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Abstract: Extracting gait biometrics from videos has been receiving rocketing attention given its
applications, such as person re-identification. Although deep learning arises as a promising solution
to improve the accuracy of most gait recognition algorithms, the lack of enough training data becomes
a bottleneck. One of the solutions to address data deficiency is to generate synthetic data. However,
gait data synthesis is particularly challenging as the inter-subject and intra-subject variations of
walking style need to be carefully balanced. In this paper, we propose a complete 3D framework to
synthesize unlimited, realistic, and diverse motion data. In addition to walking speed and lighting
conditions, we emphasize two key factors: 3D gait motion style and character appearance. Benefiting
from its 3D nature, our system can provide various gait-related data, such as accelerometer data and
depth map, not limited to silhouettes. We conducted various experiments using the off-the-shelf gait
recognition algorithm and draw the following conclusions: (1) the real-to-virtual gap can be closed
when adding a small portion of real-world data to a synthetically trained recognizer; (2) the amount
of real training data needed to train competitive gait recognition systems can be reduced significantly;
(3) the rich variations in gait data are helpful for investigating algorithm performance under different
conditions. The synthetic data generator, as well as all experiments, will be made publicly available.

Keywords: 3D gait data; human motion data; neural network; gait recognition; gait synthesis

1. Introduction

Human gait is one of the most complex phenomena combining efforts of the neural,
muscle, and skeletal systems, with mutual interaction from the external environment. It
contains abundant information reflecting some unique features of a person, and therefore
has great potential in various applications, especially human recognition. The discrimi-
nation of human gait has been intensively investigated in the research of biomechanics,
physical medicine, and psychological studies [1].

Compared with other biometric identification methods (such as fingerprints, face, or
iris biometric modalities), vision-based gait recognition does not require the cooperation
or even awareness of the individual under observation and therefore has been attracting
increasing attention [2]. However, accurate recognition of human gait is still challenging
due to (1) the inconspicuous inter-class differences between different people such as
walking style and health condition; (2) the significant intra-class variations from the same
person in dynamically-changing scenarios such as different walking speeds, viewpoints,
clothing, and belongings; and (3) complex surveillance environments such as cluttered
environments, illumination changes, partial occlusions, and crowds of people.

Recently, the popularity of deep neural networks stimulated its usage in gait recog-
nition [3–5]. Adequate gait data are the prerequisite of many gait recognition algorithms,
especially for mainstream supervised methods, and the size of the gait dataset should
be sufficiently large in order to reflect the variety of factors and their combinations. Ex-
isting works on gait dataset construction are still far from this demanding goal. Taking
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the representative OU-ISIR Gait Database [6] as an example, although declared to be the
largest dataset in the world (including more than 60,000 subjects), data were collected
under a fixed viewpoint and environment. A potential solution for these problems is using
highly realistic synthetic data generated from virtual worlds [7–9]. We can automatically
annotate synthetic data for training/validation and conveniently collect samples in extreme
or challenging circumstances (such as occlusion and poor illumination). Even more im-
portant, synthetic data allow us to pre-train the surveillance system so that it can be used
immediately without data collection and training. However, it is non-trivial to synthesize
data for gait analysis. The major challenge is that we need to precisely control the variation
of synthesized gait style to balance inter-subject and intra-subject differences.

In this paper, we present a framework to explore the gait space from various aspects
(including camera, illumination, clothes, motion style, etc.). Our method has two major
advantages: (1) our method can generate an unlimited number of gait data with arbitrary
combinations of influential factors; (2) we can provide accurate metrics for the purpose of
gait analysis, including gait energy image, inertial data, ground force, etc. Figure 1 shows
the overview of the proposed framework. This work is, to the best of our knowledge,
the first one to simultaneously consider the variations of both motion style and character
appearance. In particular, we emphasize the synthesis of personalized yet variant gait
sequences, which is rarely discussed in existing motion synthesis and editing works. The
technical contributions of this paper include:

• We propose a complete framework to explore gait data generation for the purpose of
synthesizing unlimited, realistic, and diverse motion data. These data could serve as
the training database for learning-based methods in gait recognition, etc.

• We develop a semantic motion style exploration method that controls the motion style
via a deep neural network and interpolates motion sequences of different lengths.

• We introduce an appearance parameterization model capable of generating virtual
characters with different weight, height, girth, clothing, etc.

Figure 1. Synthesizing gait data for learning-based gait analysis.
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2. Related Work
2.1. Gait Recognition

Gait recognition methods can be roughly categorized as model-based and appearance-
based [2]. As the name implies, model-based approaches [10] directly extract human
body structure from the images. The main difficulty with these methods is the precise
estimation of model parameters from image sequences, which requires a high image
resolution with a significant computational burden. Appearance-based methods [3,4,11–13]
mainly focus on extracting gait features from captured image sequences regardless of
the underlying structure. Therefore, this approach can perform recognition at lower
resolutions, which makes them suitable for outdoor applications when the parameters
of the body structure are difficult to estimate precisely. Nonetheless, due to the human-
crafted gait features, it is extremely hard for existing methods to break through feature
representation bottlenecks when faced with the gait and appearance changes of a walking
person with massive differences in walking speed, viewpoint, clothing, and object carrying.
A joint learning strategy is adopted by some researchers to address these limitations. For
example, Makihara et al. [14] jointly learned intensity and spatial metrics under a unified
framework and alternately optimized it by linear or ranking support vector machines,
while Zhang et al. [15] combined two complementary representations, unique gait and
cross gait, to boost the performance of gait recognition. Different from these joint learning
methods, Zhang et al. [16] took an opposite strategy to disentangle pose and appearance
features from RGB imagery explicitly and generated gait features automatically through
an LSTM-based integration of pose features over time. Our purpose is to construct an
effective and powerful gait data generator with the synthetic paradigm, serving the various
requirements in training and validation of these gait analysis models.

2.2. Gait Data Collection

A common problem encountered in gait recognition is the lack of enough gait data. To
address the problem, researchers [6,17,18] constructed various gait database with different
emphases. The SOTON database [19], mainly for gait recognition, contains hundreds of
subjects with limited covariates such as views, shoes, clothing, and walking speed. The
USF dataset [17], as one of the most frequently-used gait recognition dataset, is composed
of 122 subjects only. The CASIA database [18] considers additional factors, such as night
scenario, multi-views, different clothing, and carrying status, but contains a small number
of 124 subjects. The OU-ISIR database [6], targeting age estimation, contains 60,000 subjects
covering different ages. A common issue with these databases is that they are still too
small to contain enough variation in those involved factors. Such variations are essential
aspects of the statistically reliable evaluation in many gait analysis applications. A recent
work [20], described as so far the world’s largest gait database, mainly targeted performance
evaluation of gait-based age estimation. There are also some general performance capture
datasets [21] being used in gait motion synthesis. Some works [22] synthesized new data by
distortion or blending of an existing one. However, such methods can only mimic limited
and low-quality variations in viewpoint. Our method can also be considered a synthetic
method but in a more intrinsic way. In addition to synthesis from images, we build a
complete 3D framework to simulate factors involved in gait analysis such as environments,
anthropometric measures, outfit clothing, and motion styles.

Using synthetic data for model training is a recently popular strategy to address the
lack of sufficient data in learning-based methods such as object tracking [7], optic flow [23],
scene understanding [24,25], pedestrian detection [26], human information estimation [27],
action recognition [28], etc. However, the reality gap prevents the strategy from becoming
practically useful: a model trained in a simulated environment may not be applicable
to real-world scenarios due to numerous discrepancies between the two environments.
Two solutions have been proposed to bridge the gap: extreme realism [7,8] and domain
randomization [29,30]. The former attempts to improve the simulation similarity with the
real-world environment, while the latter aims for exposing the model to a vast range of
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simulated environments at the training stage instead of just a single synthetic one. Our
work shares inspirations with [31] on the necessity to balance intra-subject and inter-subject
variations. While [31] focused on face synthesis, which is different from gait, and the
dynamic and subtle nature of gait increases the difficulty.

2.3. Identity Aware Data Synthesis

Learning disentangled representations has been a fundamental problem since the rise
of machine learning. Many researchers are especially interested in extraction of identity
attributes due to its vast involvement in various applications. Some researchers investi-
gated the problem of identity presentation using information such as identity labels [32]
and identity features [33], but this suffered from incomplete identity maintenance. FaceID-
GAN [34] adopted a three-player competition architecture where the generator competes
with a discriminator and an identity classifier for quality and identity preservation, re-
spectively. However, the quality of the synthesized image is still unsatisfactory. In their
followup, FaceFeat-GAN [35], a two-stage strategy is proposed, with the first stage to syn-
thesize facial features, while the second stage is to render high-quality images. The work of
Bao et al. [36] allows synthesis of faces with ID outside the training set, and no annotations
of attributes are required. In [37], a novel disentanglement method with minimal super-
vision is presented and applied to the human head to separate identity from other facial
attributes. The work of [38] deals with multimodal information, performing identity-aware
textual–visual matching with latent co-attention. Identity awareness also attracted a lot of
attention from 3D graphics. In [39], Zhou et al. investigated the generation of expressive
talking heads from a single facial image with audio as the only input, with content and
speaker information disentangled from the input audio signal. With the incorporation of
multimodal context and an adversarial training scheme, Yoon et al. [40] proposed a method
to generate human-like gestures that match in speech content and rhythm.

3. Diverse and Personalized Walking Motion Synthesis

Generating diverse yet personalized 3D gait data is the core of the whole paradigm.
Our basic idea is to construct a motion space from a small set of motion data and then
sample in the space to generate unlimited motion data. To avoid being constrained in a
small interpolation space, the set of motion data consists of various motion types such as
walking, running, jumping, etc. However, two problems need to be addressed:

• Given synthesized motion data, we should be able to determine whether it is a gait
motion or not.

• As mentioned before, we need to balance between inter-subject and intra-subject
differences carefully.

Our solution is illustrated in Figure 2: we feed a large motion data set into a deep neural
network and learn an effective feature representation that is encoded in the final hidden
unit layer; we then extract the motion space for synthesis from the feature representation
and sample in the space to generate new data. To validate whether the synthesized data
are gait or not, we perform content embedding on the learned high-dimensional feature
vector according to a distance metric related to their content. To determine whether the
synthesized gait belongs to a person or not, we introduce ID embedding to cluster gait data
from the same person together. Our method investigated various combinations of feature
vector and distance metrics to find the optimal ones for the two embeddings.
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Figure 2. Flowchart of our gait synthesis framework.

3.1. Content Embedding

Feature learning. We learn feature representation from a large training set consist-
ing of several publicly available sources [41–43] with a convolutional auto-encoder [44].
Contrary to the general motion editing method, we focus on synthesizing valid and per-
sonalized gait motion. Only one layer is used to encode the motion, as multiple layers of
pooling/de-pooling can result in blurred motion after reconstruction due to the pooling
layers of the network reducing the temporal resolution of the data. An additional feed-
forward network will later be used to reconstruct the motion to allieviate the lack of feature
abstraction due to the use of one layer only (for details please refer to [44]).

Data from different sources are retargeted to a uniform skeleton structure (with the
same hierarchy and link lengths) and converted from the joint angle representation into a
joint position representation. Absolute coordinates in both Euler space and coordinates
relative to skeleton root are investigated. The auto-encoder performs a one-dimensional
convolution over the temporal domain, independently for each filter. The network provides
a forward operation Φ, which receives the input vector X in the visible unit space and
outputs the encoded values H in the hidden unit space:

Φ(X) = ReLU(Ψ(X ∗W0 + b0)) (1)

The backward operation Φ−1 does a reverse task to go back from the hidden unit
space to the visible unit space:

Φ−1(H) = (Ψ−1(H)− b0) ∗ W̃0, (2)

where ∗ is the convolution operation in both Equations (1) and (2).
Embedding. We investigate the clustering effects of different metric definitions (l1-

norm, l2-norm, squared Euclidean, cosine distance, and Mahalanobis distance) on either
the original motion vector oi input to the auto-encoder or the hidden unit vector hi of the
auto-encoder. The Mahalanobis distance is defined for the hidden unit vector:

d2
c (hi, hj) = (hi − hj)

TMc(hi − hj), (3)

where c denotes the motion type, such as walking, running, jumping, etc., and Mc denotes
the Mahalanobis matrix learned with a pair learner [45]. Hidden unit vectors are paired
and labeled with the ground truth of a specific motion type.

3.2. ID Embedding

The key to ID embedding is to uniquely identify different personal styles. Although
the Gram matrix encodes the style of the data [44], the style here is a more general concept
relating to the status of a person (such as injury, depression), not the unique personal style
that consistently arises during different walking cycles, even under different statuses.

The key point is that we need to differentiate everyone clearly, while the different gait
sequences of the same person should cluster together. Thus, it is quite predictable that
simply using l1-norm, l2-norm, or even the Bhattacharyya distance defined on the Gram
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matrix will not work well. Similarly, we investigate the performance of different metrics
and find the Mahalanobis matrix Mg, defined by reshaping the Gram matrix g into a vector,

d2
i (gi, gj) = (gi − gj)

TMg(gi − gj), (4)

serves the purpose best as shown in the experiments.

4. Consistent Subject Appearance Variation
4.1. Parametric Body Adjustment

The user is allowed to adjust the shape of the subject’s body through semantic at-
tributes like weight, height, girth, etc. (Figure 3a). We follow previous example-based
strategy [46,47]. A morphable human shape model Q is constructed by applying principal
component analysis (PCA) to a database of registered dense human mesh models with
consistent connectivity and correspondence. (Here, we use the publicly available database
provided by [46]). Linear regression is then used to learn the mapping f : P → Q from
semantic attributes P to the morphable model Q (described by an s-dimensional vector):

q = f (p) = T · p + r, (5)

where Ts×t is the relation matrix, p = [p1, p2, . . . , pt] is a vector of the t semantic attributes,
q = [q1, q2, . . . , qs] is a point in the morphable model space Q, and vector rt×1 is a cor-
responding residual. Both T and r can be solved through a least-squares solution by
substituting related information from exemplary models into Equation (5).

Figure 3. Consistent subject appearance exploration: (a) interface for semantic human shape explo-
ration: (b) source human model; (c) target human model; (d) overlap of source and target human
model; (e) source human model with source cloth; (f) target human model with source cloth; (g) target
human model with adapted cloth; (h) overlap of source and adapted cloth.

4.2. Clothing Adaptation

We initially put clothes and other accessories on a neutral human model. When a
new human shape model with expected semantic attributes is generated, we also need
to transfer clothes and accessories onto the new model. We design a novel surface-based
deformation method to conduct the transfer. Let H0 (with vertices {v0

0, v0
1, . . . , v0

n}) be
the neutral human mesh model, A0 (with vertices {u0

0, u0
1, . . . , u0

m}) be the mesh model of
accessories (mainly clothes) attached to H0, and H1 (with vertices {v1

0, v1
1, . . . , v1

n}) be the
human mesh model with the expected semantic attributes. Our purpose is to determine the
vertex coordinates u0

i on A1, the mesh model of accessories attached onto H1. Our basic
idea is to firstly estimate a transformation Rj from v0

j to v1
j . For each vertex u0

i , we find

its k neighbors on H0. For each neighbor v1
ij, we apply its transformation to u0

i to get the

adapted position with respect to v1
ij:

u1
ij = Riju0

i , (6)

and the position of u1
i can finally be calculated by weighted blending of all u1

ij:

u1
i = w0 · u1

i0 ⊕ w1 · u1
i1 . . .⊕ wj · u1

ij . . . (7)
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where the weighting wj is defined as the normalized distance between u0
i and v0

ij:

wj =
‖ u0

i − v0
ij ‖

2 (n0u
i · n

0v
ij )

∑k∈N(i) ‖ u0
i − v0

ik ‖2
, (8)

where n0u
i and n0v

ij are the normals of the corresponding surfaces on u0
i and v0

ij, respectively.
The transformation is estimated in an as-rigid-as-possible manner [48] with a rotation

matrix Ri from v0
i to v1

i calculated by minimizing the least squares deviation:

E(M0
i , M1

i ) = ∑
j∈O(i)

wij ‖ (v1
ij − v1

i )− Ri(v0
ij − v0

i )) ‖
2, (9)

where Mi consists of v0
i and its one-ring neighbors O(i). The rotation matrix Ri can be

derived from the singular value decomposition of the covariance matrix Si:

Si = ∑
j∈O(i)

wije0
ije

1T
ij , (10)

where e0
ij = v0

ij − v0
i and e1

ij = v1
ij − v1

i . Let Si = Ui∑iVT
i , then Ri = ViUT

i .
For the blending operator ⊕, we have tried various methods including simple linear

blending, dual quaternion blending, etc. Results are reported in Section 5.4.

4.3. Skeleton Update

When the human shape is altered, the corresponding skeleton also needs to be up-
dated to ensure joint positions match the body well. For each joint Ji of the skeleton, we
can define a cross-section and intersect with the human surface to get a cross contour
Ci = {vi0, vi1, . . . vik}. We then encode the position pi of Ji with the mean value coordinate
b = {b1, b2, . . . , bk} related to Ci. The Ji

′ position will be updated through the mean value
coordinate interpolation when the human shape is changed:

pi =
k

∑
j=1

bjvij. (11)

5. Experimental Results
5.1. Implementation Details

We have implemented the whole paradigm and developed a gait generator with Unity
3D. The data generator and related materials will be made publicly available to support
the reproducibility of our results and any future developments. The program provides
various functionalities to change the view perspective, scene types, human appearance,
and lighting conditions. The program can also synthesize various motion patterns, includ-
ing walking, running, etc. The program runs on a standard PC with 16 GB of memory,
CPU i7-9700 3.6 Ghz, and GPU RTX 1080Ti. We here focus on three locomotion patterns:
walking, running, and jumping, which are typically investigated by the state-of-the-art gait
recognition methods. For each motion type, we extract the motion sequence as segments of
one complete cycle and apply the technique of time warping to convert into sequences of
consistent frames (N = 240). In total, our database contains 161, 36, and 23 segments for
walking, running, and jumping, respectively.

5.2. Visual Demonstration of Factor Variations

We first demonstrate the ability of our method to change a variety of factors, which
may significantly affect the accuracy and robustness of state-of-the-art recognition methods.
The factors include:

View variation. As mentioned before, our paradigm can easily generate gait data under
various camera positions (see Figure 4a).
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Scene variations. Our gait generator also supports the changes in the scenes, from simple
lab environment to a complex real street scenario (see Figure 4b).
Human appearance variation. The user can semantically control the shape of the human
model by adjusting attributes like weight (Figure 4c, top). The user can also change the
accessories and clothes on a person (Figure 4c, bottom).
Lighting variation. We can also simulate different lighting conditions. This is particularly
common for surveillance cameras on the street (see Figure 4d).
Motion variations. Unlimited motion data of walking, running, and jumping can be
synthesized from the PCA motion space.

In extreme cases, multiple factors may arise simultaneously. For example, a person
may wear different clothing and walk in different scenes, which may introduce occlusions
by the external environment (e.g., the trolley in Figure 4e).

Figure 4. Variation of factors: (a) viewpoint variation; (b) scene variation; (c) appearance variation;
(d) lighting variation; (e) extreme cases.

5.3. Gait Style Analysis

We can classify the motion data according to content embedding statistics and identify
a synthesized walking series according to ID embedding statistics (Table 1). We investi-
gate the clustering performances on different feature vectors: (1) skeleton joint position
vector consisting of absolute coordinates (Ca) and relative coordinates (Cr); (2) hidden unit
vectors of auto-encoder corresponding to absolute (Ha) and relative (Hr) cases; (3) Gram
matrix reshaped vectors corresponding to absolute (Ga) and relative (Gr) cases. We also
test with different distance metrics including l1-norm (L1), l2-norm (L2), and the Maha-
lanobis distance (Lm). If we regard the motion of the same type as one cluster, the average
distance between all sample points reflects the cluster size. To better differentiate differ-
ent motion types, we aim to maximize the distance between two clusters and define the
following measure:

D =
DI−J

DI + DJ
(12)

where DI , DJ are the average distance of all samples in each cluster I, J, and DI−J is the distance
between the centroids of two clusters. We define the measures DC =

DW−R
DW+DR

, DP = DP1−P2
DP1+DP2

for the content and ID embedding in Table 1.
We here present two motion types (walking and running) and two persons. Exper-

imental results show consistent findings for other motion types and more persons. The
statistics in Table 1 reveal the following facts:

• The use of absolute coordinates consistently outperforms the relative coordinates
across most scenarios. The exceptions are only 5 out of 36 cases, in which the relative
coordinates show minor advantages over the absolute ones. The superiority of ab-
solute coordinates shows that the joint trajectories in the global world better reflect
the motion content and personal style. We believe the movement of root joints is
significant for differentiating walking and running as well as different subjects (people
walk or run at different preferred speeds).

• The use of l2-norm performs best in maximizing the distance in both content and
ID embedding. This is shown in the maximal value of DC, DP. This shows that
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such a distance metric follows the L2 principle. The potential reason for causing the
under-performance of the Mahalanobis distance is a relatively small dataset.

• Ga is optimal for both the content and ID embedding, as shown in the bold numbers.
This confirms the usefulness of our auto-encoder in extracting the latent features for
both the motion content and personal style.

Table 1. Motion embedding statistics. The columns of Dist and Std list the average distance and
standard deviation of samples from the same motion type and person. W–R indicates the distance
between the cluster centroid of walking and running, while P1–P2 indicates the distance between the
cluster centroid of two persons: P1 and P2.

Feature
Vector Metric

Content Embedding Distances ID Embedding Distances

Walk Run W–R P1 P2 P1–P2

Dist DW Std Dist DR Std Dist DW–R DC Dist DP1 Std Dist DP2 Std Dist DP1–P2 DP

Ca

L1 53.22 12.25 24.41 15.16 95.25 1.27 13.79 13.98 11.53 11.17 62.67 2.48

L2 21.88 6.61 8.17 4.84 25.89 0.86 6.82 7.23 5.36 5.07 47.12 3.87

Lm 2.77 0.92 1.93 1.22 3.24 0.81 1.12 0.92 1.61 1.06 2.91 1.07

Cr

L1 73.67 26.63 38.10 18.32 100.12 1.00 40.22 26.11 34.95 17.20 79.77 1.30

L2 43.50 18.78 24.41 12.62 60.23 0.89 34.20 21.90 29.70 16.57 51.06 0.80

Lm 1.98 0.57 0.96 0.50 3.20 1.09 0.89 0.55 0.78 0.35 2.43 1.46

Ha

L1 48.11 10.83 23.26 14.38 71.18 1.00 10.71 10.64 6.64 8.52 49.76 2.87

L2 17.30 4.82 6.73 4.06 42.67 1.78 5.27 5.56 3.08 3.86 36.27 4.34

Lm 3.26 1.04 2.78 1.79 3.24 0.54 1.10 0.91 0.90 1.03 2.93 1.47

Hr

L1 64.90 16.94 31.67 12.84 71.86 0.74 33.93 16.91 29.39 11.19 65.28 1.03

L2 28.79 8.79 15.40 7.07 42.08 0.95 22.37 11.10 18.21 7.27 37.49 0.92

Lm 2.89 0.71 1.52 0.61 3.24 0.73 1.38 0.59 1.15 0.38 2.70 1.07

Ga

L1 575.62 178.39 621.93 361.30 1423.82 1.19 112.60 98.07 42.51 32.51 719.86 4.64

L2 250.40 74.48 242.08 147.29 953.01 1.94 71.18 61.89 27.94 21.78 494.09 4.98

Lm 2.16 0.74 3.17 1.96 3.23 0.61 0.82 0.91 0.33 0.33 2.90 2.52

Gr

L1 2215.04 1167.85 1352.18 704.60 1954.28 0.55 1603.36 1019.97 1081.91 535.17 1008.38 0.38

L2 1302.38 676.76 830.79 421.47 1312.16 0.62 1276.79 786.57 833.78 404.82 823.57 0.39

Lm 2.10 0.95 1.14 0.62 3.09 0.95 1.22 0.65 0.91 0.42 0.70 0.33

Note: For the two feature vectors u and v, L1 =‖ u− v ‖, L2 =‖ u− v ‖2, and Lm =‖ u− v ‖m (m > 2).

5.4. Subject Shape Variation

Figure 5 shows the changes in human shape when semantic parameters are altered.
For cloth adaptation, we tested a different number of human shape vertices k around each
cloth vertex. As we can see from Figure 6, the adaptation gets better with the increase in k;
however, the discrepancy is negligible when k ≥ 6. We also compare the different blending
operators and presented the results in Figure 7, which reveals better effects are achieved
with dual quaternion blending.
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Figure 5. Parameterized editing of a human body: (a) Original model; (b) Height + 10; (c) Girth − 30;
(d) Hip + 20.

Figure 6. Effect of neighborhood size k: (a) k = 1; (b) k = 3; (c) k = 6; (d) k = 10; (e) zoom in.

Figure 7. Effect of interpolation methods: (a) linear interpolation; (b) zoom in; (c) dual quaternion
interpolation.

5.5. The Real-to-Virtual Gap and Closing

The real-to-virtual gap is a common problem in most methods that use synthetic data
to solve real world problems. To study the problem in our paradigm, we train the GaitSet
model [5] with real-world and synthetic data. GaitSet regards gait as a set of gait silhouettes.
It takes a set of gait silhouettes as input, and then uses a CNN to extract frame-level features
from each silhouette independently. After that, a so-called set pooling operation is used
to aggregate frame-level features into a single set-level feature. Finally, a structure called
horizontal pyramid mapping is used to map the set-level feature into a more discriminative
space to obtain the final representation, from which gait can be recognized.

Training was conducted under three different settings as was done in [5]: small-
sample training (with 24 subjects), medium-sample training (with 62 subjects), and large-
sample training (with 74 subjects). We generate the training set by first sampling the area
corresponding to walking on the motion manifold, and then classifying them into different
subjects according to ID embedding. We picked up 74 subjects out of 124 subjects in the
CASIA-B dataset [18] as real-world training data. They will be mixed with synthetic data
accoording to specified proportions to form the whole training set. The rest of the CASIA-B
and the OU-MVLP dataset [6] were used for testing of both the real data-trained system
and the synthetic data-trained system.

From Figure 8a,c, we can observe a clear gap that was narrowed down when we
gradually added real world data when training the synthetic model. Generally, the synthetic
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model can gain accuracy in competing with the real model when about 30% percent of real
data are added in the training. However, when running both models on the OU-MVLP
test set, we found that there is a significant decrease in the accuracy but the gap was not so
apparent. This observation indicates that the gap may be due not to the real-to-virtual but to
the translation of the learned model to another domain. Another interesting phenomenon
was that when we introduced real data in the training of the synthetic model, the accuracy
could even outperform the real model. The reason behind this could be found in the
hypothesis of domain randomization [29]: if the variability in the simulation is significant
enough, models trained in simulation will generalize to the real world with no additional
training. By mixing real and synthetic data together, we increased the variability of training
data and thus led to an increase in performance.

Figure 8. Performance gap and closing: the first row plots curves of accuracy against training set size
for the CASIA-B test set (a) and OU-MVLP test set (b); the second row shows accuracy curves with
real data added in the training of the synthetic model for the CASIA-B test set (c) and OU-MVLP test
set (d).

5.6. Applications

The direct application is gait recognition, which is also the main motivation for this
research. Our generator can be used to provide training data for recognition model training,
to analyze and compare the performance of different recognition methods. Compared with
existing datasets, a main advantage of our generator is the ability to provide many different
forms of gait data. We can provide silhouette-based features like GEI images for appearance-
based methods. As we can see from Figure 9a, our method provides much better silhouettes
than extraction from videos using cutting-edge methods like mask-RCNN [49].
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Figure 9. Performance of mask extraction: columns 1–4 (a) show the comparison between mask-
RCNN [49] and our system; columns 5–6 (b) show the extraction quality of mask-RCNN under
various lighting conditions; column 7 (c) shows mask extraction of mask-RCNN with occlusion.

We can also generate a skeleton directly for those model-based approaches and provide
accelerometer data (Figure 10a) or depth images (Figure 10b) for gait analysis algorithms
relying on them [50,51]. Although the accelerometer may be too smooth compared with
the real one, the issue can be allieviated with appropriate noise introduced.

Figure 10. Simulated gait data other than silhouette provided by our system: (a) accelerometer data;
the left shows the case with a mobile device represented by the red square in the trouser pocket,
while the right shows the case in a jacket pocket; (b) depth map for two different scenes.

With the synthetic environment, we can easily investigate the performance of related
algorithms under various extreme circumstances. Figure 9c shows how mask extraction
performs under different lighting conditions, while Figure 9b shows mask extraction with
occlusion. Additionally, our method can also be helpful in multi-subject gait recognition
(Figure 4c bottom), which has not been investigated so far.

Finally, our method can also be used in scenarios where a new surveillance system
is installed in a novel location without any instances of real gait data, similar to [52]. We
can then reconstruct the 3D scene and use our method to generate training data for the
recognizer.
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6. Conclusions

This paper investigates how synthetic data can be used for learning-based gait analysis.
A 3D gait generator is realized to successfully simulate various factors involved in gait
analysis. Due to its 3D nature, the generator can provide accurate data in various forms,
such as silhouettes, accelerometers, and depth maps. We can generate valid walking motion
while producing diverse variations of inter-subject and intra-subject differences in style.
We design an exploratory character appearance editing method to allow for altering the
semantic attributes like weight, height, and girth, etc. The dressing will automatically
adapt to the shape in real time. Experiments showed that the real-to-virtual gap can be
effectively alleviated when real-world data are introduced to fine-tune the synthetic-trained
model. We also show how the simulation of extensive gait-related factors can be helpful
in investigation of gait recognition algorithms under various circumstances, especially
extreme ones.

There are several directions that are worth our future efforts. So far, we can only
achieve primary balance among inter-subject and intra-subject differences in walking
motion synthesis. We would like to seek a richer and more semantic walking motion
synthesis using linguistic descriptions, such as age, gender, energy, emotion, etc. Equipped
with the generator, we would like to study more challenging gait analysis problems such
as multi-subject identification and gait analysis with extreme conditions. Our current
experiments are mainly designed around silhouette-based gait recognizers. We would like
to explore how other types of data, such as accelerometers and depth maps provided by
our generator, can be used in gait analysis.
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