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Abstract. We propose a novel methodology for learning and synthesising whole
classes of high dimensional movements from a limited set of demonstrated exam-
ples that satisfy some underlying ’latent’ low dimensionaltask constraints. We
employ non-linear dimensionality reduction to extract a canonical latent space
that captures some of the essential topology of the unobserved task space. In
this latent space, we identify suitable parametrisation ofmovements with control
policies such that they are easily modulated to generate novel movements from
the same class and are robust to perturbations. We evaluate our method on con-
trolled simulation experiments with simple robots (reaching and periodic move-
ment tasks) as well as on a data set of very high-dimensional human (punching)
movements. We verify that we can generate a continuum of new movements from
the demonstrated class from only a few examples in both robotic and human data.

1 Introduction

As we design robots to become more anthropomorphic with an aim for them to co-exist
in human friendly environments, the number of degrees of freedom and consequently
the variety of movements that they can execute have grown significantly. This raises
many issues concerning the control and planning in these robots: Who defines such a
large set of movements for every new robot? How do you make those movements look
natural? How do you cope with the large degree of redundancy?

A promising way out of this dilemma is for the robot (student)to learn the desired
movements from a teacher (e.g., human demonstrator) through imitation [1]. There are
several approaches to this problem depending on the information available to the stu-
dent. For example, Grimes et al. [2] observe the movement of ateacher in joint angles
and learn a probabilistic model which entails a common latent space between teacher
and student to produce a stable movement of the student. Peters and Schaal [3], on the
other hand, observe an imprecise, supervised movement in the student’s own joint space
and then, improve on it with reinforcement learning (which needs additional feedback).
Such approaches might solve the problems of producing naturally looking movements
and appropriate resolution of redundancy, but being only able to imitate one particular
movement is rather limiting. An interesting possibility would be to use the demonstrated
examples as a basis for generation of more generalised movements from the same class.

Here, we assume that a set of demonstrated examples belong tothe same class of
movements, i.e., follows a consistent optimisation or redundancy resolution principle
in some lower dimensional (and common)unobserved task space. Additionally, we
assume a rich repertoire of movements that achieve different task goals.
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The problem of generating similar movements to a set of examples has been ad-
dressed in the computer graphics and animation communities. The aim there often is to
generate natural looking human motion adapted to a certain situation given a database
of recorded human motion. If the database is big enough and contains all the motions
needed, it is often sufficient to use an efficient graph based search algorithm to generate
desired movement sequences – however, we consider situations where extensive and
exhaustive motion generation or capture is either expensive or infeasible. If two similar
motions are available, linear interpolation between theseworks surprisingly well when
they are represented as absolute positions and rotations ofbody parts in a global coordi-
nate system [4]. Also linear combination of motion sequences has been shown to work
reasonably well with the right representation [5]. These approaches, besides having to
extrapolate movements in (usually) high dimensional movement space, have the prob-
lem of scalability and robustness under perturbation or goal modification because they
generate an explicit, fixed movement plan indexed in time.

Ideally, we would want to represent and scale the movements in the correspond-
ing task space, since such representations are very compactand interpretable. However,
typically we only have access to the demonstrated movementsin joint space. A poten-
tial solution to this problem is to find a low-dimensional space with similar properties
as the task space by employing appropriate dimensionality reduction [6]. Tatani and
Nakamura [7] apply autoassociative neural networks to find compact representations
for motions from a humanoid robot, but they are missing a way to represent motion dy-
namics. While Wang et al. [8] incorporate dynamics in their dimensionality reduction to
represent movements, this is not suitable for robotic applications, since it is not robust
against perturbations and expensive to compute.

In this paper, we first investigate the qualitative relationship between latent spaces
produced by the chosen dimensionality reduction techniqueand the task spaces of sim-
ple robotic setups. Then, we show that the resulting latent spaces can be used to encode
and learn control policies which act as robust representations of the example move-
ments and allow easy generalisation to new movements from the same class. Finally,
we apply this methodology to human motion capture data to demonstrate its feasibility
for complex, high-dimensional real world movement data.

2 Methodology

We adopt a 2-step approach, the schematic for which is laid out in Fig. 1. First, we
explore a suitable latent space representation of the observed high dimensional move-
ment data (e.g., in joint space) using appropriate dimensionality reduction techniques.
Then, we formulate a representation of trajectories as control policies such that they are
spatiotemporally scalable and robust against perturbations. In order to test the scalabil-
ity of the methods, modulated control policies are then mapped back into the original
movement space to generate novel target motion. While task space data (or constraints)
are generally not accessible in real world demonstrated examples, we will exploit this
formalism in artificial setups to test the viability of our methods against ground truth.
Next, we explore the two essential components of our method:a dimensionality re-
duction algorithm which possesses an inverse mapping and a robust ’control policy’
representation that can be easily modulated.
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Fig. 1. Experimental methodology. The steps are: (1) inverse kinematics, (2) GPLVM learning,
(3) control policy (CP) learning, (4) change of CP parameters, (5) generation of new trajectory
with CP, (6) GPLVM mapping, (7) forward kinematics

2.1 Dimensionality Reduction

In general, joint and task spaces are nonlinearly related. Therefore, joint and latent
spaces should be, too. Furthermore, we need a mapping from latent to joint spaces to
generate new movements from modified trajectories in the latent space. Consequently,
we have identified the Gaussian process latent variable model (GPLVM) as a promising
candidate for our purposes, details of which are described below. An alternative method
with similar properties is the Laplacian eigenmap latent variable model [9] – an exten-
sion of the spectral technique of Laplacian eigenmaps that adds continuous mappings
between data and latent spaces. However, we do not follow up on this in this paper
since our explorative experiments suggest that latent spaces recovered did not maintain
a topology that was conducive to control policy modulation (see next subsection).

Gaussian Process Latent Variable Models.The Gaussian process latent variable
model [10] is a nonlinear generalisation of probabilistic PCA. It is based on a generative
model which uses Gaussian processes to map low-dimensionallatent variablesz ∈ R
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to high-dimensional observed variablesq ∈ R
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use the standard squared exponential covariance matrix with independent, identically
distributed noise on the observed variablesq:
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whereδmn = 1 for m = n and 0 otherwise.
Given the set of observed variablesQ, their latent representations and values for pa-

rameters are then computed by minimising the negative log-likelihood (− log p(Q|Z, β)).
This optimisation is highly susceptible to the initialisation of Z. Usually, we use a PCA
initialisation as suggested in [10], but where indicated, we also use initialisation with
Laplacian eigenmaps or other results.
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Table 1.Definitions of discrete and periodic control policies. For discrete CPs the dynamic vari-
able governing the nonlinearity converges to 0 while it monotonically increases for periodic CPs.

discrete periodic
1

τ
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g − z0

g∗ − z∗

0

f(ξ)
1
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Ψi(φ)wi

∑

i
Ψi(φ)

Ψi(ξ) = exp
(

−hi(ξ − ci)
2
)

Ψi(φ) = exp (−hi(1 − cos(φ − ci)))

A series of extensions to the GPLVM has been proposed in the literature. All of
them lead to some kind of regularisation on the latent variables. This is mostly achieved
by introducing a prior over the latentsp(Z). For example, the prior suggested in [8]
defines dynamics on the latents.

2.2 Control policies

We use discrete and periodic control policies (CPs) to represent goal-directed and peri-
odic movements as attractors of nonlinear dynamical systems [11]. The advantages of
this approach are robust representation of movements and easy modifiability of move-
ment parameters such as amplitude, goal point and baseline of oscillations while shape
of the CPs is maintained. Alternative ways of representing dynamics, for example with
HMMs or linear Gaussian models, do not provide the same levelof robustness, suffer
from being either restricted to a fixed set of discrete states, only allowing linear dy-
namics, or expensive computations. In the following, we present our adaptation of the
formulation in [11] such that we can explicitly incorporatemodifiable start and end
positions. Note that only motion in one dimension (e.g. joint) is represented. Conse-
quently, for motion ind dimensionsd control policies must be learnt.

Discrete.Discrete movements (e.g., reaching) are characterised by astarting state,
z0, some state trajectory and a goal state,g. The formalisation of such a system is shown
in Table 1(left). Ignoring the details of the modulating functionf , this is a linear, two-
dimensional dynamical system with a single, attracting stable point at[g, 0]. f is used
to shape the trajectory of the dynamical system betweenz0 andg. It can be represented
as a weighted sum of RBF basis functions which depend on the state,ξ, of a canonical
system that converges to 0. The number of basis functions,n and their width and cen-
tres,hi, ci, are chosen a priori. Given a complete movement[z, ż, z̈], the weights,wi,
of the nonlinear component are learnt. Once the movement is learnt (or encoded as a
CP with start statez∗

0
and goalg∗), we can change the start state and goal to produce

a qualitatively equivalent dynamics of motion in differentparts of the state space ofz
(which can either be a joint angle, or a dimension in our latent space).

Periodic. Periodic control policies work similarly, as shown in Table1(right). In-
stead of a goal state, we have a baseline of oscillation,zm. The nonlinearity,f , is now
governed by a periodic, canonical system with phase velocity ω. Once the weights are
learnt to fit a given periodic movement, we can adapt the amplitude,A, of that move-
ment and move it around in state space by changing the baseline, zm, without losing
the shape of the CP. In our implementations, we choose the mean of a data set as an
approximation for the initial baseline of the oscillation.
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3 Experiments

We use the robotics toolbox for Matlab1 to implement simulations of two different
robots. Our first simulation features a 3 Degree of Freedom (DoF) planar robot arm
that has a shoulder joint and 2 elbow joints, with the end effector constraint to move in
a 2D plane. We resolve the redundancy in the inverse kinematics by choosing the joint
space configuration,q, closest to a default pose,q∗, for which the task space constraints
are fulfilled. In other words, we minimise‖q − q∗‖2 subject tok(q) − x = 0 with
k(q) being the forward kinematics. The second platform that we use is thePUMA-560
robot arm with 6 DoFs joints (3 translational plus 3 rotational). However, we fix the
rotation of the end-effector to a default value in our simulation. For the PUMA-560
robot, there are always 8 alternative joint angle configurations which all correspond to
the same translation and rotation of the end-effector. Of these alternatives, we choose
the solution which is right handed, has elbow up and non-flipped wrist.

3.1 Task Space vs. Latent Space

In our first experiment, we explore the relationship betweenthe task space used to
produce the example movements and the latent space resulting from nonlinear dimen-
sionality reduction on such data. To begin with, we use a uniform grid data in task space
to verify that the important properties of the task space arerecovered. In particular, we
sample 256 data points regularly spaced from a 2D task space.For the planar arm, the
data points are spaced at 0.1m (see Fig. 2, left, blue +) whilefor the Puma arm2 the
points are separated by 0.027m (see Fig. 2, left, green +). For each of the 256 points in
task space, we obtain a corresponding robot configuration injoint space using inverse
kinematics and run the GPLVM on them to find a latent space configuration.

If for the same robot, a different inverse kinematic solution is chosen, i.e. existing
redundancies are resolved in a different way, the data in joint space corresponding to
the original task space points will change. Ideally, we would like the dimensionality
reduction technique to show some sort of invariance to this source of variability. We
investigate resulting latent spaces for 3 different simulations: we use the planar arm
with the inverse kinematics as described above as well as onewhere the deviation from
default for the first joint is weighted four times higher. In the third simulation, we use
the Puma arm as described above.

Fig. 2 shows the resulting GPLVM latent spaces. Compared to the original grids, we
see that the grids in latent space are nonlinearly distorted. However, the spatial topology
of the original task space grids are maintained in the latentspace. This suggests that in-
terpolation between neighbouring points in latent space has a direct correspondence to
modulation in the underlying task space. As expected, the GPLVM is sensitive to the
exact choice of redundancy resolution (e.g., inverse kinematics) – the nonlinear distor-
tions are subtly different in all three examples. However, the properties of all resulting
latent spaces allow that a continuous trajectory in task space can be represented as a
continuous trajectory in latent space, i.e., recovering a structure topologically similar to
the unobserved task space is possible from joint data only.

1 http://www.petercorke.com/Robotics%20Toolbox.html
2 The Puma’s workspace is 3D, here the data points lie in the X-Yplane with Z=0.
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Fig. 2. GPLVM results on simulated robot poses with end-effector positions spanning a 2D grid.
(a) The grid in task space (end-effector positions). GPLVM result on: 3DOF planar arm data with
(b) standard inverse kinematics (c) weighted inverse kinematics; (d) 6 DOF PUMA arm

3.2 Reaching and Periodic Movements with Control Policies

Next, we investigate reaching movements which are constrained in specific ways in the
task space. The aim of this investigation is three fold. Firstly, we would like to verify
that topology is maintained in the extracted latent space. Secondly, we would like to
investigate whether modulations of the CPs in the latent space recovers the same class
of task (and joint) space movements that was used to train theGPLVM. Thirdly, we
want to assess the level of generalisation to novel, unseen movements.

The following experiments are done with the simulated Puma robot which has more
degrees of freedom than the planar arm. We start with a familyof straight line, minimum
jerk, reaching movement data in task space. To test whether we can reliably reconstruct
a movement in latent (and task) space that was not used to produce the latent space, we
leave one movement out when training the GPLVM (Step 2, Fig. 1).

After we obtain the latent space, we fit discrete control policies (Step 3, Fig. 1) to a
single representative trajectory in latent space. We then generate new latent space move-
ments through modulating the CPs (Step 4, Fig. 1) by reparametrising the start state and
goal to match those of the remaining desired movements in latent space. Importantly, to
test the generalisation ability, we generate a movement that was not used in the GPLVM
training by interpolating the start and goal state of two neighbouring movements. We
then evaluate movements generated by the CPs against the original one in latent, joint
and task space.

Parallel Trajectories: We begin by considering parallel task space trajectories de-
picted by grey dots in Fig. 3(right) with the resulting trained latent space shown on the
left. The shading visualises the probability that the GPLVMputs on a corresponding
point in joint space. In both panels, the grey dots are the data points available in that
space. The bold lines in latent space represent the fitted control policy while the thin
lines are the result of CP modulation. The trajectories in task space result from mapping
the latent space trajectories through joint space to task space (Steps 6-7, Fig. 1).

The deviation of the trajectories from the data points in task space has two possible
sources: (i) discrepancy between the latent space data and CP modulated trajectories
(thin lines); (ii) reconstruction errors of the GPLVM( i.e,Steps 2 & 6, Fig. 1). Statistics
of the trajectory errors in various spaces are summarised inTable 2. We find that the
GPLVM reconstruction error is negligible (see first column,Table 2). Consequently
most of the deviation in task space is due to deviation of the CP modulation from latent
space data exemplars. Overall, however, the generated movements fit the original task
space and joint space movements exceptionally well.
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Fig. 3. Fitted (bold), modulated (thin) and interpolated (dashed)discrete CPs for the parallel
trajectories of the PUMA arm in latent and task space.

Table 2.Reconstruction and Trajectory Errors (nMSE×10−3 and standard deviation).

Parallel Trajectory
space reconstruction fitted modulated interpolated
latent − 0.14± 0.16 4.12± 4.70 −

joint 0.006± 0.009 0.13± 0.17 4.14± 5.19 0.36± 0.41
task 0.009± 0.013 0.16± 0.21 3.85± 4.95 0.31± 0.42

Figure-8 Trajectory
space reconstruction fitted modulated interpolated
latent − 2.14± 5.44 2.52± 2.58 −

joint 0.000± 0.000 1.81± 3.76 2.83± 3.37 7.96± 15.71
task 0.000± 0.000 0.61± 1.36 3.17± 3.18 4.98± 7.66

One can note that, as expected, the fitted control policy has smaller trajectory errors
than the result of modulation of the CPs to other movements. This can be attributed
to the slightly varying shapes that the representations of the movements have in latent
space. Also, the topological relationship is preserved as can be seen by the fact that
movements close by in latent space have similar ‘shapes’ - lending itself to better CP
modulation. Indeed, that explains the very low error of the interpolated CP (being near
the original fitted CP).

Star Trajectories: Next, we test whether these findings transfer to reaching move-
ments where the task constraints are slightly more complex.Our data consists of 10
minimum jerk trajectories in task space where the start and end points are distributed
along a quarter circle with radius 0.5 and 2, respectively (see Fig. 4(top right)).

We find comparable results to the earlier discussion – both qualitatively (see Fig.
4(top)) and quantitatively (the statistics of the error, which is very similar to Table 2, is
left out in the interest of space). Consequently, we expect our method to be applicable
to a wide range of reaching movements with diverse task constraints and orientation.

Periodic Movements: Having explored discrete, point-to-point movements, the
natural question is whether the method extends to periodic movements? Again we
utilise the Puma platform and simulate figure-8 movements ina 2D task space. We
now fit, modulate and interpolate periodic control policies. The task space trajectories:
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Fig. 4. Fitted (bold), modulated (thin) and interpolated (dashed)Control Policies for the (TOP
row) star; (BOTTOM row) figure-8 trajectories of the PUMA armin latent and task space.

x(t) = A sin(πt), y(t) = A sin(2πt) are generated and then, translated and rotated to
fit the Puma workspace. In the latent space, we fit CPs on the figure 8 withA = 0.3,
modulate withA = 0.1 and interpolate forA = 0.2.

Results are shown in Fig. 4(bottom) and Table 2. Again, the generated movements
follow the figure 8s in task space. However, movement shapes show larger variation
in latent space, resulting in slightly higher error rates intask space. It is remarkable,
though, that we can generate a continuum of complicated taskspace movements from
just two examples.

3.3 Human Motion Capture

The simulation experiments are useful to compare our results to known ground truth,
but compared to what we want to achieve the problem setting inthese experiments is
still easy with very regular movements in only a few degrees of freedom. A realistic
setting is provided by real human data recorded with motion capture.

Here, we apply our method to 3 different punching motions from the same person.
The 3 movements all have the same style of punch, but differ inthe height that the punch
hand (right) is travelling. In particular there is a high, a low and a very low punch (see
Fig. 5, top right). The recorded data has 63 dimensions (60 angles plus the root offset).

First, we note that linear dimensionality reduction like PCA does not work for this
data set. For a 2D PCA latent space the reconstruction error of the data in joint space is
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space reconstruction fitted modulated interpolated
latent − 0.44± 0.81 72.75± 65.56 −

joint 0.001± 0.002 2.78± 5.00 351.55± 510.42 −

task 0.000± 0.000 0.67± 1.07 399.42± 657.52 −

Fig. 5. Fitted (bold), modulated (thin) and interpolated (dashed)discrete Control Policies for
the human punching motion in latent and end effector space. MIDDLE: Very low punch with
path of right hand for original punch (red triangles) and result from CP modulation (solid line).
BOTTOM: Errors for human movements (nMSE×10−3 together with its standard deviation).

very high (nMSE: 4780.6e-3). Even for a 10D latent space thiserror is still significantly
higher than for the GPLVM with a 2D latent space (86.8e-3 versus 0.001e-3).

Although a standard GPLVM with 2D latent space has virtuallyno problem recon-
structing the data used to train it, the resulting latent space is not useful for learning
control policies, because spatiotemporal topological relation is not well maintained,
e.g. data points belonging to single punch sequences are broken up and spread discon-
tinuously. Adding a dynamics prior on the data sequences as suggested in [8] improves
results a little bit, but not sufficiently.

We find that a suitable initialisation of the latent space is of key importance. We car-
ried out Laplacian Eigenmaps (LE) on a subset of the movementdata that only contains
motion of the punch arm and then trained a GPLVM on the same data, initialising with
the LE result. This gives a good latent space in which topological invariance is main-
tained, but in this form, it did not provide a mapping to the full body; and furthermore,
low and very low punches were switched in order in latent space. We overcome these
problems by recomputing a GPLVM on the full data while using an initialisation based
on the previous result which we bias towards correct order ofthe movements.

The resulting latent space is shown in Fig. 5(top left). We learn discrete CPs on
the low punch and adapt their start state and goal to fit those of the high and very low
punches. We also interpolate a new punch by taking the average of start state and goal
between low and high punches. Using the position of the righthand (also compare Fig.
5, top right) to define the task space of these movements, we report nMSEs as presented
in Fig. 5(bottom), which produce satisfying results. The learnt punch closely resembles
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the original, although it was not possible to modulate the learnt control policies such
that they match the other punches very precisely – especially , for the high punch sce-
nario. However, playing a sequence of the generated movement creates natural looking
punches that have slight offsets in the joint space. This is aconsequence of the differ-
ent intrinsic shape of the latent representation of the highpunch compared to the low
punch, which also influences the interpolation.

4 Conclusion

We have proposed a new method of generating a family of movements from examples
which is suited for robotic applications with a large numberof degrees of freedom.
The method uses nonlinear dimensionality reduction to extract a low-dimensional space
which captures the essence of the task space constraints andthen, learns control policies
on the resulting compact representations. New movements are generated by adapting
parameters of the learnt control policies in the low-dimensional space and mapping the
result back to the original joint space. We have demonstrated this approach in simulated
experiments with simple robots and have shown its feasibility for more complicated
movements with human motion capture data. In future work, wewill investigate how
to iteratively use feedback from the mapping to bias the dimensionality reduction such
that representations of movements in the resulting latent spaces share stronger shape
similarity and hence, allow better interpolation of new movements.
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