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ABSTRACT

The observed fast radio burst (FRB) population can be divided into one-off and repeating FRB sources. Either this division is a
true dichotomy of the underlying sources, or selection effects and low activity prohibit us from observing repeat pulses from all
constituents making up the FRB source population. We attempted to break this degeneracy through FRB population synthesis. With
that aim in mind, we extended frbpoppy (which previously only handled one-off FRBs) to also simulate repeaters. We next modelled
the Canadian Hydrogen Intensity Mapping Experiment FRB survey (CHIME/FRB). Using this implementation, we investigated the
impact of luminosity functions on the observed dispersion measure (DM) and distance distributions of both repeating and one-off
FRBs. We show that for a single, intrinsically repeating source population with a steep luminosity function, selection effects should
shape the DM distributions of one-off and repeating FRB sources differently. This difference is not yet observed. We next show how
the repeater fraction over time can help in determining the repetition rate of an intrinsic source population. We simulated this fraction
for CHIME/FRB, and we show that a source population comprised solely of repeating FRBs can describe CHIME/FRB observations
with the use of a flat luminosity function. From the outcome of these two methods, we thus conclude that all FRBs originate from a
single and mostly uniform population of varying repeaters. Within this population, the luminosity function cannot be steep, and there
must be minor differences in physical or behaviour parameters that correlate with the repetition rate.
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1. Introduction

Fast radio bursts (FRBs) are millisecond-long pulses detected
at radio frequencies (Cordes & Chatterjee 2019; Petroff et al.
2019). As of now (Petroff & Chatterjee 2020), at least 21 FRB
sources have been observed to repeat (repeaters), with 127 FRB
sources not having been observed to repeated (one-offs). Orig-
inally, FRBs were serendipitously observed by pulsar surveys,
but dedicated FRB surveys began in 2018. The three main
observatories searching for FRBs include the Canadian Hydro-
gen Intensity Mapping Experiment (CHIME; CHIME/FRB
Collaboration 2018), the Australian Square Kilometre Array
Pathfinder (ASKAP; Macquart et al. 2010; Johnston et al. 2007),
and Apertif on Westerbork (Maan & van Leeuwen 2017; van
Leeuwen et al. in prep.). While initially each new FRB detec-
tion was considered newsworthy (e.g. Masui et al. 2015), the
rise in FRB detections through these FRB surveys has ushered
in the dawn of FRB population studies (Macquart et al. 2019).
Initial population studies had few FRBs with which to work
(Thornton et al. 2013; Macquart & Johnston 2015); however,
subsequent studies investigating detection biases (Macquart &
Ekers 2018b), rate distributions (James et al. 2020), or spectral
properties (Macquart et al. 2019) were able to utilise a larger
sample of FRBs.

The detection of a repeating FRB source in 2016 (Spitler
et al. 2016) raised the question of whether all FRB sources
repeat. Do both apparent types of FRBs emerge from the same
intrinsic source population? Despite extensive observational
campaigns (e.g. Petroff et al. 2015; Shannon et al. 2018), no con-
clusive evidence has emerged either way. Theoretical studies of
possible FRB source mechanisms provide no conclusive answer
either. Models such as neutron star–white dwarf accretion

(Gu et al. 2016), supergiant pulses (Cordes & Wasserman 2016),
blast waves from magnetars (Metzger et al. 2019), or emission
within neutron star magnetospheres (Lyutikov & Popov 2020)
can produce both repeaters and one-offs.

One possible approach to probing the intrinsic source class is
population synthesis. In studies of pulsars (Taylor & Manchester
1977), gamma-ray bursts (Ghirlanda et al. 2013), and stellar evo-
lution (Izzard & Halabi 2018), population synthesis has proven
to be a powerful tool. To this end, we previously implemented

an open-source FRB POPulation sythesis package in PYthon
(frbpoppy; Gardenier et al. 2019). This first version was capa-
ble of modelling one-off FRBs and successfully reproducing the

observed one-off FRB populations as seen by the High Time
Resolution Universe (HTRU) survey and by ASKAP. In this

paper, we present an updated version of frbpoppy capable of
modelling repeating FRB sources. We use it to probe the intrinsic
FRB source population in multiple ways. These methods could

allow the field to determine the nature of the FRB population.
Prior population synthesis efforts by Caleb et al. (2019)

simulated repeaters with a variety of wait time distributions to
determine expected detection rates and constraints on the slope
of the intrinsic energy distribution. frbpoppy takes a different
approach, with increased focus on survey modelling to replicate
a wide range of selection effects. Additionally, frbpoppy was
designed from the start to be an open source, modular Python
package for easy use by the community (Gardenier et al. 2019).
Simulations of the repeating FRB population are increasingly
being used to probe various aspects of the intrinsic FRB pop-
ulation (e.g. Ai et al. 2021), but they often lack the modelling
of the full range selection effects present in the observed FRB
population, which are essential.
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In this paper, we use population synthesis to show several
methods by which the intrinsic FRB source population can be

constrained. We begin by detailing our approach to synthesis-
ing a repeating FRB population, before providing our results and

interpretation in the second half. As such, we present an imple-
mentation of repeating sources in Sect. 2, which covers both

the generation and surveying of repeating sources. In Sect. 3,

we show several ways that population synthesis identifies selec-
tion effects in the observed FRB populations, through which

the intrinsic FRB source population can be probed. We sub-
sequently summarise our thoughts in Sect. 4. The paper ends

with Appendix A, which contains information relevant to our
methods.

2. Simulating a repeater population

Population synthesis is a method by which properties of an
underlying, real source population are derived by simulating vir-
tual populations (see e.g. Taylor & Manchester 1977). To this

end, we presented frbpoppy in Gardenier et al. (2019): a code
base capable of modelling one-off FRBs, and thus constrain-

ing properties of the intrinsic FRB source population. Addi-
tional constraints on the FRB source population can, however,

be found by looking at repeating FRB sources (see e.g. Fonseca
et al. 2020). We aim to take advantage of repeater observations

by incorporating repeating sources into frbpoppy. These fea-
tures can be found in the v2 release of frbpoppy, accessible on

Github1.
Shifting from one-off FRB sources to repeating sources

requires additional frbpoppy functionalities in three major
areas: simulating burst times, generating properties, and survey-

ing populations. This functionality is described in the following

sections. In describing such population synthesis methods, the
term ‘observed population’ can be confusing as there are both
real and simulated observed populations. The interpretation can
often be gained from the context, but where this is lacking, we
ensure the terms, real or simulated, are added. Furthermore, the
term FRB originally referred to both the burst and the source. For
repeaters, these are different concepts. Throughout this paper, we
use ‘burst’ to refer to an individual flash of light, and ‘source’
to refer to an origin of these bursts. We thus use the term FRB
to refer to a single burst. To distinguish software input from
other connotations, we use a recognisable typeface, for example
chime-frb, as an argument over CHIME/FRB the survey.

2.1. Generating burst times

Where simulations of one-off FRBs can be relatively static,
repeaters require the simulation of repetition. In frbpoppy, we
generate a series of burst time stamps per FRB source. A vari-
ety of distributions can be used to generate these time stamps,
including the following:

single: to simulate one-off sources, the single option gener-
ates a single time interval per source within a given time frame:

tinterval ∈ U(0, ndays). (1)

Here, time intervals (tinterval) are drawn from a uniform distribu-
tion U in the range zero to the chosen maximum number of days
ndays.

1 https://github.com/davidgardenier/frbpoppy

regular: to replicate pulsars (Hewish et al. 1968), and for test-
ing purposes, we allow for perfectly regular time intervals:

tinterval =
1

r
k, (2)

with rate r and integer k, an iterator ensuring the maximum value
of tinterval remains smaller than the maximum timescale (ndays).
The rate r can vary per source.

poisson: we can draw bursts from a Poissonian distribu-
tion, similar to the giant-pulse behaviour in pulsars (Lundgren
et al. 1995). We use the inverse cumulative distribution function
(CDF) of an exponential function. In this case, the probability
density function (PDF) can be described as

P(x) = re−rx (3)

for the rate r when r ≥ 0. From this, the inverse CDF can be
derived:

tinterval = −
ln(u)

r
, (4)

with rate r and u ∈ U(0, 1), where U represents a uniform dis-
tribution. To ensure enough bursts are simulated per source, they
are drawn per FRB source until the cumulative time interval
would result in a burst beyond the requested maximum timescale
(ndays). This last time interval is subsequently masked. To sim-
ulate a variety of FRB sources, the rate r can be chosen to vary
per source.

clustered: as FRB121102 follows a distinctly non-
Poissonian burst rate (Oppermann et al. 2018), frbpoppy
can simulate such clustered bursts. Time intervals are now
drawn from the inverse CDF of the Weibull distribution. The
PDF of a Weibull distribution can be described as

P(tinterval) =
k

λ

(

tinterval

λ

)k−1

e−(tinterval/λ)
k

, (5)

with the following scale parameter:

λ =
1

rΓ(1 + 1/k)
, (6)

and the gamma function Γ, shape parameter k, and rate parameter
r for tinterval ≥ 0, from which the inverse CDF can be derived:

tinterval =
1

rΓ(1 + 1/k)

(

− ln(u)
)1/k
, (7)

with the rate parameter r, gamma function Γ, shape parameter
k, and u ∈ U(0, 1) with uniform distribution U. Just as with the
poisson option, bursts are iteratively generated up to the maxi-
mum timescale (ndays).

cyclic: with several repeaters showing quasi-periodic activity
(see Bochenek et al. 2020; Rajwade et al. 2020; Cruces et al.
2020), the cyclic option allows frbpoppy to model bursts
emerging during an active window. For simplicity, we modelled
the arrival times of bursts during the active window as a uniform
distribution:

tarrival ∈ U(0, nactive), (8)

with nactive the number of active days per activity cycle of the
source. The number of generated bursts is given by the prod-
uct of the number of bursts per active period and the number of
activity cycles within the maximum timescale (ndays):

nburst = r nactive

ndays

P
, (9)
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with a burst rate r and an activity cycle of P days. For each next
activity cycle, a whole period is added to the generated burst time
to convert them into time stamps between 0 and ndays.

To generate time stamps from the time intervals given in
some of these distributions, we took cumulative time intervals
per source:

tstamp =

N
∑

n=0

tinterval, n, (10)

with the time stamp tstamp, Nth burst of a source, and tinterval being
the time interval since the previous burst. All time stamps are
subsequently scaled using

tmeasured = tstamp(1 + z) (11)

to obtain the measured time stamp tmeasured from the intrinsic
time stamp tstamp and z the redshift of the source. All bursts with
measured time stamps falling outside of the requested time frame
ndays are masked.

The number of generated bursts per source is used to deter-
mine the number of values required in generating subsequent
burst parameters.

2.2. Generating repetition properties

The repeat bursts of an individual FRB source can have
quite different properties (e.g. Spitler et al. 2016; CHIME/FRB
Collaboration 2019; Gourdji et al. 2019; Oostrum et al. 2020).
The observed burst luminosities for a single source may, for
instance, fall in a narrower range than the luminosities spanned
by the full repeater population. Similarly, some repeating
sources may repeat more often than other sources (Fonseca et al.
2020). These cases show the need to expand frbpoppy capa-
bilities beyond the single distributions used in v1. We need an
overarching population distribution that provides input to source
distributions.

For parameters unrelated to the location of a source (e.g.
pulse width), we adapted frbpoppy to allow input parameters to
be drawn from an overarching distribution per source. The mean
of an intrinsic Gaussian pulse-width distribution per source can,
for instance, be drawn from a log-normal population distribution.
Additional settings provide the opportunity to keep a constant
parameter value per source (e.g. to simulate standard candles), or
to draw all values from the same overarching distribution, irre-
spective of the source. To adopt these settings in frbpoppy, we
use the argument ‘per source’, which is either the ‘same’ per
source (using a constant value per source), or ‘different’ (draw-
ing a new value for each burst of a source).

2.3. Surveying repeater populations

When modelling the observations, repeating sources pose a
greater challenge than one-off sources. One-off bursts have an
equal chance of falling anywhere within a beam pattern (see
Gardenier et al. 2019). This no longer holds when considering
repeating sources; here, the locations in the beam pattern of mul-
tiple bursts from a single source are correlated. Especially with
regard to, for example, regularly emitting repeaters: the exact
beam shape then becomes important for recognising an FRB
as a repeater. Accounting for this behaviour requires modelling
and tracking the location of sources within a beam pattern over
time. Depending on the beam pattern, mount type, and location
of a survey, celestial objects track different paths throughout the
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Fig. 1. Simulated beam pattern for the CHIME/FRB survey showing the
transit of sources at various declinations as orthogonal offset along the
north-south (N-S) and east-west (E-W) axes with respect to the centre
of the beam pattern. All pointings are separated by an hour.

beam. For CHIME, which is a transit telescope (CHIME/FRB
Collaboration 2018), the location can be described relative to the
centre of the beam pattern and the N-S and E-W axes, but this
does not necessarily hold for other mount types. In Appendix A,
we present the tracking implementation in frbpoppy for a vari-
ety of mount types. These effects were modelled in frbpoppy to
ensure an accurate portrayal of any resulting detection rates.

While with one-offs a 1D beam pattern suffices, a realistic
simulation of the repeating population, as detected with large,
asymmetric beams such as those used by CHIME, requires 2D
beam patterns. To survey repeating populations, we used the for-
mulas given in Gardenier et al. (2019) to simulate Gaussian and
Airy beam patterns as 2D matrices, and we used a field-of-view
(FoV) parameter to scale beam patterns relative to the survey.
The Apertif and HTRU beam patterns available in frbpoppy
can be scaled in a similar manner. The empirical mapping of the
CHIME beam patterns is ongoing (see Berger et al. 2016), so to
enable frbpoppy to conduct a chime-frb survey, we modelled
our own CHIME-like beam pattern. To simulate this beam pat-
tern, we convolved an Airy disk pattern orthogonal to a cosine
function subtending an 80◦ × 180◦ area of the sky.

In Fig. 1, we show this CHIME-like beam pattern, with simu-
lated observed tracks of several regular emitters at various decli-
nations. The axes in Fig. 1, the N-S and E-W offset, refer to
the relative offset along the N-S and E-W axes with respect
to the center of the beam pattern. As expected, objects close to
the North Pole are permanently visible. Objects at low declina-
tions transit the beam. As all objects were emitting at the same
cadence, the resulting spacing shows the transit speed.

Sets of survey parameters in frbpoppy allow it to model
a range of current and future surveys (Gardenier et al. 2019).
Additional parameters such as mount type and telescope location
are required for the surveying of repeater populations. These are
included in v2. Table 1 lists the main survey parameters adopted
in the current paper.

We next model different intrinsic source populations. Table 2
provides an overview of the required population parameters, and
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Table 1. Overview of the survey parameters adopted within this paper
for a perfect and a chime-frb survey.

Parameter Units perfect chime-frb

β 1.2 1.2

G K Jy−1 105 1.4
tpoint s 86400 360
tsamp ms 0.001 1
Trec K 0.01 50
νc MHz 1000 600
BW MHz 800 400
BWch MHz 0.001 0.390625
npol 2 2

FoV deg2 41253 164.15

S/N 10−16 10
φ ◦ 0 49.3208
λ ◦ 0 −119.624
Mount azimuthal transit
α ◦ 0–360 0–360
δ ◦ −90–90 −40.679–90
l ◦ −180–180 −180–180
b ◦ −90–90 −90–90

Notes. Parameters include survey degradation factor β, telescope gain
G, pointing time tpoint, sampling time tsamp, receiver temperature Trec,
central frequency νc, bandwidth BW, channel bandwidth BWch, number
of polarisations npol, field of view FoV, minimum signal-to-noise ratio
S/N, observatory latitude φ, observatory longitude λ, mount type; and
then the minimum-to-maximum right ascension α, declination δ, Galac-
tic longitude l, and Galactic latitude b. chime-frb survey parameters
have been taken from the CHIME system overview paper (CHIME/FRB
Collaboration 2018), with bold values indicating an estimated value or
an average between given values. All perfect survey parameters are
necessarily self-devised.

the relevant result figures per population. More information on
these parameters is found in Gardenier et al. (2019).

3. Results

3.1. Dispersion measure distributions

An important question in the FRB field is whether repeating
and one-off FRB sources trace a single underlying population
(e.g. Petroff et al. 2019; Cordes & Chatterjee 2019). One way to
approach this question is to simulate a single repeating underly-
ing FRB source population and compare the resultant observed
repeating and one-off populations.

An initial hypothesis along these lines can be built as follows.
We assume each source produces bursts following some lumi-
nosity distribution, where dim bursts outnumber bright bursts
(for example: a power law with a negative index). We only
probed the part of this distribution that is above a given sen-
sitivity threshold. The further away, the higher and more lim-
iting the corresponding luminosity threshold becomes; distant
sources need to be far brighter to observe than sources close-by.
Concerning repeaters, this effect is stronger than for one-offs.
For them, at least two bursts drawn from this distribution must
be seen above this threshold; whereas for one-offs, a single bright
burst suffices. If all FRB sources have an equal chance of emit-
ting from a range of luminosities, one would therefore expect the
observed repeating population to drop off faster with distance
than the observed one-off population. By using the dispersion

Fig. 2. Comparison between the simulated intrinsic and simulated
observed dispersion measure distributions, expressed as a fraction
of maximum DM. The normalised simulated intrinsic (cosmic) and
observed populations are shown for repeaters in a Euclidean universe.
Here the simulated observed population has been split into those seen
as repeaters (>1 burst) and those seen as one-offs (1 burst).

measure (DM) as a proxy for distance, DM distributions can be
used to probe this hypothesis.

We test this behaviour in Fig. 2, showing DM distributions
for simulated intrinsic and simulated observed repeater popula-
tions. The observed population has been divided into ‘observed

to be repeating’ sources (>1 burst) and single-burst sources
(1 burst). To simulate this population, we used parameters as
given in the DM column of Table 2. To avoid conflating cosmo-

logical intricacies with repeater effects, we chose to simulate the
cosmic population as a Euclidean population by limiting
the maximum redshift zmax to 0.01. As the absolute scale of the

resulting DM distributions is not of essence, we express this
scale in Fig. 2 as a fraction of the total DM. For clarity, we

modelled the extragalactic DM contribution solely with an inter-
galactic component, following Ioka (2003) in adopting DM =

1000z with DM in pc cm−3. Burst luminosities were drawn from

a negative power law where N(L) ∝ Lli, with li being an index
of −1.5 in the range of 1035−1040 ergs s−1, and they are drawn
randomly per burst. The expression for the adopted power law

can be converted into the form of dN(L)/dL ∝ L1−γ when setting

li = 1 − γ (cf. the definition in Lu et al. 2020). Changing these
luminosity function parameters still results in similar behaviour
to that shown in Fig. 2. To survey this cosmic population, we
opted for a perfect survey (see Table 1). The perfect sur-
vey is practically noiseless; both the noise level and luminosity
boundaries are therefore mere scaling factors rather than true
expectations of parameter values. For this reason, we chose a
very high signal-to-noise (S/N) limit of 106 to ensure only the
high end of the flux distribution is probed.

Figure 2 shows that our simulations predict a clear dis-
tinction between the observed DM distribution of one-offs and
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Table 2. Overview of parameters and values used to model intrinsic FRB source populations throughout this paper.

Parameters Arguments Units DM rep-rate rep-frac complex

ngen 105 105 105 3.6 × 104

ndays days 4 4 100 100
Repeaters True True True True

ρ nmodel volco volco volco volco

H0 km s−1 Mpc−1 67.74 67.74 67.74 67.74
Ωm 0.3089 0.3089 0.3089 0.3089
ΩΛ 0.6911 0.6911 0.6911 0.6911
zmax 0.01 2 0.01 1

DMhost Model Gauss

Mean pc cm−3 100

Std pc cm−3 200

DMigm Model ioka ioka ioka ioka

Mean pc cm−3

Std pc cm−3 0 0 0 200

Slope pc cm−3 1000 1000 1000 1000

DMmw Model ne2001

DMtot Host False False False True
igm True True True True
mw False False False True

νemission Low MHz 107 107 107 107

High MHz 109 109 109 109

Lbol Model Powerlaw Powerlaw Powerlaw Powerlaw
Per source Different Different Different Different

Low erg s−1 1035 1040 1035 1040

High erg s−1 1040 1045 1040 1045

Power −1.5 −1.5 −1 0

γ Model Constant Constant Constant Gauss
Per source Same

Mean −1.4
Std 1

Value ms 0 0 0

wint Model Constant Constant Constant Lognormal
Per source Different

Mean ms 0.1
Std ms 1

Value ms 1 1 1

tint Model Poisson Poisson Poisson Poisson

Rate day−1 3 3 0.1 lognormal(9, 1)

Figs. 2 3 4 5, 6

Notes. Arguments have been grouped as a subset of parameters in horizontal bands. Parameters include the number of generated sources ngen,
maximum timescale in terms of number of days ndays, and whether one is generating a repeater population (‘repeaters’). Number density parameters
ρ include the number density model nmodel and cosmological parameters, Hubble constant H0, density parameterΩm, cosmological constantΩΛ, and
finally maximum redshift zmax. Dispersion measure (DM) components include contribution from the host DMhost, from the intergalactic medium
DMigm and from the Milky Way DMmw, each with a particular model and related parameters. DMtot reflects whether particular DM components
are modelled or not. Furthermore, there is the emission range νemission, the isotropic equivalent bolometric luminosity in radio Lbol, spectral index
γ, intrinsic pulse width wint and intrinsic time stamp tint, all with their respective modelling parameters. An empty space indicates that a particular
argument was not required for the generation of that population. The final row does not show arguments, but instead indicates the relevant figures
per population.

repeaters, despite the fact that they emerge from the same cosmic
population. These distributions follow our hypothesis that the
observed repeater DM distribution would be expected to tail off
faster with distance than that of the one-offs. Throughout the rest
of this section, we refer to this expected difference as the DM
discrepancy.

This emergence of a DM discrepancy relies chiefly on two
assumptions. Firstly that all FRB sources repeat (see e.g. Spitler
et al. 2016; Cordes & Wasserman 2016; Lyutikov et al. 2016;
Katz 2017; Metzger et al. 2019), and secondly that the burst
luminosity function is such that there are more low-energy
bursts than energetic ones (see e.g. Macquart & Ekers 2018a;
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Luo et al. 2020; Fialkov et al. 2018). The results we obtain
do not agree with early results from CHIME/FRB (Fonseca
et al. 2020), which would seem to suggest that no difference
is seen between the DM distribution of observed repeaters and
one-offs.

Should a DM discrepancy remain unseen in future observa-
tions, it would lead to two possible main explanations and con-
clusions. Firstly, a negative power law may not necessarily be an
accurate representation of the luminosity function of the intrinsic
source population. Power laws are often used to approximate a
wide range of physical processes, from the initial mass function
(Salpeter 1955) to radiation from Shakura-Sunyaev thin accre-
tion disks (Shakura & Sunyaev 1973). While there is an abun-
dance of FRB progenitor theories (Platts et al. 2019), there is no
conclusive theory on the expected emission process of an FRB.
Recent detections of FRB-like bursts from a galactic magnetar
(see e.g. Bochenek et al. 2020) may in time aid in constrain-
ing the emission mechanisms, but currently provide no prior
expectation on the intrinsic luminosity function of the progen-
itor population. So which luminosity functions could reduce the
expected DM discrepancy? As an example, flatter power laws
could do this. The increase in the number of energetic repeat
bursts leads to a higher chance of passing an S/N threshold.
This follows recent research (e.g. Luo et al. 2020; Zhang et al.
2021) that advocates for flatter energy and luminosity indexes
of, respectively, −0.7 and −0.8. However, simulations run with
frbpoppy for this value still show a noticeable DM discrepancy.
Schechter functions (Macquart & Ekers 2018a) do not necessar-
ily solve this discrepancy problem either. The asymmetrical neg-
ative trend of these functions results in the same selection effects
as in negative power laws. The DM discrepancy is avoided if
the luminosity function gives repeating bursts an equal detection
chance to the first detected burst. Such functions would include,
for instance, standard candles, or distributions that are com-
pletely flat. Correlating observed burst luminosities with redshift
estimates to FRB sources indicates that this is unlikely to be the
case. Functions that are symmetric and completely visible at all
distances would also explain these in principle, but they are not
necessarily in agreement with observed number counts.

Secondly, the lack of a DM discrepancy could arise when
the source populations of one-offs and repeaters are differ-
ent in some respect. If one-off and repeating sources occupy
slightly different parts of the parameter space, selection effects
will weigh differently on both populations. This could bury
the DM discrepancy. The culprit difference between one-offs
and repeaters is not likely to be found in the number density
distributions (which would follow from, for example, different
progenitor populations). In observations, repeaters and one-offs
seem to trace the same DM distribution, albeit with a different
normalisation (Fonseca et al. 2020); such uniformity in the DM
distributions while adopting different number densities would be
contrived. The repeater population would also still be expected
to show up in one-off distributions, albeit in a limited number,
further complicating the situation. One might alternatively look
towards the repetition rate as a source of difference, for instance
by assuming one-off sources to intrinsically be one-offs. The
impact on detection rates resulting from, for example, a differ-
ence in pulse-width distributions between one-offs and repeaters
might also provide a way to hide the DM discrepancy, though it
is unclear how.

For completeness, we note that the lack of an observed
DM discrepancy could also be attributed to the survey. Should
CHIME/FRB be sensitive to almost all repeaters, or simply
observe for a long enough period of time, the DM discrepancy

Fig. 3. Observed (crosses) and simulated (lines) number of observed
bursts per repeater source, as a function of extragalactic dispersion
measure. The red crosses show the observed burst rates from CHIME
repeaters (scale on the right axis). The lines show the simulated aver-
age observed burst rates (scale on the left axis) for various luminosity
functions along the same extragalactic dispersion measure axis.

would disappear, with most repeaters being seen as repeaters.
This is unlikely to be the case, however, given the sheer num-
ber of one-offs expected to have been detected by CHIME/FRB
(McKinven 2020). To help constrain the origin of the lack of
a DM discrepancy, we investigate similar selection effects in
repeat bursts from repeating FRB sources in the next sub-section.

3.2. The repeat rate dependence on DM

If the FRB luminosity function resembles a negative power law,
as in the previous section, other similar observed effects may also
be expected. We investigated the number of observed repeater
bursts as a function of dispersion measure (Good 2020). In
Fig. 3, the right axis marks the number of bursts per repeat-
ing source, as published in the CHIME/FRB repeaters database2

as of 2 September 2020. For a variety of luminosity func-
tions, we compare these observations to the simulated observed
average number of bursts per source, as marked on the left
axis. Here, the negative power-law population is drawn from
1040−1045 ergs s−1 with an index of −1.5, the flat power law from
the same range with an index of 0, and the standard candle pop-
ulation with bursts of 1042 ergs s−1. All other population param-
eters can be found in the rep-rate column of the population
list (Table 2). Next, we simulated a perfect survey. An S/N
limit of 4 × 106 (non-physical, as in Sect. 3.1) provided the best
visual fit in Fig. 3. Adopting a different S/N limit results in sim-
ilar behaviour.

2 To retrieve CHIME/FRB data, we made use of the pip-installable
frbcat python package (Gardenier 2020), which is able to retrieve data
from FRBCAT, the CHIME/FRB Repeater Database, and the Transient
Name Server (TNS).
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In this plot, we are interested in the detection-rate differ-
ence at low and high DM values. We adopted two y-axes in
this figure for two reasons: firstly due to the limited number
of CHIME/FRB repeaters, which would lead to poorly sampled
bins; and, secondly, to allow for a relative scaling. In our simula-
tions, we only aim to display the selection effects emerging from
these luminosity functions, we have not yet aimed to reproduce
the exact burst rates. Nonetheless, the behaviour of the simu-
lated observations as shown in Fig. 3 still seem to suggest that
selection effects due to a negative power-law luminosity function
better describe the observed fast drop-off of repeater burst rates
with DM than a flat luminosity function.

A drop-off in repeater burst rates can be expected for the
same reasons as the DM discrepancy presented in Fig. 2: as the
distance to a source increases, the chances of a burst falling
above an S/N threshold decrease. We therefore expect to see
more bursts for close repeaters than for distant ones, as is noted
in the CHIME/FRB repeater data by Good (2020). While in a
Euclidean universe the average number of observed bursts over
the DM or redshift would be constant due to the time dila-
tion, more distant sources have more bursts redshifted out of the
observing time frame. This leads to the trends seen, for example,
with standard candles or a flat power law, in which the average
number of observed bursts drops off with distance.

The requirement here for a negative power law is somewhat
at odds with explanation 1 from the previous section, which
required a flat or symmetrical luminosity function to remove the
expected DM discrepancy. Given how the selection effects from
a negative power law can describe the repeater population, and
that previous studies argue for a negative asymmetrical luminos-
ity function such as a Schechter function (Macquart & Ekers
2018a; Luo et al. 2020; Fialkov et al. 2018), we conclude it is
likely that the FRB population can be described as a whole with
a negative power law. This means that explanation 2 for the lack
of DM discrepancy as more likely: one-offs and repeaters sub-
tend different parts of the intrinsic parameter space.

It is tempting to look to the repetition rate as a potential dif-
ference in parameter space, making one-offs intrinsically one-
offs, or decreasing their likelihood to repeat. Determining the
repeater fraction over time can help in establishing the veracity
of such a claim. We discuss this in the next sub-section.

3.3. Repeater fraction

The physical or environmental relationship between repeating
FRB sources and seemingly one-off FRB sources is as of yet
unexplained. One line of thought is that the ostensible observed
dichotomy may emerge from a single progenitor population
(e.g. Cordes & Wasserman 2016; Metzger et al. 2019; Connor
et al. 2020). Recent hints that these populations may have differ-
ing properties are emerging, however; whether in pulse widths
(Fonseca et al. 2020), host galaxy properties (Heintz et al. 2020),
or in dynamic spectra (Kumar et al. 2020). frbpoppy can be used
to probe the hypothesis of FRBs emerging from a single source
population. If all FRB sources repeat on different timescales,
what would the expected observed repeater fraction as a function
of time be? Could it correspond to the observed detections?

We started by considering how the fraction of detected
sources that repeat (hereafter the repeater fraction frep) changes
over time, based on two assumptions. We assumed the entire
intrinsic FRB repeater source population shares a single distri-
bution of repeat rates, such as a Poisson distribution. We also
assumed a perfect survey with an S/N cut-off to limit sampling
to the high end of a flux distribution. Taking these assumptions

into consideration together, we would expect the repeater frac-
tion to asymptotically reach one. The longer an observation, the
more sources are seen to repeat. With an infinite time period, one
would have seen all sources repeat.

A second step can be to instead introduce an intrinsic popu-
lation in which all sources repeat following a Poissonian distri-
bution, but all with a different Poissonian rate. To simulate this
behaviour, the Poissonian rate distribution could be drawn from a
normal distribution in the log space. Here too frep would asymp-
tote towards a ratio of one, as all sources are eventually revealed
to be repeaters. Nonetheless, we expect a sharper rise and slower
tail on the value frep over time compared to the single-rate sce-
nario. This expectation arises from the wide range of Poisson
rates: some will have a short, and others a long, repetition scale.
A Weibull distribution would introduce similar behavior, albeit
more extreme. There, the clustering allows for the quick detec-
tion of some repeaters. But seeing many others repeat takes far
longer, which is due to the longer time intervals resulting from a
Weibull distribution.

In an alternative scenario, the population consists of a mix of
repeating and one-off sources. How would the repetition rate dif-
fer in this case? For the repeating sources, one could expect the
same behaviour as before: an asymptote towards the total frac-
tion of repeaters. However, as the repeater fraction reaches that
asymptote, it becomes increasingly likely for new detections to
be one-offs. With more and more one-offs rather than repeating
sources being detected, the repeater fraction will even start to
show a turnover and will eventually decrease.

To simulate these cases, we generated a population using the
parameters given in the rep-frac column of Table 2, and we
surveyed this population using a perfect survey with an S/N
limit of 104. We adopted population and survey parameters to
reflect the most basic conditions under which these effects are
still seen. The rate parameter used as population input is varied
between a delta function at 0.1 day−1, a log-normal distribution
with a rate of 0.1 day−1, a standard deviation of 2 day−1, and
double delta function with peaks at 0 and 0.1 day−1, replicating
a mix of one-offs and repeaters.

The results of these simulations can be seen in Fig. 4. Here,
the left panel shows the distributions of the mean Poisson rate
given as input, while the right panel shows the change in the
repeater fraction over time. For illustrative purposes, we also
show the results when a CHIME-like beam pattern was adopted
for an otherwise perfect survey with an S/N cut-off at 1. These
latter lines show the effect of beam patterns on the observed
repeater fraction.

The first insight that the repeater fraction over time provides
lies in the expected asymptote. This tells us the intrinsic rep-
etition rate. If the observed repeater fraction tends towards an
asymptote at unity, all FRB sources must repeat, albeit on a vari-
ety of timescales. The speed at which the asymptote is reached
contains information on the intrinsic rate distribution. This is
seen by comparing a population with a broad range of repe-
tition rates to one with a narrow range. For the broad ranged
population, fast repeaters are detected relatively quickly, leav-
ing the slower repeaters to be detected over a longer timescale.
The population with the same intrinsic Poissonian mean rate
detects repeaters more uniformly. This effect is still observed
after applying the CHIME-like beam pattern to the simulations.
The dotted lines in Fig. 4 show this effect, with distinct differ-
ences between the various intrinsic rate distributions as input,
but spread out over a longer timescale. This spreading is why
the repeater fraction of the mixed input distribution does not
display a downturn when adopting a CHIME-like beam pattern:
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Fig. 4. Left: distributions of Pois-
son burst rate for various simulated
intrinsic populations, including a single
value (blue), a log-normal distribution
(orange), and a mix of single values and
one-offs (green). Right: repeater fraction
frep, defined as the number of detected
repeating sources over the total number
of detected sources against time. The
various line styles represent the detec-
tions from a perfect survey with an S/N
cut-offwith either a perfect beam pattern
(solid), or a CHIME-like beam pattern
(dotted).

that turnover occurs beyond the timescale of this graph. Measur-
ing the repeater fraction over time, and by extension the intrin-
sic rate distribution from which it emerges, could help constrain
possible rotational or orbital parameters of the repeating FRB
population. This could help rule out some of the many possible
progenitor theories (Platts et al. 2019).

The second insight comes from the value of the asymptote.
The repeater fraction shows a sustained downturn over time, as
seen, for instance, in the mixed population in Fig. 4. This indi-
cates that one part of the FRB source population has been com-
pletely detected. That is evidence for a binarity in the repeating
rates of the source population. This method would not provide
any conclusive proof of the potential ‘one-off nature’ of one-offs,
but it could constrain the population to a maximum observed
time frame.

Determining this trend of the repeater fraction over time
observationally will, as always, be more challenging than our
perfect survey trends in Fig. 4. As seen when adopting a
CHIME-like beam pattern as seen in Fig. 4, selection effects
muddy the trend. Again, understanding the beam pattern of a
survey to a high degree, by accurately mapping its intensity as
function of position on sky, helps to recover a closer-to-intrinsic
repeater fraction. Before an asymptote or downturn is actually
reached, a fit to the observed repeater fraction might already
be constraining enough to determine the values of these thresh-
olds. This would additionally have the advantage of limiting the
required observing time. While the repeater fraction is expected
to initially show a rather jagged profile due to the limited num-
ber of repeaters versus one-offs, this effect should diminish over
time as more repeaters are detected.

A number of repeaters follow Weibull distributions
(Oppermann et al. 2018; Oostrum et al. 2020). We investigated
how such distributions might affect the repeater fraction over

time. Our simulations showed little difference compared to Pois-
sonian rates. Some repeaters show rapidly clustered bursts and
are quickly detected as repeaters, rapidly increasing the repeater
fraction. The wait times for sources in the long tail of the Weibull
distribution, however, severely decrease the rate at which the
asymptote is reached.

Recent results show some repeaters have period windows of
burst activity (Chime/FRB Collaboration 2020). If all repeaters

display such cyclic behaviour, the repeater fraction trends would
be noisier but still display the predicted trend.

The results we present here are in line with those from
Ai et al. (2021), who conducted similar work investigating a
repeater fraction over time. Their simulations show a reduced
complexity, which is advantageous in computational time, but
they lack the full range of selection effects present in frbpoppy.
Given the strength of the selection effects in Fig. 4 (cf. Fig. 5), an
accurate modelling of these selection effects is crucial to under-
standing the underlying source population.

3.4. Modelling CHIME/FRB detections

To infer the FRB progenitor population from the detected
sources, we require the survey selection effects to be under-
stood. CHIME/FRB has detected significantly more FRBs than
any other survey to date (Fonseca et al. 2020). Modelling it
and its selection effects is therefore crucial for the inclusion
of this dataset, the largest one available, in population synthe-
sis with frbpoppy. Incorporating the CHIME/FRB detections
allows insights in both the one-off population model and the
newly implemented repeater simulations.

As a basis for simulating an intrinsic repeating source popu-
lation, we adopted the population parameters that replicate both
HTRU and ASKAP-FLY one-off FRB detections (see Gardenier
et al. 2019). These, along with newly adopted parameters, can be
found in the complex column of Table 2. A number of parame-
ters were changed with respect to the HTRU and ASKAP-FLY
modelling. We chose, for instance, to limit the intrinsic popu-
lation to a maximum redshift zmax of 1, a limit imposed by our
compute resources. As most FRBs have low excess DM (Petroff
et al. 2016), suggesting low redshifts, we chose our maximum
redshift as a balance between simulation size and FRB detec-
tion volume. The adopted lower limit of the emission frequency
was also increased by a single order of magnitude, to more fully
sample the parameter space when adopting a negative spectral
index. We simulate each FRB source to repeat with varying
luminosities and pulse widths, a choice not available when mod-
elling one-offs. We added the modelling of the intrinsic-burst
time stamps. Here we adopted a log-normal distribution with
a mean of nine bursts per day and a standard deviation of one
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burst per day. This distribution specifically refers to the intrin-
sic rate distribution rather than any observed rate distributions.
To determine an optimum value for the number of sources ngen,
the number of days ndays, and the mean rate for the log-normal
time-stamp distribution, we ran a limited Monte Carlo simula-
tion. The chosen values reflect the run that best replicated the
expected CHIME/FRB detection fraction of ∼2.5 repeating and
∼200 one-off sources per 100 days. This corresponds to the
expected CHIME/FRB detection rate of approximately two one-
off sources per day (Chawla et al. 2017), while nine repeaters
were detected over a little more than a year (Fonseca et al. 2020).
To best direct our computational resources, we only simulated
FRB sources in the sky area visible to our simulated CHIME
telescope, representing 67.4% of the celestial sphere.

The next step is the simulation of CHIME/FRB detections.
To that end, we adopted the complex survey parameters denoted
in the chime-frb column of Table 1, together with the CHIME-
like beam pattern described in Sect. 2.3.

3.4.1. Repeater fraction

Investigating if repeating and one-off FRB sources emerge from
a single progenitor population is interesting for two reasons.

First, the physics governing the burst generation, and second, the
formation and evolution of the emitting sources. If there is only

one source population, its radiation mechanism would need to be
capable of producing both seemingly one-off bursts and repeat-
ing bursts. Next, both one-off and repeater detections, rates, and
hosts could be used to determine the progenitor population. The
question that we therefore seek to answer is: can an FRB popula-
tion consisting entirely of repeaters explain the observed repeater
versus one-off detection rates?

In Fig. 4, we showed the expected repeater fraction over

time for various repeater distributions. The curves are smooth
due to the high number of detections in the perfect survey:
over 104 sources in 100 days. In Fig. 5, we replicate this plot,
but for a full CHIME/FRB simulation over 100 days using a

complex cosmic population and a chime-frb survey. A key
difference between the chime-frb repeater fraction and the
perfect survey plotted in Fig. 4 is the clear sawtooth effect,
which arises from the limited number of repeaters detected by

the simulated chime-frb over this timescale. After 100 days,
192+15

−14
one-offs and 4+3

−2
repeaters were detected, close to the

expected CHIME/FRB detection rate of 200 one-offs and two
repeaters (Chawla et al. 2017; Fonseca et al. 2020). The errors on
the simulated values represent the corresponding 1σ Poissonian
intervals.

Our complex model is thus able to replicate the observed
detection rates of both repeaters and one-offs, using an intrinsic
source population consisting solely of repeaters. Modelling the
repeater fraction over time is, however, merely one aspect of the
observed FRB population available for analysis. Parameter dis-
tributions provide an alternative method by which the intrinsic
FRB population can be probed.

3.4.2. DM and S/N distributions

Does the complex model also reproduce the observed distribu-
tions of FRB parameters? These distributions can give a han-
dle on the progenitor population, provided the selection effects
are well understood. Beyond replicating the detection rates as
described above, we chose to investigate two aspects of the
CHIME/FRB population: the DM and S/N distributions. The
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Fig. 5. Repeater fraction frep, is the number of sources observed to be
repeating over the total number of observed sources, plotted over time
for a full chime-frb simulation.

DM distribution as a proxy for a distance provides a way to
roughly probe the observed number density of the FRB popu-
lation. Our choice of S/N over similar parameters such as flu-
ence, was made on the basis that it has the clearest meaning.
It convolves all observatory-based selection effects, and hence
provides the cleanest comparison between survey populations
(James et al. 2019).

In Fig. 6, we show the repeater and one-off, DM, and S/N dis-

tributions, for real-observed and simulated-observed detections.
All distributions weren normalised to their maximum values to
allow the relative shapes of the distributions to be compared. For

the repeaters, we plot the average DM value and the S/N of the
first detected burst per source. We only used the first burst to
avoid a bias arising from a single source saturating distributions

with a high number of bursts. A Kolmogorov-Smirnov (KS) test
was used to compare each set of distributions, of which the result
is given in the top right of each panel. The real observed distribu-

tions were obtained from frbcat and the CHIME/FRB repeater
database as of 2 September 2020. The simulated observed dis-
tributions use the complex model. Figure 6 shows a run from
the small Monte Carlo simulation (Sect. 3.4) with the high KS
test output. The p values are all above 0.05. Given the limited
number of trials in the simulation, these p values indicate that
the observations and simulations are consistent with being drawn
from the same distribution. While these results are clearly based
on very small numbers, they do indicate that the complexmodel
can explain the observed CHIME/FRB populations to a reason-
able degree.

The simulated and real observed DM distributions for both
one-off and repeating FRB sources are seen in the left column of
Fig. 6. Although the limited number of detected repeaters nec-
essarily makes comparisons challenging, the KS tests for these
parameters indicate an encouraging match between observations
and simulations for our complex model. In our simulations,
the one-off and repeater populations span similar parts of the
DM space, perhaps contrarily to expectations on the basis of
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Fig. 2. The reason is that the complex model underlying these
simulated populations uses a flat luminosity index, which was
shown to be able to replicated observed HTRU and ASKAP-FLY
one-off detections, while the results given in Fig. 2 explored the
impact of a negative index. The lack of a DM discrepancy cor-
responds to that seen in the CHIME/FRB data, in which both
one-offs and repeaters are observed to follow the same distribu-
tion (Fonseca et al. 2020).

The S/N distributions for the simulated and observed
repeater and one-off populations can be found in the right col-
umn of Fig. 6. The simulations also fit these distributions.
The slopes for the one-off distributions are similar. There is
a noticeable difference at low S/Ns, where frbpoppy expects
more low-S/N events than observed. We conclude that CHIME
becomes incomplete below S/N ≃ 15. Indeed, only compar-
ing detections above an S/N limit of 15 gives a much improved
fit, with a p-value of 0.98 for the one-offs. Potential explana-
tions for the incompleteness are that the CHIME beam pat-
tern is less sensitive than our simulated CHIME-like beam
pattern, or that, for example, the RFI mitigation techniques adop-
ted by CHIME/FRB block real low-S/N events (CHIME/FRB
Collaboration 2018). For one-offs, it can be especially challeng-
ing to determine if a candidate is real, and lower S/N detections
might therefore be disregarded out of caution. In repeaters, how-
ever, the same low-S/N candidate would be marked as real if
prior bursts were detected at the same DM and location. For this
reason, it can be important to compare possible selection effects
in the detection pipeline of various surveys with, for instance,
the benchmarking test set up for FRB detection pipelines
(Connor 2020), similarly to prior work with pulsar pipelines
(Lazarus et al. 2015). The simulated repeater distributions show
a similar difference, with repeaters showing up at high S/Ns.

The first reason for taking caution in interpreting these fits is
the low number of repeaters (just four) over this timescale; the
second is the short simulation span of 100 days, while the real
CHIME/FRB observations span a multiple of such a timescale.
The single high-S/N event showing up in the simulated repeater
distribution (Fig. 6) is curious, and on the basis of prior simu-
lations, we believe it could be indicative of a slope more in line

with that of the one-offs. This is in contrast with the observed
CHIME distributions, where repeaters seem to show a steeper
S/N distribution than one-offs. Including more newly published
CHIME detections will help the investigation of this observed
discrepancy and determining its origin.

An interesting statistical distinction between repeaters and
one-off events is emerging in the CHIME data set. One-off FRBs
appear to have narrower pulse widths than sources that have
been detected twice or more (Fonseca et al. 2020). This effect
may be due to an intrinsic difference between repeaters and
non-repeaters, or due to an observational bias, as suggested by
Connor et al. (2020). The effect does not appear in frbpoppy.
This is unsurprising, because we did not model the FRB popula-
tion as two separate source classes with different average widths,
nor did we include beaming effects.

The simulations of the detection rates seen in Fig. 5 and the
DM and S/N distributions seen in Fig. 6 match the observed
CHIME/FRB population. As these complex population parame-
ters also resulted in good fits to the observed one-off populations
by HTRU and ASKAP (see Gardenier et al. 2019), they pro-
vide a solid basis from which the intrinsic FRB parameter space
can further be explored. These fits additionally provide a good
indication that a purely repeating population could describe the
observed FRB populations. If so, observations focussing on one-
off theories such as double neutron-star mergers (Totani 2013),
double white-dwarf mergers (Kashiyama et al. 2013), or simi-
lar cataclysmic models could be dropped in favour of following
expected observational signatures from repeating models such as
from young magnetars (Metzger et al. 2019), flares from magne-
tar wind nebulae (Beloborodov 2017), or other models (see Platts
et al. 2019).

The additional exploration of parameter spaces with
frbpoppy is part of a subsequent investigation (Gardenier
2021). Further interpretation of the resulting population param-
eters will be carried out when CHIME FRBs are published.

3.5. Opportunities, uses, and further work

Our results demonstrate the value of FRB population synthesis,
also for repeating sources. frbpoppy is open source by nature to
encourage such use of FRB population synthesis. It can power
research avenues ranging from simulations of the effect of dif-
ferent input distributions, to comparative studies of detections
across various surveys. One clear result often cropping up in
our simulations is the importance of the beam pattern. Shifting
from extensive observations of single sources to probing the full
FRB population will require team-derived and published beam
patterns. Beam-pattern mapping has mostly been a focus of the
imaging domain, yet understanding the effects of beam pattern
on FRB detections will allow for much better probing of the
intrinsic parameter space of the FRB source population. This
would help in collating observations from multiple surveys to
form a single, coherent picture of the FRB population.

4. Conclusions

We aimed to investigate whether one-offs and repeaters can
emerge from the same intrinsic source population, and if selec-
tion effects explain the observed differences. We thus imple-
mented repeating FRB sources in frbpoppy, an open source
FRB population synthesis package in Python. We conclude the
following:
1. Our simulations can reproduce current multi-survey obser-

vational data by synthesising a population solely including
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repeating FRBs, provided they have a wide distribution of
repetition rates.

2. The luminosity function of FRBs can significantly impact the
observed DM distribution of repeaters versus one-off detec-
tions (i.e. apparent non-repeaters). Should the DM distri-
butions of repeaters and one-offs remain in agreement, as
suggested by CHIME data, and evidence continue to point
towards an intrinsic luminosity function described by a neg-
ative power law with more dim bursts than energetic ones, it
could potentially suggest the presence of an intrinsic differ-
ence between repeating and one-off sources.

3. Within the observed repeater population, frequent repeaters
tend to be closer and have smaller DMs. This effect was
noticed in CHIME data by Good (2020), and we use
frbpoppy to explain the inverse relationship between DM
and repetition rate. The relationship is a consequence of
point 2, and it indicates that the luminosity function of
repeating FRBs is given by a negative power law with more
dim bursts than energetic ones.

4. Fast radio burst surveys can use the observed repeater frac-
tion over time to determine whether there is any binarity in
the intrinsic repetition rate of the FRB source population.
frbpoppy is the ideal tool for such an exercise because it
can account for instrumental selection effects that are diffi-
cult to model analytically.

Overall, we thus find that the observed FRB sky can be explained
by a single population of repeating FRBs that is uniform in its
major characteristics, but where the repeat rate correlates with
other, more minor, behavioural or physical traits.
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Appendix A: Tracking celestial objects

Determining the path of a celestial object through a beam pattern
is a non-trivial challenge. To simulate the surveying of a repeat-
ing FRB population, frbpoppy incorporates functions to calcu-
late the position of objects within a beam pattern. In frbpoppy,
we approached this challenge by transforming source coordi-
nates to the coordinate system relative to the beam pattern. These
transformations differ depending on the type of telescope mount
involved.

In frbpoppy, we chose to model beam patterns in 2D matri-
ces, yet we generated source coordinates in a (3D) equatorial
coordinate system. Here, we used 3D to refer to a coordinate sys-
tem such as right ascension and declination, which by definition
describe angles on a unit sphere in 3D space. Determining the
position of a celestial object in a beam pattern therefore requires
mapping from 3D to 2D. Adopting a gnomonic projection for
this transformation allows a beam pattern to be expressed in units
of angular offset (degrees) relative to a central pointing. We fol-
lowed Snyder (1987) in expressing the gnomonic projection as
follows:

cos∆x = cos xref cos xobj + sin xref sin xobj, (A.1)

sin∆x = cos xref sin xobj − sin xref cos xobj, (A.2)

cos c = sin yref sin yobj + cos yref cos yobj cos∆x, (A.3)

∆x =
cos yobj sin∆x

cos c
, (A.4)

∆y =
cos yref sin yobj − sin yref cos yobj cos∆x

cos c
, (A.5)

with ∆x/∆y being the orthogonal offset in 2D, xref /yref the 3D

reference (or pointing) angular coordinates, and xobj/yobj the 3D
object’s angular coordinates. We note that these equations are
only valid when cos c >= 0, and they are undefined when

cos c < 0. This limit represents pointings on the sky beyond the
observable horizon of a telescope located on a sphere.

For observatories with equatorial mounts, celestial objects
remain in a constant position with respect to the beam pattern
of a single pointing of a single-dish telescope. As such, the right
ascension α and declination δ can be adopted directly as, respec-
tively, x and y in Eqs. (A.1)–(A.5). This avoids any additional
transformations of the reference and object coordinates.

Azimuthally mounted telescopes, however, do not retain a
constant angle with respect to the North Pole, leading objects
to wander through a beam pattern over the course of a single
pointing. In frbpoppy, we model detections by such telescopes
by shifting source pointings from an equatorial to an azimuthal
coordinate system. We assume a survey to start at a random point
of time in this century, and for both the relative and object coor-
dinates, we calculate the local hour angle:

LHA = LST − α, (A.6)

with the local hour angle LHA, local sidereal time LST, and right
ascension α. Taking this together with the declination δ and the

latitude of a telescope λ allows the altitude Alt and azimuth Az
to be calculated:

Alt = arcsin (sin δ sin λ + cos δ cos λ cos LHA), (A.7)

Az = arccos

(

sin δ − sin Alt sin λ

cos Alt cos λ

)

. (A.8)

For LHA > 0, an E-W correction has to be applied in the form
of Az = 360−Az. The resulting azimuth and altitude of both the

object and the reference point can subsequently be used as x and
y in Eqs. (A.1)–(A.5).

Transit observatories can be modelled in a similar fashion to
azimuthally mounted telescopes. By fixing the reference coor-
dinate to the zenith, source coordinates can be transformed into

the azimuthal coordinate system using Eqs. (A.6)–(A.8) before

making use of Eqs. (A.1)–(A.5).
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