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Abstract 14 

Background: Population genetics is crucial for understanding the transmission dynamics of 15 

diseases like onchocerciasis. Landscape genetics identifies the ecological features that impact 16 

genetic variation between sampling sites. Here, we have used a landscape genetics framework 17 

to understand the relationship between environmental features and gene flow of the filarial 18 

parasite Onchocerca volvulus and of its intermediate host and vector, blackflies in the genus 19 

Simulium. We analysed samples from the ecological transition region separating the savannah 20 

and forest ecological regions of Ghana, where the transmission of O. volvulus has persisted 21 

despite almost half a century of onchocerciasis control efforts. 22 

Methods: We generated a baseline microfilarial prevalence map from the point estimates of 23 

pre-ivermectin microfilarial prevalence from 47 locations in the study area. We analysed 24 

mitochondrial data from 164 parasites and 93 blackflies collected from 15 communities and 25 

four breeding sites, respectively. We estimated population genetic diversity and identified 26 

correlations with environmental variables. Finally, we compared baseline prevalence maps to 27 

movement suitability maps that were based on significant environmental variables. 28 

Results: We found that the resistance surfaces derived from elevation (r = 0.793, p = 0.005) 29 

and soil moisture (r = 0.507, p = 0.002) were significantly associated with genetic distance 30 

between parasite sampling locations. Similarly, for the vector populations, the resistance 31 

surfaces derived from soil moisture (r = 0.788, p = 0.0417) and precipitation (r = 0.835, p = 32 

0.0417) were significant. The correlation between the baseline parasite prevalence map and 33 

the parasite resistance surface map was stronger than the correlation between baseline 34 

prevalence and the vector resistance surface map. The central parts of the transition region 35 

which were conducive for both the parasite and the vector gene flow were most strongly 36 

associated with high baseline onchocerciasis prevalence. 37 

Conclusions: We present a framework for incorporating environmental, genetic, and 38 

prevalence data for identifying when ecological conditions are favourable for onchocerciasis 39 

transmission between communities. We identified areas with higher suitability for parasite and 40 

vector gene flow, which ultimately might help us gain deeper insights into defining 41 

transmission zones for onchocerciasis. Furthermore, this framework is translatable to other 42 

onchocerciasis endemic areas and to other vector-borne diseases.  43 
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Background 46 

Onchocerciasis is a neglected tropical disease caused by a filarial parasite, Onchocerca 47 

volvulus, and transmitted by the bites of black flies (Simulium spp.). The blackflies have a 48 

narrow range of ecological suitability, which leads to spatial heterogeneity in the prevalence 49 

and transmission of onchocerciasis [1–4]. The primary tool for onchocerciasis control is mass 50 

drug administration with ivermectin (MDAi) with an initial focus on mostly high endemic 51 

communities, i.e., there is also spatial heterogeneity in intervention history. Following the 52 

success of MDAi in controlling onchocerciasis as a significant public health problem in the 53 

majority of areas, almost all countries have switched their target from control to elimination. 54 

However, the target of onchocerciasis elimination with MDAi is impeded by some persistent 55 

onchocerciasis transmission foci despite decades of intervention [5–7]. 56 

Understanding the persistence of disease transmission requires spatial heterogeneity to be 57 

considered because of the risk that movement of infective vectors, and thus parasites, from the 58 

areas with different endemicity and MDAi history can re-initiate disease in areas where 59 

transmission of O. volvulus is thought to be eliminated. For instance, the migration of the 60 

parasites via infected humans has been linked to recrudescence in previously eliminated foci 61 

of Burkina Faso [8–10]. Similarly, the failure to achieve the elimination of onchocerciasis in 62 

West Africa with the onchocerciasis control program (OCP) was attributed to rapid insecticide 63 

resistance due to high vector gene flow and, thus, the spread of insecticide resistance alleles 64 

[11–14]. However, disease control programs have historically focused on government 65 

administrative units as the unit of intervention, which has led to a situation where treatment 66 

decisions are being made without much consideration of host- or vector-mediated movement 67 

of the parasites and, thus, the transmission zones. 68 

The geographical unit in which parasite transmission occurs via locally breeding vectors is 69 

termed as a transmission zone [15]. Transmission zones form the biological basis of 70 

intervention units, and thus, a clear understanding of transmission zones and means to define 71 

their boundaries are crucial to ensure that the interventions are coordinated at the correct 72 

geographic scale. Onchocerciasis prevalence is high in the poorest of the poor nations of the 73 

world [12,16]. Therefore, the limited resources available in these areas must be judiciously 74 

allocated to the most essential areas to achieve the elimination of onchocerciasis transmission. 75 

The way forward to achieving the elimination goal is to align intervention units as closely as 76 
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possible to the natural transmission zones. However, delineating transmission zones is a 77 

challenging task, and several tools have been deployed so far to understand transmission 78 

zones. 79 

We can gain some insights into the transmission zones based on prevalence mapping, where 80 

point prevalence data are interpolated spatially [4,17]. However, this is a static map and 81 

ignores the 'innate' connectivity between locations mediated by the movement of the human 82 

host and the vectors. Population genetics has been used to infer the movement of pathogens, 83 

whereby pathogen movement can be measured indirectly by the genetic relatedness of 84 

parasites across locations [18–28]. The dispersal, and thus gene flow, of parasites and vectors, 85 

are subject to influence by the environmental features of the landscape. Therefore, population 86 

genetics should be combined with spatial information and environmental data in order to 87 

provide a better picture of the transmission processes. This combination of spatial information, 88 

environmental data and population genetics is termed landscape genetics. 89 

Landscape genetics explicitly quantifies the effects of landscape on evolutionary processes 90 

such as gene-flow, drift, and selection [29,30]. Spatial information can be added in the form 91 

of sampling location geographic coordinates and remote sensing satellite images of different 92 

environmental and climate variables such as elevation, slope, distance to the water bodies etc. 93 

There are then several steps required in order to use landscape genetics to infer transmission 94 

zones. First, the degree of genetic differentiation between sampling locations for parasites 95 

and/or vectors is measured. Second, the extent of correlation between a range of environmental 96 

variables and the measures of genetic differentiation estimated in step one is determined [31]. 97 

Third, the most important environmental variables identified in step two are converted to 98 

resistance surface maps, which quantify the barriers to the gene flow of the study population 99 

in a pixel-level landscape map and are a proxy for the movement suitability of an organism in 100 

that particular landscape, i.e., high resistance implies low gene flow/mobility and low 101 

resistance implies high gene flow/mobility [32,33]. Resistance maps can be used to simulate 102 

the pattern of gene flow of the parasites and the vectors, giving insights into the predicted 103 

corridors of movement and, thus, the likelihood of transmission between locations [34,35].  104 

We have implemented this technique in the ecological transition region of Ghana, an 105 

onchocerciasis hotspot of concern. Despite half a century of interventions, O. volvulus 106 
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transmission still persists in some communities [5,36,37], and there are also reports of 107 

suboptimal response (SOR) of infections to treatment with ivermectin [38–40]. A recent 108 

population genetic analysis by Crawford et al. [25], suggested a genetically homogeneous 109 

parasite populations in this area with the absence of isolation-by-distance, i.e., genetic 110 

connectivity of the parasite population not limited by the geographic distance between the 111 

population. This suggests cross-transmission of O. volvulus between communities, which may 112 

be contributing to the persistence of onchocerciasis transmission. With the hypothesis that the 113 

genetic connectivity is influenced by environmental factors, we used a landscape genetics 114 

framework to understand the spatial patterns of transmission in the ecological transition region 115 

of Ghana. 116 

We have combined environmental data with the parasite genetic data (and have included 117 

additional vector genetic data from the ecological transition regions) with the objectives of: 118 

(i) determining the ecological factors affecting the spatial variation in the parasite and the 119 

vector population genetic estimates and; (ii) inferring the patterns and routes of gene-flow, 120 

and thus the likely transmission, for the parasite and the vector populations. We have identified 121 

key environmental variables that influence the population genetic structure of the parasite and 122 

the vector population and generated gene flow maps for the parasite and the vector population 123 

from the ecological resistance surface maps. This allowed us to identify potential corridors of 124 

parasite and vector movement between the sampling communities, which provides an 125 

evidence base for spatial delineation of transmission zones. Further, we have compared the 126 

movement suitability maps with the baseline microfilarial (mf) prevalence maps and discussed 127 

the immediate implications of the approach developed to aid elimination goals.  128 
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Methods 129 

Sampling locations 130 

The study area is a west-east transect in the ecological "transition zone" of Ghana: an area that 131 

includes the savannah ecotype in the north and the forest ecotype in the south [41–43], with 132 

the Lake Volta bisecting the eastern parts of the transition zone, and the Bui National Park in 133 

the west (Figure 1). We chose this area for the study as there is ongoing persistence of O. 134 

volvulus transmission despite decades of control efforts [36,40,44]. The elevation ranges from 135 

70–525 m above sea level, and mean annual temperature and precipitation range from 24–136 

29°C and 1077–1355 mm, respectively [45,46]. 137 

The sampling locations belonged to four different government administrative regions, viz., 138 

Bono, Bono East, Savannah, and the Northern regions (Figure 1; Additional file Table S3). 139 

Variant calls based on mitochondrial genome data from 164 female O. volvulus samples that 140 

had been isolated from 97 people from 15 communities, primarily in 2010–2012 (n = 107) and 141 

in 2006 (n = 34) and 2013 (n = 23), were obtained from Crawford et al. [25]. Ethics approvals 142 

for sampling parasites from people are reported in Crawford et al. [25]. Four communities 143 

from each of the four regions, viz., Bono, Bono East, Savannah and Northern region, were 144 

chosen for the sequencing of vector samples which were collected in 2013–2015. A total of 145 

93 S. damnosum samples collected in 2013 (n = 73) and 2015 (n = 20) by human landing catch 146 

were selected from four communities. 147 

A bounding box formed based on the convex hull boundary (a boundary with a set of convex 148 

curves enclosing the sampling locations) around the sampling locations was used for the 149 

geospatial analysis. The dimension for the bounding box was 293.68×129.38 km (an area of 150 

37,995.59 km2). Geographic coordinates for all the communities were used to calculate the 151 

pairwise geographic distance between the communities (Additional file Table S3). We 152 

aggregated data from communities close to each other (less than 5 km) and used the centroid 153 

of the geospatial coordinates of the communities in close proximity for the merged 154 

communities. This brought the number of parasite sampling locations down to 11 but increased 155 

the sample size per community (Figure 1). 156 
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 157 

Figure 1. The spatial context of the sampling locations of the Onchocerca volvulus and Simulium 158 

damnosum in the transition region of Ghana. Geographic coordinates are represented as the circle 159 

for parasites (A) and square for vectors (B), and their sizes correspond to the number of samples from 160 

the respective locations. The legend for the size is provided to the left of each figure. The communities 161 

are represented with community codes. The river lines and the government administrative borders are 162 

shown along with the water body (Lake Volta) and the Bui national park. The inset map shows the 163 

map of Africa and Ghana with the bounding box for our study area. More information about sampling 164 

locations and the number of samples are present in Additional file Table S3. 165 

Sequencing and variant calling 166 

Details on the genetic data generation and the parasite samples are available in Crawford et al. 167 

[25]. In brief, DNA was extracted from adult female O. volvulus from nodules using the 168 

Dneasy® Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions. 169 

Sequence libraries were generated based on either genomic DNA extracts or on amplicons 170 

targeting the mitochondrial genome and sequenced using Illumina MiSeq or HiSeq sequencing 171 
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platforms. Trimmed sequence reads were mapped to the O. volvulus (NC_001861) 172 

mitochondrial reference genome and variants called using GATK UnifiedGenotyper [47]. 173 

These data were submitted to the NCBI Short Read Archive under project PRJNA560089 [48]. 174 

For S. damnosum, the body of each fly was dissected and homogenised using a pestle. 175 

Extractions of total DNA were performed using the Isolate II Genomic DNA kit, following 176 

the manufacturer's instructions (Bioline, London, United Kingdom). Sequencing libraries 177 

were constructed and indexed using the Illumina DNA Prep tagmentation kit following the 178 

manufacturer's instructions (Illumina, San Diego, California, USA). Libraries were pooled and 179 

sequenced on one lane of a NovaSeq SP, 300 cycles (resulting in 150-bp paired-end reads) at 180 

the Australian Genome Research Facility (Melbourne, Victoria, Australia) (Additional file 181 

Table S1).  182 

Sequenced reads were trimmed for quality and to remove adapter contamination using 183 

trimmomatic v.0.32 and keeping only those pairs where both pairs were >125 bp [49]. To 184 

assemble the genome, three flies with the largest number of paired reads were mapped using 185 

bwa v. 0.7.17 [50] to available Simulium spp. Complete or nearly complete mitochondrial 186 

genomes downloaded from NCBI (Simulium variegatum, NC_033348; Simulium noelleri, 187 

NC_050320; Simulium quinquestriatum, MK281358; Simulium ornatum, MT410845; 188 

Simulium maculatum, NC_040120; Simulium aureohirtum, NC_029753; Simulium 189 

petricolum, MT671497; Simulium equinum, MT920425; Simulium angustipes, MT628576; 190 

Simulium lundstromi, MT628562). Those reads that mapped to any Simulium genome were 191 

extracted and converted to fastq using samtools v.1.9 [51], and these were used to produce a 192 

preliminary assembly using spades v. 3.11.1 [52] and velvetoptimiser v. 2.2.5 [53,54]. These 193 

drafts were then improved using pilon v.1.23 [55]. Assemblies from the two different 194 

programs were aligned in Mesquite v.3.61 [56], and the consensus—defined as bases that were 195 

observed in both assemblies—was taken to produce a single consensus reference genome (i.e., 196 

the consensus from two variant callers from one blackfly) for variant calling. Because 197 

mitochondrial genomes are circular, and thus the starting point for different linear assemblies 198 

differed, the assembly for each fly was oriented so that it began with tRNA-Ile to be consistent 199 

with S. variegatum (NC_033348; [57]). The "AT-rich region" was variable in inferred length 200 

and sequence between different assemblers, different individual blackflies, and different 201 

species, and were difficult to align. Thus, this AT-rich, variable-length region was excluded. 202 
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All raw reads and assembled sequences were submitted to the European Nucleotide Archive 203 

(ENA) at EMBL-EBI under accession number PRJEB57094. 204 

Variants were filtered to retain only those calls at positions with a minimum quality score of 205 

30 and a minimum depth of 20 using vcftools v.01.13 [50,58,59].  Individuals with more than 206 

75% missing data were excluded from the analysis. Variants were normalised using 207 

bcftools v.1.2. To ensure consistency between variant formatting, allelic primitives were 208 

called using the function vcfallelicprimitives implemented in vcflib [60]. The intersection of 209 

the two variant callers was then identified using bcftools v.1.2 [61]. For both parasite and 210 

vector data, we filtered the variants to remove indels, missing regions, and non-biallelic sites 211 

using vcftools v.01.13 [58]. The resulting dataset comprised 189 SNP loci for 164 individual 212 

O. volvulus and 632 SNP loci for 93 individual S. damnosum.  213 

Prevalence data 214 

Pre-MDAi prevalence data for communities that fell within the study area bounding box and 215 

were based on observation of mf in a skin biopsy via microscopy were obtained from the 216 

Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) database 217 

[62]. The prevalence data collected for mapping, i.e., prior to MDAi was used. Duplicate 218 

observations were removed, and observations from the same geographic coordinates at 219 

different years were aggregated to calculate the average prevalence. There were 47 unique 220 

locations with prevalence data collected from 1976 to 2004 that fell within the study area used 221 

for the geospatial mapping of the baseline prevalence. 222 

Environmental data 223 

We compiled different continuous environmental rasters which might be ecologically relevant 224 

to the onchocerciasis distribution based on the published literature, field experiments on 225 

blackflies [63,64] and ecological factors identified with previous geospatial modelling studies 226 

[2,17,65–67]. These environmental variables included distance to the nearest river, soil 227 

moisture, elevation, slope, temperature, and precipitation [2,65,67]. In addition, the dispersal 228 

capacity of the Simulium vector is dependent on the vegetation type and time of the year [68]. 229 

Therefore, we included vegetation and seasonality-related variables in our analysis. In addition 230 

to environmental variables, we also included some sociodemographic aspects of the study 231 

area—for example, the human population density to consider the availability of human hosts 232 
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for disease transmission. We used the environmental variables corresponding to the year when 233 

the samples were collected for fitting the models to account for the differences in the time of 234 

sampling. For prevalence data, environmental variables before 2001 were used, and similarly, 235 

for the O. volvulus and S. damnosum, environmental variables from 2010–2012 and 2013–236 

2015 were used respectively, as per the data availability. Our starting set of environmental and 237 

socio-economic datasets consisted of 32 continuous environmental rasters at a spatial 238 

resolution of 1 km from publicly available repositories via Earth Engine (Additional file Table 239 

S2) [69]. 240 

These variables were divided into six groups, viz., temperature, precipitation, topography, 241 

vegetation indices, hydrological and sociodemographic variables. We extracted the values for 242 

each sample location using the raster package in R v. 4.1.0 [70,71]. For testing the association 243 

of the landscape factors to the genetic differentiation or gene flow between the populations, a 244 

pairwise comparison of environmental characteristics between sampling locations is crucial 245 

[29,72]. Thus, we calculated the average of the values encountered by a pairwise straight path 246 

between each sampling site to account for the features in adjacent areas around sampling sites 247 

for all the environmental and sociodemographic variables. We generated a pairwise 248 

correlation matrix for all 32 variables to identify variables that are highly correlated with 249 

prevalence (Additional file Figure S2, S4). We included only those variables where Pearson's 250 

correlation coefficient between the ecological variable(s) and prevalence was less than < |0.6| 251 

within each group of variables [72]. Further, we performed principal component analysis 252 

(PCA) to identify the variables that contributed most to the variance among the group of 253 

correlated variables (Additional file Figure S1, S3) [73]. For any given group of correlated 254 

variables, we selected the variable with the highest contribution score to the total variance in 255 

PCA analysis and the ease of interpretability of the variables. The environmental variables 256 

selected for the parasite sampling locations were also used for vector landscape genetics for 257 

easier comparison between the vector and the parasite landscape genetics. 258 

Prevalence mapping 259 

The mean of the posterior prevalence was obtained from the pre-MDAi mf prevalence data 260 

using the Bayesian approach with Integrated Nested Laplace Approximation (INLA) [74,75]. 261 

The number of positive cases out of the total number of people tested in a location was 262 

assumed to follow a binomial distribution. The prevalence was modelled with different 263 
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environmental variables and a spatial random effect with a zero-mean Gaussian process 264 

following a Matérn covariance function. The Matérn field is represented with a finite element 265 

mesh formed of triangles around the sampling locations and adding vertices over the 266 

prediction region. Multiple triangulation meshes with different parameters for cut-off and 267 

length of triangles inside and outside the boundary were tested for the model fit and 268 

computational cost (Additional file Figure S5). We created a triangulation mesh with a 3 km 269 

cut-off; the maximum length of triangles inside and outside the boundary was set to 10 km 270 

and 100 km, respectively. Finally, we fitted the model and assessed the relationship of 271 

environmental variables with the prevalence data. The details of fitting a spatial model to the 272 

prevalence data for geospatial mapping are available in [2]. The prediction of the posterior 273 

prevalence was made at a 2 km resolution considering the high computational cost of 274 

prediction on a lower resolution. 275 

Population genetic analysis 276 

For the parasite and the vector samples, we carried out unsupervised 𝑘-means clustering 277 

analysis using the adegenet v. 2.1.6 package  [76]. We inferred the optimal number of 𝑘 278 

(groups) for the population using unsupervised k-means clustering with the Bayesian 279 

Information Criterion (BIC). The vector results were consistent with the results of a haplotype 280 

network analysis using PopART [77] that identified outlier blackflies separated largely from 281 

the cluster of other samples. Given the taxonomic uncertainty of the species composition of 282 

the S. Damnosum complex, these outliers could not be assigned confidently as members of the 283 

same interbreeding population that we believe comprised the bulk of the black flies in the 284 

sample and were therefore excluded from the analysis. Then, we carried out a Discriminant 285 

Analysis of the Principal Components (DAPC) using communities as populations. DAPC is 286 

sensitive to the number of principal components retained. Therefore, we performed stratified 287 

cross-validated DAPC by varying the number of principal components using xvalDapc 288 

function in the adegenet v. 2.1.6 package. We calculated the membership probability of each 289 

sample, communities, and the posterior correct assignment probability for the communities. 290 

We calculated summary statistics for the genetic data, i.e., number of alleles, observed gene 291 

diversity, and the pairwise measure of genetic differentiation (Fst) between sampling locations 292 

using the Hierfstat v. 0.5.11 package [78]. Similarly, mean allelic richness and number of 293 

haplotypes were calculated using PopGenReport v. 3.0.4 and haplotypes v. 1.1.2 package, 294 
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respectively [79,80]. The pairwise Fst matrix was adjusted for finite populations by linearising 295 

it with the equation Fst/(1 − Fst) as suggested by [73,81,82]. 296 

Landscape genetic analysis 297 

Landscape genetics analysis helps us understand how landscape features influence the spatial 298 

distribution of genetic variation. The simplest starting model is the isolation-by-distance 299 

model, where we test if there is a correlation between the pairwise genetic distance and the 300 

pairwise straight-path geographic distance between the sampling sites [30,83,84]. The 301 

geographic distance was calculated as the pairwise Euclidean distance between the geographic 302 

coordinates of the sampling sites using the graph4lg v. 1.6.0 package [85]. Geographic 303 

coordinates were converted to the Universal Transverse Mercator projection, a two-304 

dimensional cartesian coordinate referencing system that is accurate when performing 305 

distance-related operations on spatial objects [86]. The coordinate referencing system used in 306 

our analysis for all the spatial objects was: epsg-32630 (+proj=utm +zone=30 307 

+datum=WGS84 +units=m +no_defs). The pairwise linearised genetic differentiation 308 

between sites was considered a genetic distance. We performed Mantel tests between the 309 

geographic distance and the genetic distance matrix with the vegan v. 2.6.2 package, and the 310 

significance of the correlation was calculated based on 10000 permutations [87].  311 

Resistance surface maps 312 

In addition to geographic distances, we calculated ecological cost distances to assess the effect 313 

of intervening landscape features between the sampling sites on spatial genetic variation 314 

[31,88]. The ecological cost distances were calculated based on "resistance surface" maps. 315 

The values in each pixel of a resistance surface map reflect the extent to which the landscape 316 

feature on that pixel impedes or facilitates the movement or connectivity of the populations of 317 

interest between different locations [33,35]. We used Circuitscape implemented in Julia 318 

v. 1.6.1 to calculate the circuit distance, a proxy for the ecological cost distances, to generate 319 

connectivity maps and identify corridors for movement in the landscape [89].  320 

The resistance surface maps were generated from the environmental variables using a search 321 

and optimisation method, where transformation parameters were explored to maximise the 322 

association between the pairwise genetic distance and the ecological cost distance using 323 

ResistanceGA v. 4.1.46 package [33]. The package uses a genetic algorithm to optimise 324 
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resistance surface parameters and offers eight transformations of ricker and monomolecular 325 

functions to a continuous surface. The following equations give the ricker and monomolecular 326 

transformation function: 327 

Ricker transformation: 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑟𝑎𝑠𝑡𝑒𝑟 × 𝑒−𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒×𝑠ℎ𝑎𝑝𝑒 328 

Monomolecular transformation: 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑟𝑎𝑠𝑡𝑒𝑟 × (1 − 𝑒−𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒×𝑠ℎ𝑎𝑝𝑒) 329 

The algorithm searches for the best combination of a transformation function, magnitude, and 330 

shape parameter. It provides a framework for optimising resistance surfaces from an 331 

environmental raster surface without any prior assumptions about the contribution of those 332 

surfaces on the resistance [33] and, therefore, provides an unbiased representation of the 333 

resistance surface based on genetic data. 334 

The environmental variables selected for landscape genetic analysis were used to optimise the 335 

resistance surface maps. Linearised pairwise Fst genetic distance between sampling locations 336 

was used as the response parameter. The cost distance calculated from the transformed 337 

resistance surfaces was used as a predictor to find the best model that explains the genetic 338 

distance. A linear mixed-effects model with a maximum likelihood population effect (MLPE) 339 

was fitted to the data [90,91]. We optimised single surfaces of environmental variables and 340 

used the log-likelihood as the objective function for the MLPE model. Four replicates of 1000 341 

iterations each were run with the optimisation set to stop after 50 generations of no 342 

improvement. We set the maximum allowable resistance value to 100 during the optimisation 343 

process for easier rescaling and comparison of the resistance values of different environmental 344 

variables. 345 

Each replicate of the resistance surface obtained via the optimisation process was tested using 346 

the circuit distance matrix obtained from those resistance surfaces. We used the partial Mantel 347 

test to assess the correlation between the genetic distance matrix and the pairwise circuit 348 

distance matrix accounting for the geographical distance matrix. The partial Mantel test is 349 

used frequently in landscape genetics analyses but has high type I error rates with spurious 350 

correlations [92]. Therefore, we used mixed matrix regression with randomisation (MMRR) 351 

as a confirmatory test. The MMRR was performed using the lgMMRR function in the 352 

PopGenReport v. 3.0.4 package based on Wang's (2013) method. The MMRR also gives us 353 
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the effect of the resistance surface on the genetic differentiation accounting for the geographic 354 

distances. To avoid spurious correlations, we took a conservative approach, and the resistance 355 

surfaces were deemed significantly associated with the genetic distance only if both the partial 356 

mantel and MMRR tests were statistically significant [73,94]. Significance for both the partial 357 

Mantel and MMRR were assessed based on 10,000 permutations. 358 

Composite resistance surface maps 359 

As landscape features and environmental gradients do not exist in isolation, the environmental 360 

resistance surfaces significantly associated with the genetic distance matrix were manually 361 

combined to form a composite resistance surface map. They were rescaled from 0 to 1, where 362 

the maximum resistance value among all the significant surfaces was considered as 1, 363 

preserving the relative contribution of each optimised surface to the composite resistance map. 364 

The composite resistance map was obtained by multiplying the rescaled significant resistance 365 

surfaces described in Schwabi et al. [31]. The composite resistance surfaces were used for 366 

connectivity mapping and identifying corridors of movement via Circuitscape v. 5.10.2 367 

[34,89]. 368 

A bivariate map of posterior mean prevalence was plotted with composite resistance surface 369 

maps to visualise areas of varying prevalence and resistance. Correlation coefficients between 370 

the mean prevalence map and both the vector and parasite composite resistance surface maps 371 

were calculated. We also generated bivariate moving window correlation measures, their 372 

significance, and Moran's-I measure of spatial autocorrelation to measure the correlation 373 

between two spatial processes [95].  374 
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Results 375 

Prevalence mapping 376 

For the analysis of the prevalence data, the land surface temperature at night, temperature 377 

seasonality, minimum temperature of the coldest month, soil moisture, annual precipitation, 378 

slope, distance to the nearest river and prevalence of improved housing were selected. mf 379 

prevalence data ranged from 0.65% to 82.95% with a mean of 29.01% (± 19.31% SD).  Most 380 

of the data were from the western and south-central parts of the study area, with only five data 381 

points from the eastern parts (Figure 2a). The geostatistical interpolated map of baseline mf 382 

prevalence based on environmental data shows that the prevalence is higher, particularly in 383 

the south-central, central, and eastern areas of the transition Ghana (Figure 2c). The overall 384 

predicted prevalence is relatively low in the western areas of transition Ghana with scattered 385 

areas of high prevalence. As expected, the uncertainty map shows that the uncertainty was 386 

relatively lower in the actual sampling locations with varying levels of uncertainties in the 387 

interpolated areas (Figure 2d). Based on the regression coefficients, the soil moisture (mean 388 

coefficient: 0.043, 95% BCI: 0.004–0.084) and slope (mean coefficient: 2.126, 95% BCI: 389 

0.032–4.338) had a significant positive association with the mf prevalence while the 390 

temperature seasonality (mean coefficient: -0.022, 95% BCI: -0.044–-0.001) had a significant 391 

negative association with the mf prevalence (Additional file Table S4). The spatial range of 392 

the mf prevalence map was estimated to be 4.4 km (95% BCI: 1.67–7.88 km). 393 
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 394 

Figure 2. Mapping baseline prevalence of Onchocerca volvulus infection in the transition region 395 

of Ghana. Pre-MDAi point microfilarial prevalence data (𝑛 = 46) (A), where circles represent 396 

sampling locations and the colours of the filled circles represent prevalence according to the heat bar 397 

below the figure. The solid line indicates the regional boundary. (B) shows the histogram of the pre-398 

MDAi mf prevalence data. The model predicted estimate of the baseline prevalence of O. volvulus 399 

infection (C) in the transition region of Ghana and the uncertainty, i.e., the standard deviation (SD) of 400 

the posterior prevalence (D) is shown in the bottom row. 401 

Population genetic analysis 402 

We carried out unsupervised 𝑘-means clustering analysis and visualised the haplotype 403 

network for both the parasite and the vector mitochondrial data separately to observe if there 404 

were any inherent clusters and if there were any outlier samples. We chose the minimum 405 

number of principal components that explained the highest cumulative variance. The number 406 

of principal components retained for the clustering analysis of the parasite and the vector was 407 

80 and 45, respectively. We chose the number of optimal clusters based on the BIC scores, 408 

i.e., 𝑘 = 8 for the parasite data and 𝑘 = 12 for the vector data, as the decline in BIC saturated 409 

beyond these values (Additional file Figure S6). The clustering and haplotype network 410 

analysis on the Simulium data indicated the presence of outliers (groups 6 and 10; Additional 411 

file Figure S7) which were removed in the downstream analysis. For the parasite samples, the 412 
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number of alleles and the number of haplotypes corresponded to the sample size of the 413 

population, while the mean allelic richness and the gene diversity correlated with each other 414 

(Additional file Table S3). The number of principal components was optimised as 72 and 40, 415 

respectively. DAPC for the parasite genetic showed overlap between the clusters of the 416 

communities, except for a few communities like OHP and NLG (Figure 3). The average 417 

percentage of the correct assignment for parasites was 71.21% (±11.45% SD), which would 418 

generally be considered relatively poor. For vectors, DAPC also showed low overlap between 419 

clusters of the communities and an average % correct assignment of 74.03% (±8.36% SD). 420 

The mean percentage reassignment was not significantly different (𝑝 = 0.62) between 421 

parasites and vectors, i.e., DAPC showed that the spatial distribution of parasite and vector 422 

genetic variation was similar. 423 
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 424 

Figure 3. Discriminant analysis of the principal components (DAPC) analysis for the parasite 425 

and the vectors sampled from 11 and 4 communities respectively in the transition region of 426 

Ghana. The pie chart on the map (1A, 2A) indicates the community level of membership probability. 427 

The DAPC analysis shows the community clusters (1B, 2B) and the individual level membership 428 

probability (1C, 2C) with each block representing communities. The percentage of the samples 429 
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assigned correctly to their respective communities is shown for both the parasites (1D) and the vectors 430 

(2D). The community codes are presented in Additional file Table S3. 431 

Landscape genetic analysis 432 

Isolation-by-distance 433 

The Euclidean distance matrix between sample locations and the matrix of linearised pairwise 434 

Fst was used to test whether the parasites and vector population structure conformed to an 435 

isolation-by-distance model, in which the degree of genetic differentiation is correlated 436 

positively with geographic distance between sampling locations [84]. The Euclidean 437 

geographic distance between locations ranged from 2.2 km to 240.39 km. For the parasite 438 

sampling locations, six communities were less than 5km apart and were merged into two 439 

communities. The geographic distance for the parasites averaged 117.73 km (±11.50 SE; 440 

range: 7.86–240.43 km), and the genetic distance averaged 0.11 (±0.009 SE; range: 0.041–441 

0.286). Similarly, for the vectors, the geographic distance for the parasites averaged 141.40 442 

km (±33.61 SE), and the genetic distance averaged 0.056 (±0.007 SE; range: 0.04–0.084). The 443 

Mantel test indicated a poor correlation between the genetic distance and the geographic 444 

distance for both the parasite (Mantel's r = -0.052; p = 0.543) and the vector data (Mantel's r 445 

= -0.039; p = 0.583) (Figure 4). 446 

 447 

Figure 4. The relationship between the genetic (linearised 𝐅𝐬𝐭) and the Euclidean geographic 448 

distances. Isolation-by-distance was tested by the Mantel test, and the significance and the strength of 449 

the relationship are shown for the parasite (A) and vector (B). 450 
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Resistance surface optimisation and testing 451 

We selected five environmental variables for the resistance surface optimisation: elevation, 452 

isothermality, soil moisture, flow accumulation and annual precipitation. The values in the 453 

resistance surface represent the amount by which the movement is restrained by the given 454 

environmental variables. The ecological cost distances obtained for the respective resistance 455 

surfaces were used to determine whether the environmental variables could explain the genetic 456 

differentiation among parasite and vector sampling locations and performed four replicates of 457 

optimisation for 1000 iterations each, then chose the surface with the highest significance (i.e., 458 

lowest p-value). For the parasites, we found that the inverse ricker transformation for elevation 459 

(r = 0.793, p = 0.005) and soil moisture (r = 0.507, 𝛽 = 0.002, p = 0.022) were significant 460 

(Table 1). The inverse reverse monomolecular transformations for elevation soil moisture 461 

were also significant, but the levels of significance were lower compared to the chosen 462 

resistance surfaces. Therefore, inverse ricker transformation surfaces for the elevation and soil 463 

moisture were used for the preparation of the composite resistance surface map for the parasite 464 

data. 465 

The inverse ricker transformation was significant in both environmental layers with high 466 

resistance to gene flow in the low and high environmental values and lower resistance in the 467 

moderate range of environmental values, but with different scale parameters. The resistance 468 

to gene flow was lowest (< 30% of the total resistance) in areas with an elevation range of 90–469 

150 m and in areas with soil moisture of 60–190 mm (Figure 5). A composite resistance 470 

surface map was prepared, which showed high resistance around the western parts of the study 471 

area, which are characterised by low soil moisture (i.e., Bui National Park in the west, a 472 

woodland Savannah zone [96]) and higher elevation. The areas around Lake Volta also have 473 

high resistance. Accordingly, the movement corridor map suggests that there is relatively 474 

lower connectivity of parasites in the northwestern part of the study area (Figure 6). The 475 

central parts of the study area are characterised by high connectivity, showing a potential route 476 

for the movement/transmission of parasites. 477 

For the vector genetic data, resistance surfaces obtained from soil moisture (r = 0.788, p = 478 

0.0417) and precipitation (r = 0.835, p = 0.0417) were significant, with inverse reverse 479 

monomolecular and inverse ricker transformations, respectively. The lowest resistance (< 30% 480 

of the maximum resistance) for vector gene flow was in the areas with soil moisture of 22–481 
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90 mm and precipitation of 110–120 cm. These two resistance surfaces were rescaled and 482 

merged to create a composite resistance surface as performed on the parasite data. The 483 

composite resistance surface for the vectors revealed that there was particularly low resistance 484 

for gene flow along the western and northwestern areas of the study area and a moderate level 485 

of resistance in the central region. The current density map also showed a higher level of 486 

connectivity (lower resistance) around the southwestern Savannah region (Figure 6). 487 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.14.23285937doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.14.23285937
http://creativecommons.org/licenses/by-nc/4.0/


23 

 

Table 1. Transformation of environmental surfaces into resistance surfaces with an optimisation function available in ResistanceGA. The strength and the 

direction of association of the resistance surface to the genetic distance are tested with the partial Mantel test and Multiple Matrix Regression with Randomisation 

(MMRR). The bold transformations are the selected resistance surfaces with the asterisks (*) representing the significance of the coefficients. 𝛽𝑔𝑒𝑜 and 𝛽𝑟𝑒𝑠𝑖𝑠𝑡 

represents the regression coefficients for the geographic distance and the cost distance due to the resistance surface respectively. 

Organism Covariates 

# 

repli

cates 

Optimisation parameter for resistance 

surfaces 

Genetic distance ~ resistance distance + geographic distance 

partial Mantel MMRR 

Equation Shape Max r p 𝜷𝒈𝒆𝒐 p 𝜷𝒓𝒆𝒔𝒊𝒔𝒕 p 

Parasites 

(O. volvulus) 

Elevation 2 Inverse Ricker 0.873 100.000 0.793 0.0002*** -0.00038 0.008* 0.022 

0.0046*

* 

 2 

Inverse-Reverse 

Monomolecular 5.046 99.996 0.745 0.0002*** -0.00084 0.009* 0.046 0.0074* 

Isothermality 3 Inverse-Reverse Ricker 3.439 99.996 0.391 0.0640 -0.00035 0.131 0.004 0.2242 

 1 Ricker 0.936 99.999 0.337 0.1324 -0.00029 0.140 0.007 0.2748 

Soil moisture 2 Inverse Ricker 4.031 99.997 0.507 0.0002*** -0.00017 0.264 0.002 0.022* 

 2 Inverse Monomolecular 0.500 99.922 0.489 0.0135* -0.00004 0.742 0.003 0.022* 

Flow 

accumulation 4 Inverse Monomolecular 0.500 99.998 0.120 0.4380 -0.00010 0.560 0.000 0.8181 

Precipitation 4 Inverse Ricker 5.000 99.976 0.439 0.1155 -0.00012 0.424 0.007 0.1364 

Vectors 

(S damnosum) 

Elevation 3 Inverse Monomolecular 0.500 99.835 0.804 0.0833 -0.00015 0.323 0.003 0.1229 

 1 Inverse Ricker 2.873 99.998 0.777 0.0833 -0.00017 0.284 0.002 0.1229 

Isothermality 4 Inverse Ricker 3.678 100.000 0.647 0.1250 -0.00009 0.453 0.004 0.2960 

Soil moisture 4 

Inverse-Reverse 

Monomolecular 7.723 100.000 0.788 0.0417* -0.00016 0.202 0.002 0.042* 

Flow 

accumulation 3 Inverse Ricker 3.570 99.964 0.569 0.1250 -0.00019 0.250 0.001 0.2503 

 1 Ricker 0.500 100.000 0.678 0.0833 -0.00020 0.334 0.039 0.3721 

Precipitation 4 Inverse Ricker 2.096 99.984 0.835 0.0417* -0.00018 0.161 0.002 0.0418* 

*: p < 0.05, **: p < 0.005, *** p < 0.0005 
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 1 

Figure 5. Transformation functions for the significant environmental covariates. The figure 2 

shows the relationship between the environmental variables with the resistance against gene flow of 3 

the O. volvulus (1A, 1B) and S. damnosum (2A, 2B). 4 
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 5 

Figure 6. Composite resistance surface maps prepared from the significant environmental 6 

variables along with the gene flow map obtained based on the composite resistance surface map 7 

and its relationship with the observed genetic distance. The resistance surface maps (1A, 2A) 8 

indicate the ease of movement for the parasite and the vector, and the gene flow map (1B, 2B) is 9 

obtained based on it with areas highlighted yellow showing the potential routes of movement/gene 10 

flow of the organism of interest. The relationship between the ecological distance (the cost distance 11 

obtained based on the resistance surface) and the genetic distance (linearised Fst) (1C, 2C) is shown. 12 

The bivariate map (Figure 7) obtained by combining mf prevalence map and the conductance 13 

surface (inverse of resistance surface maps where high conductance implies high suitability 14 

for movement) for the parasite shows that the area of high parasite conductance and high 15 

prevalence is in the central parts of the transition region of Ghana (Figure 7, Box 2). There is 16 
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a good correlation between the parasite's composite conductance surface and the O. volvulus 17 

infection prevalence map with the majority (57.34%) of sliding window correlation 18 

coefficients greater than 0.3 (Figure 7B). Therefore, the areas with high parasite conductance 19 

are also the areas of high O. volvulus infection prevalence and vice versa. Areas of high vector 20 

conductance and high prevalence are found in the central and southwestern parts of the study 21 

area. However, a substantial portion of the vector bivariate map has high conductance but low 22 

prevalence, particularly around the northwestern region of the study area (Figure 7, Box 1). 23 

As a result, the correlation between the conductance map for vectors and the mf infection 24 

prevalence is not as strong as the correlation for the parasite counterpart. Only 21.24% of the 25 

sliding window correlation coefficients are greater than 0.3 (Figure 7D). There are also the 26 

areas in the south-eastern parts of the area that have high prevalence and high parasite 27 

conductance; however, low vector conductance (Figure 7, Box 3).   28 
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 29 

Figure 7. A bivariate map created using composite conductance surfaces and the Onchocerca 30 

volvulus infection prevalence map. The top row shows the bivariate map for the parasite (A) and the 31 

bottom row (C) for the vector. The legend for the bivariate map is shown on the right, where red colour 32 

indicates the areas with high prevalence and high conductance (represents high movement suitability), 33 

whereas blue colour indicates areas with high conductance but low prevalence. The histogram on the 34 

right of the respective map shows the frequency of the sliding window correlation coefficient between 35 

the conductance surface and the prevalence map for the O. volvulus infection prevalence map with the 36 

parasite (B) and the vector (D) conductance surface. The solid line represents the regional 37 

administrative border, while the broken line shows the border for Bui national park. The three boxes 38 

in the figure show contrasting patterns of conductance and prevalence: 1. High vector conductance but 39 

low parasite conductance and low O. volvulus infection prevalence; 2. High vector and parasite 40 

conductance and high O. volvulus infection prevalence; 3. Low vector conductance but high parasite 41 

conductance and high O. volvulus infection prevalence. The conductance and the prevalence on the 42 

map are rescaled from 0 to 1.  43 
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Discussion 44 

For the first time in the context of onchocerciasis, we have integrated point location prevalence 45 

data, the population genetics of parasites and vectors (as a proxy for parasite and vector 46 

movement), and environmental data within a single landscape genetics framework. The visual, 47 

spatial representation of parasite and vector movement and infection prevalence shown in 48 

Figure 7 is a spatial representation of O. volvulus transmission and brings us a step closer to a 49 

quantitative, evidence-based method for "delineating" onchocerciasis transmission zones. We 50 

have transformed the metrics of genetic connectivity and landscape/ecological variables into 51 

a resistance/conductance surface, i.e., a spatial prediction of vector movement and parasite 52 

transmission suitability (high resistance or low conductance represents low suitability for 53 

movement and transmission and vice versa) which provides an evidence-based methodology 54 

by which it may be possible to define transmission zones. For example, geospatially explicit 55 

modelling of prevalence and landscape connectivity—can be used to identify reasons for 56 

ongoing transmission despite MDAi or newly arisen hot spots of transmission post-MDAi. 57 

Just as the pre-MDAi prevalence is the product of the cumulative history of O. volvulus 58 

infection, so is the population genetic structure the product of events in the past. Both of these 59 

historical elements do not reflect the current transmission patterns of O. volvulus. However, 60 

using ecological data might enable us to better estimate current transmission as ecological and 61 

landscape data are 'current'. The timeframe over which the climate changes is long compared 62 

to the timeframe over which prevalence and population structure changes. Assuming that the 63 

ecological parameters are unlikely to have changed significantly over timeframes of either the 64 

cumulative infection history giving rise to the prevalence or the microevolutionary processes 65 

giving rise to the current population genetic structure, identifying environmental features 66 

associated with population genetics and the prevalence allows us to understand current and 67 

predict future transmission patterns. 68 

For the ecological transition region of Ghana, the pre-MDAi infection prevalence was 69 

positively associated with slope and soil moisture. A likely explanation for this correlation is 70 

that greater topological slope results in faster river flow essential for vector breeding. 71 

Similarly, soil moisture was also identified to be significant in an analysis of Ethiopian 72 

O. volvulus nodule prevalence data, where areas with high soil moisture occur in arable land 73 
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that are usually inhabited by people who are exposed more to vector bites [2,64,97]. In 74 

contrast, temperature seasonality was negatively associated with mf prevalence (Additional 75 

file Table S4). This is likely because areas with higher fluctuations in temperature might not 76 

be favourable for Simulium. After all, different species of Simulium have different temperature 77 

ranges for breeding and biting activities [66], and activities of blood-seeking flies are limited, 78 

particularly in low temperatures [98]. Further, the significant relationship between mf 79 

prevalence to the temperature seasonality highlights the potential effect of global warming and 80 

alterations in annual temperature patterns on the distribution of onchocerciasis. We were not 81 

able to detect a significant association of the mf prevalence with the distance to the nearest 82 

river, which might be because all the communities surveyed happened to be close to rivers (< 83 

10 km). Therefore, the spatial coverage of the samples might influence the inferred 84 

relationship of the ecological variables with the prevalence and the genetic data. 85 

The parasites themselves do not move, however, their movement between geographical 86 

locations is mediated either by infected blackflies or infected humans. Population genetics is 87 

able to provide insights into the migration of the parasites and the blackflies. The population 88 

genetic analyses of parasite and vector genetic data in the ecological transition region of Ghana 89 

were largely concordant: both parasite and vector showed low genetic differentiation or high 90 

genetic similarity between the sampled communities. Previous studies by Crawford et al. [25] 91 

and Gyan [99], suggested the same, i.e., both the parasite and the vector populations were 92 

largely genetically homogeneous. Consequently, there was no support for an isolation-by-93 

distance population structure for either the parasites or their vectors in the ecological transition 94 

region of Ghana. This suggests that the gene flow of the parasite and the vector populations 95 

were not restricted by geographic distance in this study area. However, some degree of genetic 96 

differentiation between sampling locations was observed. In order to investigate the likely 97 

origins of this relatively weak population structure, we estimated an "ecological distance" 98 

parameter from local ecological data for each community, and observed a strong positive 99 

correlation. Thus, if "ecological distance" is substituted for "geographical distance" in the 100 

isolation-by-distance model, these data do show isolation-by-distance relationships driven by 101 

ecological rather than geographical proximity.  102 

With the assumption that environmental factors could explain the resulting observed vector 103 

and the parasite genetic connectivity, we used a landscape genetics framework to (1) identify 104 
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the ecological factors influencing S. damnosum and O. volvulus population structure then (2) 105 

combine the resultant spatial correlation between inferred parasite/vector movement and 106 

ecology with the predicted spatial pattern of prevalence to produce an integrated map of likely 107 

transmission intensity. Landscape genetics methods combine ecological connectivity with 108 

genetic similarity. This allows us to identify the corridors of movement and, thus, the spatially 109 

explicit patterns of transmission. It is important to note that high vector connectivity might not 110 

necessarily mean high movement suitability, high vector density or high vector biting rates. 111 

These are the observed suitability for the movement of blackflies based on the genetic data. 112 

High biting rates are crucial for the high endemicity of the disease, whereas vector mobility 113 

might help maintain or even amplify onchocerciasis endemicity. Here, we assume that if the 114 

vector has high mobility in the areas of high prevalence, there is a likely possibility of high 115 

transmission events. 116 

For the parasite population, resistance surfaces obtained from the elevation and soil moisture 117 

were significantly associated with the genetic distance. The resistance to parasite gene flow 118 

was low (i.e., genetic connectivity was high) in the areas of moderate elevation in the range 119 

of 90–150 m and in areas with moderate soil moisture, 60–190 mm. Our estimate of the range 120 

of elevation most strongly correlated with prevalence is essentially identical to the range 121 

reported proposed by Barro and Oyana [65]. The reason behind high resistance to the parasite 122 

gene flow in the areas of low soil moisture could be due to the un-arability of the land and, 123 

thus, the lack of human hosts. Soil moisture is reported to be an important environmental 124 

feature influencing the occurrence of onchocerciasis in other studies [2,67]. However, high 125 

soil moisture areas might also not be that suitable for onchocerciasis as those were around 126 

Lake Volta with non-flowing water and are generally unsuitable for vector breeding. Lake 127 

Volta is one of the biggest artificial lakes in the world. Lakes formed by river dams have been 128 

reported to affect vector breeding and decrease O. volvulus transmission [100–102].  129 

Parasite connectivity indicates where parasite transmission can occur between locations. 130 

Blackfly connectivity, in contrast, indicates where transmission may occur between locations 131 

due to blackfly movement rather than, or in addition to, human movement. Therefore, 132 

differences in the blackfly resistance surface profile compared to the resistance surface for 133 

parasites represent the potential transmission mediated by human movement (Figure 6). 134 

Further, the blackfly resistance surface was not as strongly correlated as the parasite resistance 135 
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surface to the mf prevalence map, particularly in the western parts of the study region (Figure 136 

7, Box 1). There are several factors that may contribute to low concordance between blackfly 137 

and parasite resistance surfaces. One is the pattern of human population density. For example, 138 

the vector connectivity was high in the areas with low soil moisture, while parasite 139 

connectivity was low. Low soil moisture indicates lower suitability for agriculture, and they 140 

likely have lower human population density and thus appear unsuitable for parasite 141 

transmission. A similar case is Bui National Park in the west, where blackflies are present but 142 

there is a sparse human settlement and hence low parasite transmission. A second factor is the 143 

ratio of O. volvulus to O. ochengi (and potentially other Onchocerca species) in the blackflies. 144 

Doyle et al. [103] showed that the proportion of O. volvulus larvae in blackflies was lower in 145 

western communities compared to the communities in the central and eastern parts of the 146 

ecological transition region. The presence of a higher proportion O. ochengi has been proposed 147 

to impact the vectorial capacity for the O. volvulus due to the saturation of the vectors with 148 

O. ochengi [104,105].  149 

The weak population structure observed across communities is consistent with the absence of 150 

isolation-by-distance observed (Figure 4). The strong correlation between gene flow and 151 

several ecological factors related to habitat suitability for black flies indicates that "ecological 152 

distance" explains the population genetic structure (Figure 6); i.e., there is a strong correlation 153 

between gene flow (genetic differentiation) and ecological connectivity. This strong 154 

relationship leads to two important conclusions. First, it provides an explanation for the strong 155 

correlation between gene flow and ecological parameters related to blackfly habitat. Second, 156 

it suggests a model in which blackfly connectivity is related to the degree to which "local" 157 

blackfly populations around discrete breeding sites overlap. What is perhaps surprising is that 158 

this proposed overlap between breeding sites extends to create continuous ecological corridors 159 

for blackfly movement and parasite transmission. 160 

We produced a bivariate fusion map that combined the results of the mf prevalence and 161 

resistance surface mapping (Figure 7). The sliding window correlation coefficient between the 162 

surfaces showed a close overlap of the mf prevalence map with the parasite resistance surface, 163 

which further validates the landscape genetics output. The bivariate maps represent three 164 

different scenarios. Within box 1, there is a high suitability for vector mobility but low 165 

infection prevalence and low suitability for parasite mobility. Within box 2, the predicted 166 
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vector mobility seems to correlate well with parasite mobility and prevalence. In box 3, there 167 

is an apparent discordance between the parasite and the vector mobility. The high parasite 168 

mobility suggests that the spatial pattern of transmission is likely to be driven more by human 169 

movement than vector movement. Therefore, bivariate maps could help in drawing 170 

conclusions about what drives transmission in different epidemiological contexts. 171 

Inferences like these might be vital in making spatially explicit onchocerciasis elimination 172 

decisions. For example, in the current study, we can hypothesise that communities in the 173 

central parts of the study areas (box 2) are one of the critical connecting areas with high 174 

suitability for the parasite and the vector gene flow and high onchocerciasis prevalence. The 175 

connectivity analysis using the composite resistance surface maps derived from the significant 176 

resistance surfaces for the parasites showed that the parasite gene flow was high in the central 177 

parts of the ecological transition region of Ghana, around communities from the Bono East 178 

(Figure 6). Therefore, MDAi alone might not be sufficient to eliminate onchocerciasis 179 

transmission in these areas, where alternative treatment strategies with vector control have to 180 

be implemented. However, in areas within box 3, where there is high infection prevalence due 181 

to high parasite mobility but low vector mobility, vector control might not be as effective as 182 

in the areas within box 2.  183 

Other studies confirm that the communities within box 2 are characterisedparticularly by high 184 

biting rates, high vector density and high vector mobility [5,106] and were among the first to 185 

be targeted for both the vector control initially and MDAi later. In addition, this is the area 186 

where SOR against ivermectin was first reported [39,40]. Therefore, with the reports of SOR 187 

and the evidence of high gene flow from these areas, the possibility of spreading the SOR 188 

strains cannot be ignored. One can expect the consequences of SOR to be spread over an 189 

extensive geographical range as a result of the high gene flow of the parasites and the vectors. 190 

The approach outlined here might provide an indication of where different epidemiologically 191 

relevant phenotypes might likely spread and help design interventions accordingly. 192 

Eliminating onchocerciasis transmission in areas of high connectivity might facilitate 193 

onchocerciasis elimination in surrounding areas of lower connectivity. However, it is not to 194 

say that the other areas might not act as the source of infection, particularly if the infection is 195 

well controlled in the high connectivity region. For example, recent modelling work suggests 196 
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that low endemic areas can act as a source to re-initiate transmission in MDAi-controlled 197 

onchocerciasis endemic areas [107,108]. Nevertheless, resistance surfaces and connectivity 198 

maps could be used to develop heterogeneous intervention strategies to address spatially 199 

heterogeneous transmission. Specifically, interventions should be coordinated across locations 200 

that are shown to be connected. The intensity of intervention should be varied according to 201 

connectivity so that locations of high connectivity receive more intensive interventions than 202 

regions of lower connectivity. The rationale is that transmission will be suppressed in a more 203 

coordinated fashion with less risk of hotspots of residual transmission even though initial 204 

prevalence and transmission may have been highly heterogeneous. 205 

There are some caveats to the current study. First, the sampling density and spatial coverage 206 

of the samples in this study are low, and increasing sampling density, in particular, would 207 

increase the accuracy of the estimated resistance surfaces. Future landscape genetic studies 208 

should consider dense and stratified uniform sampling across space and environmental 209 

gradients [29,109]. Second, due to the unavailability of the nuclear genome sequence data, the 210 

genetic analyses utilised mitochondrial sequence data, which might underestimate gene flow 211 

[27], and we recommend using nuclear data in future landscape genetics studies. Nevertheless, 212 

this study serves as an important use case of the approach with the best data available. Third, 213 

the vector resistance surface maps we obtain with the current approach might not necessarily 214 

correspond with vector density or vector biting rates. Therefore, incorporating vector 215 

abundance data and annual biting rates might further enrich the insights from the approach. 216 

Nevertheless, this could be a powerful approach to spatially transforming population genetic 217 

connectivity estimates, accounting for ecological variables and predicting routes and 218 

geographical boundaries of transmission. Applying this approach to other geographic regions 219 

(such as persistent hotspots, cross-border transmission settings and others), and also to other 220 

filarial diseases, such as lymphatic filariasis, might prove valuable to the elimination endgame.  221 
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Conclusion 222 

To meet onchocerciasis elimination goals, it is necessary to identify the areas that require 223 

intervention via "elimination mapping" (extending prevalence mapping to currently unmapped 224 

areas of unknown but probably low prevalence) and by better understanding the spatial 225 

patterns of transmission (delineation of transmission zones). We have shown previously how 226 

incomplete point prevalence data can be combined with ecological data to provide accurate, 227 

spatially continuous, predictions of prevalence [2]. Here we extend that work to provide a 228 

novel and promising approach to combine ecological parameters related to vector habitat with 229 

population genetic estimates of the vector and the parasite gene flow to produce spatial maps 230 

of movement suitability that identify the corridors of movement and give us insight into 231 

O. volvulus transmission. We demonstrated that the entire ecological transition zone was 232 

connected by corridors that are ecologically suitable for vector movement and hence parasite 233 

transmission. This leads to the conclusion that the entire ecological transition zone through 234 

which the Volta River flows should be treated as a single O. volvulus transmission zone. We 235 

conclude further that the persistence of transmission across this region, particularly in 236 

communities located in the central part of the region, is in part due to the high degree of 237 

transmission connectivity over large geographic distances via the "connectivity corridors" we 238 

have identified. The spatial pattern of transmission we describe suggests that interventions to 239 

interrupt transmission of O. volvulus in central Ghana must be coordinated over a large 240 

geographical area, particularly decisions to stop MDAi in communities in which local 241 

transmission may have been interrupted but which will be subject to re-invasion from 242 

surrounding areas in which transmission is yet to be suppressed. We also suggest that 243 

landscape genetics could be applied to other vector-borne diseases, particularly lymphatic 244 

filariasis, where instances of recrudescence following stop-MDA decisions are accumulating.  245 
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Availability of data and materials 246 

The parasite sequence data are available at NCBI (https://www.ncbi.nlm.nih.gov/ Accession 247 

#: PRJNA560089), and the blackfly sequence data have been uploaded to EMBL-EBI 248 

(https://www.ebi.ac.uk/ Accession #: PRJEB57094). The onchocerciasis prevalence data were 249 

obtained from the ESPEN data portal (https://espen.afro.who.int/tools-resources/download-250 

data), and the sources for the environmental data are provided in the supplementary 251 

information. The scripts for the analysis pipeline are uploaded to the GitHub repository 252 

(https://github.com/himal2007/landscape_genetics_ghana). 253 
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