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Abstract

In this work we design a new technique for generat-

ing synthetic iris images and demonstrate its potential for

presentation attack detection (PAD). The proposed tech-

nique utilizes the generative capability of a Relativistic Av-

erage Standard Generative Adversarial Network (RaSGAN)

to synthesize high quality images of the iris. Unlike tradi-

tional GANs, RaSGAN enhances the generative power of

the network by introducing a “relativistic” discriminator

(and generator), which aims to maximize the probability

that the real input data is more realistic than the synthetic

data (and vice-versa, respectively). The resultant generated

images are observed to be very similar to real iris images.

Furthermore, we demonstrate the viability of using these

synthetic images to train a PAD system that can generalize

well to “unseen” attacks, i.e., the PAD system is able to de-

tect attacks that were not used during the training phase.

1. Introduction

The iris is the annular region of the eye surrounding the

pupil. The rich texture of the iris, which is better discernible

in the near-infrared spectrum, has been used as a biometric

cue [6] in many recognition systems [14]. This has led to an

increased interest in the texture and morphology of the iris.

Consequently, researchers have strived to model the pattern

of the iris. In this regard, a number of methods to generate

synthetic digital irides have been developed. Cui et al. [4]

used principal component analysis to select appropriate fea-

ture vector coefficients from real images, which were then

used to generate synthetic irides. The quality of the gen-

erated data was improved using super-resolution. Zuo et al.

[35] developed a model based on the morphology of the iris.

Noise and light reflection were also added to the model to

create more realistic looking samples. Shah and Ross [26]

used Markov Random Field to model the stromal texture

of the iris [22] and then added anatomical entities such as

collarette, crypts, radial and concentric furrows. In [31],

Venugopalan and Savvides generated synthetic iris images

Figure 1: Samples of bonafide and RaSGAN-based syn-

thetic iris images separated by green and red outline, re-

spectively.

from IrisCodes. Other methods have also been proposed in

the literature to generate good quality synthetic iris images

[32, 9]. While these methods successfully generate digital

iris images, they are still unable to truly model the distribu-

tion of real iris images [18].

Recent advancements in deep learning techniques based

on neural networks such as Convolutional Autoencoders

(CAEs) [30, 28] and Generative Adversarial Networks

(GANs) [11, 19] have paved the way for generating syn-

thetic data, including iris, that look very realistic. Kohli et

al. [18] proposed a deep learning based approach to syn-

thesize iris images using a Deep Convolutional Generative

Adversarial Network (iDCGAN). They used the inception

score [25] and statistical characteristics of real iris images

to define the realism of the generated data. Generated sam-

ples were shown to capture the texture distribution of a real

iris image. However, unrealistic distortions and noise were

observable near eyelids and lashes.

In this paper, we propose using Relativistic Average

Standard Generative Adversarial Network (RaSGAN) [15]

with Frechet Inception Distance (FID) [13] to synthesize

good quality iris images. The traditional GANs such as

Standard GAN (SGAN) [11] and iDCGAN consist of two
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Figure 2: Schematic of the training process for the Relativistic Average Standard Generative Adversarial Network (RaSGAN)

using real iris images. The training images for RaSGAN are first aligned and center-cropped using the pupil-iris center.

Cropped images of size 256×256 are then sent to the discriminator for training. The discriminator tries to detect synthesized

images while the generator competes with it to generate more realistic synthetic images by back-propagating the loss after

each training iteration and updating the weights. For each generated image, a FID score is calculated to evaluate its quality.

This process is repeated until images with lower (i.e., better) FID scores are generated.

critical modules - a generator that aims to increase the prob-

ability that the synthetic data is classified as real and a dis-

criminator that aims to distinguish between real and syn-

thetic data. Unlike iDCGAN, RaSGAN trains a generator

that aims to maximize the probability that a randomly sam-

pled set of synthetic samples are more realistic than a given

set of real samples. In [15], Martineau showed that this

property can be implemented in a Standard GAN using a

“relativistic discriminator” that competes with the genera-

tor to maximize the probability that the real data is more re-

alistic than the synthetic data. The author studied different

cost functions and compared the quality of the generated

samples using the FID score. He reported that RaSGAN

obtained much lower (better) FID score on the CIFAR-10

dataset than SGAN, Least Squares GAN (LSGAN) [23] and

Wasserstien GAN (WGAN) [1]. It was also observed that

RaSGAN produces good quality images using fewer num-

ber of iterations even when other networks were not able to

converge (especially for high resolution images).

In addition to synthesizing iris images using RaSGAN,

we propose to utilize the synthetic data to improve the gen-

eralization capability of existing presentation attack detec-

tion (PAD) algorithms. Over the years, researchers have

studied different kinds of presentation attacks (i.e., PAs) on

iris recognition systems (such as the use of cosmetic con-

tact lenses [33, 16] and printed eye images [12]) and have

proposed methods to alleviate this vulnerability [17, 3, 5].

However, current PAD algorithms are not well designed to

handle the problem of unseen attacks, i.e., using PAs that

were not observed during the training stage of the algo-

rithm. We demonstrate how synthetic iris images can be

used to address this lapse.

The major contributions of this paper are summarized

here:

• We use RaSGAN with FID score to generate synthetic

iris images that can effectively model the distribution

of real iris images.

• We investigate if state-of-the-art iris PAD algorithms

can distinguish bonafide iris images as well as pre-

sentation attack images (e.g. cosmetic contact lens,

printed iris and artificial eye images) from the gener-



ated synthetic images.

• We demonstrate the usefulness of the generated syn-

thetic images for unseen presentation attack detection.

The rest of the paper is organized as follows. Section 2

introduces GANs. Section 3 discusses the principle behind

RaSGAN and describes the specific method and architec-

ture used to generate synthetic iris images. Section 4 intro-

duces the datasets used in this work. Section 6 describes the

experiments that were conducted and the results that were

obtained. Section 7 summarizes the findings of this work.

2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [11] are neu-

ral networks that consist of two different components: a

generator (G) that learns how to synthesize the data (e.g.,

images), and a discriminator (D) that aims to discriminate

between real data and the synthesized data. These two net-

works are alternatively updated against each other in a min-

max game where the objective of the generator is to maxi-

mally fool the discriminator while the objective of the dis-

criminator is to not be fooled.

2.1. Background

Given a distribution of real data Pdata and a multivariate

normal noise distribution Pz , the discriminator in SGAN

aims to output a high probability value for real data and a

low probability value for synthetic data. This is achieved by

maximizing objective function F as,

max
D

F (D) = Ex∼Pdata
[log(D(x))]

+Ez∼Pz [log(1−D(G(z)))],
(1)

where, x represents the real data, z refers to a noisy input

for G, D(x) = S(N(x)) and N(x) is the non-transformed

output of the discriminator. Here, S represents the standard

logistic function that is used to classify sample x as real or

synthetic. In SGAN, a negative value of N(x) indicates that

x is synthetic data while a positive value indicates that it is

real data.

The generator, G, aims to generate images that maximize

the value of D(x) and this is achieved by minimizing F as,

min
G

F (G) = Ez∼Pz [log(1−D(G(z)))]. (2)

Therefore, in this min-max game between the discriminator

and generator, the overall objective function of SGAN is

defined as,

min
G

max
D

F (D,G) = Ex∼Pdata
[log(D(x))]

+Ez∼Pz [log(1−D(G(z)))].
(3)

Figure 3: Details of the architecture of the RaSGAN used

for generating synthetic iris images. In the discrimina-

tor, (4×4 conv1-128, stride=2) refers to a convolutional

layer with kernel size 4×4, stride of 2 and 128 output fil-

ter maps. Similarly, in the generator, (4×4 convTrans1-

4096, stride=1) describes a transposed convolutional layer

with kernel size 4x4, stride of 1 and 4096 number of output

filter maps.

3. Relativistic Average Standard Generative

Adversarial Network (RaSGAN) for Syn-

thetic Iris Generation

The discriminator in traditional GANs such as SGAN

and DCGAN aims to maximize its capability to differenti-

ate between real and synthesized samples. Such GANs have

been shown to perform well in generating low-resolution

images [11]. However, it is more challenging to synthesize

high-resolution images due to instability in training and op-

timization [15]. This makes it difficult for the generator to

produce high-resolution natural images while requiring the

discriminator to accurately distinguish these generated sam-

ples from real samples. High-resolution images often con-

tain more intricate details of the object being modeled than

low-resolution images. Therefore, to obtain good quality

synthetic digital irides that can capture the fine textural de-

tails of irides, a GAN model that can process information

from high-resolution samples is desired.

3.1. Relativistic Standard Generative Adversarial
Network (RSGAN)

In [15], Martineau determined that the min-max game of

the SGAN does not always generate good quality data, es-

pecially for high-resolution inputs. Therefore, to enhance

the generative power of GAN, he introduced the relativis-



tic discriminator, DR, that can be represented using non-

transformed layers N(xr) and N(xs) as,

DR(x) = S(N(xr)−N(xs)). (4)

Here, xr and xs represent real and synthetic data, respec-

tively. Also, N(.) represents the output of the last convolu-

tional layer before the standard logistic function, S, is ap-

plied to it. The relativistic discriminator, DR, maximizes

the probability that the given real iris image is more realis-

tic than the synthetic data. Similarly, Drev
R = S(N(xs) −

N(xr)) maximizes the probability that the given synthetic

iris image is more realistic than the real data itself. Using

this information, the loss function for the discriminator DR

and generator GR can be updated as,

FRSGAN (DR) = −E(xr,xs)∼(Pdata,Q)[log(DR(x))], (5)

FRSGAN (GR) = −E(xr,xs)∼(Pdata,Q)[log(D
rev
R (x))],

(6)

where, Q represents the distribution of synthetic data xs.

This ensures that unlike SGAN, gradients of DR come from

both real and synthetic data. This helps GR to generate

more realistic looking iris images.

3.2. Relativistic Average Standard Generative Ad
versarial Network (RaSGAN)

As discussed in the previous section, the objective func-

tion of RSGAN compares a sample from the set of real im-

ages with some samples in Q. This might not be a very

effective approach as the loss functions for both DR and

GR depend directly on xr and xs. Therefore, to make the

relativistic discriminator and generator “more global” over

the dataset, the discriminator’s loss function in Equation (5)

is further updated to compare the input data (real/synthetic)

with the average of samples from the opposite class (syn-

thetic/real) [15]:

FRaSGAN (D) = −Exr∼Pdata
[log(D̄(xr))]−

Exs∼Q[log(1− D̄(xs))],
(7)

D̄ =

{

S(N(x)− Exs∼QN(xs)), if x ∈ P

S(N(x)− Exr∼PN(xr)), if x ∈ Q.
(8)

Using the updated loss functions, the relativistic average

discriminator, D̄, and generator compete with each other

to learn a realistic representation for iris images. To main-

tain the quality of the generated images, the Frechet Incep-

tion Distance (FID) [2] score is calculated at each train-

ing epoch. FID compares the distribution of the generated

synthetic iris images with the real samples to compute a

score that helps determine the quality of RaSGAN-based

synthetic iris images (see Section 5).

(a) BSIF + SVM

(b) Fine-tuned VGG-16

Figure 4: Normalized PA score distribution of RaSGAN-

based synthetic iris images for Experiment-1 when tested on

two PAD algorithms: (a) BSIF+SVM [7] and (b) Fine-tuned

VGG-16 [10]. These histograms emphasize the similarity

between bonafide samples and the generated dataset.

3.3. Model Architecture and Implementation De
tails

The RaSGAN used to generate synthetic iris images in

this work is trained on 2,778 bonafide samples from a pub-

licly available dataset named Berc-iris-fake [20, 21].

The input to the discriminator are real iris images aligned

using the center of the pupil-iris obtained using the VeriEye

iris-segmenter,1 and center-cropped to size 256×256 (as

shown in Figure 1). The RaSGAN model has been imple-

mented in Python using PyTorch libraries2 where both the

1www.neurotechnology.com/verieye.html
2https://github.com/alexiajm/relativisticgan



Table 1: Performance (in %) of PAD algorithms in

Experiment-0 that is used as baseline for analysis and com-

parison with other experiments.

BSIF VGG-16 DESIST Iris-TLPAD

EER 5.44 5.85 19.37 2.78

TDR(@1%) 71.70 86.20 21.62 96.31

TDR(@5%) 93.79 93.17 48.80 97.15

generator and discriminator are built using convolutional

neural networks. The generator consists of seven transposed

convolutional layers with kernel size of 4×4, and a stride of

1 for the first convolutional layer and 2 for the remaining six

layers. Each convolutional layer is followed by batch nor-

malization and rectified linear units. The discriminator is

built using seven convolutional layers with kernel size 4×4

and a stride of 2 for all layers except for the last convolu-

tion layer. Similar to the generator, each convolutional layer

is accompanied by batch normalization and leaky rectified

linear units (see Figure 3)

4. Datasets Used

In this paper, we utilized image samples from multiple

iris datasets, viz., Berc-iris-fake [20, 21], Casia-iris-fake

[29], LivDet2015 [34], NDCLD15 [7] and a self collected

dataset named MSU-IrisPA-01, for training and testing un-

der different experimental set-ups. Images in MSU-IrisPA-

01 were collected using the IrisID 7000 scanner over multi-

ple sessions. This dataset contains 1,343 bonafide samples,

1,938 printed iris images, 108 colored contact lens images,

352 artificial eyes and 125 Kindle replay-attack images. To

the best of our knowledge, this is the first dataset that con-

tains Kindle replay attacks. Replay attacks have been a

topic of discussion in the biometric literature [24], but were

less commonly used in the context of NIR based iris sen-

sors. However, the E-ink display of some Kindle models

reflects NIR illumination that can be imaged by iris sensors.

The artificial eye images exhibit ten different colors per-

taining to three different brands. Similarly, five different-

colored contact lenses were used to collect images of cos-

metic contact lenses. Printed iris images were acquired us-

ing six different laser printers on four kinds of paper (of-

fice glossy, office matt, professional glossy and professional

matt). The print attacks are further categorized into two dif-

ferent types: printed iris and printed iris with pupil cut-out.

Thus, this dataset exhibits diverse types of presentation at-

tacks.

As mentioned earlier, RaSGAN is trained using 2,778

bonafide samples from the Berc-iris-fake dataset, while

the generation capability of the trained network is tested

using 6,277 bonafide samples from the Casia-iris-fake,

LivDet2015, NDCLD15 and MSU-IrisPA-01 datasets. This

Table 2: Performance (in %) of PAD algorithms in

Experiment-1 (top) and Experiment-2 (bottom) when

RaSGAN-based synthetic iris images are used as bonafide

samples.

BSIF VGG-16 DESIST Iris-TLPAD

EER 7.42 6.74 16.07 3.19

TDR(@1%) 81.01 82.89 28.98 95.65

TDR(@5%) 90.45 92.33 56.25 97.25

BSIF VGG-16 DESIST Iris-TLPAD

EER 10.38 14.11 18.53 23.85

TDR(@1%) 60.36 51.69 43.05 53.82

TDR(@5%) 84.27 68.36 54.50 62.93

generates 6,277 synthetic iris samples that are utilized in

different experiments.

5. Evaluating Image Quality: Frechet Incep-

tion Distance (FID)

In [25], Salimans et al. proposed to use a pre-trained

inception-V3 network to generate images and then compare

the marginal label distribution with the conditional label

distribution to generate the inception score. With respect to

large KL-Divergence between the distributions, higher the

inception score, the better the quality of the generated data.

The inception score provides a good metric for evaluating

image quality but it does not include statistics that compare

real data against synthetic data.

Instead of analyzing synthetic iris images in isolation,

the Frechet Inception Distance [13] compares the statistics

of the generated synthetic samples against the real samples:

FID = ‖µr − µs‖2 + Tr(Σr +Σs − 2
√

ΣrΣs), (9)

where, µr,µs,Σr and Σs represent the statistics of the

two distributions and Tr is the trace of the co-variance ma-

trix (Σr +Σs − 2
√
ΣrΣs).

Since FID is measured as the distance between the distri-

butions of real and generated data, the lower the FID score,

the higher the similarity between real and generated data.

As described in [27], this score can be as high as 400-600

(or even more with respect to the deviation of generated data

from the original distribution), but a score this high would

indicate that the quality of the generated dataset is unac-

ceptable. We evaluated the quality of synthetic iris samples

generated using the trained GR component of RaSGAN

(Equation (9)) and obtained an overall score of 39.17 that is

comparable to FID scores obtained in [8]. Hence, we con-

clude that the RaSGAN based synthetically generated

iris samples closely resemble bonafide iris samples.



6. Analysis of RaSGAN-based Iris Images

The generated images are analyzed and evaluated for

their usefulness as both bonafide images and presentation

attack images, using state-of-the-art PAD algorithms, viz.,

DESIST [17], BSIF+SVM [7], Iris-TLPAD [3] and pre-

trained VGG-16 [10]. Seven different experiments are con-

ducted with 6,277 RaSGAN-based synthetically generated

irides, 6,277 bonafide irides and 9,467 PA samples from

Casia-iris-fake, NDCLD15, LivDet2015 and MSU-IrisPA-

01 datasets. Further division of these datasets for training

and testing the PAD algorithms is explained in the experi-

mental protocols described below. In all cases, training and

test sets were mutually disjoint.

6.1. Baseline on Current PAD Algorithms

Experiment-0: This experiment is used as a baseline to

evaluate the performance of state-of-the-art PAD methods

on traditional PAs such as cosmetic contact lenses, printed

eyes, Kindle replay-attack and artificial eyes. The PAD

algorithms are trained using 4,312 bonafide samples and

5,538 PA samples; the test set consists of 1,965 bonafide

samples and 3,929 PA samples.

Results for this experiment are summarized in Table 1,

where Iris-TLPAD achieves the best performance with an

Equal Error Rate (EER) as low as 2.78% followed by BSIF

and VGG-16 with 5.44% and 5.85%, respectively.

6.2. Synthetic Iris as Bonafide Sample

FID scores do not merely provide an estimate of the qual-

ity of the images, but also about the similarity between the

distributions of the synthetic data and the real data. To fur-

ther establish the “bonafide nature” of the generated syn-

thetic images, we conducted two more experiments.

6.2.1 Experimental Protocol

The experiments below use the generated synthetic iris im-

ages as bonafide samples.

• Experiment-1: The PAD algorithms are trained us-

ing 4,312 bonafide and 5,538 PA samples including

printed eye, cosmetic contact lens, artificial eye and

Kindle images. The test set was created using 1,965

bonafide samples, 3,929 PA samples and 1,965 syn-

thetically generated images (labeled as bonafide sam-

ples).

• Experiment-2: This experiment focuses on evaluat-

ing the capability of the generated synthetic data to

replace the need for bonafide samples. Thus, the

PAD algorithms are trained using 4,312 RaSGAN-

based synthetic iris images and 5,538 PA samples from

Experiment-1. Testing is done on 1,965 bonafide irides

and 3,929 PA samples.

Figure 5: ROC curves illustrating the performance of PAD

algorithms BSIF+SVM [7] and VGG-16 [10] when trained

with bonafide images (and PAs) and tested using synthetic

samples (Experiment-1), and comparing them with the cor-

responding baselines (Experiment-0).

6.2.2 Analysis

From Table 1, we observe that even in the presence of syn-

thetic data (labeled as bonafide) during testing, the perfor-

mance of PAD algorithms in Experiment-0 and Experiment-

1 are comparable. There is an increase of only 1.98% in the

EER of BSIF for Experiment-1. Congruent behavior is ob-

served for other PAD algorithms implying that majority of

RaSGAN based synthetic iris images are being classified as

bonafide samples (see Figure 4 and 5).

However, when PAD algorithms are trained using

synthetic iris images (instead of bonafide images) in

Experiment-2, an increase in EER is observed (see Table 2).

But some of the PAD algorithms still achieve a competitive

True Detection Rate (TDR) of 84.27% at 5% False Detec-

tion Rate (FDR). This signifies that even though the gen-

erated iris images closely resemble bonafide samples, there

are some fundamental differences between the two sets of

images. This suggests the possibility of exploiting the syn-

thetic images in a different way to enhance PAD algorithms,

as will be shown later.

6.3. Synthetic Iris as Presentation Attack Sample

The synthetically generated dataset can be exploited by

an adversary to impersonate someone else’s identity. In the

next two experiments, we study the impact of the synthetic

data on PAD algorithms when used as a presentation attack.

6.3.1 Experimental Protocol

The experiments below use the generated synthetic iris im-

ages as presentation attack samples.



Table 3: Performance (in %) of PAD algorithms in

Experiment-3 (top) and Experiment-4 (bottom) when

RaSGAN-based synthetic iris images are used as presen-

tation attack images.

BSIF VGG-16 DESIST Iris-TLPAD

EER 16.03 10.25 10.37 2.47

TDR(@1%) 52.06 75.77 83.87 95.11

TDR(@5%) 74.96 85.14 86.06 95.17

BSIF VGG-16 DESIST Iris-TLPAD

EER 50.64 30.94 57.45 25.14

TDR(@1%) 0.51 3.21 0.35 1.37

TDR(@5%) 3.10 7.43 2.23 9.16

• Experiment-3: In this experiment, we analyzed the

performance of the PAD algorithms when the synthetic

iris data is used as a “known” presentation attack. So,

PAD algorithms are trained using 4,312 bonafide and

4,312 synthetic samples while testing is done using

1,965 samples from each class. Unlike Experiment-1

and 2, here synthetic images are labeled as PA.

• Experiment-4: In this experiment, we analyzed the

performance of the PAD methods when the gener-

ated iris data are used as “unseen” presentation at-

tacks. Here, the PAD algorithms are trained using

4,312 bonafide and 4,312 PA samples while testing is

done using 1,965 bonafide and 1,965 synthetic sam-

ples.

6.3.2 Analysis

Comparing the results of Experiment-0 and Experiment-3,

we observe a considerable increase in EER when RaSGAN-

based synthetic iris images are used as PAs (except for Iris-

TLPAD). A decrease in TDR is observed for all PAD algo-

rithms (except for DESIST) that confirms the viability of us-

ing RaSGAN generated synthetic images as presentation at-

tack vectors on current state-of-the-art methods. Also, when

RaSGAN based synthetic data is used only in the test set as

an unseen attack (Experiment-4), a very significant drop in

the performance of PAD algorithms is observed. For exam-

ple, in Table 3 (bottom), EER values for BSIF and DESIST

are more than 50% with TDR at an FDR of 5% as low as

3.10% and 2.23%, respectively. Similar observation can be

made for other PAD algorithms.

6.4. Synthetic Iris for Unseen Presentation Attack
Detection

Experimental results from the previous section shows

that RaSGAN-based synthetic images can be used as ef-

Table 4: Performance (in %) of PAD algorithms in

Experiment-5 (top) and Experiment-6 (bottom), illustrating

the benefits of training PAD methods using RaSGAN-based

synthetic images for unseen PA detection.

BSIF VGG-16 DESIST Iris-TLPAD

EER 28.57 31.37 42.01 25.18

TDR(@1%) 1.78 5.27 1.27 21.21

TDR(@5%) 13.84 27.44 5.29 38.65

BSIF VGG-16 DESIST Iris-TLPAD

EER 22.79 26.99 39.54 18.52

TDR(@1%) 11.65 13.61 1.02 38.91

TDR(@5%) 48.14 30.93 5.44 56.59

fective PAs as they closely resemble the bonafide samples.

Thus, if existing PAD algorithms are trained using synthetic

images as PAs, it is possible that these algorithms can learn

a better representation of bonafide samples. In this section,

we explore the idea of using synthetically generated data for

enhancing the ability of PAD methods to detect unseen PAs,

i.e., those PA types that were not used during training.

6.4.1 Experimental Protocol

To examine the possibility of using synthetic iris images for

unseen presentation attack detection, the type of presenta-

tion attacks on which the PAD algorithms are trained and

tested are mutually exclusive of each other.

• Experiment-5: In this experiment, the PAD algo-

rithms are trained on 4,312 bonafide iris images and

5,530 PA samples representing print-attack and artifi-

cial eyes, and testing is done on 1,965 bonafide iris im-

ages and 1,917 PA samples corresponding to cosmetic

contact lens and Kindle images. This experiment eval-

uates the efficacy of current PAD algorithms on unseen

presentation attacks.

• Experiment-6: In this experiment, unlike

Experiment-5, training set consists of 4,312 bonafide

iris images, the corresponding 4,312 synthetic images

and 1,135 PA samples pertaining to print-attack and

artificial eyes. The test set consists of 1,965 bonafide

iris images and 1,917 PA samples pertaining to

cosmetic contact lens and Kindle images. Here, we

analyze the usefulness of synthetic iris images for

unseen PA detection.

6.4.2 Analysis

As seen from the results in Table 4 and Figure 6, current

state-of-the-art algorithms for presentation attack detection



(a)

(b)

Figure 6: ROC curve illustrating the benefits of RaSGAN-

based synthetic iris images for generalized unseen presen-

tation attack detection.

are not well-equipped for handling unseen presentation at-

tack with EER values in Experiment-5 as high as 28.57%

and 25.18% for BSIF and Iris-TLPAD, respectively. On the

other hand, EER reduces in Experiment-6 for most of the

PAD algorithms when they are trained using synthetic im-

ages and a few PA samples (printed and artificial eyes). This

indicates that RaSGAN-based synthetic iris images can be

used by PAD algorithms to learn a better representation for

bonafide iris images, which will help them detect unseen PA

types.

7. Summary

In this work, we designed a new technique based on RaS-

GAN to generate synthetic irides. Results obtained in this

paper suggest that there are multiple applications for syn-

thetic iris images: (1) they can be used to imitate real iris

images, which eliminates the hassle of large data collection,

(2) they can efficiently model the bonafide samples (see Fig-

ure 4), making them potential presentation attack vectors,

and (3) they can be used to train existing PAD algorithms

for “unseen” presentation attack detection.

We plan to extend this work by judiciously using the

RaSGAN-generated synthetic irides to train a new PAD al-

gorithm that can better generalize over unseen attacks.
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