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Abstract

In this paper, we introduce the LOPOCOS (Low Power Co-synthesis) system, a prototype CAD

tool for system level co-design. LOPOCOS targets the design of energy-efficient embedded sys-

tems, implemented as heterogeneous distributed architectures. In particular, it is designed to solve

the specific problems involved in architectures that include dynamic voltage scalable (DVS) proces-

sors. The aim of this paper is to demonstrate how LOPOCOS can support the system designer in

identifying energy-efficient hardware/software implementations for the desired embedded systems.

Hence, highlighting the necessary optimisation steps during design space exploration for DVS en-

able architectures. The optimisation steps carried out in LOPOCOS involve component allocation

and task/communication mapping as well as scheduling and dynamic voltage scaling. LOPOCOS

has the following key features, which contribute to this energy efficiency. During the voltage scaling

valuable power profile information of task execution is taken into account, hence, the accuracy of the

energy estimation is improved. A combined optimisation for scheduling and communication mapping

based on genetic algorithm, optimises simultaneously execution order and communication mapping



towards the utilisation of the DVS processors and timing behaviour. Furthermore, a separation of task

and communication mapping allows a more effective implementation of both task and communica-

tion mapping optimisation steps. Extensive experiments are conducted to demonstrate the efficiency

of LOPOCOS. We report up to 38% higher energy reductions compared to previous co-synthesis tech-

niques for DVS systems. The investigations include a real-life example of an optical flow detection

algorithm.

1 Introduction and Previous Work

Embedded systems have become omnipresent in wide variety of applications, such as telecommunication systems,

consumer electronics, and other mass products. These computing sub-systems are responsible for control and data

operations and are commonly implemented as an architectural mix of several processing elements (PEs), such

as programmable microprocessors, ASIPs, ASICs, and FPGAs. The processing elements are connected through

communication links (CLs) and form a heterogeneous distributed system. Today, the designers of these modern

embedded systems are facing numerous challenges, mainly arising from two important facts. Firstly, the ever

increasing demand for functionality is continuously enlarging the product complexity. Secondly, the intense bur-

dens imposed by a highly competitive market, which has led to tight time-to-market windows and put rigorous

constraints on the production cost. To overcome such difficulties, the automated design of these, mostly, mixed

software and hardware systems is an inevitable necessity. System level co-design is a methodology helping the

system designer to identify most suitable architectures by supporting a rapid design space exploration. This is

done without actually implementing the application, but by means of estimating the design quality and its proper-

ties, using a CAD tool. Co-synthesis can therefore be viewed as the computer aided process to design embedded

computing systems which consist of software executing on an underlying hardware architecture. The co-ordinated

optimisation of both system parts (hardware and software) is the primary goal of this synthesis process. The opti-

misation itself can be driven by important design objectives, such as performance, cost, and power consumption.

However, most previous co-design approaches have neglected issues related to power [15, 19, 23, 34, 42] or fo-

cused on distributed systems that exclude DVS processing elements [9, 13, 24], hence, leaving a major source of

power reduction unexploited.

Nevertheless, during the last decade power has become a main design issue of concern, due to the proliferation

of battery powered embedded systems which demand a cautious use of the available energy resources. One
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way to tackle the problem of reducing the energy dissipation is the usage of system level power management

techniques to trade-off system performance against power dissipation. One of the most promising techniques is

dynamic voltage scaling (DVS). By conjointly reducing supply voltage and operational frequency, DVS is able

to reduce the energy consumption significantly. Since the reduction of the operational frequency is equivalent to

the reduction of the system performance, this technique is applicable to applications where the system schedule

shows periods of idleness or periods where a reduced performance can be tolerated. The field of DVS finds it roots

in [41], where its usability was demonstrated considering a desktop computer environment. The dynamical and

conjoint adjustment of supply voltage and operational frequency, to satisfy the application needs, was shown to

lead to superior power savings compared to dynamic power management (switching off of idle components), when

both techniques are applicable [20]. This fact explains why DVS is attracting considerable attention from both

academia and industry. Most major digital processor vendors have recently introduced DVS enabled processor

types [25, 3, 2]. Many research has focused on the scheduling aspects for DVS, however, often making the

assumption of single processor systems [22, 20, 38, 27]. The trends towards co-design methodologies and dynamic

voltage scalable processors indicate the need for co-design techniques which support the consideration of DVS

processors to synthesise energy-efficient embedded systems. Such a co-design framework will be presented in this

paper.

Three research groups have addressed issues which have a close relationship to the problems solved in the

LOPOCOS system. Luo and Jha [29] have extended an existing co-synthesis approach [11] to account for DVS

processing elements. Their approach is based on a DVS algorithm which keeps communication events fixed, i.e.,

they reduce the global optimisation problem to smaller local problems which can be solved easier and faster. Fur-

thermore, they take battery characteristic into consideration [30] to increase the battery life time of the system. The

approach is very efficient in terms of optimisation time and achieved energy reduction, when the used processing

elements show similar power consumption. However, in the case that the architecture is built out of highly hetero-

geneous PEs, this approach is likely to find sub-optimal solutions, from the DVS point of view, since the fixing of

communication events neglects the different power profiles during the schedule and mapping optimisation.

Gruian and Kuchcinski [18] presented an approach based on an energy conscious list scheduling technique. The

dynamically re-calculated task priorities are based on the energy gain inducted by scheduling decisions and the

critical path of the task graph. However, since task priorities based on energy gain might lead the list scheduler

to infeasible (timing violating) schedules, the task priorities are calculated as a weighted sum of energy gain and

critical path priorities. A good trade-off factor is found by increasing the weight of the tasks on the critical path

and re-scheduling the tasks until a feasible schedule has been found.
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Bambha et al. [5] introduced a hybrid global/local search strategy based onsimulated heatingto find settings

for the DVS processing elements. Their approach is split into two optimisations. The global optimisation is carried

out using a genetic algorithm, while the local optimisation is based on a hill climbing and a Monte Carlo search.

This work mainly focuses on the management of computational resources when using hybrid algorithms, and its

iterative nature (up to 20 minutes for the voltage scaling of a task graph with 21 nodes) makes it too time consuming

to be used in the innermost loop of a co-synthesis system. As opposed to the presented LOPOCOS system,

the approaches above are based on constructive scheduling techniques and neglect the power profile information

during the optimisation process.

One of the aims of this paper is to comprehensively introduce LOPOCOS, an experimental low power co-

synthesis system, and to show how it can be used by system designers to synthesise energy-efficient distributed

embedded systems containing DVS-PEs. The energy reduction in LOPOCOS is based on the utilisation of a gener-

alised DVS algorithm, which is used to guide the optimisation of the system schedule and the task/communication

mapping. However, in this paper, we will particularly focus our attention on an energy-efficient mapping approach

for DVS. We demonstrate that significant energy savings can be achieved by appropriately choosing the mapping

for the task executions, such that DVS can be exploited effectively. Additionally, it is shown that the component al-

location plays an important role during the optimisation of DVS enabled systems, not only in terms of performance

and production cost, but also in terms of energy dissipation. We conducted extensive experiments to demonstrate

the ability of the proposed synthesis approach to find solutions of high quality in terms of cost, feasibility, and

energy consumption.

The paper is organised as follows. Section 2 introduces our co-synthesis system (LOPOCOS) and highlights

the important synthesis steps. Experimental results, with emphasis on the optimisation of mapping and allocation,

are presented in Section 3. Finally, in Section 4, we draw the conclusions.

2 The LOPOCOS System

In this section, we will introduce the co-design flow as used in LOPOCOS (see Fig. 1). We will mainly focus here

on the mapping and component allocation steps (indicated as Step 1, 2, and partly 3, in Fig. 1), while detailed

descriptions of the used algorithms for voltage scaling and scheduling can be found elsewhere [35, 37].
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Figure 1: Co-synthesis flow in LOPOCOS

2.1 System Specification and Target Architecture

The synthesis process starts from a system specification given as multi-rate hyper task graphGS(T ,C ), a combina-

tion of several smaller task graphs, capturing all task activations for the hyper-period (LCM of all graph periods).

Such a task graph example is shown in Fig. 2(a). Each nodeτ ∈ T in these graphs represents a task, an atomic unit

of functionality to be executed without preemption. A node might inherit an earliest possible start timeη which

needs to be exceed before the task can be executed, and a hard deadlineθ which must be met at run-time in order

to ensure correct functionality. Edgesγ∈ C in the task graph denote precedence constraints and data dependencies

between tasks. If two tasks,τi andτ j , are connected by an edge, then the execution of taskτi must be finished
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Figure 2: Task graph and target architecture example

before taskτ j can be started. Data dependencies inherit a data value, reflecting the quantity of information to be

exchanged by two tasks. Further, each task graph has a specific periodp, representing the time limit between

two successive invocations. An implementation is only feasible when all timing and precedence constraints are

fulfilled. Such a specification model is mostly suitable for data-flow intensive applications.

The architectures we consider here consist of heterogeneous processing elements (PEs), like general purpose

processors, ASIPs, FPGAs, and ASICs. These componentsincludestate-of-the-art DVS-PEs. Furthermore, the

PEs might employ lower level power management techniques, like gated clocks [6], to avoid switching of unused

circuitry during periods of idleness. An infrastructure of communication links, like buses and point-to-point

connections, connects these PEs. In addition, DVS-PEs are connected through communication interfaces (CIs),

able to adapt to the different operational frequencies caused by scaling the DVS-PEs. An example architecture is

shown in Fig. 2(b). The architecture is captured using a directed graphGA(P ,L) where nodesπ ∈ P represent

PEs and edgesλ ∈ L denote CLs.

Each task of the system specification might have multiple implementation alternatives, therefore, it can be

potentially mapped to several PEs able to execute this task. If two communicating tasks are accommodated on

different PEs,πn andπm with n 6= m, then the communication takes place over a CL, involving a communication

time and power overhead. For each possible task mapping certain implementation properties, like e.g. execution

time, dynamic power dissipation, memory, and area requirements, are given in a technology library. These values

are either based on previous design experience or on estimation techniques, such as those presented in [40, 28, 7].

2.2 Co-Synthesis Problem

The co-synthesis problem for heterogeneous distributed systems including DVS components can be decomposed

into five synthesis steps (see also Fig. 1):
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(1) Allocation: This step determines the quantities and types of the used system components (processing ele-

ments and communication links). In our particular case this includes also PEs that employ DVS technology.

(2) Mapping: This step defines the spatial assignment of computational tasks onto PEs and communications

onto CLs. Mapping implicitly decides if a task is implemented as software running on a programmable

processor (general purpose CPU or DSP), or as hardware on an ASIC or FPGA.

(3) Scheduling:According to the data dependencies and timing constraints, the execution of the system tasks

needs to be scheduled, hence, the start time of each task and communication needs to be specified. Tasks

executing on programmable processors have to be sequentialised, while tasks implemented in hardware can

be performed in parallel.

(4) Voltage scaling:In order to reduce the energy consumption, the tasks mapped to DVS-PEs can be executed

at a lower speed (lower supply voltage), whenever the schedule allows such an extension of the execution

time without violating any precedence and timing constraints.

(5) Evaluation: In order to judge the quality of the implementation alternative, which is given by the first

four steps, it is necessary to estimate certain implementation properties, such as timing behaviour, power

consumption, production cost, etc. According to these estimates, which should be as accurate as possible, it

is possible to guide an optimisation process.

The system designer is interested in deriving the most suitable system implementation for a given specification, i.e.,

he needs to find a system architecture, a mapping of tasks and communications onto the architecture, a schedule

for the mapped tasks, and a dynamic voltage setting for the DVS-PEs. Of course, the most suitable implementation

shows low system cost, low energy dissipation, and must be feasible in terms of performance.

The combined scheduling and mapping problem for energy reduction and timing feasibility can be formulated

using the common triplet notation for scheduling problems [33]. Our problem is then described byQm|prec|θ j , fA,∑Es
j ,

whereQm specifies a multiprocessor environment,precrefers to a task model with precedence constraints,θ j and

fA are objectives capturing the deadline and area constraints, respectively.∑Es
j denotes the additional objective to

minimise the energy dissipation based on DVS. Therefore, the synthesis problem for DVS is to find an arrange-

ment of the task execution order and mapping, such that the energy reduction through DVS-PEs is maximised and

all specification constraints (timing, precedence, area, etc.) are met. A more detailed description of the synthesis

problem, including the DVS problem, can be found in [36].

7



In this work, we make the assumption that the specified tasks are of a coarse granularity and that the PEs can

continue operation during the voltage scaling (as is the case for the DVS processor in [8]). This allows us to

neglect the scaling overhead in terms of power consumption and time.

2.3 Evaluation

This section corresponds to Step 5 in Fig. 1. Each implementation candidate, resulting after a sequence of

allocation, mapping, scheduling, and voltage scaling steps, can be characterised in terms of certain implementation

properties, which reflect the design quality. In order to guide the optimisation process towards solutions of high

quality, it is necessary to find a mathematical formulation in terms of an objective functions. This is of particular

importance when using iterative improvement heuristics, such as genetic algorithms, simulated annealing, or tabu

search.

LOPOCOS targets primarily four objectives: (a) system cost, (b) area, (c) timing, and (d) energy consumption.

After each synthesis step one of these parameters can be derived. The dynamic voltage scaling allows to calcu-

late the energy dissipation based on the found scaling voltages. The timing feasibility can be checked after the

schedule has been determined. The mapping is responsible for the used area in terms of bytes and gates (whether

implemented as software or hardware) and the allocation of components decides upon the system cost. We will

elaborate each of these parameters in the following sections.

2.4 Voltage Scaling

This section briefly introduces the dynamic voltage scaling technique used in LOPOCOS, as carried out in Step 4

in Fig. 1. Dynamic voltage scaling reduces the dynamic power dissipationPdyn of a digital circuit by reducing the

supply voltageVdd during the run-time of the application. Since the supply voltage influences the dynamic power

quadratically, as shown in Equation (1), voltage scaling provides a significant potential for power reduction.

Pdyn = CL ·N0→1 · f ·V2
dd (1)

whereCL denotes the load capacitance of the circuit,N0→1 represents the zero-to-one switching activity, andf

is the operational frequency. However, reducing the supply voltage does not come without a penalty, it increases

the circuit delayd, which, in turn, necessitates the lowering of the operational frequencyf to guarantee correct

function of the circuit:

d = k ·
V2

dd

(Vdd−Vt)2 (2)
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wherek is a circuit dependent constant andVt denotes the circuit threshold voltage. Furthermore, the energy

consumptionEdyn is given as the integral of the power dissipationPdyn over timet, and since the time is inverse

proportional to the operational frequencyf , the energy can be expressed using the following equation:

Edyn = N0→1 ·CL ·V2
dd (3)

It is important to observe that the energy consumption solely depends on the switched load capacitanceN0→1 ·CL

and the squared supply voltage. Therefore, considering the switched load capacitance as given by technology and

performed computation, and that no switching occurs after the computation has been executed (gated clocks), the

onlyway to reduce the consumed energy is to lower the supply voltage.

In LOPOCOS, the voltage scaling is performed for each implementation alternative to estimate its energy con-

sumption for the DVS enabled architecture (Fig. 1, Step 4). The voltage scaling algorithm, called PV-DVS, utilises

an energy gradient based method, which is explained in [35]. The produced voltage settings are static, hence, no

calculations have to be performed at run-time, in order to determine the voltage levels. This avoids both timing

and energy overhead due to such calculations. Of course, this makes the approach more suitable for applications

where the actual execution time do not vary widely from the estimated worst case execution time, such as trans-

formational computations on fixed size data sets. By taking into account the particular power dissipated by each

task (the power profile of the tasks), this voltage scaling allows to increase the accuracy of the estimated energy

dissipation, leading to an improved accuracy of the co-synthesis process.

Fig. 3 describes the functionality of the voltage scaler, considering the example task graph and the target archi-

tecture in Fig. 2. The voltage scaling algorithm gets as input a mapped task graph and a schedule corresponding to

the task executions at nominal supply voltageVmax (Fig. 3(a)). After passing this information through the voltage

scaling algorithm, the voltage settings for tasksτ4 andτ5 have been reduced, to exploit the available slack. The

schedule in Fig. 3(b) therefore shows a reduced energy consumption. Of course, the task executions can only be

extended, which corresponds to lowering the supply voltage, as long as deadlines (dashed lines in Fig. 3) are met.

For clarity reasons we have disregarded the communications in this example, though LOPOCOS considers them

during the co-synthesis process.

After identifying an effective setting for the supply voltages we can calculate the total energy consumptionEΣ

of an implementation:

EΣ = ∑
ε∈A

E(ε) (4)

whereA = T ∪C defines the set of all activities including tasks and communications. Based upon the type of
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activity, the energy dissipationE(ε) is calculated from:

E(ε) =


Pmax(ε) · tmin(ε) · V2

dd(ε)
V2

max(ε) if ε ∈ TDVS

Pmax(ε) · tmin(ε) if ε ∈ T \TDVS

PC(ε) · tC(ε) if ε ∈ C

wherePmax andtmin refer to the power dissipation and execution time at nominal supply voltage, respectively,Vdd

is the scaled supply voltage,TDVS is the set of all tasks mapped to DVS-PEs, andPC and tC denote the power

dissipation and execution time of communication activities. The total energy consumption is one of the objectives

which needs to be minimised, hence, the remaining optimisation steps (scheduling, mapping, allocation) will

be partially based on this value. For example, the scheduling step optimises both timing feasibility and energy

reduction.

2.5 Energy-Efficient Scheduling

This section will focus on the schedule optimisation, indicated as Step 3 in Fig. 1. In traditional co-synthesis

environments, scheduling optimisation is solely carried out to achieve timing feasibility. However, in the presence

of system level power management techniques (PM), e.g., dynamic power management (DPM) and dynamic

voltage scaling (DVS), scheduling becomes also important from the energy point of view, since it has an influence

on the system idle and slack times which are utilised by the PM.

The scheduling optimisation in LOPOCOS is carried out by a genetic list scheduling approach, similar to

[10, 17], and it produces a static schedule. Unlike commonly used list scheduling techniques [4], which rely
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on sophisticated algorithms to calculate the task priorities, genetic list scheduling algorithms (GLSA) employ

a genetic algorithm (GA) to iteratively improve these priorities. Literature about the functionality of genetic

algorithms can be found in [16, 31]. The main advantage of such a strategy is the fact that the optimisation can

be based on any arbitrary objectives, capturing different synthesis goals (timing, area, power, etc.). Although

the GLSA presented in [10, 17] provide a valuable basis for our approach, they use list schedulers which are

rather unsuitable for the specific problem we address here, namely reducing the energy consumption while, at the

same time, finding feasible schedules. Advanced LS algorithm, like the one in [17] use a so called "hole filling"

technique to minimise delays. Such an approach can lead to bad quality solutions when applied in the contents of

DVS. The following example explains the reason for this.

Consider the task set given in Fig. 4, mapped onto an architecture build out of two DVS-PEs. The task priorities

are given on the right side of each task. According to these priorities a feasible schedule, as shown in Fig. 4, can be

generated by a list scheduler. We can observe that the tasksτ0, τ1, andτ2 can be scaled only a little until deadline

d2 is met. However, taskτ4 can utilise the idleness before taskτ2 starts execution, and taskτ3 can be scaled until

the deadlined3,4 is met. Let us consider now the employment of a hole filling technique. In this case the list

scheduler would try in its last scheduling step to place taskτ3 into the idle period between taskτ4 and taskτ2. This

decision is fatally wrong, from an energy reduction point of view, since the only available slack for all tasks would

be the time between the execution of taskτ2 and the deadlined2. However, if the deadlined3,4 would be identical

with deadlined2, then the schedule displayed in Fig. 4 would become infeasible and the schedule produced with

hole filling would be the better one. To avoid such a dilemma our list scheduler solely makes scheduling decisions

based on the task priorities, which are iteratively optimised. Therefore, it is capable of producing both schedule

variants discussed above and evaluates their suitability.

The objective of the scheduling optimisation is to yield low energy consumption, while, at the same time,

achieve timing feasibility. In order to calculate the objective that guides the optimisation towards timing feasibility,
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we employ the following penalty function:

pt = 1+
∑

τ∈Td

DV2
τ

T2
HP

(5)

whereTd denotes the set of all deadline tasks,tF(τ) andtd(τ) represent the finishing time and deadline of taskτ,

respectively. The deadline violations are captured byDVτ = max
(
0, tF(τ)− td(τ)

)
. The hyper task graph period

THP is used to relate the deadline violations and squaring has been applied, in order to assign a higher penalty to

larger violations of imposed deadlines. The fitness of each scheduleFS is then simply calculated by multiplying the

energy dissipationEΣ (see Section 2.4, Equation (4)) with the timing penaltypt . More details on our scheduling

algorithm, called energy-efficient genetic list scheduling (EE-GLSA), can be found in [37].

2.6 Task and Communication Mapping for Energy Reduction

The previously introduced DVS technique (Section 2.4) and the schedule optimisation (Section 2.5) are an in-

cremental part of LOPOCOS, and are carried out for each task mapping candidate. This is shown in Fig. 1.

Nevertheless, task and communication mapping are two separate optimisation steps in our synthesis approach. For

clarity reasons we first show how the task mapping is optimised and then introduce the communication mapping.

2.6.1 Task Mapping

The task mapping step determines which PE carries out which task. Thereby, it determines the execution time

and power dissipation at nominal supply voltage and further the area requirement in terms of bytes or gates,

depending on whether a task is implemented as software or hardware. The goal of the mapping optimisation step

is to distribute the tasks among the available PEs, including DVS enabled PEs, such that the energy dissipation is

minimised and a feasible design in terms of timing behaviour and area constraints is achieved. Since the schedule

has a significant impact on the DVS usability, also the mapping decisions influence how well DVS can exploit the

idle times. Clearly, different mappings result in different schedules, due to the effects on task execution times,

inter task communication times, and exploration of task parallelism. Simply spoken, scheduling and mapping are

interrelated.

We have extended a GA based task mapping algorithm similar to the one given in [13], such that it solves the

specific problems identified in Step 2 of the design flow shown in Fig. 1. This extension is based on our PV-DVS

and the GA list scheduling algorithm [35, 37], which are used to calculate parts of the mapping fitness function.

Thereby, it is possible to integrate the proposed DVS optimised scheduling algorithm into the mapping step of the
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design flow, in order to guide the optimisation.

In GA based mapping approaches, solution candidates are encoded into mapping strings. Each gene in these

strings describes a mapping of a task to a PE. A genetic algorithm evolves an initial mapping population (several

mapping candidates) by imitating and applying the principles of natural selection. The evolution is based on mating

the fittest individuals of the current population through the usage of crossover operations to generate offsprings

with a potentially higher quality. Additionally, mutation provides the opportunity to enter unexplored regions

of the search space by applying random changes to the genes of an individual. A description of the presented

energy-efficient genetic mapping algorithm (EE-GMA) is given in Fig. 5.

The fitnessFA of mapping candidates (Equation (6)) is calculated with respect to an additional objective, namely

area. The fitness is expressed by:

FA = FS·∏
π∈P

APπ (6)

APπ =

 1

k ·
(

SAπ
AAπ
−1
)

+1

if AAπ ≥ SAπ

otherwise
(7)

whereFS is the schedule fitness based on the DVS reduced energy dissipation including a time penalty, as briefly

outlined in Section 2.5, andAPπ assigns an area penalty for each PE exceeding its area constraints, as given in

Equation (7). The used area is denoted asSAπ, and the maximal available area is represented byAAπ (either as

memory or silicon area depending on the implementation in SW or HW). If the available areaAAπ is not exceeded,

we do not need to assign an area violation penalty for the particular processing elementπ, hence,FS is multiplied

by one. On the other hand, if the area constraint is exceeded, the used areaSAπ and the available areaAAπ are

related and multiplied by a constantk. This constant allows to adjust the aggressiveness of the penalty. We setk

to 0.02 (empirically found to be a good value) in our experiments, which was sufficiently high to avoid infeasible

results at the end of the mapping optimisation. However, it is still low enough to allow infeasible solutions to

survive sometimes in order to increase the population diversity and to avoid a premature convergence of the GA.

In this way, it is possible to stimulate the placement of functionality onto the distributed PEs such that energy

is minimised, while timing and area constraints are respected. The parameters of the GA for the task mapping

were set as follows: The population size was set to 50, the minimal dynamic mutation probability was 5%, the

generational gap was 20% and the initial population pool was filled with random mappings.
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EE-GMA

Input: - task graph TG
- technology library (execution times, power dissipations)
- allocated architecture

Output: - timing, area, and energy optimised mapping

01: Initialisation: Create random initial population poolPm of
mapping strings.

02: Perform Mapping: Generates, for each member of
the solution pool, a mapping based on the corresponding
mapping string. Specifices the task properties such as
execution time, power dissipation, etc.

03: Invoke EE-GLSA: Invoke the schedule and communication
mapping optimisation to determine a suitable and energy
efficient schedule for the current task mapping, for each
individual of the population.

04: Assign Fitness:Compute fitness of each individual in the
population pool.
a) Calculate area penalty
b) Derive fitness based on area penalty and the schedule fitness.

05: Termination: If no improved individual (improve-
ment> 1%) has been produces for 10 generations, then
terminate. Otherwise, continue.

06: Ranking: Individuals are ranked according to their fitness.
07: Selection:According to the size of the generational overlap

select individuals for mating. High ranked individuals have a
high probability to be selected.

08: Mating: Produce two-point crossover between a pair of
selected individuals.

09: Mutation: Randomly change genes of individuals using a
dynamic mutation probability scheme, with exponential
decreasing probability during run-time.

10: Offspring insertion: Exchange low ranked individuals by
newly produced individuals with respect to the size of the
generational overlap.

11: Invoke step 02.

Figure 5: The proposedEE-GMA approach for energy-efficient task mappings

2.6.2 Communication Mapping

Communication issues have great impact on the timing behaviour of the application and, therefore, should be

considered carefully during the design space exploration [26, 14]. One important decision we have taken in this

regard, was to separate the mapping of communication activities from the task mapping. The following example

illustrates the reasons behind this decision. The tasks and communications of the task graph shown in Fig. 6(a)

need to be mapped onto a target architecture consisting of three PEs, connected by four CLs. A possible mapping
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Figure 6: Combined optimisation of task and communication mapping

is shown in Fig. 6(b). Let us consider a certain genetic operation which transforms the mapping string shown

in Fig. 6(b) to the one in Fig. 6(c). A quick check upon this mapping indicates that this assignment of activities

represents in invalid solution. Consider for example the communicationγ0−1 between taskτ0 andτ1. Although the

tasks are mapped onto PE0 and PE2, which are solely connected through CL0, the communication is mapped to

CL1. Hence, this mapping is invalid (if we consider that only direct communications are allowed without routing

over intermediate PEs).

Needless to say, a combined task and communication optimisation would lead to a high number of invalid

solutions during the optimisation, which, in turn, would have a negative effect on the convergence of the population

towards high quality solutions. To overcome this problem we propose a combined optimisation of scheduling

and communication mapping, which is carried out for each task mapping candidate. Or, in other words, the

communication mapping is carried out in Step 3 of the design flow shown in see Fig. 1. In this way it is possible

to avoid invalid solutions, since all possible mappings of communication activities onto the communication links

are statically known for a particular task mapping. If the tasksτ0 andτ1, for example, are mapped to PE1 and

PE2, respectively, then the communicationγ0−1 can only be mapped onto CL2 or CL3. Our communication

optimisation, described next, takes advantage of this information to ensure that only valid solutions are produced.

The presented communication mapping optimisation is carried out in parallel with the schedule optimisation.

To explain this strategy consider the extended string representation, shown in Fig. 7, which encodes both a possi-

ble schedule and a communication mapping candidate. It can be observed that this string is divided into priority

and communication mapping genes. A list scheduler determines an execution order based on the encoded priori-

ties, while the mapping of communication activities onto the communication links is given by the communication
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Figure 7: A combined priority and communication mapping string

mapping genes. Here we concentrate on the communication optimisation, while details about the schedule op-

timisation can be found in [37]. This string representation allows the concurrent optimisation of priorities and

communication mappings, using a single genetic algorithm. However, it necessitates specialised genetic opera-

tors, like crossover and mutation, which operate on the two string parts in parallel but without interference. This

is done to avoid a mixtures of genes that would result in invalid off-springs.

For each of the mapping genes only valid values, which result in feasible solutions, are allowed. This is not

hard to achieve due to the fact that the task mapping precedes the communication mapping. Thereby, for every

communicating pair of tasks the possible CLs are unambiguously specified. Therefore, it is possible to generate

random initial chromosomes (random in the sense that a random choice is taken among the possible CLs) that

assure proper communication mappings. Similarly, the mutation operator chooses randomly among the valid

possibilities. This validity is further maintained by the standard (single or two point mating) crossover operations,

due to the fact that genes maintain their spatial position in the chromosome of Fig. 7.

In order to keep the optimisation time low, the communication mapping string is dynamically adapted to the

particular task mapping, as the number of inter-PE communications changes. Of course, the valid values of

each gene change also dynamically in accordance to the task mapping. Note, that the presented communication

mapping optimisation improves both the timing behaviour as well as the power consumption, due to the fitness

calculation based on equations (4) and (5). The mapping experiments, given in Section 3, indicate the importance

of this optimisation step to achieve high quality solutions in terms of feasibility and energy savings.
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2.7 Component Allocation with DVS capability

The last step (outermost loop, shown in Fig. 1 as Step 1) in the system design process is the allocation of com-

ponents, like processing elements and communication links, and their interconnection. In LOPOCOS, this step is

user driven and thereby based on the knowledge and experience of the designer. We assume that the designer has

predefined an architecture and our LOPOCOS tool helps him to evaluate its quality in terms of energy dissipation,

cost, and feasibility. If an architecture does not prove to be satisfactory, the designer makes the necessary changes

and evaluates again. In this way it is also possible to trade-off the different design goals and hence achieve multiple

design alternatives. Similarly to the scheduling and mapping steps, the allocation of components has an influence

on the usability of DVS. For example, it might be beneficial to reduce the workload on the system PEs by intro-

ducing a new PE. Such a decision can lead to increased deadline slacks in the system schedules. These slacks are

exploited by DVS, resulting in higher dynamic energy reductions, while, at the same time, increase the product

cost and the static power consumption. Therefore, a specifically "over-designed" system might be the preferable

choice of the designer. Clearly, this optimisation is based on the astuteness of the designer.

3 Experimental Results

LOPOCOS was tested on several benchmark examples to demonstrate its capability to produce high quality so-

lutions in terms of energy, timing, and area requirements. Experimental results for the DVS algorithm and the

genetic list scheduling can be found in [35, 37]. In particular, we will focus here on the optimisation of mapping

and allocation, as outlined in Sections 2.6 and 2.7. The design flow in Fig. 1 has been implemented on a Pentium-

III/750MHz Linux PC with 128MB RAM. The benchmarks consist of four sets: 1) We have used TGFF [12] to

generate 25 hypothetical examples (tgff1 – tgff25)1. These specifications includepower managedDVS-PEs

and non-DVS-PEs. Accordingly, the power dissipation varies among the executed tasks (with maximal variations

of 2.6 times). 2) TheHou examples are taken from [21]. The PEs of these benchmarks are characterised by non

uniform power profiles. Since the initial PEs (taken from [21]) are not DVS enabled, we extended the same PEs

with DVS capabilities, such thatVt = 0.8V andVmax = 3.3V. 3) Furthermore, we have taken 5 examples from

[5]. These benchmarks represent two different implementations of Fast Fourier Transforms (fft1 andfft3), a

Karplus-Strong music synthesis algorithm (Karp10), a quadrature mirror filter bank (qmf4), and a measurement

application (meas). The architectures are composed out of 2 to 6 identical DVS-PEs, assuming constant power

consumption. The supply voltage of these processors can be dynamically varied between 0.8 and 7 volts. The

1Available at: http://www.ecs.soton.ac.uk/˜ms99r/benchmarks.html
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throughput constraints and initial average power are calculated at a reference voltage of 5 volts. 4) The final

benchmarks represents a real-life example, a traffic monitoring system based on an optical flow detection (OFD)

algorithm. This application is a sub-system of an autonomous model helicopter [1, 18], specified by 32 tasks.

The remainder of this section is split into experiments concerning the hypothetical benchmarks (Section 3.1)

and experiments carried out on the OFD real-life example (Section 3.2).

3.1 Hypothetical Examples

To give insight into the energy efficiency achieved by LOPOCOS, we have conducted several experiments. The

first experiment shows an comparison between two different mapping approaches. The first one is based on a

constructive list scheduling technique and a power profile neglecting DVS approach [29]. In the following we

will refer to this approach asEVEN-DVS. The second mapping approach corresponds to the technique used in

LOPOCOS. It is based on a genetic list scheduling algorithm (EE-GLSA, see Section 2.5) and a DVS technique

which considers the power profile information during the voltage scaling (see Section 2.4). Table 1 shows this

comparison for the benchmark setstgff andHou. All presented results were obtained by running the optimisation

process ten times and averaging the outcomes. It can be observed that the proposed mapping technique was able

to reduce the energy dissipation when compared to the results of theEVEN-DVS approach, with improvements

of up to 38.8% (tgff3: 24.6% compared to 63.4%). The optimisation times for theEVEN-DVS based task map-

ping varied between 1.91s and 172.38s for task graphs with up to 100 nodes. Our approach optimised the same

examples in 3.42s to 14050s. These increased execution times are due to two reasons: a) The search space for

EVEN-DVS is smaller, since it is based on a constructive list scheduling, and b) the generalised DVS approach [35]

shows a higher computational complexity than the voltage scaling used inEVEN-DVS. This results in the classical

trade-off between optimisation time and accuracy (solution quality).

The next experiment is concerned with the benchmark examples taken from [5]. We had to re-calculate the

throughput constraints at nominal supply voltageVdd = 5V for the same scheduling and mapping as given in

[5], since we employ a different communication model (contention, requests for the bus, etc.). Unfortunately

this makes a direct comparison to the results given in [5] impossible. Nevertheless, the re-calculation of the

throughput was carried out for the same task mappings and execution orders as used in [5], which are based on

a dynamic level scheduling (DLS) approach [39]. Due to the highly serialised structure of themeas example, we

could further calculate the theoretically optimal supply voltage settings, which resulted in an energy reduction of

13%, with respect to a task execution at nominal supply voltage. Our synthesis approach found a near optimal

solution, with an energy dissipation only 4% higher than the theoretical bound, in 8.3s (Tab. 2). For the remaining
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NO-DVS EVEN-DVS approach [29] LOPOCOS
Example Energy CPU Energy CPU Reduction Energy CPU Reduction Reduction

Dissip. time (s) Dissip. time (s) (%) Dissip. time (s) (%) Factor

tgff1∗ 333 3.11 116 1.91 65.23 92 12.14 72.41 1.11
tgff2 709747 24.10 625970 13.34 11.80 445532 47.86 37.23 3.15
tgff3 298991 69.46 225433 39.68 24.60 109351 2437.98 63.43 2.58
tgff4 63924 24.15 15743 12.15 75.37 10817 290.10 83.08 1.10

tgff4_t 49807 22.93 20275 11.83 59.29 18487 226.93 62.88 1.06
tgff4_fixed 59294 20.32 18860 11.66 68.19 10621 299.45 82.09 1.20

tgff5 568210 64.42 426614 41.23 24.92 233063 904.99 58.98 2.37
tgff6 24685 19.97 7298 11.66 70.44 3799 221.99 84.61 1.2
tgff7 1491203 10.29 1169258 5.55 21.59 1058346 41.75 29.03 1.34
tgff8 525250 15.52 182894 8.49 65.18 136057 46.92 74.1 1.35
tgff9∗ 600428 9.01 358087 4.63 40.36 323158 45.28 46.18 1.14
tgff10 9417 7.45 8531 3.98 9.41 7193 17.58 23.62 2.51
tgff11 2858919 26.87 2400940 14.48 16.02 2229397 97.6 22.02 1.37
tgff12 174440 56.36 90087 37.61 48.36 58404 1328.52 66.52 1.38
tgff13 927704 60.97 511019 32.56 44.92 328377 853.42 64.6 1.44
tgff14 7723 23.29 7578 14.39 1.88 6693 69.01 13.34 7.11
tgff15 20017 86.85 17948 54.39 10.34 16938 916.98 15.38 1.49
tgff16 2984716 34.66 2177495 24.64 27.05 2141352 197.41 28.26 1.04
tgff17 16237 41.97 11417 26.80 29.69 8220 308.54 49.38 1.66
tgff18 1518517 4.17 1248236 2.80 17.80 1066350 9.71 29.78 1.67
tgff19 3431 5.91 2176 4.12 36.59 1907 18.31 44.41 1.21
tgff20∗ 18621 12.41 7286 7.18 60.87 4646 92.24 75.05 1.23
tgff21 2182722 121.95 1543090 59.71 29.30 1352422 1665.04 38.04 1.3
tgff22 894765 301.48 691269 172.38 22.74 456021 2240.57 49.03 2.16
tgff23∗ 5519226 147.33 3261600 87.85 40.90 2129198 14050.26 61.42 1.5
tgff24 720861 151.80 302288 98.07 58.07 200328 2199.39 72.21 1.24
tgff25 3232360 74.20 2555077 44.36 20.95 2328983 1664.63 27.95 1.33

Hou∗ 11816 10.57 10704 11.43 9.41 6708 163.78 43.23 4.59
Hou_clustered∗ 12766 1.58 10145 1.97 20.53 7879 3.42 38.28 1.86

Table 1: Comparison between the mapping optimisation forEVEN-DVS [29] and the approach used in LOPOCOS
(∗the architectures of these benchmarks consist of DVS-PEs only)

No.of NO-DVS LOPOCOS DLS Mapping
Example Tasks/ Energy Energy CPU Reduction Reduction

Comms. Dissip. Dissip. time (s) (%) (%)

fft1 28/32 29600 14019 591.2 52.63 38.66
fft3 28/32 48000 21452 1144.7 55.31 23.39

karp10 21/20 59400 24055 755.1 59.50 19.63
meas 12/12 28300 25732 8.3 9.07 9.07
qmf4 14/21 16000 11097 202.3 30.64 20.38

Table 2: Comparison between dynamic level scheduling [39] and the proposed approach

benchmarks given in Tab. 2, up to 39.9% (karp10: 19.6% compared to 59.5%) higher energy savings could be

achieved when compared to a constructive scheduling and mapping based on DLS.

In the next experiment, we illustrate an architecture refinement process, carried out under the supervision of

the designer. Based on the feedback provided by the optimisation steps 1 to 3 (Fig. 1), the designer allocates
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Figure 8: Tow identical execution orders of thetgff17 benchmark: (a) unscaled (NO-DVS) and using (b) the
DVS techniques using in LOPOCOS

necessary and/or deallocates unnecessary PEs and CLs, in order to achieve the intended trade-offs between system

cost, energy dissipation, and quality. To demonstrate this, we have carried out this optimisation step on the task

graph exampletgff17. The allocated architecture consists of three PEs (PE0–PE2) including one DVS-PE (PE2).

These components are connected via two buses (CL0 and CL1). A possible mapping and scheduling for this

example is given in Fig. 8, showing both the schedule at nominal voltage and at a dynamically changing voltage.

Using this allocation of components, the total energy dissipationEtotal = Estat + Edyn = 48870 is achieved when

utilising the presented PV-DVS mapping and schedule optimisation. The cost of this system is 1656. However, the

budget for the system design might be 1800 and so the designer can change the design in order to find a different

trade-off between energy dissipation and cost. For example, it seems to be a good idea to exchange PE1 with a

DVS enabled PE, since the system power profile of the current allocation (as given in Fig. 8(b)) shows a high

power consumptions for PE1. Certainly, allocating a DVS enabled version of PE1 will increase the static power

dissipation and the cost of the system, due to the hardware overhead of the dynamic supply voltage hardware, but

it might also enable a further reduction of the dynamic power consumption. To clarify this, we have carried out

the following experiment. For the DVS enabled version of PE1 it is considered that its static power dissipation is
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Architecture Static Power Dyn. Power Total Power CPU Time Reduction
(W) (W) (W) (s) (%)

2 DSPs 0.383 2.137 2.520 n/a n/a
3 DVS-DSPs 0.574 1.371 1.945 148.3 22.8%
4 DVS-DSPs 0.736 1.163 1.899 303.6 24.6%
5 DVS-DSPs 0.898 1.132 2.030 381.9 19.4%

Table 3: Increasing architectural parallelism to allow voltage scaling of the OFD algorithm

10% higher than for its no-DVS version (a realistic assumption based on the system described in [32]) and that its

cost is increased by 100. The changed system configuration results in a total energy dissipation of 46798 and a

implementation cost of 1756. Whether this energy reduction justifies the increased system cost strongly depends

on the application domain. For example, if the system is going to be a unique implementation (e.g. satellite

sub-system) higher cost might be acceptable, while in the case of mass products, cost constraints could be more

stringent. In a similar manner, the additional allocation of components might relax the schedule and introduce

more available slack time to be used by the DVS technique. Again, it is necessary to compromise between the

achieved dynamic energy reduction, the increased static power consumption and the cost.

3.2 Real-life Example: OFD Algorithm

The final experiments are concerned with an energy efficient implementation of an optical flow detection (OFD)

algorithm on board of an autonomous helicopter. In its current implementation the OFD algorithm runs on two

ADSP-21061L DSPs, with an average current of 760mA at 3.3V, hence, an average power dissipation of ap-

proximately 2.5W. Due to the stringent power budget on board of the helicopter, including application critical

sub-systems, it is necessary to keep the overall power dissipation under a certain limit. To reduce the power con-

sumption to a minimal amount, DVS seems predestined, since the OFD algorithm shows an unnecessary high

performance (12.5 frames of 78x120 pixels per second). However, a repetition rate of 6.25 frames per second is

sufficient to ensure a correct detection, allowing to relax the system specification. For experimental purpose we

consider a hypothetical extension of the DSPs towards DVS capability. We take into account that such an exten-

sion has an influence on the static power dissipated by the digital circuits and, therefore, increase the static current

by 10% [32].

In the first part of this experiment we keep the application constraints fixed, i.e., the OFD algorithm needs to

perform with a repetition rate of 12.5Hz (equivalent to the current implementation). In order to increase the usage

of the application parallelism, we use three different architectures build out of three to five DVS-DSPs, connected

via a shared bus. In this way the OFD algorithm can be performed faster. Table 3 reports on our findings. The
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Architecture Static Power Dyn. Power Total Power CPU Time Reduction
(W) (W) (W) (s) (%)

2 DSPs 0.383 1.069 1.452 n/a n/a
2 DVS-DSPs 0.413 0.394 0.807 783.5 44.4%
3 DVS-DSPs 0.574 0.277 0.851 1107.2 41.4%
4 DVS-DSPs 0.736 0.253 0.989 1393.4 31.9%
5 DVS-DSPs 0.898 0.241 1.139 1634.7 21.6%

Table 4: Relaxing the performance constraints of the OFD algorithm

first row represents the current implementation of the OFD algorithm, i.e., running on an architecture without

DVS technology. This implementation shows a total power consumption of 2.52W. Now, consider the DVS

enabled architectures with three to five DSPs. In accordance with the number of allocated PEs, the static power

consumption has increased as well. However, the PEs are capable to exploit the application parallelism more

effectively, which, in turn, allows a fast execution of the OFD algorithm. This results in a slack time, usable by

the DVS-PEs to lower the dynamic power dissipation. As it can be observed from Table 3, all implementations

using DVS-DSPs show a reduced total power consumption (sum of static and dynamic power consumption) of up

to 24.6%. Please note that this reduction does not necessitate any performance degradation, while the cost of the

system increases.

As we have mentioned before, the current implementation of the OFD algorithm shows an unnecessary high

performance and it is therefore possible to relax the specified system constraints. Hence, in the following experi-

ment, we reduced to the repetition rate from 12.5Hz to 6.25Hz, i.e., an execution at half speed. This performance

is still high enough to allow a correct flow detection. The results of this investigation are shown in Table 4. We

can observe that for all given architectures the energy consumption can be significantly reduced by up to 44.4%,

when compared to a non DVS implementation (first row in Tab. 4). However, among all implementation alterna-

tives the architecture composed out of 2 DVS-PEs seems to be the favourite, since it achieves the highest energy

savings at a low cost. This is due to the fact that with each additionally allocated PE the static power consumption

increases, while the achievable dynamic energy reductions decrease (caused by limited parallelism of the applica-

tion). Again, this shows how important an accurate design space exploration is, when synthesising DVS enabled

embedded systems.

4 Conclusions and Future Work

In this paper, we have comprehensively introduced LOPOCOS, an experimental co-design tool for distributed

embedded architecture including DVS processors. Extensive experiments, carried out on several hypothetical and
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real-life examples, show very encouraging results in terms of energy efficiency and timing behaviour. It was shown

that with the usage of a GA based synthesis approach for DVS enable architectures, it is possible to find better

solutions when compared to constructive scheduling and mapping techniques, in reasonable amounts of time. The

energy efficiency is achieved not only through the schedule and mapping optimisation towards DVS, but under the

additional consideration of the PE power profiles during these optimisation steps. Furthermore, it was shown that

a combined scheduling and communication mapping optimisation can help to overcome the specific problem of a

combined task and communication mapping optimisation.

Current work extends the presented co-synthesis system towards conditional process graphs, in order to increase

its specification flexibility. This further necessitates the consideration of on-line scheduling and voltage scaling

techniques to increase the possible energy savings by taking into consideration dynamic execution times.
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