
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Li et al. BioMedical Engineering OnLine           (2023) 22:16  
https://doi.org/10.1186/s12938-023-01070-6

BioMedical Engineering
OnLine

Synthesizing multi‑frame high‑resolution 
fluorescein angiography images from retinal 
fundus images using generative adversarial 
networks
Ping Li1, Yi He2,3, Pinghe Wang1, Jing Wang2,3, Guohua Shi2,3 and Yiwei Chen2* 

Abstract 

Background:  Fundus fluorescein angiography (FA) can be used to diagnose fundus 
diseases by observing dynamic fluorescein changes that reflect vascular circulation 
in the fundus. As FA may pose a risk to patients, generative adversarial networks have 
been used to convert retinal fundus images into fluorescein angiography images. How-
ever, the available methods focus on generating FA images of a single phase, and the 
resolution of the generated FA images is low, being unsuitable for accurately diagnos-
ing fundus diseases.

Methods:  We propose a network that generates multi-frame high-resolution FA 
images. This network consists of a low-resolution GAN (LrGAN) and a high-resolution 
GAN (HrGAN), where LrGAN generates low-resolution and full-size FA images with 
global intensity information, HrGAN takes the FA images generated by LrGAN as input 
to generate multi-frame high-resolution FA patches. Finally, the FA patches are merged 
into full-size FA images.

Results:  Our approach combines supervised and unsupervised learning methods and 
achieves better quantitative and qualitative results than using either method alone. 
Structural similarity (SSIM), normalized cross-correlation (NCC) and peak signal-to-noise 
ratio (PSNR) were used as quantitative metrics to evaluate the performance of the 
proposed method. The experimental results show that our method achieves better 
quantitative results with structural similarity of 0.7126, normalized cross-correlation of 
0.6799, and peak signal-to-noise ratio of 15.77. In addition, ablation experiments also 
demonstrate that using a shared encoder and residual channel attention module in 
HrGAN is helpful for the generation of high-resolution images.

Conclusions:  Overall, our method has higher performance for generating retinal ves-
sel details and leaky structures in multiple critical phases, showing a promising clinical 
diagnostic value.
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Background
Many disease-related biomarkers can be observed from fundus images, such as optic 
disc, optic cup, macula, blood vessels, hemorrhages, exudates, and microaneurysms. 
When compared with traditional methods of designing features manually, deep learning 
can automatically learn features from data. Many studies have used deep learning for 
lesion segmentation, disease classification and image synthesis of fundus images.

In terms of segmentation, Dai et al. [1] proposed a multi-sieving convolutional neural 
network based on the clinical reports to detect microaneurysms. Guo et al. [2] proposed 
a bin loss and a top-k loss to improve exudate segmentation performance. Yan et al. [3] 
proposed a three-stage model to solve the imbalance of pixel ratio between thick vessels 
and thin vessels, including thick vessel segmentation, thin vessel segmentation and vessel 
fusion. Wang et al. [4] proposed a coarse-to-fine supervised network for vessel segmen-
tation and used a feature augmentation module to improve vessel segmentation perfor-
mance. Fu et al. [5] proposed the M-Net that can segment the optic cup and optic disk 
in one stage. In M-Net, multi-scale input, lateral output, and multi-label loss function 
are used to accurately separate the optic disc and optic cup. Fu’s method greatly inspired 
later work on the segmentation of optic disks and optic cups. Wang et al. [6] proposed 
the patch-based Output Space Adversarial Learning framework, which encourages the 
segmentation similarity between the source domain and the target domain to solve the 
challenge of the domain transfer. The authors also propose a novel morphology-aware 
loss that guides precise optic disc and cup segmentation. Liu et al. [7] proposed a semi-
supervised segmentation GAN, which consists of a segmentation network, a generator 
and a discriminator. Segmentation networks can adopt samples from mixed labeled and 
unlabeled data in a semi-supervised manner. A good segmentation of the optic disc and 
cup can be achieved with a small amount of labeled data.

In terms of classification, Ahmad et  al. [8] conducted benchmarking work on the 
Messidor-2 dataset, evaluating eight deep-learning classification models and generating 
CAMs for lesions simultaneously. The results show that with the increase of network 
depth and parameters, the classification performance will be better, but the location per-
formance will be worse. To build an optimal diabetic retinopathy classification model, 
Zhang et al. [9] established a high-quality labeled dataset, combined popular neural net-
works using an ensemble strategy, explored the relationship between the number of clas-
sifiers and the number of class tags, as well as the effect of different combinations of 
classifiers on performance. Grassmann [10] divided age-related macular degeneration 
into 13 classes, trained the images independently using 6 different CNNs, and finally 
fused the results of the 6 networks using random forest. Wang et al. [11] used a multi-
task learning model to diagnose 36 diseases simultaneously, and their network structure 
has two stages. In the first stage, there is an improved YOLO-v3 to detect the macula 
and the optic disc area. In the second stage, there are 3 branches, which are used to 
detect general retinal diseases, macular-related diseases, and optic disc-related diseases.

Fundus image synthesis has been widely used in two aspects. Firstly, it is difficult to 
obtain a large number of high-quality medical image data, so it is a good solution to 
expand the dataset by generating adversarial network to generate images [12–14]. On 
the other hand, image conversion is one of the important applications of image synthesis. 
Image can be converted from one domain to another by using the generative adversarial 
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network, which has been applied well in MRI to CT [15–17]. This study also belongs to 
this field, which is to convert fundus images into fluorescein angiography (FA) images.

FA is a standard diagnostic tool for fundus diseases, which allows dynamic observa-
tion of retinal vascular circulation using fluorescein under physiological and patho-
logical conditions [18]. FA can be divided into prefilling, transit, recirculation, and late 
phases. In the transit and recirculation phases, the filling state and time of fluorescein in 
retinal blood vessels are essential parameters for the diagnosis of retinal vascular occlu-
sive diseases. In the late phase, abnormal lesions have maximal contrast as fluorescein 
fades, which is critical for the diagnosis of retinal-associated hemangiomas and diabe-
tes [19, 20]. Angiography is an invasive procedure that requires the injection of fluores-
cein, which may cause some adverse reactions in patients allergic to fluorescein [21, 22]. 
Alternatively, FA images of multiple critical phases can be generated from retinal fundus 
images for diagnosis while avoiding risk to patients.

The generation of FA images from retinal fundus images can be formulated as an 
image transformation problem, which can be suitably solved using deep learning or gen-
erative adversarial network (GAN) [23–25]. Hervella et al. [26] constructed a U-Net to 
directly learn the relations between retinography and FA images. Schiffers et al. [27] used 
a CycleGAN to achieve the unsupervised synthesis of fundus FA images. Li et al. [28] 
proposed a pixel-to-pixel approach for the supervised synthesis of fundus FA images. 
However, the abovementioned methods can only generate single-phase FA images. Li 
et al. [29] recently proposed SequenceGAN with multiple generators and discriminators 
to generate FA images of multiple phases from retinal fundus images. However, the gen-
erated images are of low resolution because the multiple generators are demanding in 
terms of computations and memory, and the discriminator easily distinguishes synthetic 
and real images at high resolution, consequently hindering training. Kamran et al. [30] 
proposed Attention2AngioGAN comprising rough and fine generators to handle prob-
lems related to high-resolution images. Attention2AngioGAN allows to generate single-
frame FA images of 512 × 512 pixels. However, training requires 16 GB of memory on 
the professional NVIDIA Tesla P100 graphics card, thus requiring expensive specialized 
hardware to generate multi-frame high-resolution FA images. Patching/splicing can be 
used to overcome memory limitations for image generation [31], but the patches are 
independently trained and lack global intensity information. Even if overlapping and 
weighted fusion are adopted for splicing, details are lost, and blurry images are gener-
ated [32].

Overall, the existing methods generate low-resolution or single-frame FA images, 
which may be unsuitable for the diagnosis of fundus diseases. Therefore, a method that 
achieves high-quality image generation performance of multiple key phases must be 
developed. We propose a method to generate multi-frame high-resolution FA images 
from retinal fundus images. Our main contributions are as follows.

First, we combined unsupervised and supervised learning to generate full-size and 
high-resolution FA images. Our framework consists of an LrGAN for generating low-
resolution fundus fluorescence images and an HrGAN for generating high-resolution 
multi-frame FA images.

Second, we propose a shared encoder, which is trained by iteratively extracting FA 
image features of three phases to ensure the performance of the encoder.
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Finally, our experimental results demonstrate better performance in generating vascu-
lar structure and leakage details as compared to classical unsupervised and supervised 
learning methods, thus can better assist physicians in diagnosis. Quantitative and quali-
tative comparisons between our method and available methods show the superiority of 
our proposal.

Results
We conducted various experiments in a Linux environment with Python 3.6. We 
trained the model for 250 epochs. We use Adam with momentum values β1 = 0.5 and 
β2 = 0.999, and learning rate l = 0.0002 as the optimizer. It took approximately 57 h to 
train the model on a computer equipped with an NVIDIA Tesla P100 graphics card.

Datasets and implementation details

In this study, the dataset was collected from the Third People’s Hospital of Changzhou 
using a Heidelberg confocal fundus angiography system between March 2011 and Sep-
tember 2019. The dataset includes images of 252 eyes from 216 patients (92 women 
and 124 men aged 17–72 years). Each image pair includes a fundus structure image of 
768 × 768 pixels and three corresponding FA images of 768 × 768 pixels from the three 
phases (Fig.  1). The collected fundus structure and FA images are not aligned in gen-
eral. From the image pairs, 126 were randomly chosen for LrGAN, and the remaining 
126 were selected for HrGAN.

For LrGAN, unsupervised learning was applied to generate low-resolution FA images 
of 768 × 768 pixels. We finally obtained 424 fundus structure images and 1272 FA images 
by data augmentation, including rotation and flipping. The fundus structure images will 
be used as input for the first generator in LRGAN, and the FA images will be used as 
input for the second generator in LRGAN.

For HrGAN, supervised learning was applied to generate high-resolution FA image 
patches, and the inputs and outputs of the network were strictly aligned. Therefore, we 
used the image registration method in [28] to process the non-aligned fundus structure 
and FA images of 768 × 768 pixels, from which we obtained aligned images of 400 × 400 
pixels. Then, we randomly cropped the aligned images to obtain patches of 256 × 256 
pixels, obtaining 126 patch pairs for testing and 2788 patch pairs for training, where the 
fundus structure images and the low-resolution FA images generated by LRGAN were 
used as inputs, and the real FA images of three phases were used as outputs.

Fig. 1  Illustration of the types of image: a fundus structure image, b the transit-phase FA image, c the 
recirculation-phase FA image, and d the late-phase FA image
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Qualitative evaluation

To demonstrate the effectiveness of the proposed method, we compared it with 
HrGAN, the methods in [29] and [33], StarGAN [34], VtGAN [23], BicycleGAN 
[35], and Unet [26]. The method in [33] performs one-to-one image transforma-
tion, whereas StarGAN performs one-to-many image transformation, and both 
methods are unsupervised. The methods in [29], VtGAN, BicycleGAN, and Unet are 
supervised.

Figure 2 shows the results of the qualitative comparison with state-of-the-art unsu-
pervised methods. As shown in Fig. 2d–e, the FA images generated by the method of 
[33] and the method of StarGAN show the basic vascular structure, where some fine 
vessels are not generated, and the brightness of the generated FA images is different 
from the real FA images. As shown in Fig. 2c, without the low-resolution FA images 
generated by LrGAN as input, the FA images generated by HrGAN lose details and 
appear blurred in the regions with dense blood vessels. When compared with the 

Fig. 2  Results of state-of-the-art unsupervised methods for FA image generation. The first to third and fourth 
to sixth rows show the transit phase to the late phase FA images, respectively, and the first column shows 
the original fundus structure image. The fundus structure and generated FA images have a size of 768 × 768 
pixels. For a better comparison, we magnified the area enclosed in the red box. a Real FA image and results of 
b proposed method (LrGAN + HrGAN), c HrGAN, d method in [33], and e StarGAN
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existing unsupervised methods of HrGAN, the method in [33], and StarGAN, the 
proposed method generates the most similar images to the real FA images, showing 
leakage and fine vessels (Fig. 2b).

Figure 3 shows the results of the qualitative comparison with state-of-the-art super-
vised methods that generate FA images of 400 × 400 pixels. When compared with the 
unsupervised generation methods of HrGAN, the method in [33], and StarGAN, the 
supervised methods in [29], BicycleGAN, and VtGAN produce better visual effects 
images, as shown in Fig. 3c–e. This is because high-resolution images are more diffi-
cult to train. Supervised methods require aligned images, and the images collected in 
hospitals are often non-aligned owing to equipment, eye shaking, and other factors. 
After alignment, the image size is notably reduced. As shown in Fig. 3c, the method of 
[29] fails to generate blood vessels clearly in image regions with low brightness. Fig-
ure 3d shows the FA image generated by BicycleGAN. We can see that there is noise 
in the generated FA image and some fine vessels blending with the surrounding area, 
making observation difficult. When compared with the generation of adversarial net-
work, Unet lacks adversarial learning. In addition, the number and diversity of data is 
not enough, so supervised learning is more likely to cause overfitting, thus reducing 
the generalization ability of the model. From Fig. 3f, we can see that the Unet does 

Fig. 3  Results of state-of-the-art supervised methods. The first to third and fourth to sixth rows show the 
transit phase to the late phase FA images, respectively, and the first column shows the fundus structure 
image. a Real FA image and results of b proposed method (LrGAN + HrGAN), c method in [29], d BicycleGAN, 
e VtGAN, and f Unet
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not capture the leakage, and even some leakage becomes part of the vasculature. Fig-
ure 3b shows that our method achieves comparable results to supervised methods for 
generating FA images.

Quantitative evaluation

For quantitative evaluation, we used common indicators, including structural similar-
ity (SSIM) [36], normalized cross-correlation (NCC) and peak signal-to-noise ratio 
(PSNR) [37], that measure the similarity between the real FA images and the gener-
ated FA images. The PSNR, SSIM and NCC are given by

where x and y are the generated image and the actual image. n and N  are the nth pixel 
and the image size, respectively. µx , σx and σxy are the mean standard deviation and 
covariance, respectively.

Table  1 lists the evaluation results for FA images generated by HrGAN, the 
method in [33], StarGAN, the method in [29], VtGAN, BicycleGAN, and our method 
(LrGAN + HrGAN) in terms of SSIM, PSNR, and NCC.

The average SSIM of our method is 0.0202, 0.0045, and 0.1113 higher than that of 
the unsupervised methods of HrGAN, the method in [33], and StarGAN, respec-
tively. The average PSNR improvements are 0.1, 0.27, and 3.27, respectively. The aver-
age NCC improvements are 0.0278, 0.1126, and 0.2078, respectively. Compared with 
supervised methods, our method achieves the best indicators (SSIM of 0.7126, PSNR 
of 15.77 and NCC of 0.7699). Hence, our methods can able to provide higher-quality 
FA images than the existing methods.
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Table 1  Performance evaluation of FA image generation methods

The bold data represent the best value obtained

HrGAN Hervella’s 
method

Star GAN Li’s method Bicycle GAN VtGAN Unet Our method

SSIM 0.6924 0.7081 0.6013 0.7194 0.6781 0.7034 0.6840 0.7126

PSNR(dB) 15.67 15.50 12.50 15.63 13.71 15.60 15.63 15.77
NCC 0.7421 0.6573 0.5621 0.7393 0.6901 0.7085 0.7030 0.7699
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To determine the confidence of the results, we asked two ophthalmologists to assess 
the quality of the generated FA images. We randomly selected 50 images from the 
test set, 25 of which were true and 25 of which were false. The ophthalmologists were 
not aware of the authenticity of the images during the experiment. Table 2 shows the 
detailed results of the identification. According to Table 2, it can be seen that the experts 
identified 76% of the generated images as real, while 88% of the real images were also 
identified as real. Although the precision was only 46.3%, the images produced by our 
model managed to fool eye specialists.

Ablation study

We quantitatively compare the proposed model with the model’s baseline to verify the 
detail branch’s effect. The baseline of the model is HrGAN without patch, residual atten-
tion block, common decoder, perceptual loss and feature matching loss.

As shown in Table 3, we can see that the patch strategy is much better than the unsu-
pervised approach on PSNR. Furthermore, we can find that the residual attention block 
has the greatest effect on model improvement. In addition, low-resolution FA image 
generated by LrGAN as HrGAN input is helpful to improve the generated results.

Discussion
It should be noted that the fundus structure images and the FA images of the three 
phases in our datasets are often not aligned. Therefore, both unsupervised and super-
vised learning methods have limitations in generating FA images. The unsupervised 
learning method does not require the input and output to be aligned, but this method 
can only roughly generate low-resolution FA images and cannot accurately generate 
vascular structures and leakage areas, which are essential for the physician’s diagnosis. 
Supervised learning methods require the input and output to be aligned one-to-one, but 
this method significantly reduces the field of view of FA images. Therefore, we designed 

Table 2  The results of the experiment are verified by an ophthalmologist

Results Average

Fake (%) Real (%) Precision (%)

Fake 24 76 46.3

Real 88 12

Table 3  Results of the proposed model’s ablation study

The bold data represent the best value obtained

Base Lrgan Patch Res Ge LFM Lpercep PSNR NCC

√ √ 13.71 0.6901

√ √ 14.92 0.6813

√ √ √ √ 15.05 0.6824

√ √ √ √ √ 15.29 0.7082

√ √ √ √ √ √ 15.67 0.7421

√ √ √ √ √ √ √ 15.77 0.7699
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two GANS to generate high-resolution quality images. LrGAN generated low-resolution 
and full-size imaging images with global intensity information, and HRGAN gener-
ated high-resolution and multi-frame imaging patches and merged full-size images. In 
HRGAN, we use a shared encoder among multiple generators so that FA images of dif-
ferent periods can be utilized to make the encoder more capable of extracting features. 
In addition, we use the residual channel attention module in the decoder to give differ-
ent weights to each channel in the feature space so that the network can learn the details 
in the image more effectively and generate high-quality images. In addition to the above 
two points, we introduce pixel loss, feature matching loss, and perception loss to make 
the low-level details and high-level semantic features of the image generated by the net-
work as consistent as possible with the original image.

Our method can achieve the expected results, but the proposed method requires 
two GANS containing multiple generators to generate multi-frame high-resolution FA 
images with a long training time. We hope to simplify the model in future work to gen-
erate high-quality FA images in one stage. In addition, the model does not capture the 
micro-leakage very well, and we hope to solve this problem through multi-scale network 
learning.

Conclusions
Fundus FA is a common imaging method for diagnosing fundus diseases, but poses 
potential risks to patients. GANs have enabled the generation of FA images from fun-
dus structure images. However, the existing GANs can only generate single-frame/low-
resolution FA images, which are unsuitable for correct diagnosis. The proposed method 
of LrGAN + HrGAN can generate multi-frame high-resolution FA images from fundus 
structure images. Our method can provide high-quality FA images compared to unsu-
pervised methods. In addition, our method can generate high-resolution FA images 
than supervised methods. Furthermore, the proposed method can generate FA images 
of various critical phases. In conclusion, our method has higher overall performance for 
generating retinal vessel details and leaky structures in multiple critical phases, showing 
a promising clinical diagnostic value. In the future, the proposed model can be further 
studied to simplify and improve the performance in detail generation.

Methods
Flowchart of our approach

A flowchart of the proposed method for generating multi-frame high-resolution FA 
images is shown in Fig. 4. We first train the LrGAN to generate a low-quality FA image 
of 768 × 768 pixels from a fundus structure image of the same size. Next, the FA image 
is cropped along with the fundus structure image into images of 256 × 256 pixels. Then, 
they are input into the HrGAN based on the multiple generators and discriminators to 
obtain high-quality FA image patches of 256 × 256 pixels. Finally, using weighted fusion, 
we merge the FA image patches of 256 × 256 pixels into a high-resolution FA image of 
768 × 768 pixels.
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LrGAN for low‑resolution FA images

To generate low-resolution FA images that retain the global intensity of fundus struc-
ture images, we introduce LrGAN based on the CycleGAN [38]. LrGAN consists of 
two generators and two discriminators, as shown in Fig.  5. Generator Gf  provides 
FA images from fundus structure images, and generator Gs converts FA images into 
fundus structure images. The two discriminators, Df  and Ds , are intended to deter-
mine the authenticity of the generated images. Owing to memory limitations, we 
use 70 × 70 PatchGAN [39] as the discriminator and six residual blocks [40] as the 
generator.

We use cycle-consistency loss LCC and adversarial loss LGAN in LrGAN to generate 
low-resolution FA images. The objective function is the combination of LCC and LGAN 
as follows:

where α and β are hyperparameters determined experimentally to control the con-
tributions of LGAN  and LCC , respectively. After evaluating these parameters, we set 
α = 1 and β = 10 to achieve suitable performance.

The adversarial loss is given by

(5)L = αLGAN + βLCC

Fig. 4  Flowchart of the proposed method for generating multi-frame high-resolution FA images

Fig. 5  Architecture of proposed LrGAN. Generators Gf  and Gs and discriminators Ds and Df  are used to 
generate FA and fundus structure images
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and the cycle-consistency loss is given by

Whether unsupervised GAN or supervised GAN, using only one GAN to generate FA 
images has limitations. Unsupervised GAN does not require the input and output to be 
aligned, but this method can only generate low-resolution FA images roughly and cannot 
accurately generate vascular structures and leakage areas, which are essential for physi-
cians’ diagnosis. Supervised GAN requires that the inputs and outputs are aligned, but 
the fundus structure images and FA images in our dataset are often not strictly aligned. 
Therefore, it is necessary to register the structure and FA images first, crop them to the 
same size, and then input them to supervised GAN. After the above operations, the field 
of view of the FA image will be significantly reduced. We can merge the full-size image 
with patches, but we may lose detail or even blur at the boundaries because the patches 
are generated independently and lack global intensity information between them. There-
fore, we hope the inputs in supervised GAN will also have global intensity information, 
so we build the LrGAN to generate low-resolution FA images with global information as 
part of the input to HrGAN.

HrGAN for high‑resolution FA images patches

To generate fundus FA images from multiple critical phases, the proposed HrGAN has a 
generator composed of one common encoder, Ge , and three decoders, Gd1,Gd2, andGd3 , 
as shown in Fig.  6. Generator Ge is trained to encode the fundus structure and low-
resolution FA image patches to output feature maps: Ge(IS , If ) → Ifeature . Decoder Gd1 is 
trained to generate transit-phase FA images from the encoded feature map: Gd1(Ifeature)

(6)
LGAN = E[logDs(IS)]+E

[

log
(

1− DS

(

GS

(

If
)))]

+E
[

logDf

(

If
)]

+E
[

log
(

1− Df

(

Gf (Is)
))]

(7)LCC = E
[

� Gf

(

Gs

(

If
))

− If �1 ]+E[ � Gs

(

Gf (Is)
)

− Is �1
]

Fig. 6  Architecture of proposed HrGAN with common encoders Ge , decoders Gd1 , Gd2 , and Gd3 , and 
discriminators D1 , D2 , and D3 . Ge , Gd1 , and D1 are used for transit-phase FA image generation, while Ge , Gd2 , and 
D2 are used for recirculation-phase FA image generation, and Ge , Gd3 , and D3 are used for transit-phase FA 
image generation
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→IF1 , and we add six residual attention blocks [41, 42] to the decoder to extract the fea-
tures of different FA phases, as shown in Fig. 7. Similarly, we generate recirculation- and 
late-phase FA images from Ge , Gd2 and Gd3 : Gd2(Ge(IS , If ))→IF2 , Gd3(Ge(IS , If ))→IF3 . 
Three discriminators, D0 , D1 and D2 are used to determine the authenticity of IF1 , IF2 , 
and IF3 , respectively. Forward propagation is simultaneous, whereas backpropagation 
sequentially updates the gradients. An additional file shows the training procedure of 
HrGAN in more detail [see Additional file 1].

To make the generated FA image indistinguishable from the target image, four loss 
functions are applied in HrGAN: adversarial ( LGAN ), pixel-space ( Lpixel ), perceptual 
( Lpercep ), and feature-matching ( LFM ) loss functions. The objective function of training is 
obtained by combining the loss functions as follows:

where α , β , γ , and δ are hyperparameters determined experimentally to control the con-
tribution of the corresponding loss functions. We performed various experiments to set 
appropriate parameter values for α , β , γ , and δ of 1, 100, 0.001, and 0.001, respectively.

Because HrGAN includes three generators and three discriminators, the adversarial 
loss is given by

To make the generated FA image indistinguishable from the real FA image, e in pixel 
space, we use the L1 loss Lpixel:

(8)L = αLGAN + βLpixel + γLpercep + δLFM

(9)

LGAN = E[logD1(IF1)]+ E
[
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(
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Fig. 7  Architecture of generators and discriminators in HrGAN. The architecture of a Ge , b Gd1,Gd2 , and 
Gd3 , c residual attention block, and d D1 , D2 , and D3 . Conv convolutional layer, Relu rectified linear unit, CAM 
channel-attention module, Tanh hyperbolic tangent function, FC fully connected layer
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Feature-matching loss LFM determines the difference between the generated and real 
FA images passing through an intermediate feature layer of the discriminator as follows 
[43]:

Perceptual loss Lpercep determines the difference between the generated and real FA 
images passing through an intermediate feature layer of the VGG19 network [44], thus 
allowing the generated FA image to retain deep semantic information  [45]. It can be 
expressed as
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