
Journal of Arti�cial Intelligence Research 8 (1998) 93{128 Submitted 5/97; published 3/98

Synthesizing Customized Planners from Speci�cations

Biplav Srivastava biplav@asu.edu

Subbarao Kambhampati rao@asu.edu

Department of Computer Science and Engineering

Arizona State University, Tempe, AZ 85287.

Abstract

Existing plan synthesis approaches in arti�cial intelligence fall into two categories {
domain independent and domain dependent. The domain independent approaches are ap-
plicable across a variety of domains, but may not be very e�cient in any one given domain.
The domain dependent approaches need to be (re)designed for each domain separately, but
can be very e�cient in the domain for which they are designed. One enticing alternative
to these approaches is to automatically synthesize domain independent planners given the
knowledge about the domain and the theory of planning. In this paper, we investigate
the feasibility of using existing automated software synthesis tools to support such synthe-
sis. Speci�cally, we describe an architecture called CLAY in which the Kestrel Interactive
Development System (KIDS) is used to derive a domain-customized planner through a
semi-automatic combination of a declarative theory of planning, and the declarative con-
trol knowledge speci�c to a given domain, to semi-automatically combine them to derive
domain-customized planners. We discuss what it means to write a declarative theory of
planning and control knowledge for KIDS, and illustrate our approach by generating a class
of domain-speci�c planners using state space re�nements. Our experiments show that the
synthesized planners can outperform classical re�nement planners (implemented as instan-
tiations of UCP, Kambhampati & Srivastava, 1995), using the same control knowledge. We
will contrast the costs and bene�ts of the synthesis approach with conventional methods
for customizing domain independent planners.

1. Introduction

Given the current state of the world, a set of desired goals, and a set of action templates,
\planning" involves synthesizing a sequence of actions which when executed from the initial
state will lead to a state of the world that satis�es all the goals (Fikes & Nilsson, 1990;
McAllester & Rosenblitt, 1991; Kambhampati, 1997b). Planning is known to be a combina-
torially hard problem, and a variety of approaches for plan synthesis have been developed
over the past twenty years. These approaches can be classi�ed into two broad categories
{ domain independent and domain dependent. Domain independent planners do not make
any assumptions about the planning domains, and can thus accept and solve planning prob-
lems from any domain. In contrast, domain speci�c planners are speci�cally designed for a
single domain and thus have the dynamics and control knowledge of the domain hard-coded.

The advantage of domain independent planning is that once a planning algorithm is
designed, it can be used in any domain by simply changing the action template that is
input to the algorithm. In contrast, domain-speci�c planners would have to be \modi�ed"
or \re-designed" for each domain. On the
ip-side, domain-speci�c planners tend to be more

c
1998 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Srivastava & Kambhampati

down(eg. Planes don’t touch
packages)without delivering

(Action/operator description)

Control Knowledge

Dynamical Model

Problem

KIDS

planning
Domain Knowledge

- FSS

- BSS

Plan

Theory of refinement

- PSS

- HTN

Customized
Planner

Figure 1: Architectural overview of planner synthesis with KIDS in the CLAY approach.
The theories of re�nement planning and domain knowledge are declaratively spec-
i�ed to KIDS which in turn combines them to produce a customized planner for
the domain. The resulting planner, like conventional planners, can handle any
planning problem from the domain. For a detailed description, see Section 3.

e�cient in their designated domains than domain independent planners since the latter may
not be able to e�ectively exploit the control knowledge of every domain.

Not surprisingly, a signi�cant amount of work in AI planning has been aimed at improv-
ing the performance of domain independent planners by dynamically customizing them to
a given domain. This customization is done by providing the domain writer the ability to
control the search of the planner, as is the case in task-reduction planning (Kambhampati
& Srivastava, 1996; Kambhamapti, 1995), or by using learning techniques (Kambhampati,
Katukam, & Qu, 1996; Minton, 1990). Although several approaches have been developed
for learning to improve planning performance, at present they are not an e�ective match
for the e�ciency of domain dependent planners.

One intriguing alternative is to automatically synthesize domain dependent planners
given the knowledge about the domain and the theory of planning. In this paper, we inves-
tigate the feasibility of using existing automated software synthesis tools to support such
a synthesis. We introduce the CLAY architecture which supports the synthesis of domain
dependent planners using KIDS, a semi-automated software synthesis system. Speci�cally,
as shown in Figure 1, a declarative theory of plan synthesis (theory of planning) is combined
with the control knowledge speci�c to a given domain in a semi-automated software syn-
thesis system called Kestrel Interactive Development System { KIDS (Smith, 1990, 1992a,

94

Synthesizing Customized Planners from Specifications

1992b) to derive a customized planner for the domain. We will draw the declarative theory
of plan synthesis from domain independent planning techniques. Domain speci�c control
knowledge will be expressed in terms of the types of plans that are preferred in the given
domain.

Such an approach strikes a promising middle-ground between domain independent and
domain dependent planners. The theories of planning are encoded independent of domains,
and the domain control knowledge can be encoded independent of the speci�c planning
theory being used. The customization step compiles the domain control knowledge into the
planning algorithm and ensures that the resulting planners are able to exploit the structure
of the domain.

1.1 Overview of the Synthesis Approach

As brie
y mentioned above, the practicality of our approach is predicated on the availability
of a software synthesis system capable of deriving code from formal speci�cations. KIDS is
a powerful semi-automated system for development of correct and e�cient programs from
formal speci�cations. Given a domain theory and the input/output speci�cation of a task,
KIDS system helps in synthesizing a program capable of solving the task. Here, the term
theory refers to any useful body of knowledge. Task refers to any assignment that is given
to KIDS for solving and the solution is a program for that task. The input to KIDS is a task
theory comprised of the task speci�cation and a declarative description of useful concepts
and rules to reason in the task space. In this research, we give planning as a task to KIDS
and expect it to synthesize and return a planner as the solution. The planner can then take
planning problems as input and return results (plans).

In order to support planner synthesis, we have to develop and input a theory of planning
to KIDS. As discussed in (Kambhampati, 1997b), the traditional plan synthesis techniques
can be described in terms of a common plan representation, with di�erent planners corre-
sponding to di�erent ways of re�ning the partial plans such as progression, regression and
plan-space re�nements (see Section 2.2). Consequently, our planning theory will consist of
a speci�cation of the planning task (in terms of input and output data types) and one or
more re�nement theories. Since we are also interested in domain-customized planners, we
have to provide the necessary domain knowledge to KIDS.

Given these inputs, KIDS semi-automatically synthesizes a program (in this case, a do-
main dependent re�nement planner) using generic algorithm design tactics (such as branch
and bound, global search). The resulting planner, like conventional planners, can handle
any planning problem from the domain. See Section 3 for more details.

1.2 Outcomes

To understand the e�cacy of plan synthesis in CLAY, in this paper, we concentrate on the
synthesis of planners using state-space re�nement theories.1 Empirical evaluation shows
that these synthesized planners can be very e�cient. For example, in the blocks world
domain where the goal was stack inversion, a KIDS synthesized planner solved a 14 blocks
problem in under a minute. In the logistics domain, a problem with 12 packages, 4 planes

1. In future, we plan to extend our approach to plan-space and task-reduction re�nements.

95

Srivastava & Kambhampati

and 8 places was solved in under a minute. Similarly, in the Tyre domain (Russell & Norvig,
1995), the \�xit" problem was solved in under a minute. To put these performance results
in perspective, we compared KIDS' synthesized planners to a set of classical planners im-
plemented as the instantiations the UCP planning system (Kambhampati & Srivastava,
1995). As described later, instantiations of UCP can emulate a spectrum of classical plan-
ners, including the popular SNLP planner (McAllester & Rosenblitt, 1991), by selecting
the appropriate re�nement. In our experiments, the best of the KIDS' synthesized planners
outperformed the best of the UCP instantiations when given the same domain-speci�c infor-
mation. We hypothesize that this is because KIDS can pro�tably fold-in the domain-speci�c
control knowledge (i.e., the domain theory) into the planning code.

1.3 Organization

The rest of this paper describes the details of our approach, called the CLAY architecture
for planner synthesis. The paper is organized as follows: after a brief review of traditional
plan synthesis approaches and software synthesis on KIDS in Section 2, we walk through
the CLAY framework in Section 3. Section 4 presents a discussion on the nature of planners
synthesized by our approach. Section 5 empirically evaluates the synthesized planners and
compares them to classical planners. Section 6 discusses related work. Section 7 describes
our conclusions and discusses the costs and bene�ts of the synthesis approach.

2. Background

In this section, we brie
y discuss relevant background on software synthesis with KIDS,
and plan generation that will be needed to follow the rest of the paper.

2.1 Kestrel Interactive Development System

Before discussing KIDS, we start with some preliminaries on automated software synthesis.
The holy grail of software synthesis is to :

� Produce highly reliable, adaptable software in a greatly reduced development time.

� Automate detail intensive tasks in software production that are largely non-creative
in nature.

A program, or program segment, P , is correct with respect to an initial condition (asser-
tion) I and a �nal condition (assertion) F if and only if whenever I is true prior to the exe-
cution of P , and P terminates, F will be true after the execution of P is complete. Using a
formal speci�cation of the task, a knowledge-base and an inference system, knowledge-based
software synthesis proceeds with an iterative speci�cation re�nement process to specialize
the general knowledge of program development (in the form of algorithm theories) to solve
speci�c tasks on hand. The re�nements are sound in that if the speci�cation is correct, the
synthesized program (code) will be correct.

KIDS is a program-transformation framework for the development of programs from
formal speci�cations of a task. KIDS runs on Sun workstations and is built over REFINE,
a commercial knowledge-based programming environment and a high-level language. The

96

Synthesizing Customized Planners from Specifications

Background Knowledge
(Domain Dynamics, Control

 knowledge, distributive laws etc.)

Software Specification
(Input, output specification of a planner)

Un-optimized algorithm
(A planning algorithm)

Optimized Algorithm
(optimized planner)

Optimization

(Simplification, finite differencing etc)

Compiled Code in base language

Compilation

Algorithm Design Tactics
(Global search/Refinement search

 for planning)

Figure 2: Overview of software synthesis process in KIDS

REFINE language supports �rst-order logic, set-theory, pattern matching and transforma-
tion rules. Re�ne provides a compiler that generates Common Lisp or C code for programs
written in its logical speci�cation language.

In the following, we describe the general steps involved in synthesizing software on KIDS.
Figure 2 provides an overview of this process. The process is illustrated in more detail in
Section 3 in the context of synthesis of customized planner code.

1. Develop a task theory to state and reason about the task. The user de�nes appropriate
functions and types that describe the task and also gives laws that allow high-level
reasoning about the de�ned functions. For planning, many planning theories (e.g.,
progression and regression) were written and relevant laws were speci�ed. We also pro-
vided domain theories so that KIDS could perform specialized reasoning on planners
it returned as solutions.

2. Select and apply a design tactic to select an algorithmic framework that should be
used to implement the task speci�cation. KIDS currently supports a variety of de-
sign tactics including problem reduction, divide and conquer, global search and local
search. For planning, we use the global search design tactic because our formalization

97

Srivastava & Kambhampati

of classical planning is driven by re�nement search which can be seen as a special case
of global search (see below).

3. Apply optimizations to make the generated algorithm e�cient. At �rst, the generated
algorithm is well-structured and correct in that it can return all valid solutions, but
it can be very ine�cient. The algorithm is optimized through speci�cation reduction
techniques such as simpli�cation, partial evaluation and �nite-di�erencing.

4. Compile the algorithm to produce a program in the base language.

The domain theories and speci�cations are written in REFINE, and KIDS synthesizes
and optimizes the algorithms in the same language. To transform speci�cations into pro-
grams as well as to optimize the programs, KIDS uses a form of deductive reasoning called
\directed inference" to reason about the task speci�cation and domain theory.

The KIDS system has been used to derive a variety of programs in the past. Of particular
interest to us is the work on deriving e�cient scheduling software (Smith & Parra, 1993;
Burstein & Smith, 1996), as the success of these programs provided initial impetus for our
own research.

2.2 Theories of Plan Synthesis

As mentioned earlier, using KIDS to derive planning software in CLAY involves �guring
out (a) how declarative theories for di�erent types of classical planning are speci�ed and
(b) what algorithmic design templates are best suited to planner synthesis. (Kambhampati,
1997b) provides an overview of traditional plan synthesis approaches. As discussed there,
plan synthesis approaches come in many varieties with very little super�cial commonality
between them. In the last few years, we have developed a unifying framework that subsumes
most of these approaches (Kambhampati & Srivastava, 1995; Kambhampati, Knoblock, &
Yang, 1995; Kambhampati, 1997b). In this framework, plan synthesis is modeled as a
process of searching in a space of sets of action sequences. These sets are represented
compactly as collections of constraints called \partial plans." The search process �rst
attempts to extract a result (an action sequence capable of solving the problem) from the
partial plan, and when that fails, \re�nes" (or splits) the partial plan into a set of new partial
plans (each corresponding to sets of action sequences that are subsets of the action sequence
set corresponding to the original partial plan), and considers the new plans in turn. The
existing domain independent plan-synthesis algorithms correspond to four di�erent ways of
re�ning partial plans. These are known, respectively, as Forward State Space or progression
re�nement (FSS), Backward State Space Re�nement or regression re�nement (BSS), Plan
Space Re�nement (PSS) and Task-Reduction Re�nement. STRIPS (Fikes & Nilsson, 1990)
is an example of a planner using the FSS re�nement, TOPI (Barrett & Weld, 1994) uses
the BSS re�nement, SNLP (McAllester & Rosenblitt, 1991) uses the plan-space re�nement
and NONLIN (Tate, 1977) uses the task-reduction re�nement. Given this background, the
declarative theory of plan generation in CLAY corresponds to theories of the re�nements.
The algorithm tactic underlying plan generation corresponds to \re�nement search." The
KIDS system supports an algorithm tactic called \global search" (Smith, 1992a) which can
be seen as a generalization of this re�nement search.

98

Synthesizing Customized Planners from Specifications

Regression(BSS)

Blocks World Logistics

Encoding of
Domain Knowledge

Theory Import
Direction

Knowlegde
Domain

Knowlegde
Domain

Blocks World

Progression

Blocks World

Regression

Logistics Progression Logistics

Regression

Level 1

Level 2

Level 3

Planner

REFINEMENT THEORY: What refinements are available ?

DOMAIN THEORY: How is the particular planning domain unique ?

Progression(FSS)
Plan space (PS)

SPECIFICATION: What is a planning problem ?

Figure 3: The CLAY architecture for writing planning theory. Each level answers a question
relevant to that level of planning detail. CLAY uses KIDS' feature of theory
import to modularize the domain-speci�c planning theory

3. Developing a Planner from Declarative Speci�cation: The CLAY

Architecture

Figure 1 summarizes how KIDS is used to synthesize a domain-speci�c re�nement plan-
ner. The domain knowledge consists of a dynamical model and control knowledge. The
dynamical model is speci�ed in the form of actions (also called operators) that de�ne le-
gal transformations from one state of the world to another. Control knowledge is a set of
domain-speci�c criteria that helps the planner decide if a plan P1 is better than P2 and is
intended to make search more e�cient. An example of control knowledge is that in a logis-
tics domain where some packages have to be moved to their destinations using airplanes,
planes should not touchdown at a location if they have no packages to pickup or deliver.

Re�nement planning and domain control knowledge are brought together in the CLAY
architecture for writing declarative domain-speci�c planning theory as summarized in Fig-
ure 3. To specify a planning task, a plan representation is selected and the constraints
that should be satis�ed by a solution plan are enumerated in the planner speci�cation.
The planner speci�cation is dependent on the plan representation but is independent of
the re�nement needed for search. A re�nement strategy uses the planner speci�cation and
de�nes how children nodes are generated from a given partial plan, what the goal test will
be, and also explicates any re�nement speci�c search pruning tests. The re�nement and the

99

Srivastava & Kambhampati

speci�cation together form the planning theory. To obtain a domain dependent planner, all
one needs to do is import any planning theory and provide some relevant domain-speci�c
planning control knowledge that provides a preference structure among partial plans and
competing solutions. An interesting special case is when one speci�es a generic domain
knowledge to the e�ect that all the plans are equally good in the domain. In such a case,
based on the re�nement used, one gets a FSS, BSS, PSS or hybrid (if multiple re�nements
are used), general-purpose planner.

Each level in the directed tree in Figure 3 represents an abstraction of the planning
task. At the root of the tree (Level 1), only a description of a planning task is required
without specifying what re�nements strategies should be used. At Level 2, the re�nements
are speci�ed but no assumption is made about the domain. Next, characteristics of the
domain are provided at Level 3. A progression (FSS) blocks world planner is di�erent from
a progression logistics domain planner only in terms of the domain knowledge. On the other
hand, a progression blocks world planner is di�erent from a regression (BSS) blocks-world
planner only in terms of the re�nement used.

As stated above, to ensure
exibility, the control knowledge should not change when
di�erent re�nements are used and thereby represent substantial
exibility. But in practice,
since control knowledge helps prune children nodes produced by a re�nement, pruning may
be more e�ective if the control knowledge is encoded depending on the re�nement. There
can also be a middle ground that we have not implemented: domain control knowledge
may be represented in an intermediate form depending on the partial plan representation.
Each re�nement can provide, in addition to a termination test, a conversion function to
transform the control knowledge into the re�nement speci�c form.

3.1 Representing Domain Operators

We now discuss how the world state is represented and how the domain operators de�ne
state transformations. In classical planning, the world is modeled in terms of a set of \state
variables." Each state of the world corresponds to a particular assignments of values to these
variables. The actions are described in terms of the speci�c variable-value combinations that
are needed for them to be applicable, and the variable-value combinations they will enforce
after execution. Two variants of this general modeling approach have become popular in the
planning community. The �rst, called the STRIPS representation (Fikes & Nilsson, 1990)
represents the world in terms of ground atoms in a �rst order logic. The action applicability
conditions and e�ects are also described in terms of conjunctions of ground atoms. The
second variant (Backstrom & Nebel, 1993) models the world and actions directly in terms
of multi-valued state variables and their values. Since STRIPS representation can be seen
as a state-variable model with boolean state-variables, and since any multi-valued state-
variable system can be converted into an equivalent boolean state-variable system, the two
representations are equivalent in expressive power.

We chose the state-variable representation for our implementation since this can be
directly mapped on to the primitive data structures supported by KIDS. Figure 4 shows
the action of moving block A from block B to the top of block C in STRIPS and state-
variable representation. A blocks world domain is an environment in which some blocks
are placed on a table or on top of other blocks and the problems involve stacking them in

100

Synthesizing Customized Planners from Specifications

STRIPS representation

Action: move(A;B;C)
Prec: clear(A) ^ clear(C) ^ ^on(A;B)
Post: on(A;C) ^ clear(B) ^ :clear(C)

^:on(A;B)

Muti-valued state-variable representation

Action: move(A;B;C)
Pre: hB; True; 0; False; 0; T ruei
Post: hC; True; 0; T rue; 0; Falsei

(Where a state is a 6-tuple
h pos-A, clr-A, pos-B, clr-B, pos-C, clr-C i,

and the zeroes represent \don't care" values)

Figure 4: Di�erent representations of \Move A from B to C"

some desired con�guration. For the purpose of exposition, we are showing values of state
variables corresponding to block positions (e.g., pos-A) by symbols 'B', 'C', etc. and clear
conditions (e.g., clr-A) by True or False. In practice, we map all the valid values of state
variables to integers.

3.2 Speci�cation of a Planner

KIDS uses a functional speci�cation and programming language augmented with set-theoretic
data types. A speci�cation of the task (Smith, 1992a) is represented by a quadruple
F = hD;R; I;Oi where D is the input type satisfying the input condition, I : D ! boolean.
The output type is R and the output condition, O : D�R! boolean, de�nes a feasible solu-
tion. If O(x,z) holds, then z is a feasible solution with respect to input x. The speci�cation
of a program follows the template:

function F (x :D) : set(R)

where I(x)

returns f z j O (x,z) g

= Body(x)

A speci�cation for program F is consistent if for all possible inputs satisfying the input
condition, the body produces a feasible solution, i.e., 8(x : D)9(z : R)(I(x) =) O(x; z)).

Within this view, a planner takes as inputs an initial state, a goal state and an operator
list. The operators are assumed to de�ne state transitions from valid states to valid states.
A speci�cation for the planning task is: given the initial state, the goal state and the
operator list, return a sequence of operators (plan) such that:

� termination-test: The goals must hold in the �nal state resulting from the execu-
tion of the plan. (We are only considering planning problems in which the goal is to
make all state-variables achieve speci�ed values, i.e., goals of achievement).

� domain-independent-pruning-test: The plan passes the domain independent
pruning tests. Each planning re�nemen can specify conditions under which a partial-
plan cannot lead to a desirable solution; and any partial plan satisfying such a pruning

101

Srivastava & Kambhampati

function PLANNER

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))))

returns

(PLAN: seq(integer)

| range(PLAN) subset {1 .. size(OPERS)}

& GOODNESS-TEST(VISITED-STATES

(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK(VISITED-STATES

(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& GOAL-TEST(VISITED-STATES

(PLAN, INIT, GOAL, OPERS),

INIT, GOAL))

Figure 5: A declarative speci�cation for planning

test can be eliminated from further consideration. For example, the state-loop prun-
ing heuristic in forward state-space re�nement says that if we have a partial plan such
that the plan-state after executing operator O2 is a subset of the state following an
earlier operator O1, then such a partial-plan can be pruned.

� domain-dependent-pruning-test: The plan passes the additional domain-speci�c
pruning tests.

The last one is the hook through which domain speci�c control knowledge is introduced.
In the current implementation of CLAY, we use domain knowledge for rejecting undesirable
partial plans. In Section 7.1, we discuss ways in which our implementation can be extended
to support other uses of domain control knowledge.

The speci�cation of the planning task above is declarative in that it states what con-
straints must be satis�ed in the resulting plan produced by a planner when given a planning
problem. It does not suggest any algorithm that should be used to obtain the results. Al-
gorithmic decisions will be made in the program development phase of KIDS.

An example of top-level speci�cation of planning task (in REFINE) is shown in Figure 5.
In this speci�cation, the input condition, I, is true, the input data type, D includes INIT,
GOAL and OPERS, the output data type R is PLAN and the output condition O consists of
goodness-test, goal-test, no-moves-back. no-moves-back is a domain independent
pruning tests whereas goodness-test is a domain dependent pruning test.

Delving deeper into representation detail, we represent a plan as a sequence of indices
in the operator list (i.e., sequence of operator identi�ers). For state-space planning, the
state sequence corresponding to the partial-plan is produced by function visited-states

and the goal test, domain independent pruning tests and domain dependent pruning tests
are done on the state-sequence by functions goal-test, no-moves-back and goodness-
test respectively. The state-variables take integer values. Consequently, our initial and
goal states are a sequence of integers.

In words, the speci�cation in Figure 5 says that a partial plan is a sequence of integral
indices (of operators) and so the indices must not be more than the size of operator list. Valid

102

Synthesizing Customized Planners from Specifications

plan is one whose corresponding state sequence (produced by visited-states) satis�es the
goal-test, no-moves-back and goodness-test2.

In the context of forward-state space re�nement (FSS), visited-states returns the
states obtained by the successive application of the operators in the partial plan to the
initial state and the resulting states thereafter. goal-test signals that the goal has been
achieved; for FSS re�nement it involves checking that the last state in the state-sequence
is the goal state. The no-moves-back function tests state looping; forward state-space
looping checks if the state after executing operator Oj (STATE Sj) is a subset of the state
following an earlier operator Oi(i < j) (STATE Si), this partial-plan can be pruned3.

The function goodness-test checks for possible redundancy in the state sequence
corresponding to the current partial plan based on domain characteristics. Let us explain
it in the context of the blocks world domain. We can specify any reasonable checks for the
blocks world as long as they do not make the planner lose a desired solution. Below, we
present two goodness-tests:

� (Heuristic H1: Limit useless moves) If a block moves between states i and (i+1), it
must not change position between states (i+1) and (i+2). The motivation behind this
check is to prevent blocks from being moved around randomly in successive moves.

� (Heuristic H2: Move via table) A block can only move from its initial state to the
table and from table only to its goal position. This is motivated by the fact that
a polynomial time approximate algorithm for solving blocks world planning prob-
lems involves putting all blocks on table �rst, and then constructing each of the goal
con�guration stacks bottom-up.4

3.3 Implementing the Speci�cation using Global Search

As discussed in Section 2, we need to select an algorithm design tactic to implement the task
speci�cation in KIDS. One of the design tactics provided by KIDS is global search. The basic
idea of global search is to represent and manipulate sets of candidate solutions. The principal
operations are to extract candidate solutions from a set and to split a set into subsets.
Derived operations include various �lters which are used to eliminate sets containing no
feasible or optimal solutions. Global search algorithms work as follows: starting from an
initial set of potential solutions, that contains all desired solutions to the given problem
instance, the algorithm repeatedly extracts solutions, splits sets and eliminates sets via
�lters until a candidate solution can be drawn from one of the sets. Sets of solutions are
represented implicitly by data structures called descriptors, and splitting is done by adding

2. REFINE code of all the referenced functions is shown in Appendix A.
3. Actually, we test a slightly more general condition that if the state after executing operator Oj (STATE

Sj) is weaker than a state following an earlier operator Oi (STATE Si), then this partial-plan can be
pruned. Sj is weaker than Si if every state-variable with assigned value in state Si has that same assigned
value in state Sj . By specifying weakness rather than subset as the relationship between states to decide
domain independent pruning in state space planning, we allow the synthesized planner to deal with a
partially speci�ed initial state. The planner will work correctly as long as all the state-variables that are
required for reasoning are speci�ed in the initial state.

4. Our pruning test alone doesn't guarantee polynomial algorithm since the order in which the blocks are
to be put on the table or later at the goal positions is not speci�ed in the pruning heuristic.

103

Srivastava & Kambhampati

mutually exclusive and exhaustive sets of constraints to the descriptors. The process can
be described as a tree search in which a node represents a set of candidates and an arc
represents the split relationship between a set and its subset. For complete details, readers
are referred to (Smith, 1992a).

The KIDS' global search paradigm is a general form of the re�nement search model
used to unify classical planners in UCP (Kambhampati & Srivastava, 1995). Speci�cally,
the partial plans correspond to descriptors and the re�nements correspond to splitting
strategies. To use global search to implement the planner speci�cation, we need to select
a suitable representation for sets of potential solutions (which, in the re�nement view of
planning, are essentially the partial plans). The global search tactic would then set up a
search algorithm that can split a solution-set and extract solutions that meet the problem
speci�cation. KIDS provides global search tactics for primitive data-types such as sequences,
sets and maps. If a complex data type is needed to represent the potential solution set of
a task, the user must implement a global search tactic for it.

Since we are interested in state-space planners initially, we chose to represent the partial
plan as a sequence of operators (actually sequence of operator indices). This allowed us to
use KIDS global search theory for �nite sequences.

3.4 Specifying Distributive and Monotonic laws

One aspect of KIDS speci�cation that is slightly unintuitive to new users is the need to
specify distributive and monotonic laws on all the operations used in the input/output
speci�cation (e.g., no-moves-back in the speci�cation of the progression planner shown in
Figure 5). Distributive laws state how a speci�c operation distributes over other operations
(e.g., (A+B)�C � (A� C) + (B � C)), while monotonic laws provide a set of boundary
conditions (e.g., A+0 = A). Such laws should be explicitly stated for all operations involved
in the speci�cation to support instantiation of design tactics, as well as optimization of
generated code. Speci�cally, KIDS has a directed-inference engine called RAINBOW which
uses the task speci�cation and the distributed laws speci�ed by the user to simplify and
reformulate the expressions in the synthesized code. Deductive inference is the primary
means by which KIDS reasons about the task speci�cation in order to apply design tactics,
and optimize the code, and derive necessary pruning conditions. Distributive and monotonic
laws indirectly provide KIDS with information on alternative ways of de�ning predicates.

A useful heuristic in writing laws is that they should be simple, normally expressed in
terms of the main function and perhaps another function to handle boundary cases (called
cross-functions; see below). As an example, consider Figure 5 where function no-moves-

back is a domain independent pruning test used in the speci�cation of progression planners.
Recall that no-moves-back is called on a state sequence and checks that a later state is
not a subset of (or weaker than) an earlier state. Calling no-moves-back on a sequence S
which is a concatenation of state sequences S1 and S2 is equivalent to calling it on S1 and
S2 and testing that no state in S1 is weaker than a state in S2. Notice that the �rst two
tests can be handled by no-moves-back itself but the last test needs a new function. We
call this new function a cross-function for no-moves-back (cross-no-moves-back). The
monotonic laws for no-moves-back include:

� no-moves-back over a singleton state sequence is true.

104

Synthesizing Customized Planners from Specifications

� no-moves-back over an empty state sequence is false (useful when the selected action
is not applicable).

Similarly, the distributive laws for no-moves-back include:

� no-moves-back over sequence concatenation is equal to no-moves-back on S1, no-
moves-back on S2 and cross-no-moves-back on S1 and S2.

� When a state A is prepended to a state sequence S, applying no-moves-back over
such a combined state sequence is equivalent to applying cross-no-moves-back on
the singleton sequence [A] and S, and no-moves-back on S.

� When a state A is appended to a state sequence S, no-moves-back over such a
combined state sequence is the same as no-moves-back on S and cross-no-moves-
back on S and the singleton sequence [A].

All these rules, while reasonably obvious to us, are nonetheless very crucial for the
e�ectiveness of KIDS as they help it in reformulating and optimizing the generated code.
An example of their use, as we will see in Section 3.5.1, occurs in Figure 7 where an \if
[condition] - [then] - [else]" statement gets simpli�ed to just the \[then]" part because all
the conditions in the \[condition]" can be proved to be true in the context of the input
speci�cation, given the distributive laws.

Using the task speci�cation, the selected design tactic { global search, and distributive
laws, KIDS produces a correct but naive code, as shown in Figure 6. The code is naive
because the same checks (for example cross-no-moves-back in Figure 6) are computed
repeatedly even if they are true from their context. We discuss some methods to optimize
the code in the next section.

3.5 Program Optimization

This section explains how the initial planner code, generated by KIDS, is optimized. Readers
not familiar with automated software synthesis literature might want to skip this section
on �rst read, and revisit it later for more details.

The �rst code produced by KIDS (shown in Figure 6) is well-structured but very ine�-
cient. There are several opportunities for optimization and KIDS provides tools for program
optimization. The code can be compiled and executed at any stage of optimization. Now,
we brie
y summarize the program optimizations used to achieve e�ciency.

3.5.1 Context Independent Simplifier

This method simpli�es an expression independent of its surrounding context. There are
two possibilities for context independent simpli�cation:

� In the �rst case, a set of equations are treated as left-to-right rewrite rules that are
�red exhaustively until none apply. Distributive laws are also treated as rewrite rules.
An example application of a rewrite rule is:

(if true then P else Q) =) P

105

Srivastava & Kambhampati

function PLANNER

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))))

returns

(PLAN: seq(integer)

| range(PLAN) subset {1 .. size(OPERS)}

& GOODNESS-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& GOAL-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL))

= if NO-MOVES-BACK

(VISITED-STATES([], INIT, GOAL, OPERS),

INIT, GOAL)

& GOODNESS-TEST

(VISITED-STATES([], INIT, GOAL, OPERS),

INIT, GOAL)

then PLANNER-AUX(INIT, GOAL, OPERS, [])

else undefined

function PLANNER-AUX

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))),

V: seq(integer)

| range(V) subset {1 .. size(OPERS)}

& GOODNESS-TEST

(VISITED-STATES(V, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK

(VISITED-STATES(V, INIT, GOAL, OPERS),

INIT, GOAL))

: seq(integer)

= if ex (PLAN: seq(integer))

(GOAL-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& GOODNESS-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& range(PLAN) subset {1 .. size(OPERS)}

& PLAN = V)

then some (PLAN-1: seq(integer))

(GOAL-TEST

(VISITED-STATES(PLAN-1, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK

(VISITED-STATES(PLAN-1, INIT, GOAL, OPERS),

INIT, GOAL)

& GOODNESS-TEST

(VISITED-STATES(PLAN-1, INIT, GOAL, OPERS),

INIT, GOAL)

& range(PLAN-1) subset {1 .. size(OPERS)}

& PLAN-1 = V)

else some (PLAN-2: seq(integer))

ex (NEW-V: seq(integer))

(PLAN-2 =

PLANNER-AUX(INIT, GOAL, OPERS, NEW-V)

& DEFINED?(PLAN-2)

& GOODNESS-TEST

(VISITED-STATES(NEW-V, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK

(VISITED-STATES(NEW-V, INIT, GOAL, OPERS),

INIT, GOAL)

& ex (I: integer)

(NEW-V = append(V, I)

& I in {1 .. size(OPERS)}))

Figure 6: First progression blocks world planner code synthesized by KIDS. Notice that the
code is ine�cient because the same checks (for example, cross-no-moves-back)
are computed repeatedly, even if they are true from their context.

106

Synthesizing Customized Planners from Specifications

function PLANNER

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))))

returns

(PLAN: seq(integer) |

range(PLAN) subset {1 .. size(OPERS)}

and ...)

= if NO-MOVES-BACK

(VISITED-STATES([], INIT, GOAL, OPERS),

INIT, GOAL)

and GOODNESS-TEST

(VISITED-STATES([], INIT, GOAL, OPERS),

INIT, GOAL)

then PLANNER-AUX

(INIT, GOAL, OPERS, [], [INIT], INIT,

size(OPERS))

else undefined

function PLANNER

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))))

returns

(PLAN: seq(integer) |

range(PLAN) subset {1 .. size(OPERS)}

and ...)

= PLANNER-AUX

(INIT, GOAL, OPERS, [], [INIT], INIT,

size(OPERS))

Figure 7: Example of context independent simpli�cation in KIDS. The code on the right
size is the simpli�ed version of that on the left.

function PLANNER-AUX

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))),

V: seq(integer)

| range(V) subset {1 .. size(OPERS)}

and GOODNESS-TEST(VISITED-STATES

(V, INIT, GOAL, OPERS),

INIT, GOAL)

and NO-MOVES-BACK(VISITED-STATES

(V, INIT, GOAL, OPERS),

INIT, GOAL))

: seq(integer)

= if GOAL-TEST(

VISITED-STATES(V, INIT, GOAL, OPERS),

INIT, GOAL)

and NO-MOVES-BACK(VISITED-STATES

(V, INIT, GOAL, OPERS),

INIT, GOAL)

and GOODNESS-TEST(VISITED-STATES

(V, INIT, GOAL, OPERS),

INIT, GOAL)

and range(V) subset {1 .. size(OPERS)}

then (if ...) ...

function PLANNER-AUX

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))),

V: seq(integer)

| range(V) subset {1 .. size(OPERS)}

and GOODNESS-TEST(VISITED-STATES

(V, INIT, GOAL, OPERS),

INIT, GOAL)

and NO-MOVES-BACK(VISITED-STATES

(V, INIT, GOAL, OPERS),

INIT, GOAL))

: seq(integer)

= if GOAL-TEST(

VISITED-STATES(V, INIT, GOAL, OPERS),

INIT, GOAL)

then (if ...) ...

Figure 8: Example of context dependent simpli�cation in KIDS. The code on the right size
is the simpli�ed version of that on the left.

� In the second case, all occurrences of a local variable which is de�ned by an equality
is replaced by the equivalent value:

fC(x) j x = e ^ P (x)g =) fC(e) j P (e)g

Figure 7 shows an example of context-independent simpli�cation where all the conditions
of the if-condition are true from their respective distributive laws. Hence, the if-then-else
statement is replaced by the then-part.

107

Srivastava & Kambhampati

function PLANNER-AUX

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))),

V: seq(integer), VS: seq(seq(integer)),

L-VS: seq(integer) |

SEQEQUAL(L-VS, last(VS))

and range(V) subset {1 .. size(OPERS)}

and ...)

= if GOAL-TEST(VS, INIT, GOAL) then V

else some (PLAN-2: seq(integer))

exists(I: integer)

(I in {1 .. size(OPERS)}

and ...

function PLANNER-AUX

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))),

V: seq(integer), VS: seq(seq(integer)),

L-VS: seq(integer), NUM-OPS: integer

|

NUM-OPS = size(OPERS)

and ...)

= if GOAL-TEST(VS, INIT, GOAL) then V

else some (PLAN-2: seq(integer))

exists(I: integer)

(I in {1 .. NUM-OPS}

and ...

Figure 9: Example of �nite di�erencing (on size(OPERS)). The code on the right size is
the result of �nite di�erencing on that on the left.

0. Focus Initialize PLANNER

1. Tactic Global Search on PLANNER

2. Simplify, context-independent-fast: if ## then ##

else some (PLAN-2: ##...

3. Simplify, context-dependent, forward-0, backward-4:

##(...) & ##(....

4. Simplify, context-dependent, forward-0, backward-4:

if ## else und...

5. FD (general-purpose) VS =

VISITED-STATES(V, INIT, GOAL, OPERS)

6. FD (general-purpose) L-VS = last(VS)

7. FD (general-purpose) NUM-OPS = size(OPERS)

8. Abstract NEXT-STATE(L-VS, I, OPERS) into NS in

ex (I: integer) (## in ## &...

9. Simplify, context-independent-fast:

if ## & ## then PLANNER-AUX(##, ##,...

10. Refine compile into Lisp: PLANNER-AUX, PLANNER

Figure 10: Derivation steps to generate a progression planner for blocks world domain.

3.5.2 Context Dependent Simplifier

This method is designed to simplify a given expression with respect to its surrounding con-
text and is, thus, more powerful than context independent simpli�cation. All the predicates
that hold in the context of the expression are gathered by walking up the abstract syntax
tree. The expression is then simpli�ed with respect to the set of assumptions that hold in
the context. In Figure 8, the function calls for no-moves-back, goodness-test and the
range test in the \if" expression are redundant because their results follow from the input
invariant (conditions listed after \j" and before \:") of the PLANNER-AUX function. So
they are removed by this simpli�cation.

108

Synthesizing Customized Planners from Specifications

function PLANNER

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))))

returns

(PLAN: seq(integer)

| range(PLAN) subset {1 .. size(OPERS)}

& GOODNESS-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& NO-MOVES-BACK

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL)

& GOAL-TEST

(VISITED-STATES(PLAN, INIT, GOAL, OPERS),

INIT, GOAL))

= PLANNER-AUX

(INIT, GOAL, OPERS, [], [INIT],

size(OPERS), INIT)

function PLANNER-AUX

(INIT: seq(integer), GOAL: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))),

V: seq(integer), VS: seq(seq(integer)),

NUM-OPS: integer, L-VS: seq(integer)

| SEQEQUAL(L-VS, last(VS))

& SEQEQUAL(VS,

VISITED-STATES(V, INIT, GOAL, OPERS))

& NO-MOVES-BACK

(VISITED-STATES(V, INIT, GOAL, OPERS),

INIT, GOAL)

& GOODNESS-TEST

(VISITED-STATES(V, INIT, GOAL, OPERS),

INIT, GOAL)

& range(V) subset {1 .. size(OPERS)}

& NUM-OPS = size(OPERS))

: seq(integer)

= if GOAL-TEST(VS, INIT, GOAL) then V

else some (PLAN-2: seq(integer))

ex (NS: seq(integer), I: integer)

(NS = NEXT-STATE(L-VS, I, OPERS)

& CROSS-NO-MOVES-BACK(VS, [NS], INIT, GOAL)

& CROSS-GOODNESS-TEST(VS, [NS], INIT, GOAL)

& DEFINED?(PLAN-2)

& PLAN-2

= PLANNER-AUX

(INIT, GOAL, OPERS, append(V, I),

append(VS, NS), NUM-OPS, NS)

& I in {1 .. NUM-OPS})

Figure 11: Final progression blocks world planner code synthesized by KIDS

3.5.3 Finite Differencing

The idea behind �nite di�erencing is to perform computations incrementally rather than
repeat them from scratch every time. Let us assume that inside a function f(x) there is
an expression g(x) and that x changes in a regular way. In this case, it might be useful to
create a new variable, equal to g(x), whose value is maintained across iterations and which
allows for incremental computation of g(x) with the next x value. Finite di�erencing can be
decomposed into two more basic operations: abstraction and simpli�cation (Smith, 1992a)

� First, the function f is abstracted with respect to expression g(x) adding a new
parameter c to parameter list of f (now f(x; c)) and adding c = g(x) as a new input
invariant to f . All calls to f , whether recursive calls within f or external calls, must
now be changed to match the de�nition of f i.e, f(x) is changed to f(x; g(x)). In this
process, all occurrences of g(x) are replaced by c.

� If distributive laws apply to g(h(x)) yielding an expression of the form h0(g(x)) and
so h0(c), the new value of g(h(x)) can be computed in terms of the old value of g(x)
and this the real bene�t in optimization.

Let us illustrate this process with an example. Suppose that some function f(x) has a
call for function g(x) which returns the square of numbers and that variable x varies linearly.
Now, suppose that we are given a distributive law such as g(x+ 1) = g(x) + 2 � x+ 1. So,
after �nite-di�erencing, f becomes f(x; c) and the g(x) call is replaced by c + 2 � x + 1.

109

Srivastava & Kambhampati

An additional invariant c = x � x will also be maintained for f . This new expression is
computationally much cheaper than the original expression.

In Figure 9, �nite di�erencing is performed on size(OPERS). The argument of function
PLANNER is expanded with the inclusion of NUM-OPS, the name entered by the user for
the value of size(OPERS). Only abstraction is done here as the number of operators
available to the planner does not change during planning. Note that NUM-OPS represents
the number of operators in a planning problem and this is a meaningful concept for planning.
All instances of size(OPERS) are replaced by NUM-OPS.

3.5.4 Program Derivation

Figure 10 shows a summary of the sequence of derivation steps carried out to obtain a
blocks world domain-speci�c forward-state space planner. The �nal version of the planner
code is shown in Figure 11.

In step 0, the top-level planner speci�cation is selected and in step 1, selected design
tactic is applied. Step 2 involves a context independent simpli�cation, and steps 3 and
4 involve context dependent simpli�cations. Steps 5 through 8 cover �nite di�erencing.
Finally, an e�cient planner code is compiled in step 10.

4. Discussion on Synthesized Planners

Section 3.5 used the synthesis of a progression planner for blocks world domain as a case
study to walk-through the planner synthesis process leading to the �nal planner given
in Figure 11. In our research, we have also considered regression (backward state space)
planners. All the planners we have synthesized to date are summarized in Table 1. Although
each of these planners di�er in terms of the re�nements they use, and the domains to which
they are customized, Figure 12 attempts a pseudo-code description of a generic template to
facilitate discussion of the synthesized planners as a group.

The main function planner takes initial state, goal state and operator set as
inputs and in turn calls the recursive function planner aux with all the inputs and an
initial plan. All the pruning tests comprising the output conditions are maintained as
\invariants" (in that they must hold not only of the �nal plan, but also of the every partial
plan leading to the �nal plan). The goal test, of course, need only hold for the �nal plan,
and is thus not maintained as an invariant. Finite di�erencing leads to more invariants.
Inside planner aux, if a partial plan satis�es the goal test, it is returned. Otherwise,
the partial plan is re�ned, invariants are incrementally tested in the new partial plan and
planner aux is called recursively.

First thing we note is that the pseudo-code template describes a planner for any planning
domain employing any state-space re�nement. Even the requirement that the synthesized
planner be state-space is dictated by how the new partial plan (partial-plan2) is obtained
(in this case by appending an operator to an operator sequence). It can be generalized to
support other re�nements, by modifying the operation (in the current case \append") that
is used to build the new partial plan from the old one (with corresponding changes to the
distributive laws to account for the new operation).

Second, we observe that all invariants are incrementally evaluated (see planner aux).
For example, to see if the the plan in ith iteration satis�es the no-moves-back test, we only

110

Synthesizing Customized Planners from Specifications

check if the latest state is duplicated by any of the previous states. We hypothesize that such
incremental evaluation is the primary reason for the synthesized planner's e�ciency. Once
re�nement and planning domain knowledge is available, context-dependent simpli�cation
may show that many of the tests made in the separate theories are in fact redundant.
Moreover, incremental evaluations may be cheaper than complete evaluations of invariants
if they are amenable to the operations of distribution and monotonicity over the abstract
data-types.

Although domain independent planners can be given the same control knowledge that
we give to KIDS during planner synthesis, our approach is expected to be superior in two
ways:

1. Our approach separates the control knowledge acquisition from the speci�cs of the
planner to some extent and this makes the acquisition process easier. In contrast,
controlling the search of a domain independent planner requires the user to think in
terms of speci�c \choice-points" in the planner's search strategy.

2. More importantly, search control in domain independent planners typically involves
generating unpromising partial plans �rst and then pruning them. In contrast, our ap-
proach improves e�ciency by \folding in" the control knowledge into the synthesized
planner code, through incremental evaluation of pruning test. Speci�cally, to a �rst
approximation, conventional domain independent planners will add the goodness-
test either to control their search at the choice points or to post-process the gener-
ated partial plans. We specify distributive laws on how the goodness-test can be
incrementally evaluated (in terms of cross-goodness-test and goodness-test)
and perform context-dependent analysis on all the pieces of available knowledge to
optimize the code. This is what we mean by \folding in" the control knowledge.

In Figure 11, we can see an instance of control knowledge being folded into the synthe-
sized progression planner for the blocks world domain. Contrast it to the �rst synthesized
planner shown in Figure 6. We notice that redundant invocation of various checks (such
as goodness-test, visited-states, etc) in the earlier planner have been simpli�ed away.
Moreover, individual checks (such as no-moves-back and goodness-test) have been
further simpli�ed based on the distributive laws (like cross-no-moves-back and cross-
goodness-test) to consider just the newly added parts of the partial plan. All these
considerations lead to a very small and e�cient �nal planner.

5. Empirical Evaluation of Synthesized Planners

Table 1 lists several domain dependent state-space planners that we have synthesized to
date. The planners are characterized by the domain for which they are developed (\BW" for
blocks world, \LOG" for logistics, and \TYR" for Tyre World { all of which are benchmark
domains in AI planning); the type of (state-space) re�nement used (\P" for progression
and \R" for regression), and the type of domain speci�c control knowledge used (H1 that
limits useless moves, H2 which moves blocks via table, etc.). We will now report results of
an empirical study conducted over these synthesized planners. The study had two aims:

� To ascertain whether the synthesized planners are able to e�ciently exploit domain
knowledge.

111

Srivastava & Kambhampati

%% The main function PLANNER calls the auxiliary function

function PLANNER (INITIAL_STATE, GOAL_STATE, OPERATOR_SET)

returns PLAN

such that OUTPUT CONDITIONS are satisfied

=

PLANNER_AUX(INITIAL_STATE, GOAL_STATE, OPERATOR_SET,

INITIAL_PLAN, ...)

%% Note: other parameters are added during finite differencing

%% The function PLANNER_AUX is called by PLANNER or by PLANNER_AUX

%% Note: From the set of OUTPUT CONDITIONS given as part of

%% the problem specification, KIDS selects all but one

%% to be maintained as INVARIANTS. Finite differencing

%% gives more INVARIANTS.

function PLANNER_AUX(INITIAL_STATE, GOAL_STATE, OPERATOR_SET,

CURRENT_PLAN, ...)

such that INVARIANTS are satisfied for the state sequence

corresponding to the CURRENT_PLAN

return type of PLAN

=

if state sequence ensures the satisfaction of GOAL_STATE

when CURRENT_PLAN is executed from the INITIAL_STATE

return CURRENT_PLAN

else consider some PARTIAL_PLAN2 = append(CURRENT_PLAN, I)

where I is index of a valid operator in OPERATOR_SET, and

a) incremental test of INVARIANTS is true for

state sequence corresponding to PARTIAL_PLAN2

b) PARTIAL_PLAN2 =

PLANNER_AUX(INITIAL_STATE, GOAL_STATE, OPERATOR_SET,

PARTIAL_PLAN2, ...)

Figure 12: Pseudo-code for the state-space planners synthesized by KIDS

� To ascertain if the synthesized planners are better than traditional domain indepen-
dent planners in utilizing domain control knowledge.

Our discussion is organized as follows: In Section 5.1, we describe the domains and
problems we have considered in our empirical work. In Section 5.2, we evaluate the absolute
performance of the synthesized planners in the various domains. In Section 5.3 we compare
the performance of synthesized planners and traditional planners.

5.1 Domains and Problems

5.1.1 Blocks World Domain

A blocks world domain is an environment in which each block is placed either on a table or on
top of other blocks, and the problems involve stacking them in some desired con�guration.
Let us focus on two states in particular: A-ON-TOP and N-ON-TOP. When there are A
.. N blocks, A-ON-TOP stands for the state where block A is on top of block B, block B

112

Synthesizing Customized Planners from Specifications

Name Customized for Re�nement Domain Dependent Pruning Test
the domain

BW-P-H1 Blocks World Progression (FSS) Limit useless moves (H1)
BW-P-H2 Blocks World Progression (FSS) Move via table (H2)

BW-R-H1 Blocks World Regression (BSS) Limit useless moves (H1)
BW-R-H2 Blocks World Regression (BSS) Move via table (H2)

LOG-P-L Logistics Progression (FSS) Limit ine�ciency

LOG-R-L Logistics Regression (BSS) Limit ine�ciency

TYR-P-M Tyre World Progression (FSS) Multiple control rules

INDEP-P -none- Progression (FSS) True (every state is OK)
INDEP-R -none- Regression (BSS) True (every state is OK)

Table 1: Table showing the variety of planners synthesized on KIDS. The names of the
planners follow the format <domain>-<re�nement>-<heuristic>.

is on top of block C, ..., block N-1 is on top of block N and block N is on table. Similarly,
N-ON-TOP stands for the state in which block A is on table, block B is on top of block A,
..., block N is on top of block N-1. Problems for the reported experiments are one of three
types:

1. Stack Inversion: Invert from A-ON-TOP to N-ON-TOP.

2. Stack building: Initial state is a collection of random stacks of up to two blocks height
in which the last N/2 blocks are either put on the �rst N/2 blocks or on the table.
Goal state is A-ON-TOP or N-ON-TOP.

3. Random blocks world problems: A subset of random blocks world problems gener-
ated using Minton's algorithm (Minton, 1988). In a problem with N blocks, the goal
state can have up to N/2 goal conditions.

Some domain dependent pruning tests for blocks world were covered in Section 3. Speci�-
cally, we covered pruning test H1 that prevents any block from being moved in consecutive
steps, and test H2 which requires that all blocks have to be moved via the table.

5.1.2 Logistics Domain

The logistics domain consists of a several planes and packages at di�erent places. The goals
involve transporting the planes and packages to the speci�ed locations. We considered a
type of logistics domain where there are k planes, 2k places and 3k packages. There can be
either 2 packages or 1 package and 1 plane at each place. The goal is to get all planes and
packages to a distinguished place.

The domain dependent pruning test for the logistics transportation domain, (which we
call \Limit Ine�ciency" heuristic) consists of the following pieces of advice:

113

Srivastava & Kambhampati

1. Planes should not make consecutive
ights without loading or unloading a package

2. Packages should either be at the goal position to begin with, or may be loaded inside
a plane and then
own to their goal position.

3. Once a package reaches its goal position, it should not be moved.

5.1.3 Tyre World Domain

The Tyre world (Russell & Norvig, 1995) is a benchmark domain with complex causal
structure (Blum & Furst, 1995). In the \�xit" problem from this domain, a car's tyre is

at and must be replaced by a spare
at tyre (which must �rst be in
ated). The original
tyre has to be placed in the boot and all tools must be returned to the boot. The domain
dependent pruning test that we devised enforces the following constraints:

1. If only one state variable changes between one state(S1) and the next state(S2), it
should not change in the subsequent state(S3). This is because a state variable de-
scribes an attribute about an object in the domain. If the attribute has a value in
state S2 that will be \overwritten" in state S3, this might indicate a non-minimal
plan.5

2. Work on the status of boot last.

3. Fixing up a free hub is invalid { a wheel must be on it �rst.

4. If we have jacked-up the car that needs a tyre, we can not jack it down without putting
the tyre on it.

5. Work on the position of the pump and wrench after all the wheels and the hub are in
their �nal con�guration.

6. Once the wheels are in their goal positions, they should not be moved.

5.2 Absolute Performance of the Synthesized Planners

In this section, we discuss the absolute performance of the synthesized planners in di�erent
domains. As we shall see, the synthesized planners were able to solve the benchmark
problems that are known to be hard for the traditional planners. A special note is in order
regarding the plots that follow. In all the plots that follow, if a curve stops mid-way in a
graph, it means that the corresponding planner could not solve the given problem or all
problems in the problem class (as applicable) in the stipulated time.

5.2.1 Planners in Blocks World

In traditional planners, domain speci�c information helps the planner return a result faster
and we obtained similar results with the synthesized planners. As can be seen from the left

5. This is not true in all domains, since in some domains, the only way a state variable can shift its value
from v1 to v3 is to transition through v2. The heuristic however does preserve completeness in the tyre
world.

114

Synthesizing Customized Planners from Specifications

2.0 12.0 22.0
blocks

0.0

0.1

10.0

1000.0

100000.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Synthesized Progression Planners for Block World
Effectiveness of domain-based pruning tests

BW-P-H1
INDEP-P

1.0 2.0 3.0 4.0 5.0 6.0
planes(2X places, 3X packages)

0.0

0.1

1.0

10.0

100.0

1000.0

10000.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Synthesized Progression Planner for Logistics
Effectiveness of domain-base pruning tests

LOG-P-L
INDEP-P

Figure 13: Plots show that domain dependent goodness tests lead to e�cient planners. The
problem domains are blocks world (left) and logistics transportation domain
(right). Planners with domain guidance perform better than those without it.

plot in Figure 13, the domain-speci�c blocks world heuristic H1 (\Limit useless moves")
helped the progression planner (BW-P-H1) solve the stack inversion problem (invert A-
ON-TOP to N-ON-TOP) for 14 blocks in under a minute, and for 22 blocks in under 30
minutes. Without such a heuristic, the progression planner (INDEP-P) could not solve even
a 5 block stack inversion problem in the same time.

5.2.2 Planners in the Logistics Domain

In the logistics domain, the progression planner with the Limit Ine�ciency heuristic (LOG-
P-L) could solve 4-plane problems in under a minute and 6-plane problems in 30 minutes
(Figure 13, right). Without such a heuristic, the progression planner (INDEP-P) could not
solve even the 2 plane problem in the same time.

5.2.3 Planners in the Tyre World

There are 25 operators, 27 state variables and 6 control rules in our manually encoded Tyre
world (Russell & Norvig, 1995) description. The �xit problem was solved in under a minute
and a 31 step plan was returned.

5.3 Comparing Traditional and Synthesized Planners in Blocks World

Since our synthesized planners used domain speci�c control knowledge that is not normally
used by domain independent planners, our next step involved comparing synthesized plan-
ners to domain independent planners using the same control knowledge. Our aim is to see
if the synthesized planners are better able to exploit the domain knowledge than the tradi-
tional planners. We restricted this detailed comparison to the blocks world domain. Since

115

Srivastava & Kambhampati

there are a variety of traditional classical planners each of which have varying tradeo�s
(c.f. (Barrett & Weld, 1994; Kambhampati et al., 1995)), we used a \league tournament"
approach in our comparison. Speci�cally, since most popular classical planners correspond
to di�erent instantiations of UCP (Kambhampati & Srivastava, 1995), we �rst ran them all
on our blocks world problem distribution to isolate the best traditional planners. Similar
study was done to isolate the best synthesized planners for our problem distribution. At
this point, the best synthesized planner is compared to the best traditional planner. In
this second round of comparison, the winning traditional planner is given the same control
knowledge as the synthesized planner.

We have used two of the three blocks world test suites { the random blocks world
problems and the stack building problems { in the comparisons. Each problem class is
de�ned in terms of the number of blocks and an average of 10 runs is shown in each plot.
The total time allowed for a class of problems was 1000 seconds after which the planner was
deemed to have failed on that problem class. All planners were run on the same problems
from the problem suite.

5.3.1 Picking the Best Synthesized Planner

In this section, we want to empirically determine the the most e�ective re�nement and
control knowledge (heuristics) for the blocks world problem suites. We ran six synthesized
planners (BW-P-H1, BW-P-H2, INDEP-P, BW-R-H1, BW-R-H2 and INDEP-R) on the
above test suite. Figure 14 shows the relative performance. We notice that planners with
the pruning test H2 perform the best when compared with other planners using the same
re�nement.6

5.3.2 Picking the Best Traditional Planner

In this section, we empirically search for the best UCP strategy in the blocks world. Fig-
ure 15 shows the performance of UCP instantiations with no domain dependent heuristic
information. Instantiations of UCP which do only FSS, BSS or PS re�nements can emulate
classical forward-state space, backward-state space or plan-space planners, respectively. We
call these instantiations UCP-FSS, UCP-BSS and UCP-PS. UCP-LCFR is a hybrid strategy
which interleaves FSS, BSS and PS re�nements depending on the lower branching factor
(Kambhampati & Srivastava, 1995). In both the random blocks world problems (left) and
the stacking building problems (right), the left and right plots, UCP-FSS solves all of the

6. We also notice that progression planners perform better in the left plot and regression planners perform
better in the right plot. This trend can be explained easily in terms of the way the re�nements operate
(Kambhampati, 1997b). In the left �gure, based on the nature of the goals, the branching factor for
the regression planners may become enormous because it cannot detect all the con
icts among the
steps that give conditions at the goal (or at steps which eventually support the goal condition). Many
more operators seem to potentially give a condition than is actually the case. On the other hand, the
completely speci�ed initial state helps the progression planner decide all applicable operators from the
beginning itself. Consequently, progression planner BW-P-H2 is a clear win. In the right plot, as the
initial and goal states are completely speci�ed, both regression and progression planners can detect all
con
icts. As is true in realistic domains, many more operators are applicable from the initial state than
are relevant to achieving the goal conditions. So, the regression planner BW-R-H2 performs better than
the progression planner BW-P-H2.

116

Synthesizing Customized Planners from Specifications

3.0 5.0 7.0 9.0 11.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Performance of Synthesized Planners
Random blocks world problems

BW-P-H1
BW-P-H2
INDEP-P
BW-R-H1
BW-R-H2
INDEP-R

3.0 5.0 7.0 9.0 11.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Performance of Synthesized Planners
Build stack to achieve A-ON-TOP

BW-P-H1
BW-P-H2
INDEP-P
BW-R-H1
BW-R-H2
INDEP-R

Figure 14: Performance of the synthesized progression and regression planners with H1,
H2 or no domain dependent control knowledge. BW-P-H2 perform best in the
left plot and BW-R-H2 performs best in the right plot. As the points are close
together, it is not clear but BW-R-H1 and INDEP-R solve problems of upto 3
blocks in the left plot.

3.0 4.0 5.0 6.0 7.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Performance of UCP Instantiations
Minton’s random blocks world problems

UCP-PS
UCP-FSS
UCP-BSS
UCP-LCFR

3.0 4.0 5.0 6.0 7.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Performance of UCP Instantiations
Go from random stacks of upto two blocks height to A-ON-TOP

UCP-PS
UCP-FSS
UCP-BSS
UCP-LCFR

Figure 15: Performance of UCP instantiations with no domain dependent heuristic. In the
left and right plots, UCP-FSS solves all of the problems in the least time. Based
on the results, we see that UCP-FSS is a good strategy for blocks world. Note
from the �gure that UCP-BSS solves only 3 blocks problems in the given time
in all the plots.

117

Srivastava & Kambhampati

3.0 5.0 7.0 9.0 11.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Comparison of UCP-FSS and Synthesized Planners
Random blocks world problems

BW-P-H2
UCP-FSS-H2

3.0 5.0 7.0 9.0 11.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Comparison of UCP-FSS and Synthsized Planners
Build stack to achieve A-ON-TOP

BW-R-H2
UCP-FSS-H2

Figure 16: How the best UCP strategy for blocks world, namely UCP-FSS, performs against
the best of KIDS' synthesized planners: In the left plot, UCP-FSS does better
than INDEP-P i.e., without any heuristic information. But when H2 heuristic is
given to both the planners, BW-P-H2 is a winner. In the right plot, BW-R-H2
outperforms UCP-FSS with H2.

problems in the least time. Based on the results, we see that UCP-FSS is a good strategy
for the blocks world problem distributions we used.7

5.3.3 Comparing the Best Synthesized Planner and Best Traditional

Planner

Finally, we pit the best UCP strategy for the blocks world, namely UCP-FSS, against
the best of KIDS' synthesized planners. We chose BW-P-H2 for the random blocks world
problem suite and BW-R-H2 for the stack building problem suite. Comparison is done when
all planners are either given the same heuristic information (H2) or no domain dependent
guidance. Figure 16 plots the results. In the left plot, BW-P-H2 is a clear winner when
both planners are given the domain speci�c heuristic H2. In the right plot, BW-R-H2
outperforms UCP-FSS with H2. So, we see that given the same heuristic information, the

best of the planners synthesized by KIDS can outperform the best instantiation of UCP for

the blocks world.
It is interesting to note that while all synthesized planners improve drastically with

domain speci�c knowledge, domain independent planners do not always improve in the
same way. We illustrate this in Figure 17, where we compare UCP instantiations and the
synthesized planers with and without control heuristics. While the synthesized planners

7. Note that in the case of synthesized planners, a planner based on regression outperformed one based on
progression in the stack building problems. In contrast, UCP-FSS out performs UCP-BSS for the same
problem suite. The reason for this had to do with the particular implementation of UCP-BSS, which
involves a costly uni�cation step.

118

Synthesizing Customized Planners from Specifications

3.0 5.0 7.0 9.0 11.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Comparison of UCP-FSS and Synthesized Planners
Random blocks world problems

BW-P-H2
UCP-FSS-H2
INDEP-P
UCP-FSS-DOM-INDEP

3.0 5.0 7.0 9.0 11.0
blocks

0.0

0.1

1.0

10.0

100.0

lo
g

 [
ti

m
e

(i
n

 s
ec

s)
]

Comparison of UCP-FSS and Synthesized Planners
Build stack to achieve A-ON-TOP

BW-R-H2
UCP-FSS-H2
INDEP-R
UCP-FSS-DOM-INDEP

Figure 17: E�ect of control knowledge on UCP planners vs. KIDS synthesized planners.

always improve with the addition of control knowledge, the same is not true of the UCP
instantiations. Speci�cally, in the right plot, we see that UCP-FSS-H2, which uses control
knowledge H2 does worse than UCP-FSS-DOM-INDEP, which does not use any control
knowledge! We speculate that this is because UCP-FSS explicitly calls a function to do
domain-speci�c reasoning in each recursive invocation while the synthesized planners have
domain control knowledge folded into the planner code (see Section 4).

5.4 Summary of Results

In summary, we have demonstrated that:

� The CLAY approach to writing domain-speci�c planning theory is
exible. It sup-
ports mix-and-match of re�nements and control knowledge in generating a variety of
customized planners. As examples, we presented planners for blocks world, logistics
domain and Tyre domain, using forward and backward state space re�nements and
di�erent types of domain-speci�c control knowledge.

� The synthesized planners can exploit domain dependent control knowledge to im-
prove performance. We showed that, in fact, they are better able to exploit domain
knowledge than the traditional planners can.

6. Related Work

The research reported here straddles the two �elds of automated software synthesis and
AI planning. Although our research is the �rst to address the issue of planner synthesis,
synthesis of other types of search engines has been addressed by Smith and his co-workers.
Of particular interest to us is the work they did in developing automated scheduling software
for transportation logistics problems using KIDS system (Smith & Parra, 1993; Burstein &
Smith, 1996). The scheduling systems they have generated have been shown to signi�cantly

119

Srivastava & Kambhampati

outperform general-purpose schedulers working on the same problem. Their results provided
the initial impetus for our research. Although their original work used a design tactic
based on global search to model scheduling, they have also since then developed design
tactics based on other local search regimes. Another interesting issue brought up by their
work is the importance of \constraint propagation" techniques in deriving e�cient code.
This has made us explore the role (or lack thereof) of constraint propagation in planning.
Kambhampati and Yang (1996) describe ways in which the re�nement planning framework
can be extended to exploit constraint satisfaction techniques. In future, we hope to be able
to synthesize planners using this more general theory of re�nement planning.

Although there has not been much work on automated planner synthesis, a notable ex-
ception is the work of Gomes (1995). Gomes had synthesized a state-space problem solver
for the \missionaries and cannibals" problem on KIDS, and has shown that the synthesized
code outperforms general purpose problem solvers in that domain. Our framework can be
seen as a generalization of the work done by Gomes. In particular, we separate planning
theories from the dynamics and the control knowledge, which in principle supports gener-
ation of planning code based on a variety of re�nements. We have demonstrated this by
deriving both progression and regression planners for three di�erent domains (blocks world,
logistics and tyre world) and with two di�erent bodies of control knowledge in each case.
Methodologically, our work adds to Gomes' results in that we have shown that given the
same control knowledge, planners generated by KIDS can outperform traditional planners
using the control knowledge at their choice points. This makes for a fairer comparison
between synthesized and general-purpose planners.

In some existing planners such as UCPOP (Penberthy & Weld, 1994) and PRODIGY
(Fink & Veloso, 1994), customization is supported by allowing the user to specify search
control rules that are checked at every choice point during search. Such control rules can
be used to rank the search nodes based on some heuristic, or prune unpromising nodes.
The main di�erence between these approaches and the synthesis approach described here
is that ours supports a higher degree of integration of domain knowledge into the planner
by folding it into the synthesized code for the planner. Planners using search control rules
cannot do context dependent analysis or incremental application of control knowledge. In
contrast, in our approach, the control information is encoded declaratively and the planning
algorithm can be optimized based on all the knowledge that is available, including the
control knowledge.

Our work on utilizing explicit control knowledge in addition to domain dynamics in
deriving planning code has some parallels with the recent work by Bacchus and Kabanza
(1995). They concentrate on providing a rich language in which control knowledge can be
speci�ed for a progression planner. They describe a language based on temporal logic to
specify domain control rules. Rather than using this knowledge to prune bad plans after
they are generated, Bacchus and Kabanza explore ways of incrementally tracking the level
of satisfaction of the control axioms as the planning progresses. Our approach facilitates
the same, in a re�nement independent setting, by \folding in" the control knowledge into
the developed planning code, with the help of KIDS framework.

There is some work in constraint satisfaction community that is directed towards pro-
ducing specialized (customized) programs that is relevant to the research described here.
COASTOOL (Yoshikawa, Kaneko, Nomura, & Watanabe, 1994) and ALICE systems (Lau-

120

Synthesizing Customized Planners from Specifications

riere, 1978) take declarative description of CSPs and compile specialized algorithms for solv-
ing them, and MULTI-TAC (Minton, 1996) supports automatic con�guration of constraint
satisfaction programs. The MULTI-TAC system, in particular, provides an interesting con-
trast to our approach. MULTI-TAC starts with an algorithm schema, a list of high level
heuristic rules for various decision points (e.g., \most-constrained-variable-�rst" heuristic
for variable selection and \least-constraining-value-�rst" for value selection in CSP search),
and a list of
ags indicating whether certain procedures (e.g., forward checking in CSP) will
or will not be used. MULTI-TAC uses the domain speci�cation to specialize the high-level
heuristics given to it. For example, in the context of a minimummaximal matching problem
in graph theory, a most-constrained-variable-�rst heuristic may become \choose the edge
with the most neighbors that have been assigned values" . A con�guration is a particular
subset of specialized heuristics to be used, and a particular assignment of
ags. MULTI-
TAC �rst searches through a space of \con�gurations" to see which con�guration best �ts
a given problem population. Once the best con�guration is found, it is then automatically
compiled into e�cient code by using speci�cation re�nement techniques similar to those
that we described in Section 3.5.

MULTI-TAC thus presents an interesting middle-ground between search control rule
speci�cation approach used in UCPOP and PRODIGY planners, and the full integration of
domain-knowledge into the synthesized code, promised by the CLAY approach. In contrast
to the UCPOP and PRODIGY search control rule approach, the MULTI-TAC compilation
phase can support folding-in of search control rules into the compiled code. In contrast
to CLAY which advocates semi-automatic synthesis of a piece of software by manually
guided optimization (through the help of user speci�ed distributive and monotonicity laws),
MULTI-TAC supports fully automating the customization of a con�gurable template. For
the CLAY approach to be e�ective, we need to provide a declarative speci�cation of the
task and the domain control knowledge, as well as high level algorithm tactics. KIDS
deals with instantiating the tactics into the speci�c problem, but the simpli�cation needs to
be guided by careful speci�cation of distributive/monotonicity laws. In contrast, MULTI-
TAC's con�guration approach needs an algorithm template that is already semi-customized
to the speci�c task, with built-in hooks for using heuristics. The heuristics themselves are
speci�ed in the form of meta-heuristic knowledge.

In MULTI-TAC, domain knowledge is used only in specializing the meta-heuristics. In
theory, the CLAY approach may support a deeper integration of the domain knowledge into
the synthesized code; but at the expense of a signi�cant amount of user intervention. An
interesting application of the MULTI-TAC approach in the context of planningmight involve
starting with a UCP planning shell (which can be con�gured to emulate many varieties of
planners), a list of high-level heuristics for guiding the decision points in the UCP shell
(e.g., re�nement selection,
aw selection etc), and searching among the con�gurations to
pick a planner for the given problem distribution.

7. Conclusion

In this research, we investigated the feasibility of using automated software synthesis tools
to synthesize customized domain-speci�c planners. We described the CLAY architecture
for
exibly synthesizing e�cient domain dependent classical planners from a declarative

121

Srivastava & Kambhampati

theory of planning and domain theory using a software synthesis system (KIDS). Using
this framework, any classical planner can be synthesized enriched with domain control
knowledge. As a proof of concept, forward state-space and backward state-space planners
were synthesized for the blocks-world, the logistics and the tyre world domains. We have
shown that the synthesized planners can outperform general purpose planners when both
are using the same amount of domain-speci�c control knowledge and argueed that this is
due to their ability to fold-in domain speci�c control knowledge into the planner code. In
contrast, the domain independent planners test the control knowledge for each plan being
re�ned, and thus su�er a signi�cant application overhead.

7.1 Features and Limitations

Our synthesis approach provides several interesting contrasts to main-stream AI planning
work. To begin with, most AI planning work attempts to improve the e�ciency of planning
by concentrating on the way plans are generated. Our work di�ers radically in that we
concentrate on how \e�cient planners" are synthesized. The use of software synthesis tech-
niques lends modularity to the planner synthesis activity. The planning theory is speci�ed
declaratively rather than in the form of an implemented program. This supports changes
and extensions to the planning theory. While a planning theory is described independent
of domains, control knowledge and dynamical knowledge of the domain can be speci�ed
once for each domain. By selecting di�erent combinations of planning theory and control
knowledge, we can synthesize a variety of domain-customized re�nement planners.

Despite these promises, our approach does entail several overheads. Some of these
overheads are related to the current state of the art in automated software synthesis while
others are related to our current implementation of CLAY architecture. In what follows,
we try to tease these apart.

The holy grail of automated software synthesis approaches is to free the users from low-
level coding, and allow them to concentrate on declarative speci�cation. While the KIDS
system comes closest to this promise, it is still far from perfect. To start with, the user must
be reasonably familiar with the software synthesis process in order to do anything substantial
with KIDS. We had to go through a steep learning curve before we could understand how to
structure our theories to make good use of the optimizations provided by KIDS. Writing the
monotonic and distributive laws for operations such that they can help KIDS do e�ective
code simpli�cation is still somewhat of an art. Many times, we had to go back and rewrite
the domain knowledge after KIDS was unsuccessful in using the knowledge provided to it.
Advances in software synthesis technology may provide support for automatic translation
for high level control knowledge into forms suitable for consumption by KIDS; but such
support is not available right now.

The current cost-bene�t ratios are such that we would not recommend using CLAY/KIDS
approach for customizing a planner if one is interested in customizing a single planner for
a single domain. The REFINE code the user writes to specify the synthesis task is typi-
cally larger than any one single synthesized planner generated by KIDS. Thus, manually
customizing the planner for the domain may still be more appropriate. However, the syn-
thesized approaches may be competitive if we are interested in being able to customize a
variety of planners to a variety of domains.

122

Synthesizing Customized Planners from Specifications

In addition to the overheads entailed by KIDS, our speci�c implementation of planning
theories, domain knowledge, etc. also lead to some ine�ciencies. These latter can be
eliminated by a better design of the CLAY architecture. For example, to make our work
simple, we decided to go with one of the pre-existing canned design tactics provided by
KIDS, and chose the global search theory over �nite sequences as the candidate tactic.
Because of this choice, we found state-variable representation of domains to be more suitable
from an implementation point of view. Although getting state-variable representations of
actions is not very hard (we wrote a couple of utility routines for converting actions in
STRIPS representation into state-variable representation), specifying control knowledge in
terms of this representation turned out to be less than natural, especially in larger domains
like Russel's tyre world.

Our choice of in-built design tactics also limited the types of domain knowledge we could
specify. Most of the control knowledge had to be in the form of node-rejection rules. General
global search also allows node-preference knowledge as well as knowledge regarding e�ective
ways of shrinking the set of potential solutions, without splitting the set (by eliminating
non-solutions).

We could eliminate the awkwardness of state-variable representations as well as ex-
ploit more types of domain knowledge by designing global search tactics specially suited
to planning-speci�c data structures. Although eventually the KIDS system may support a
larger variety of design tactics, customizing design tactics to task classes is very much in
line with the current practice in automated software synthesis (Gomes, Smith, & Westfold,
1996).

7.2 Future Directions

The work presented here can be seen as the beginning of a fairly open-ended research pro-
gram that complements, rather than competes with, the research into e�cient planning
algorithms. Ideally, we would like to support the synthesis of customized planners based
on the full gamut of planning technologies including partial order and task-reduction plan-
ning. These latter are already subsumed by the re�nement planning framework developed
in (Kambhampati & Srivastava, 1996) and supporting their synthesis is mainly a matter
of supporting a more
exible partial plan representation in KIDS (representing plans as
sequences over actions has su�ced until now, as we were only addressing the synthesis of
state-space planners). We are currently in the process of doing this (Srivastava, Kambham-
pati, & Mali, 1997).

More generally, any time we get insights into the internal workings of a family of plan-
ning algorithms, we would like to translate those insights into declarative speci�cations for
KIDS and support synthesis of more e�cient customized domain code. An example of this
is the recent research on plan synthesis approaches based on constraint satisfaction. In fact,
domain independent planners such as Graphplan (Blum & Furst, 1995) can solve our test
suites in equal or better time compared to the synthesized planners. We have taken some
preliminary steps towards integrating these approaches into the re�nement planning frame-
work by using the notion of disjunctive re�nement planning (see Kambhampati & Yang,
1996; Kambhampati, 1997b; Kambhampati, Parker, & Lambrecht, 1997; Kambhampati,

123

Srivastava & Kambhampati

1997a). In future, as this work matures, we intend to explore synthesis of planners using
the theories of disjunctive plan re�nement.

Acknowledgements

We are grateful to Doug Smith for his help with KIDS and numerous discussions on tactics,
global search and distributive laws. We would also like to thank Carla Gomes for discussing
her work with us and making useful suggestions on how to write theories; and Nort Fowler
for his encouragement on this line of research. Thanks are also due to Steve Minton and
the anonymous referees of JAIR for their many helpful comments toward improving the
presentation of this paper. This research is supported by a DARPA Planning Initiative
Phase 3 grant F30602-95-C-0247 (through a subcontract from Kestrel to Arizona State
University).

Appendix A. Sample Code Referred in the Text

%% Get state sequence from partial plan

function VISITED-STATES

(PLAN: seq(integer), IS: seq(integer),

GS: seq(integer),

OPERS: seq(tuple(seq(integer), seq(integer))))

: seq(seq(integer))

= if empty(PLAN) then [IS]

else

if ~empty(NEXT-STATE(IS, first(PLAN), OPERS)) then

prepend(VISITED-STATES(rest(PLAN),

NEXT-STATE(IS, first(PLAN), OPERS),

GS, OPERS), IS)

%% Used by VISITED-STATES to get next state

%% after applying an operator

function NEXT-STATE

(STATE: seq(integer), OPER: integer,

OPERATORS: seq(tuple(seq(integer), seq(integer))))

: seq(integer)

= if fa (I: integer)(I in [1 .. size(STATE)]

=> OPERATORS(OPER).1(I) = 0 or

OPERATORS(OPER).1(I) = STATE(I)) then

image(lambda(x)

if OPERATORS(OPER).2(x) = 0 then STATE(x)

else OPERATORS(OPER).2(x),

[1 .. size(STATE)])

%% Domain independent pruning test for FSS refinement

function NO-MOVES-BACK (VIS-STATES: seq(seq(integer)),

IS: seq(integer), GS: seq(integer))

: boolean

= fa (I: integer, J: integer)

(I in [1 .. size(VIS-STATES)]

& J in [1 .. size(VIS-STATES)]

& I < J

=> not (fa (INDEX: integer)

(INDEX in [1 .. size(first(VIS-STATES))]

=> VIS-STATES(J)(INDEX) =

VIS-STATES(I)(INDEX)

or VIS-STATES(I)(INDEX) = 0)))

124

Synthesizing Customized Planners from Specifications

function CROSS-NO-MOVES-BACK

(R: seq(seq(integer)), S: seq(seq(integer)), IS: seq(integer),

GS: seq(integer)): boolean

= fa (I: integer, J: integer)

(I in [1 .. size(R)] & J in [1 .. size(S)]

=> not (fa (INDEX: integer)

(INDEX in [1 .. size(first(R))]

=> S(J)(INDEX) = R(I)(INDEX)

or R(I)(INDEX) = 0)))

%% Domain independent goal test for FSS refinement

function GOAL-TEST

(VIS-STATES: seq(seq(integer)), INIT: seq(integer),

GOAL: seq(integer)): boolean

= fa (I: integer)

(I in [1 .. size(GOAL)]

=> GOAL(I) = 0 or

last(VIS-STATES)(I) = GOAL(I))

%% Domain dependent pruning test

%% Heuristic H1: Limit useless move for blocks world

function NO-REDUNDANCY (S: seq(seq(integer)))

: boolean

= fa (I: integer, INDEX: integer)

(I in [1 .. size(S) - 2]

& INDEX in [1 .. size(first(S))]

& INDEX mod 2 = 1

and S(I)(INDEX) ~= S(I + 1)(INDEX)

=> S(I + 2)(INDEX) = S(I + 1)(INDEX))

%% Domain dependent pruning test

%% Heuristic H2: Move via table for blocks world

function NO-REDUNDANCY (S: seq(seq(integer)),

INIT: seq(integer),

GOAL: seq(integer))

: boolean

= fa (I: integer, INDEX: integer)

(I in [1 .. size(S) - 1]

& INDEX in [1 .. size(first(S))]

& INDEX mod 2 = 1

& S(I)(INDEX) ~= S(I + 1)(INDEX)

=>((%% position in state I is same as

%% initial state

S(I)(INDEX) = INIT(INDEX)

and

S(I + 1)(INDEX) =

%% position in state I+1 is on table

(1 + real-to-nearest-integer

(size(first(S)) / 2)))

or

(S(I)(INDEX) =

%% position in state I is on table

(1 + real-to-nearest-integer

(size(first(S))/2))

and

%% position in state I+1 is same as

%% goal state

S(I + 1)(INDEX) = GOAL(INDEX))))

125

Srivastava & Kambhampati

References

Bacchus, F., & Kabanza, F. (1995). Using temporal logic to control search in a forward
chaining planner. New Directions in AI Planning: EWSP 95, IOS Press, 141-153.

Backstrom, C., & Nebel, B. (1993). Complexity results in sas+ planning. Research Report,

Dept Comp.and Info Sc., Linkoping Univ., Sweden.

Barrett, A., & Weld, D. (1994). Partial order planning: Evaluating possible e�ciency gains.
Arti�cial Intelligence, 67 (1).

Blum, A., & Furst, M. (1995). Fast planning through planning graph analysis. Proc IJCAI-
95, 1636{1642.

Burstein, M., & Smith, D. (1996). ITAS: A portable, interactive transportation scheduling
tool using a search engine generated from formal speci�cations. In Proceedings of 3rd

AI Planning Systems Conference, pp. 35{44.

Fikes, R., & Nilsson, N. (1990). STRIPS: A new approach to the application of theorem
proving to problem solving. Readings in Planning. Morgan Kaufmann Publ., San
Mateo, CA.

Fink, E., & Veloso, M. (1994). Formalizing the prodigy planning algorithm. CMU CS Tech

Report CMU-CS-94-123.

Gomes, C., Smith, D., & Westfold, S. (1996). Synthesis of schedulers for planned shut-
downs of power plants. Proc. of 11th Knowledge-Based Software Engg. Conf., IEEE

Computer Society Press, Los Alamitos,CA, 12{20.

Gomes, C. P. (1995). Planning in kids. Technical report RL-TR-95-205, Rome Laboratory.

Kambhamapti, S. (1995). Comparative analysis of partial order planning and htn planning.
ACM SIGART Bulletin, 6.

Kambhampati, S. (1997a). Challenges in bridging plan-sythesis paradigms. In Proc. Intl.

Joint Conference on Arti�cial Intelligence (IJCAI-97). Morgan-Kaufmann.

Kambhampati, S. (1997b). Re�nement planning as a unifying framework for plan synthesis.
AI Magazine, 18 (2), 67{98.

Kambhampati, S., Katukam, S., & Qu, Y. (1996). Failure driven dynamic search control
for partial order planners: An explanation-based approach. Arti�cial Intelligence, 88,
253{315.

Kambhampati, S., Knoblock, C., & Yang, Q. (1995). Planning as re�nement search: A
uni�ed framework for evaluating design tradeo�s in partial order planning. Arti�cial
Intelligence, 76, 167{238. Special Issue on Planning and Scheduling.

Kambhampati, S., Parker, E., & Lambrecht, E. (1997). Understanding and extending
graphplan. In Proc. 4th European Conference on Planning. Springer Verlag.

126

Synthesizing Customized Planners from Specifications

Kambhampati, S., & Srivastava, B. (1995). Universal classical planning: An algorithm
for unifying state space and plan space planning approaches. New Directions in AI

Planning: EWSP 95, IOS Press, 61-75.

Kambhampati, S., & Srivastava, B. (1996). Unifying classical planning approaches.
Tech. rep. ASU CSE TR 96-006, Arizona State University. Available at
http://rakaposhi.eas.asu.edu/yochan.html.

Kambhampati, S., & Yang, X. (1996). On the role and utility of disjunctive representation
in re�nement planning. In Proc. Fifth Conf. Principles of Knowledge Representation

and Reasoning (KR-96), pp. 135{146.

Lauriere, J. L. (1978). A language and a program for stating and solving combinatorial
problems. Arti�cial Intelligence, 10, 29{127.

McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. Proc. 9th NCAI-91,
634-639.

Minton, S. (1988). Learning e�ective search control knowledge: An explanation-based
approach. PhD thesis, Carnegie -Mellon University, Pittsburgh, PA.

Minton, S. (1996). Automatically con�guring constraint satisfaction problems: A case study.
Constraints, 1 (1).

Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning.
In Arti�cial Intelligence, Vol. 42, pp. 363{392.

Penberthy, J., & Weld, D. (1994). UCPOP: A sound, complete, partial order planner for
adl. Proc. AAAI-94, 103-114.

Russell, S., & Norvig, P. (1995). Arti�cial intelligence - a modern approach (chap 13).
Prentice Hall, Englewood Cli�s, NJ.

Smith, D. R. (1990). KIDS: A semi-automatic program development system. IEEE Trans.

on Software Engineering { special issue on Formal Methods, 16, No.9, Sep 1990.

Smith, D. R. (1992a). Structure and design of global search algorithms. Kestrel Tech. Rep.
KES.U.87.11.

Smith, D. R. (1992b). Transformational approach to scheduling. Kestrel Institute Tech.
Rep. KES.U.92.2, 54pp.

Smith, D., & Parra, E. (1993). Transformational approach to transportation scheduling. In
Proceedings of the 8th Knowledge-based Software Engineering Conference, pp. 14{17.
Chicago, IL, Sept 1993.

Srivastava, B., Kambhampati, S., & Mali, A. (1997). A structured approach for synthesizing
planners from speci�cations. Proc. of 12th IEEE Intl. Conf. on Automated Software

Engg., Lake Tahoe, NV.

Tate, A. (1977). Generating project networks. Proc. 5th IJCAI, 888{893.

127

Srivastava & Kambhampati

Yoshikawa, M., Kaneko, K., Nomura, Y., & Watanabe, M. (1994). A constraint-based
approach to high school timetabling problems: A case study. Proc. NCAI-94, 1111{
1116.

128

