 b(2.83 \mathrm{~g}, 67 \%), \mathrm{mp} 142^{\circ} \mathrm{C}$. IR: 1561,1537 , short alumina column, eluting with DCM to afford a crude yel-
low powder. Recrystallization from acetonitrile afforded white 50 mL), dried, and evaporated. The residue was filtered over a 150 mL). The combined organics were washed with water ($3 \times$ mixture was stirred vigorously for 2 h . Water the mixture was extracted with diethyl ether $(3 \times$ rated aqueous solution of KF (50 mL) and ether $(100 \mathrm{~mL})$. The
mixture was stirred vigorously for 2 h . Water $(300 \mathrm{~mL})$ was cooled to room temperature. To the mixture was added a satu$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~g}, 9 \mathrm{~mol} \%)$ was added $\mathrm{DMF}(25 \mathrm{~mL})$; the
reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 14 h and subsequently dichloro-2-methylpyrimidine $11 b(2.77 \mathrm{~g}, 17.0 \mathrm{mmol})$, and
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~g}, 9 \mathrm{~mol} \%)$ was added DMF $(25 \mathrm{~mL})$; the $\mathrm{mmol})$, and tributyltin chloride $(5.21 \mathrm{~g}, 16.0 \mathrm{mmol})$), $4,6-$ To 6-tributylstannyl-2,2 -bipyridine $10 a$ (prepared in situ from
$\mathbf{6} a(3.76 \mathrm{~g}, 16.0 \mathrm{mmol}), n$-butyllithium $(10.5 \mathrm{ml}, 1.6 \mathrm{M}, 16.8$ methylpyrinide 22^{\prime} bipyridine $10 a$ Preparation of 4-($2^{\prime \prime}, 2^{\prime}$-bipyrid- 6^{\prime}-yl)-6-chloro-2(DCM). (bpy +Cl), 21%). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClN}_{4}: \mathrm{C} 62.57, \mathrm{H} 3.38$,
N 20.85 ; found: $\mathrm{C} 62.58, \mathrm{H} 3.35, \mathrm{~N} 20.91 . R_{\mathrm{f}}: 0.36$ on alumina
 $122.1,121.2,118.0$. MS m/z+ (EI): $268(\mathrm{M}, 100 \%), 240(\mathrm{M}-$
28 (CHN), $5 \%), 233(\mathrm{M}-35$ (Cl), $36 \%), 206(\mathrm{M}-62(\mathrm{Cl}+$ 7.8, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38\left(\mathrm{ddd}, \mathrm{H}_{5}, \mathrm{~J}=138,4,137.0,124.2,123.4\right.$,

 $41 \%)$ as a white solid, mp $151.8-152.2^{\circ} \mathrm{C}$. IR: 1561,1530 ,
$1447,1428,1350,769,760 .{ }^{1} \mathrm{HNMR}, \delta(\mathrm{ppm}): 9.08\left(\mathrm{~d}, \mathrm{H}_{2}, J=\right.$ on alumina, eluting with DCM to afford pure $12 a(0.476 \mathrm{~g}$, $\mathrm{mL})$. The combined organics were washed with water $(3 \times 50$
$\mathrm{mL})$, dried, and evaporated. The residue was chromatographed added and the mixture was extracted with diethyl ether $(3 \times 50$
$\mathrm{mL})$. The combined organics were washed with water $(3 \times 50$ rated aqueous solution of $\mathrm{KF}(20 \mathrm{~mL})$ and ether $(30 \mathrm{~mL})$. The
mixture was stirred vigorously for 1 h . Water $(100 \mathrm{~mL})$ was cooled to room temperature. To the mixture was added a satu-
rated aqueous solution of $\mathrm{KF}(20 \mathrm{~mL})$ and ether $(30 \mathrm{~mL})$. The
$2 \mathrm{H}), 8.62\left(\mathrm{dd}, \mathrm{H}_{3^{\prime} \text { or } 5^{\prime}}, J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.38\left(\mathrm{dd}, \mathrm{H}_{3^{\prime} \text { or } 5^{\prime}}, J\right.$ $2 \mathrm{H}), 9.44\left(\mathrm{~d}, \mathrm{H}_{2}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.70\left(\mathrm{~d}, \mathrm{H}_{3^{\prime \prime \prime}}, J=7.8 \mathrm{~Hz}\right.$

 aqueous $\mathrm{HCl}(5 \times 50 \mathrm{~mL})$. The combined aqueous phases were
extracted with $\mathrm{DCM}(4 \times 50 \mathrm{~mL})$, basified, and reextracted added to the residue, and the organic phase was extracted with
 $(0.4125 \mathrm{~g}, 1.535 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.108 \mathrm{~g}, 10 \mathrm{~mol} \%$
 Preparation of 2,6 -bis $\left(6^{\prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime}\right.\right.$-bipyrid $6^{\prime \prime}$-yl)-
pyrimidin- 4^{\prime}-yl)-pyridine ($2 a$) $\left(\mathrm{CHCl}_{3}\right)$.

 (C), $29.25\left(\mathrm{CH} 2, J_{\mathrm{Sn}-\mathrm{C}}=10.8 \mathrm{~Hz}\right), 27.48\left(\mathrm{CH}_{2}, J_{\mathrm{Sn}-\mathrm{C}}=27.4\right.$ 1.16-1.04 (m, $\left.\mathrm{CH}_{2}, 6 \mathrm{H}\right), 0.92\left(\mathrm{t}, \mathrm{CH}_{3}, 9 \mathrm{H}\right){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, 8$
$(\mathrm{ppm}): 174.51\left(\mathrm{C} 2, J_{\mathrm{S}-\mathrm{C}}=255,28 \mathrm{~Hz}\right), 130.63(\mathrm{C}), 130.33$ $17 \%)$ as a pale-brown oil. H distillations (5×10^{-6} Torr, ${ }^{\left.140-150^{\circ} \mathrm{C}\right) \text { to afford } 13(8.15 \mathrm{~g},}$
$17 \%)$ as a pale-brown oil. ${ }^{1} \mathrm{H} \mathrm{NMR}, \delta(\mathrm{ppm}): 7.30-7.20(\mathrm{~m}$, DCM $(3 \times 20 \mathrm{~mL})$. The combined organic phases were
and evaporated. The residue was purified by two Kugelrohr DCM $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried temperature and the THF was evaporated. Water (30 mL) was $-75^{\circ} \mathrm{C}$. The solution temperature was allowed to rise to room $-90^{\circ} \mathrm{C}$ and tributyltin chloride ($75 \mathrm{~mL}, 0.28 \mathrm{~mol}$) was added
over 1 h while the solution temperature was kept below dained below $-90^{\circ} \mathrm{C}$. The solution was stirred for 2 h at mL) was added n-butyllithium ($28 \mathrm{~mL}, 10.0 \mathrm{M}, 0.28 \mathrm{~mol}$) Preparation of 2,6-bis(tributylstannyl)pyridine (13)
To 2,6-dibromopyridine 9 ($17.3 \mathrm{~g}, 0.0730 \mathrm{~mol}$) in THF (240

1:1).
Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClN}_{4}: \mathrm{C} 69.66, \mathrm{H} 3.81, \mathrm{~N} 16.25$; found
$\mathrm{C} 69.88, \mathrm{H} 3.94, \mathrm{~N} 16.22 . R_{\mathrm{F}}: 0.48$ on alumina (DCM /hexane
 C). $\mathrm{MS} m / z+$ (EI): $344(\mathrm{M}, 100 \%), 309(\mathrm{M}-35(\mathrm{Cl}), 83 \%)$,
$242 \quad\left(\mathrm{M}+\mathrm{H}-103 \quad\left(\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{CN}\right), \quad 6 \%\right), \quad 206 \quad(\mathrm{M}-138$
 $\left.\mathrm{H}_{5,}, J=7.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{12} \mathrm{C}\left\{{ }^{\prime} \mathrm{H}\right\} \mathrm{NMR}, \delta(\mathrm{ppm}): 165.1$,
$164.7,162.7,156.0,155.6,152.4,149.3,138.2,137.0,136.4$,

 $1546,1530,1430,1374,1332,1077,826,785,754,696,650$
${ }^{1} \mathrm{H} N M R, \delta(\mathrm{ppm}): 8.73\left(\mathrm{~d}, \mathrm{H}_{6^{\prime \prime}}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.69\left(\mathrm{dd}, \mathrm{H}_{3}\right.$ 12c $\left(1.00 \mathrm{~g}, 48 \%\right.$) a a white solid, $\mathrm{mp} 187-189^{\circ} \mathrm{C}$. IR: 1559 ,
$1546,1530,1430,1374,1332,1077,826,785,754,696,650$ $\times 50 \mathrm{~mL}$), dried, and evaporated. The residue was chromato-

 $\left(\mathrm{d}^{2}, \mathrm{H}_{3^{\prime \prime}}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.35\left(\mathrm{~d}, \mathrm{H}_{6^{\prime \prime}}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.21(\mathrm{t}$,
$\left.\mathrm{H}_{4}^{\prime \prime \prime} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07\left(\mathrm{t}, \mathrm{H}_{\mathrm{H}^{\prime}}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.65-7.58$ $\left.\mathrm{H}_{o}, J=8.0,1.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.43\left(\mathrm{~d}, \mathrm{H}_{3^{\prime}}\right.$ or $\left.\mathrm{r}^{\prime}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.41$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.85 (dd, $\mathrm{H}_{3^{\prime} \text { or } 5^{\prime}, ~}, \mathrm{~F}=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}$) 8.83 (dd,

 lized from chloroform to give more pure $2 c(0.0553 \mathrm{~g}, 27 \%)$.
Tot yield: $0.116 \mathrm{~g}(57 \%)$; mp $262-264^{\circ} \mathrm{C}$. IR 1560,1538 residue was washed with boiling diethyl ether and recrystala white solid. The combined filtrates were evaporated and the recrystallized from chloroform to afford $2 c(0.0606 \mathrm{~g}, 30 \%)$ as $110^{\circ} \mathrm{C}$ for 60 h . The DMF was evaporated and the residue was
washed with methanol ($3 \times 25 \mathrm{~mL}$). The remaining solid was $110^{\circ} \mathrm{C}$ for 60 h . The DMF was evaporated and the residue was $(0.200 \mathrm{~g}, 0.580 \mathrm{mmol})$, and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.06 \mathrm{~g}, 10 \mathrm{~mol} \%)$
 phipym Preparation of 2,6-bis $\left(6^{\prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime}\right.\right.$-bipyrid- $\mathbf{6}^{\prime \prime}$-yl) $) \mathbf{2}^{\prime}$ $\mathrm{C}_{35} \mathrm{C}_{25} \mathrm{~N}_{9}: \mathrm{C} 73.54, \mathrm{H} 4.41$, N 22.05 ; found: $\mathrm{C} 73.73, \mathrm{H} 4.11$
N 22.27 . $\mathrm{R}_{\mathrm{f}}: 0.12$ on alumina $\left(\mathrm{CHCl}_{3}\right)$.

 $8.65\left(\mathrm{~d}, \mathrm{H}_{3^{\prime \prime}}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.63\left(\mathrm{dd}, \mathrm{H}_{3^{\prime}}\right.$ or $\mathrm{H}_{5^{\prime}}, J=7.9,1.0$
$\mathrm{Hz}, 2 \mathrm{H}), 8.40\left(\mathrm{dd}, \mathrm{H}_{3}\right.$ or $\left.\mathrm{H}_{5}, J=7.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.37-8.34$
 yields $2 b$ as an off-white powder $(0.56 \mathrm{~g}, 45 \%), \mathrm{mp} 334^{\circ} \mathrm{C}$. IR:
$1599,1538,1474,1429,1371,1259,1131,1095,1070,993$, chloroform and refluxed for 12 h . Filtration of the hot mixture with a mixture of ether and hexane ($1 / 1$) to yield a second crop
of the desired product. The crude product was suspended in were evaporated to dryness. The remaining residue was treated with DMF and then with acetonitrile. The combined filtrate cipitate was filtered off and it was washed thoroughly, first DMF (15 mL); the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 44
h and subsequently cooled to room temperature. The solid pre$\mathrm{g}, 4.6 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~g}, 16 \mathrm{~mol} \%)$ was added
DMF $(15 \mathrm{~mL})$; the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 44 To 2,6-bis(tributylstannyl)pyridine 13 (1.45 $\mathrm{g}, 2.2 \mathrm{mmol}), 4$
(2 $2^{\prime \prime}, 2^{\prime}$-bipyrid- 6^{\prime}-ll)-6-chloro-2-methylpyrimidine $12 b$ (1.30

Preparation of 2,6-bis $\left(6^{\prime}-\left(2^{\prime \prime \prime}, 2^{\prime \prime}\right.\right.$-bipyrid- $\mathbf{6}^{\prime \prime}$-yl) $) \mathbf{2}^{\prime}$
methylpyrimidin- 4^{\prime}-yl)-pyridine $(2 b)$

 93% yield with excess PBr_{3} heated to reflux. The overall yield 45% yield and is converted to 6-bromo-2, 2^{\prime}-bipyridine $6 a$ in
93% yield with excess PBr_{3} heated to reflux. The overall yield selectively complexing the 4-isomer with $\mathrm{Ni}(\mathrm{II}) \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in ridine 5 in 99% yield (27). The 6 -isomer is isolated by
 ridine (bpy) 3 and m-CPBA gave $2,2^{\prime}$-bipyridine- N-oxide 4 in
 of the terminal pyridine ring, so as not to interfere with metal
complexation.

 The substituent in the pyrimidine 2-position will influence the Results and discussion䓂

 factors such as $B_{\mathrm{H}}=1.3 B_{\text {eqv }}(C) A^{2}$. Empirical absorption cor-
rections were applied (DIFABS): Molen on a Vax computer puted coordinates $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and isotropic temperature
factors such as $B_{\mathrm{H}}=1.3 B_{\text {eqv }}(C) \AA^{2}$. Empirical absorption cor-

 Lorentz and polarization factors. The structure was solved the data collection period showed no significant trend. The
raw data were converted to intensities and corrected for

 ment at $20^{\circ} \mathrm{C}$ with Cu graphite monochromated radiation $(\lambda=$
$1.5418 \AA), \theta / 2 \theta$ flying step scans, step width $=0.03^{\circ}$, scan
 mm^{3}) was mounted on the end of a glass fibre: $2891+h \pm k \pm$ $95.49(2)^{\circ}, V=2636.0 \AA^{3}, Z=4, \rho_{\text {calc }}=1.370, \mu=6.502 \mathrm{~cm}^{-1}$,
space group $C 2 / c$. A suitable crystal of $2,(0.28 \times 0.20 \times 0.14$ X-Ray data for $2:\left(\mathrm{C}_{33} \mathrm{H}_{21} \mathrm{~N}_{9}\right), M=543.6$; colourless crystals,
monoclinic; $a=12.396(3), b=12.307(3), c=17.358(5) \AA, B=$ Crystal structure determination
X-Ray data for $2:\left(\mathrm{C}_{33} \mathrm{H}_{21} \mathrm{~N}_{0}\right), M=543.6$; colourless crystals;

Fig. 3. Synthesis of 6-tributylstannyl-2,2'-bipyridines $\mathbf{1 0} a, b$ from $2,2^{\prime}$-bipyridine and stannyl pyridines $\mathbf{8} a, b$.

 -p!̣e кq sionpoid-кq u!̣oue $8 a$ and 2,6-dibromopyridine 9 are heterocoupled using the
conditions listed in Table 1. The bpy $6 a$ is easily separated

Fig. 4. Synthesis of the bis-tridentate ligands $1 a-e$ and of the
bromo-substituted ligand $\mathbf{1} f$.

Z:I I:I suou!puoつ
${ }_{v}$ o!̣ex juәвъวу

 SұUəA[OS ВІ

 a by-product. The synthesis can also be performed in a single chromatography along with the tributyltin bromide formed as

NON

 ,

 $11 a-d$ in DMF with $\mathrm{Pd}(\mathrm{II})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ as catalyst yields the bis

$98^{\circ} \mathrm{L}$	${ }_{3} \checkmark \vdash^{\circ} \mathrm{L}$	$\triangle S t^{\circ} \mathrm{L}$	［I＇8	t9 8					$p \mathrm{I}$
． $099^{\circ} \mathrm{L}$	88＊＊	s8t	L08	$09 \cdot 8$					PII
					${ }^{3} 75$	$35^{\circ} \mathrm{L}$	E8．8		${ }^{2}$
					． $65^{\circ} \mathrm{L}$	${ }^{2} 65^{\circ} \mathrm{L}$	8L＇8		${ }^{\text {I }}$
					${ }_{0}+S^{\circ} L$	${ }^{5}+55^{\circ} \mathrm{L}$	${ }^{2} 918$		3 I
					${ }^{\text {I }} 5^{\circ} \mathrm{L}$	${ }^{51} 5^{\circ}$	tt 8		フII
								$L 6^{\circ}$	$q 7$
								ャ6て	$q \mathbf{I}$
								$6 L^{\prime}$ 亿	92 I
								S9\％	$q \mathrm{II}$
${ }^{+} \mathrm{V}$	${ }^{\varepsilon} \mathrm{V}$	${ }^{\bar{c}} \mathrm{~V}$	${ }^{1} \mathrm{~V}$	${ }^{01} \mathrm{~V}$	${ }^{d} \mathrm{H}$	${ }^{\text {＂}} \mathrm{H}$	${ }^{a} \mathrm{H}$	${ }^{3 \mathrm{~N}} \mathrm{H}$	

Table $2 b .{ }^{\text {I }} \mathrm{H}$ NMR chemical shifts for the R groups of the various ligands and their
precursors（in ppm）．${ }^{\text {c．b }}$ ．

 orientation with a least-squares-planes angle of 38.8° and a
centroid-to-centroid distance of $4.523 \AA$. The closest interac-
 reference for an optimal π-stacking distance. The termina

angles

 about the interannular bonds fall into two separate sets for the \AA and from 1.329 (4) to 1.344 (3) \AA, respectively. The angles lie between 1.484 (3) and 1.489 (4) A. The pyridine and pyri-
midine $\mathrm{C}-\mathrm{N}$ bond lengths range from 1.334 (3) to 1.346 (4) $\mathrm{C}-\mathrm{C}$ single bonds between $s p^{2}$ hybridized carbon atoms, and The interannular bond lengths in molecule $2 a$ are typical of
 coplanar rings are B and $\mathrm{C}\left(3.8(8)^{\circ}\right)$. The angle $\left(8.6(3)^{\circ}\right)$
between the pyridine rings in the bipyridyl moieties is slightly idine (ring C) and central pyridine (ring D) (Fig. 8). The most least-squares planes $\left(16.5(2)^{\circ}\right)$ is greatest between the pyrim
 $\mathrm{H}_{3^{\prime \prime}}$ is directed into the cavity formed by the helix, with a
distance of 3.0 and $3.4 \AA$ between $\mathrm{H}_{3^{\prime \prime}}$ and H_{5} for the three-ring cavity is 5.42 A across and of a size comparable to that in
cyclosexipyridine and 18 -crown- 6 . strand is lined with alternating CH and N sites. The central tion about the interannular bonds. The interior of the helical and C-4. Molecule $2 a$ adopts an overall helical conformation
in which the nitrogen sites have the expected transoid orientatwofold rotation axis passing through the central pyridine
and C-4. Molecule $2 a$ adopts an overall helical conformation and contains the two enantiomeric helices. The molecule has a

 around the linkage bonds based on the preference for a tran
orientation of nitrogen sites and concomitant cis orientation of units at appropriate positions; (c) transoid conformation sequence of pyridine and pyrimidine units; (b) linkage of these
 nonchiral linear molecule be curled up into a helical shape.
 NOE interactions between $\mathrm{H}_{3^{\prime \prime \prime}}$ and H_{5} are observed, further
supporting a transoid conformation at the central tridentate

 ing up of the ligand. The symmetry of the molecule on the
NMR time scale does not allow differentiation of the threeinteraction occurs between $\mathrm{H}_{3^{\prime \prime}}$ and H_{5}, indicating partial curl

 nal pyridines. The ${ }^{1} \mathrm{H}$ NMR spectra of $2 a-c$ indicate similar

 favourable $\pi-\pi$ interaction (36). Based on the above observa-
 ces have a centroid-to-centroid distance of $3.79 \AA$ (Fig. 7). The
least-squares-planes angle between the rings is $3.8(7)^{\circ}$. The Ring B and ring C^{\prime} from each of the two enantiomeric heli

 above the B rings (least-squares-planes angle $\left.=33.2(1)^{\circ}\right) . \mathrm{H}_{4}$

$$
\begin{aligned}
& { }^{b} 2 b \text { not soluble enough for accurate measurements. } \\
& { }^{c} \text { Irreversible wave. }
\end{aligned}
$$

(を) , (て)

additive. chromophoric components in the ligands are approximately As for the absorption maxima, the molar absorptivities for the all the common wavelengths as the 9 -anthryl moiety has
higher ε values than the other R groups at these wavelengths. ity of $1 d$ is higher than that of the other bis-tridentate ligands at
all the common wavelengths as the 9 -anthryl moiety has and anthracene ($221,256,375 \mathrm{~nm}$) (40). The molar absorptivably well to the absorption bands of benzene ($204,256 \mathrm{~nm}$) exhibit additional UV bands (256 and 333 nm ; and 250,257
348,366 , and 386 nm , respectively) that correspond reasonThe phenyl- ($1 c$) and 9 -anthryl-substituted (1d) ligands
exhibit additional UV bands (256 and 333 nm ; and 250,257 , lowered HOMO-LUMO energy gap (42). The same was found in other polyaromatic compounds, where The same was found in other polyaromatic compounds, where than those of pyridine and pyrimidine, as bpy and tpy low-low-energy absorption is expected to occur at lower energies
 midine-based transition, while the high-energy ones may be
 found in pyridine ($251,270 \mathrm{~nm}$) and pyrimidine ($243,298 \mathrm{~nm}$)
(40). They contain common absorption bands near 236, 286, found in pyridine ($251,270 \mathrm{~nm}$) and pyrimidine ($243,298 \mathrm{~nm}$) The absorption spectra of the bis-tridentate ligands $1 a-f$ pyridyl groups are observed. The poor solubility of $2 b$ pre-
cluded determination of its reduction potentials.

 P. Ford, D.F.P. Rudd, R. Gaunder, and H. Taube. J. Am. Chem.
Soc. 90,1187 (1968).
A. Bard and L.R. Faulkner. In Electrochemical methods, funda37. S.D. Ernst and W. Kaim. Inorg. Chem. 28, 1520 (1989).
38. P. Ford, D.F.P. Rudd, R. Gaunder, and H. Taube. J. Am. 36. C.A. Hunter and J.K.M. Sanders. J. Am. Chem. Soc. 112, 5525 F.A. Cotton and G. Wilkinson. In Advanced inorganic chemis-
try. John Wiley \& Sons, Toronto. 1988 .
C.A. Hunter and J K M. Sanders. J. Amem Soc. $\mathbf{1 1 2} 5525$ C.A. Bessel, R.F. See, D.L. Jameson, M.R. Churchill, and K.L.
Takeuchi. J. Chem. Soc. Dalton Trans. 3223 (1992).
 H.R. Henze, W.J. Clegg, and C.W. Smart. J. Org. Chem. 17,
1320 (1952). J.E. Parks, B.E. Wagner, and R.H. Holm. J. Organomet. Chem
56, 73 (1973).
T. Garber and D. Rillema. Synth. Commun. 20, 1233 (1990).

