
Synthesizing Natural Textures

Michael Ashikhmin

University of Utah www.cs.utah.edu

Figure 1: An example of user controlled synthesis done by a first time user of the system. Left: input sample, Center: user-drawn target
image, Right: synthesized result created in time short enough for an interactive loop. This particular result was subjectively chosen by the
user from a few trials with the same target image.

Abstract

We present a simple texture synthesis algorithm that is well-suited
for a specific class of naturally occurring textures. This class in-
cludes quasi-repeating patterns consisting of small objects of fa-
miliar but irregular size, such as flower fields, pebbles, forest un-
dergrowth, bushes and tree branches. The algorithm starts from a
sample image and generates a new image of arbitrary size the ap-
pearance of which is similar to that of the original image. This new
image does not change the basic spatial frequencies the original im-
age; instead it creates an image that is a visually similar, and is of
a size set by the user. This method is fast and its implementation
is straightforward. We extend the algorithm to allow direct user in-
put for interactive control over the texture synthesis process. This
allows the user to indicate large-scale properties of the texture ap-
pearance using a standard painting-style interface, and to choose
among various candidate textures the algorithm can create by per-
forming different number of iterations.

CR Categories: I.3.7 [Computing Methodologies ]: Computer
Graphics—Three-Dimensional Graphics and Realism, Color, shad-
ing, shadowing, and texture

Keywords: texture synthesys, user interaction

1 Introduction

Texture mapping [2] is a common method that adds realism to com-
puter generated images. While texture mapping itself is straightfor-
ward, acquiring the images to use for textures is not always easy.
Procedural texture generation [11, 12] provides help for a specific
classes of materials such as wood and marble, although the control
parameters of such textures can be difficult to choose. Alterna-
tively, a texture synthesis method starts from a sample image and
attempts to produce a texture with a visual appearance similar to
that sample. Potential benefits of texture synthesis include the abil-
ity to create large and/or tilable textures from a small sample in a
direct manner. Unfortunately, creating a robust and general texture
synthesis algorithm has proved difficult. A vast body of work on
textures is available so we only touch on the most related publica-
tions in this paper. Most of early work on textures was done in the
computer vision community (for a survey of this earlier literature
see the paper by Haralick [8]). Not surprisingly, that work mainly
emphasized the aspects of textures useful for the vision problem,
such as their great value for object recognition. Several general tex-
ture synthesis algorithms have been developed [5, 7, 9, 13] but until
recently both running time [7] and, in many cases, quality [5, 9] of
synthesized textures has left much to be desired. In addition we are
aware of no published attempt to make the texture synthesis process
more “end-user-friendly”. The only control the user usually has is a



input image

output image

completed portion (grey)

candidate pixel
and comparison 
region

Figure 2: The Wei and Levoy (WL) texture synthesis process. Pixels
are generated in scanline order. The value of a pixel is determined
by choosing the best pixel in a candidate list. For WL this list in-
cludes all pixels in the input image. Best pixel is the one whose
L-shaped neighborhood most closely resembles the neighborhood
of the pixel currently being synthesized. For clarity, a smaller than
usual (only 3x3) neighborhood is shown on all figures.

set of largely unintuitive parameters which usually change only the
overall quality of the output texture with no clear effect on, for ex-
ample, the spatial distribution of features in the synthesized image.
Dischler and Ghazanfarpour [6] address a more difficult problem
of extracting 3D macrostructures from texture images. Once this is
done, the shape of the macrostructures can be interactively changed
and then mapped onto a model. Since this problem is much more
complicated than the usual 2D texture synthesis, it is not surprising
that their algorithm is much more involved than the one we present.

The inspiration for our work comes from the recent algorithm by
Wei and Levoy [16]. Their simple approach (abbreviated as WL
below) is intuitive and works surprisingly well for a wide variety
of textures. Unfortunately, we have found that there is a particu-
lar class of familiar textures on which the WL algorithm performs
relatively poorly. These are textures consisting of an arrangement
of distinct objects of irregular but familiar shapes and sizes. Such
arrangements are often encountered in nature such as talus fields,
grass, tree branches and leafs, pebbles, blossoming flowers, bushes,
and forest undergrowth. Because our initial interest in texture syn-
thesis was primary due to its value for outdoor rendering, this class
is of prime importance to us. We present a modification of the WL
algorithm which performs better on this specific type of textures.
Our method is significantly faster than the basic or accelerated WL
algorithm while the coding complexity is about the same as the ba-
sic WL algorithm. This speed up is crucial in allowing us to develop
a technique which provides the user with intuitive interactive con-
trol over the results of the synthesis process.

Because our method is based on the WL algorithm, we provide
a brief overview of this algorithm in Section 2 and our results are
compared with it throughout the paper. Sections 3 and 4 present our
approach and explain how to give intuitive control to the user. We
show the results we obtain and further discuss the algorithm and its
limitations in Section 5. We conclude by outlining some possible
extensions of this work.

2 Wei and Levoy Texture Synthesis

The WL algorithm uses a synthesis approach which, although based
on the Markov Random Field model of texture, avoids explicit
probability function construction and consequent sampling from it.
This is accomplished by generating the output image pixel by pixel
in scanline order, choosing at each step a pixel from the sample im-
age which neighborhood is most similar with respect to a specified
measure to the currently available neighborhood in the texture be-
ing synthesized. More specifically, in the most basic version of the
algorithm, the following steps are performed:

� The output image is initialized to random noise with a his-
togram equal that of the input image.

� For each pixel in the output image, in scanline order, do:

– in the output image, an L-shaped neighborhood of cur-
rent pixel of a specific (fixed) size is considered, see
Figure 2.

– a search is performed in the input sample for a pixel
with a neighborhood most similar to the one identified
in the previous step.

– the current pixel value in the output image is copied
from the position in the input sample identified as the
most similar by this search.

The similarity of two neighborhoods N1 and N2 is computed ac-
cording to the L2 distance between them which is a sum over all
pixels in the neighborhood of squared differences of pixel values at
a particular position:

D(N1; N2) =
X

p inN

f(R1(p)�R2(p))
2+

(G1(p)�G2(p))
2 + (B1(p)�B2(p))

2g: (1)

Here R, G and B are pixel values at position p in red, green and
blue channels respectively and subscripts refer to the image (either
sample or output) to which particular neighborhood belongs.

The size of the neighborhood should be on the scale of the largest
regular texture structure to capture its low frequency components.
Since the amount of work to evaluate Equation 1 is directly pro-
portional to the number of pixels in the neighborhood, this size
critically affects the running time of the algorithm. For a typical
neighborhood necessary to synthesize a good quality image (9x9
square of pixels or 40 pixels in the L-shaped neighborhood) the
simple algorithm just presented is relatively slow, on the order of
minutes for a 200x200 texture. There are a number of ways this
basic form can be modified to make the algorithm produce better
results faster. The two most important ones discussed in the origi-
nal paper are multiresolution synthesis which allows to use smaller
neighborhoods, and tree-structured vector quantization (TSVQ) to
accelerate the search for the best matching pixel. These methods
dramatically increase the speed of the algorithm but they also in-
troduce significant extra implementation complexity. In this work
we build upon only the simplest version described above. Reader
interested in other aspects of the original algorithm are referred to
Wei and Levoy’s original paper [16] for more details.

2.1 Discussion

The WL algorithm works surprisingly well given its simplicity. For
many textures the quality of synthesized images is as good as with
any other known technique but with runtime orders of magnitude
faster. However, the algorithm produces output using the smooth
L2 norm as a measure of neighborhood similarity. This is certainly



Figure 3: Wei and Levoy texture synthesis algorithm: good and bad cases. The algorithm has a tendency to blur out finer details for some
textures. See text for more details.

not a good measure of perceptual similarity between two patches.
For example, it is well-known that the human visual system is very
sensitive to edges, corners and other higher level features in the
image. This behavior is not captured by the simple L2 norm and
the algorithm tends to produce textures with smoothed out edges
in some cases. Since it can never assign a value not present in the
original sample to a pixel, this problem does not exist in an image
with a histogram not rich enough to create a smooth transition be-
tween two areas. A black-and-white image is the extreme case of
this, see Figure 3, top left. Another case where applying the al-
gorithm produces excellent results occurs when the underlying tex-
tures are smooth and the absence of well-defined edges is what is
actually wanted. This is the case for the texture used as an exam-
ple throughout the original paper (see Figure 3, top right). Finally,
the current neighborhood is often unique enough to compensate for
the blurring tendency of the L2 measure, allowing only a relatively
edge-preserving construction of the output image, as for the texture
in Figure 3, bottom left. All images generated by the WL algorithm
which are shown in this paper were taken directly from the project’s
web page (http://www.graphics.stanford.edu/projects/texture/).

The WL algorithm runs into difficulties in cases where the tex-
ture to be synthesized should consist of an arrangement of small
objects. These are very common in outdoor rendering with some
examples mentioned in the introduction and one such difficult case
shown on Figure 3, bottom right, and more can be seen in Figure 9.
Unfortunately, an observer is usually familiar with general forms
and sizes of the objects being looked at (leaves, flowers, pebbles,
etc.) and the tendency of the algorithm to grow smooth shapes of
uncontrollable form degrades the quality of the output significantly.
The problem gets only worse with TSVQ acceleration which, as
Wei and Levoy point out, tends to blur the output even more and
special measures to avoid this behavior become necessary (Section
4.2 of [16]). It is not clear whether this behaviour is partially due
to the use of inherently smoothing Gaussian pyramids by WL algo-
rithm and whether a different type of pyramid would help. The fact
that single resolution results of Wei and Levoi look very similar to
multiresolution ones suggest that this solution might not be fully
adequate. Another possible way to improve the algorithm is to re-
place simple L2 norm with a more sophisticated perceptual metric.

Although some such metrics do exist [3, 15], they are currently not
completely reliable due to the imperfect understanding of human
visual system. Also, these metrics are much more computationally
expensive than the L2 norm.

An even simpler approach which works in exactly these cases
which are difficult for the WL algorithm is chaos mosaic approach
to texture synthesis [18]. The idea is to create a large number of
relatively small rectangular image pieces and paste them into ran-
dom position in the output image. Unfortunately, this inevitably
produces seams between individual texture patches and the tech-
nique either uses a fallback algorithm to fill in transition regions
or simply blurs the seams. Effectively, chaos mosaics implicitly
rely upon the visual masking effect of human vision; if there is sig-
nificant high frequency content in the image, then seams produced
by this method will tend to get lost among image details. Still,
the fact that no attention is paid to make pieces line up better and
that seams run in only vertically and horizontally makes the arti-
facts more noticeable. Many of examples presented in [18] involve
brick walls which naturally provide the best masking situation for
the algorithm. Using irregularly shaped (or even user-created, as
in [14]) patches might help but this would complicate the algorithm
and probably hurt the impressive speed of chaos mosaics while the
basic misalignment problem will remain. More importantly, there
is no clear way to control the results of the synthesis in chaos mo-
saics which is effectively a “write-only” algorithm in the sense that
it does not examine either the input texture or the image it produces
in any way.

3 New texture synthesis algorithm

We modify the WL algorithm to encourage verbatim copying of
pieces of the input sample, attempting to solve the problem outlined
above. We rely on visual masking to hide the seams between the
patches. Pieces created by our algorithm have irregular shapes and
are therefore more suitable for synthesizing natural textures.

The key observation we use is that at a given step during the
WL synthesis process, we have already found pixels in the input
sample with neighborhoods similar to shifted current neighborhood



in the output image. This information is not used in any way in the
original algorithm; the search process starts from scratch at each
new pixel, ensuring that the best available choice is made. However,
it is reasonable to assume that pixels from the input sample that are
appropriately “forward-shifted” with respect to pixels already used
in synthesis are well-suited to fill in the current pixel (see Figure 4).
For example, if a pixel two rows above and one column to the right
of current position was taken from position (x=37, y=15) in the
input sample, the new candidate is pixel (x=36,y=17) in the input
sample. We use only pixels in input sample with neighborhoods
completely inside the image as valid candidates. If the candidate
is outside this valid region, we will replace it with a random valid
position.

This approach tends to grow patches starting from some position
in the input sample and continuing down in y direction to the bot-
tom of the image (see Figure 5). A short horizontal edge which may
appear at the boundary of such a patch if the synthesis process runs
into the bottom of the input image. Such edges are usually well
masked and do not present substantial visual artifacts. However,
this might lead to a problem if there is a recognizable feature near
the bottom of the input texture because it will appear in the output
image more often than it should. Strictly speaking, such an input
sample violates one of the underlying assumption of the method:
stationarity of the texture. However, if necessary, we can artifi-
cially decrease the percentage of output pixels being taken from the
bottom part of the input sample by replacing a candidate from near
the bottom with a random valid candidate with probability related
to the normalized distance 0 < d < 1 to the lowest row of the
valid region in the input sample. The condition rand4 > d for
such replacement (where rand is a random variable uniformly dis-
tributed on [0; 1) ) works well in our test cases but frequent calls
to the random number generator degrade the performance of the
algorithm. In addition, the regions grown by the algorithm are nat-
urally smaller in this case and since copying relatively large input
image pieces is what we rely upon, the quality is also somewhat
lower. We have not done extensive investigation of this issue since
for most images (all images in this paper, for example) this tech-
nique is not necessary and no artificial constrains were put on the
synthesis process.

An array is used to store input sample locations from which al-
ready assigned pixel were taken. The array is initialized to random
valid positions before synthesis begins. Using this array, we create
a list of candidates for each pixel to be synthesized and choose the
best match among these candidates by comparing their neighbor-
hoods in the input sample against the current one in the output.

The length of this candidate list could be a user specified param-
eter but we have found that a fixed number of candidates generated
only by pixels from the L-shaped causal neighborhood works well
in practice. This is justified by initial intuition that the size of the
neighborhood corresponds to the size of the largest texture feature
and outside this region the texture to large extend repeats itself (for
more discussion of the neighborhood size see Section 5). In prac-
tice, however, this short list is often even shorter since our algorithm
encourages copying of relatively large regions and the candidates
generated by several different pixels in the L-shaped neighborhood
can really be the same pixel in the input sample (Figure 4). Since
comparing two neighborhoods is an expensive operation performed
in the inner loop, it is worth the effort to remove the duplicates from
the candidate list.

Our method can be extended in a straightforward way to create
a multiresolution synthesis algorithm similar to the one described
by Wei and Levoy. Using the multiresolution extension is impor-
tant, for example, if the method is to be used for constrained tex-
ture synthesis as described in Section 5.1 of [16]. Otherwise it is
of limited value in our method. We have implemented a multires-
olution version of our algorithm and confirmed Wei and Levoy’s

input image

output image

completed portion (grey)

888
8
8

88

Figure 4: Candidate pixels for our algorithm. Each pixel in the cur-
rent L-shaped neighborhood generates a “shifted” candidate pixel
(black) according to its original position (hatched) in the input tex-
ture. The best pixel is chosen among these candidates only. Several
different pixels in the current neighborhood can generate the same
candidate.

Figure 5: Region-growing nature of the algorithm. Boundaries of
texture pieces are marked white on the right. The input sample and
WL result for this texture are shown on figure 3



Figure 6: Texture tiling vs. synthesizing larger image. Left: 200x200 synthesized texture from Figure 5 tiled vertically and horizontally. Right:
a 400x400 synthesized texture.

statement that the main benefit of using multiresolution synthesis is
the “neighborhood expansion” effect: it allows to obtain the qual-
ity characteristic of a larger neighborhood while using a smaller
one. Since using larger neighborhood is not necessarily better in
our method (and rarely provides any benefits at all for the class of
natural textures our algorithm is designed for, see discussion in Sec-
tion 5), we are in favor of the faster and easier to implement single
resolution version.

It is often desirable to have textures tile both vertically and hor-
izontally. To ensure that the synthesized texture tiles horizontally
we simply treat neighborhoods in the output image toroidally in the
x dimension. However, since only casual neighborhoods are used,
to improve vertical tileability we need to slightly modify the algo-
rithm for the last Neighb sizey=2 rows of the output image. Here
we consider all already assigned pixels in the toroidal neighborhood
when computing L2 norm and creating the candidate list instead of
only pixels in the usual L-shaped region. After the synthesis is fin-
ished, we go over first Neighb sizey=2 rows of the output image
again and apply the same synthesis procedure but now with the full
square neighborhoods considered. In our experience, for the class
of textures we are interested in, these measures are sufficient to
mask any remaining seams between two copies of synthesized tex-
tures. If multiresolution synthesis is used, these extra steps might
not be necessary since the neighborhood in this case will contain
symmetric regions at lower resolution levels. Figure 6 shows that
seams between two copies of the same texture are well masked but
periodic large-scale structure due to tiling is easily identifiable. Our
algorithm is fast enough to synthesize a texture of necessary size di-
rectly in most cases. Comparing the two sides of 6 shows that this
solution is clearly superior.

We summarize our algorithm as follows:

� The array of original pixel positions is initialized to random
valid positions in the input image

� For each pixel in the output image, in scanline order, do:

– in the output image, an L-shaped neighborhood of cur-
rent pixel of a specific (fixed) size is considered, see
figure 4.

– for each pixel from this neighborhood, use its original
position in the input image (taken from the array) to
generate a candidate pixel which location is appropri-
ately shifted, see Figure 4.

– remove duplicate candidates

– search the candidate list for a pixel with a neighborhood
most similar to the current L-shaped neighborhood in
the output image

– the current pixel value in the output image is copied
from the position in the input sample identified as the
most similar by this search and this position is recorded
in the array of original positions.

� if necessary, modify the algorithm for the last few rows and
go over the top few rows again to improve tileability of the
result texture.

4 User Control

The basic algorithm described in the previous section has substan-
tial value for synthesizing natural textures. However, its utility can
be significantly improved if an intuitive way to control the result
image is provided. We believe that the simplest and most general
way for a user to control the output of a texture synthesis algorithm
is to provide a target image which would show how the result should
look. Of course, this target should only outline some general prop-
erties of the result leaving it up to the synthesis algorithm “to fill
in the details”. The source of this target image can be completely
arbitrary, e.g., a hand drawn picture, a photograph, or a computer
generated rendering.

Consider the flower texture example on the top of Figure 10. One
might want to tell the algorithm that the result texture should have
more flowers in the top part of the image and more open grass in
the bottom half. A natural way for a human to give this information
to the algorithm is to create a simple image on which the top half
has more of the color of the flowers (pink in this case) and the bot-
tom has more green, as shown in the second column of Figure 10.
We would also like to have some control over how much the in-
structions are followed: one might want to have the result conform
rather strictly to the target (to simulate a pattern made of flowers
in a garden) or get only a general result of the type “there is more
grass in the bottom part of the texture than in the top one”. Fortu-
nately, this type of control is easily achieved with the extension of
our method we will now describe.

If we have a target image as a part of an input to the algorithm,
the first change required is that during the synthesis we consider the



Figure 8: Effect of the neighborhood size for a smooth texture. Input texture size is 64x64 pixels, all results are 192x192. Left to right: input
sample, WL result, and our results with 5x5, 9x9 and 21x21 neighborhoods.

input image

output image

completed portion (grey)

888
8
8

88

target image

Figure 7: User controlled version of the algorithm (first pass). Can-
didates are chosen as before but a square neighborhood in the input
is now used to choose among them. This square of pixels is com-
pared with a special neighborhood, top L-shaped half of the which
is taken from the output image while the bottom half is from the
target image (with only pixel which received user input being con-
sidered). The target image can be thought of as is being overwritten
as the synthesis progresses. For additional passes the procedure is
the same but candidates are created based on the full square neigh-
borhood.

complete square neighborhood of a pixel instead of the L-shaped
casual one (Figure 7). The candidates in the input image are found
as before, based only on the already assigned pixels in the causal
L-shaped top part of the neighborhood. Computing the value used
to choose the best candidate proceeds now in two steps. Fist, as
in the basic algorithm, pixel-by-pixel L2 difference of the top L-
shaped parts of the neighborhoods in the input and output images is
computed. We then add the L2 difference between the pixels in the
bottom part of the candidate neighborhood in the input texture and
pixels in the target image which location corresponds to bottom-L
half of the output neighborhood under consideration. Only pixels
which received user input are considered valid at this second stage
which makes the algorithm identical to the basic one for parts of the
output left blank by the user.

For some cases a single pass of the described algorithm is enough
to create a texture which sufficiently conforms to the target. If a
greater similarity is desired, one or more further iterations of the al-
gorithm can be performed with each next iteration using the result
of the previous one as the starting point of the synthesis. That is,
instead of initializing the array of candidates to random valid loca-
tions at the start of an iteration, we use the information computed
at the previous pass. During these additional passes the candidate
list is created based on full square neighborhood. One could try
to terminate this process automatically by providing, for example,
a value for the L2 difference between the target and the result and
repeat the algorithm until the real difference is below this value. Al-
though in our experience the process is subjectively monotonic, i.e.
with each iteration the similarity between the synthesis result and
the target increases, the exact behavior varies dramatically depend-
ing on the particular texture, and the global L2 difference is not
intuitive and is not expected to be a good measure of visual quality.
We believe that the best way is to simply show the user the result
after some number of iterations (usually after each one) and let the
user judge when to stop the process.

We have created a simple painting-style user interface to allow
us to sketch the target image using the colors picked from the input
texture and pass this information to the synthesis routine. Our al-
gorithm is fast enough to allow multiple iterations to be performed
while keeping the total time of a single synthesis session quite rea-
sonable. Depending on the input texture, target image, and the
degree of conformity desired we used from one to about twenty
passes. This interface is useful even for the basic version of the
algorithm: since the results of our approach, as these of any other
known texture synthesis method, are far from perfect on many tex-
tures, we can run the synthesis routine several times with different
random seeds, and choose the best output. Of course, the target im-
age does not have to be hand drawn or strictly conform to the colors
of the input texture, as demonstrated by a “shadow of a teapot flying
over the forest” in Figure 10, second row.



Figure 9: Texture synthesis results. Right column: input texture sample, middle column: WL results, right column: our results. Input textures
are 192x192 (left, VisTex textures [1]) or 128x128 (right) pixels. All results are 200x200 pixels.



5 Results and Discussion

Some synthesis results are shown on Figure 9 along with WL-
generated images. One can see that the algorithm achieves good
results for the class of natural textures it is designed for, as shown
on the top half of Figure 9. In most such cases the results are at least
as good as those from the WL algorithm, and for some textures the
difference is quite dramatic. There are situations when both algo-
rithms do not do a very good job (Figure 9, fourth row), but the
types of artifacts are quite different: excessive blurring for the WL
algorithm and “too rough” images for our algorithm. Depending on
the application, one or another might be preferred, but our interac-
tive extension allows to give some “help” to the algorithm, as dis-
cussed below. In addition, information necessary to find pixels near
boundaries between individual texture patches is readily available
in our algorithm (Figure 5) and, if desired, some selective blurring
can be applied to these pixels to help hide the seams. This has not
been done for any of the images presented in this paper.

We do not intend our algorithm to be a general-purpose one and
it should be kept in mind that there are many natural textures which
do not belong to the class we discuss here. Important examples are
clouds and waves which are too smooth for our algorithm. In some
such cases the quality can be somewhat improved by increasing the
neighborhood size, see Figure 8, in others it is simpler to just use
the original WL algorithm (Figure 9, bottom row).

Results for user-controlled synthesis are shown in Figure 10 (see
color plate). Two different examples created from the same target
are shown to illustrate the effect of the number of iterations on the
output image. Note that additional passes tend to “flatten” regions
in the final image corresponding to single color areas in the target.
Clearly, for some applications one would prefer only a few passes
while to create more pronounced pattern more iterations might be
required. Third row of Figure 10 shows an interesting example of
how one could “help” the algorithm to discover large-scale struc-
ture in the underlying texture. Compare this result with the basic
version shown in Figure 9. Note also that the period of the grid
is controlled by the user input rather than by the original texture.
With more attention to the details of the input texture one can cre-
ate more sophisticated effects. The bottom row of Figure 9 shows
an example of this technique. A videotape demonstrating how some
of these images can be produced is also included.

Our approach is simple to use because the neighborhood size is
the only user-specified parameter in our algorithm. Its effect on
the quality of the output is shown on Figure 8. This size plays
a somewhat different role in our method from that in the original
WL algorithm. In the WL algorithm it is necessary to keep this
size large enough to capture the low frequency component of the
texture. Since we compare neighborhoods only among a few well-
chosen candidates, the size need only be large enough to reliably
distinguish the best choice among them. Intuitively, since we have
many fewer options to choose from, we do not need fine discrimi-
nation and the neighborhood sufficient for this task can be signifi-
cantly smaller than that needed to produce good results with the WL
algorithm. In fact, large neighborhoods can be harmful sometimes
since it may encourage too much region growing by always giving
preference to a particular expansion pattern. This would prevent re-
gions from stopping growth resulting in large repeating areas with
little variation (Figure 8, far right). In general, the smoother the tex-
ture is, the larger the neighborhood is needed for perceptually better
results. This is to be expected since the number of candidates for
a given pixel is also controlled by the neighborhood size and more
candidates are generally needed to ensure unnoticeable transitions
between image patches in a texture lacking high frequency com-
ponents which we rely upon to mask the edges of the pieces. For
such smooth textures our algorithm often fails to produce results
comparable to the WL algorithm but, surprisingly, even in such un-

favorable cases the quality can be sufficient for some applications
(two textures on the right of Figure 8). Of course, one should keep
in mind the performance costs of increasing the neighborhood.

We have found that uniformly good results for our class of tex-
tures are obtained with a 5x5 neighborhood (5x2 L-shaped region).
All images shown, except figure 8, were created with this size and
it is recommended as a good default value. Note that most of tex-
tures in the original Wei and Levoy paper required a significantly
larger neighborhoods, at least 9x9 pixels. This ability to use smaller
neighborhoods is one of the two main sources of efficiency in our
algorithm. The other, and more important, reason is the severe re-
striction on the algorithm’s search space. We create only at most
a few dozen (and more often only one or two) candidates instead
of considering the complete space of many thousands pixels. This
makes acceleration techniques such as TSVQ used in the WL algo-
rithm unnecessary for our method. In addition to simplifying im-
plementation (our code is about 300 lines of C code, excluding I/O
and user interface routines), it removes training overhead of TSVQ
and makes the algorithm independent of the input sample size.

These two factors together increase the speed of the algorithm
substantially. We use the same architecture as Wei and Levoy (195
MHz R10000 processor) to measure the performance of the algo-
rithm. TSVQ accelerated WL runs on the order of 20 to 30 seconds
to synthesize a 200x200 texture. Our timing for the first pass of
the user controlled version of the algorithm is only about 0.3 sec-
onds per iteration for a texture of this size and about 1.5 seconds
for a 500x500 image. Additional passes take about twice as long
(2.8 seconds) since the candidate list is now based on full neighbor-
hood. The run time is slightly better (1.3 seconds) for the basic (no
user control) version of the algorithm since it deals with only two
images instead of three (input, output and target) and works with
L shaped neighborhood which is a subset of the square one needed
in the user controlled version. Although these timings are not in
the real-time domain, they are quite acceptable to provide interac-
tive feedback during user-controlled synthesis process described in
Section 4.

Unfortunately, regardless of its efficiency, our algorithm is not
well-suited for temporal texture synthesis in most cases. The prob-
lem is that most motions one would want to synthesize are rather
smooth and do not contain any significant amount of high frequency
component in the temporal domain which we would need to mask
transitions between separate time-space patches generated by our
method. Our experiments show that visually unsatisfactory results
are produced by a direct extension of our algorithm to this case.
Modifying the algorithm for this situation is an interesting potential
area of future research. Other possibilities are discussed in the next
section.

6 Conclusions and Future Work

Most texture synthesis algorithms attempt to deal with as large
class of textures as possible. This generality is certainly desirable
but we are not hopeful about the discovery of such an ideal algo-
rithm. There is a substantial interest in developing of a number of
methods to generate textures of a particular well-defined type with
high quality and efficiency. This paper is one of relatively few at-
tempts to design an algorithm which is not expected to work well
for an arbitrary texture but is well-suited for a particular important
class of textures. Other work similar to ours in this sense includes
reaction-diffusion textures [17] and a specialized method for gener-
ating stone wall patterns [10]. The particular class of textures this
paper deals with includes many naturally occuring quasi-repeating
patterns consisting of familiar elements, such as pebbles, leaves,
bushes, flowers, tree branches, etc. Our technique is simple, easy to
implement, efficient and produces good visual results. These quali-
ties allow it to be extended to handle direct user interaction with the



Figure 10: User controlled texture synthesis results. All input textures are from VisTex dataset [1], 192x192 pixels. All other images are
500x500 pixels. White regions in target images did not receive user input. Left to right: input sample, target image, single pass result, result
after more iterations (top to bottom: 5,5,8,20 total passes)



synthesis process and create textures based on a user-created input
image. The technique used to take into account user input is not
unique to our algorithm and can probably be used with the original
WL algorithm once processor speeds make the iteration of the WL
algorithm faster.

It might be possible to create similarly simple and efficient al-
gorithms for other texture classes in the future. In particular, an
algorithm for “smooth” time-dependent natural textures, such as
waves, clouds, smoke, etc. would be very useful. Another interest-
ing class is textures with underlying regular structure or containing
regular features. Neither the WL algorithm nor our algorithm make
any attempt to extract such structure from the input texture and as a
result, perform relatively poorly on them unless the neighborhood
size is increased substantially.

There are many other problems to be solved to make texture syn-
thesis more practical. Like most current methods, our algorithm
uses input samples directly and does not attempt to single out ef-
fects due to illumination and/or surface geometric structure. If this
problem is solved reliably, one could design an algorithm capable
of synthesizing view- and illumination dependent textures [4]. An-
other important area of future work is direct synthesis of texture
over 3D geometry.

Finally, we believe that it would be beneficial to invest work into
theoretical analysis of simple texture synthesis algorithms to gain
more insight into their surprisingly good performance. Aside from
intrinsic scientific interest, this might give us an understanding of
image characteristics which make photographic images so much
better than most computer-generated images. This, in turn, would
help to design new techniques (either procedural or image-driven)
to increase visual richness of computer graphics imagery.

Acknowledgements

The author would like to thank Peter Shirley for help preparing the
paper, Bruce Gooch for help preparing the video, and Li-Yi Wei for
making his texture synthesis result imagery available online. This
work was supported by NSF awards 97-31859, 97-20192 and 89-
20219.

References

[1] Vision texture library. MIT Media Lab. http://www-
white.media.mit.edu/vismod/imagery/VisionTexture/.

[2] BLINN, J., AND NEWELL, M. Texture and reflection in com-
puter generated images. Communications of the ACM 19, 10
(October 1976), 542–547.

[3] BOLIN, M. R., AND MEYER, G. W. A perceptually based
adaptive sampling algorithm. Proceedings of SIGGRAPH 98
(July 1998), 299–309.

[4] DANA, K., VAN GINNEKEN, B., NAYAR, S., AND KOEN-
DERINK, J. Reflectance and texture of real world surfaces.
ACM Transactions on Graphics 18, 1 (January 1999), 1–34.

[5] DEBONET, J. S. Multiresolution sampling procedure for
analysis and synthesis of texture images. Proceedings of SIG-
GRAPH 97 (August 1997), 361–368.

[6] DISCHLER, J.-M., AND GHAZANFARPOUR, D. Inter-
active image-based modeling of macrostructured textures.
IEEE Computer Graphics and Applications 19, 1 (January-
February 1999), 66–74.

[7] EFROS, A., AND LEUNG, T. Texture synthesis by non-
parametric sampling. International Conference on Computer
Vision 2 (September 1999), 1033–1038.

[8] HARALICK, R. Statistical image texture analysis. In Hand-
book of Pattern Recognition and Image Processing, vol. 86.
Academic Press, June 1986, pp. 247–279.

[9] HEEGER, D. J., AND BERGEN, J. R. Pyramid-based tex-
ture analysis/synthesis. In Proceedings of SIGGRAPH 95
(Anaheim, California, August 6–11, 1995) (August 1995),
R. Cook, Ed., Computer Graphics Proceedings, Annual Con-
ference Series, pp. 229–238.

[10] MIYATA, K. A method of generating stone wall patterns.
Computer Graphics 24, 3 (August 1990), 387–394. ACM
Siggraph ’90 Conference Proceedings.

[11] PERLIN, K. An image synthesizer. Computer Graphics 19,
3 (July 1985), 287–296. ACM SIGGRAPH 85 Conference
Proceedings.

[12] PERLIN, K., AND HOFFERT, E. M. Hypertexture. Computer

Graphics 23, 3 (July 1989), 253–262. ACM SIGGRAPH 89
Conference Proceedings.

[13] PORTILLA, J., AND SIMONCELLI, E. P. A parametric tex-
ture model based on joint statistics of complex wavelet coef-
ficients. International Journal of Computer Vision 39, 3 (Oc-
tober 2000). to appear.

[14] PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. Lapped
textures. Proceedings of SIGGRAPH 2000 (July 2000), 465–
470.

[15] RAMASUBRAMANIAN, M., PATTANAIK, S. N., AND

GREENBERG, D. P. Perceptually based physical error met-
ric for realistic image synthesis. Proceedings of SIGGRAPH
99 (August 1999), 73–82.

[16] WEI, L.-Y., AND LEVOY, M. Fast texture synthesis us-
ing tree-structured vector quantization. Proceedings of SIG-

GRAPH 2000 (July 2000), 479–488.

[17] WITKIN, A., AND KASS, M. Reaction-diffusion textures.
In Computer Graphics (SIGGRAPH ’91 Proceedings) (July
1991), T. W. Sederberg, Ed., vol. 25, pp. 299–308.

[18] XU, Y., GUO, B., AND SHUM, H.-Y. Chaos mosaic: Fast
and memory efficient texture synthesis. Tech. Rep. MSR-TR-
2000-32, Microsoft Research, 2000.


