Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

Synthesizing Non-Uniform Systolic Designs

Concettina Guerra

Rami Melhem

Report Number:
86-621

Guerra, Concettina and Melhem, Rami, "Synthesizing Non-Uniform Systolic Designs" (1986). Department
of Computer Science Technical Reports. Paper 539.
https://docs.lib.purdue.edu/cstech/539

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SYNTHESIZING NON-UNIFORM SYSTOLIC DESIGNS

Concettina Guerra
Rami Melhem

CSD-TR-621
August 1986




SYNTHESIZING NON-UNIFORM SYSTOLIC DESIGNS
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West Lafavette, Indiana

ABSTRACT

In this paper we propose a method to derive sysiolic designs with non-uniform data Aow.
One of the major difficulties in systematic design is in transforming the original sequental
specification of a problem into a form suirable o VLSI implementation. Qur approach to
automaucally restructuring a problem is based on a subset of the data dependencies extracted
from the original problem specification. By using such dependencies we are able o identify
chains of dependent computations which are then converted into recurrence squations. The map-
ping of the new specification ineto hardware is also based on data dependencies. We [lustrate

the methodology by applying it to algorithms using dynamic programrming.
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I. INTRODUCTION

The development of efficient VLSI algorithms is relevant to many applications including
signal and image processing, which justifies the considerable interest for this opic. In recent
vears, the problem of synthesizing VLSI design - and systolic design, in particular - has also
received much attention [1]-[4], [8], [10]-[11], [13]-{24). Systemaric methodologies for the
derivaton of systolic algorithms have proved useful both in finding new designs and in verifv-
ing the correcmess of old ones. Moreover, the possibility of automaticaily generaring a number of
viable algorithms for the solution of a given problem enables the selection of an optimal algo-
rithm among a widef set of candidates. The optimality can be based on such parameters as com-
pleden dme T, number of processors P, chip area, etc.[18]. Most of the SXiSting syTmihesis

methods tend to minimize the compietion time.

The first and probably most challenging part of the systematic design process is in the
transformation of the high-level problem specification into a form berer suited 10 VLSI imple-
mentador. Such 2 form can be, for example, a system of first-order recurrence equations, a uni-
form recurrence equation, or a nested loop with constant data dependencies. Often, this transfor-
mation is obtained by using techniques similar 10 those used for software compilers: buffering of
variables, addidon of new variables, etc. However, it is not well understood how 1o select a good
transformation especially for some complex nonnumericai problems. Some authors assume that
the problem is already given in the required form, and concenmate on how to map it into

hardware.

A fundamental distinction between different approaches to the mapping problem is whether
they use data dependence based transformations {1]-[4], [7], [14], [16], [20]-[24], or delay
operators applied to the mathematical expression of ihe algorithm [10]-{11]. For a survey of the
various methods see [6].

The transformarional approach based on data dependencies has been successfully applied to

a variety of algorithms characterized by constant data dependencies. For such algorithms lincar

r— —— e a
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ume and space wansformations of the computations into VLSI arrays have been derived {14],
(20]-[23]. The resulting designs have constant and regular data flow. However, a number of more
complex problems with non-constant data dependencies require non linear transformations. A
typical example is the optimal parenthesization problem, which uses dynamic programming. In
[9] a systolic algorithm for dynamic programming was presenied that can be cast in a triangular
array of processing elements. The design is quite complex: the data flow in non-constant

throughout the array and the action of a processing element varies at different clock cycles.

Attempls have been made 10 synthesize non-uniform designs. A non-lirear transformation
for dynamic progra:ﬁming was indicated in {22). However, the paper does not precisely describe
how the ransformation is obtained from the algorithm specification. Chen [1) presents a metho-
dology for m2pping algorithms expressed as systems of first order recurrence relations into sys-
tolic arrays. The synthesis procedure allows designs with non—un-lform commuiicatien patters,
The mapping is done inductvely, starting at the boundary conditions. By using this technique,
varipus designs, corresponding 10 different communication patterns in the systolic arrav, are
derived for dynamic programming. The procedure, based on a point-by-point mapping, appears o
ve quite lengthy. In [19] a mathematical model, based on a sequence notadon, is used to
represent index transformations. The model provides a precise specification of systolic designs. It
allows arbitrary interconnections in systolic networks and is not restricted to linear mansforma-

dons. The paper does not give a constructive methodology o find the wansformations.

This paper presents a systematic method for the design of VLSI algorithms. The method
consists of transforming the high-level problem specification into a set of mutually dependent
recurrence equatons. To select the appropriate ransformations we propose a two-step refinement
procedure. The procedure first determines a coarse timing function of the computations in the
original specification of the problem, based on a subset of constant data dependencies; then uses
this function to guide the search for an index transformation. Ordered chains of dependent com-

putations are identified in the algorithm, according to such function, and an index transformation
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is applied to each singie chain, The index transformation must be compatible with the timing
function, i.e. all the computations whose operands are available first will be performed first. Sub-
sequently, the mapping of the obtained system of recurrence equations into a VLSI nerwork is
performed by applying linear time and space transformations separately to each recurrence sub-

ject 10 global constrzints. The resulting desien may have non-uniform data flow.

This paper is organized as follows. Section II presents the computational models for VLSI
arrays and algorithms and reviews the transformational approach to derive linear time-space
ransformations for mapping an algorithm intw a VLSI array. Section IiI presents a method
which helps derivi.né from an abstract algorithm a set of muwally dependent recurrence equa-
tcns. Section IV illustrates :he method by applving it w0 dynamic programming. In section V
ume-space wransformations are used to map the obtained system of mutually dependent
recwiTence equauons into a VLSI array. Finally, section VI shows how w derive a new design for

dynamic programming that uses fewer processing elements than the one in [9].

. COMPUTATIONAL MQDELS

A. Definitions

We will review the wansformational approach [20]-{23] by referring w0 a specific algo-
rithmic model. We consider a stuctured set of computations written as a recurrence relation or a
nested loop. The ser includes input statements, outpur statements, assignment statements, and
conditional assignment statements, where the latter are of the form "IF predicate THEN assign-
ment”. Conditional assignments are restricted 1o those where the predicate depends only on the
values of the loop indeces and not on the values of the variables. The recurrence relation or
nested loop defines an index set [*={(i, ..., i) | !} <if, ..., 1)<i <12}, subset of the set

Z" of the n-tuples of integers. We assume that the following conditions are sadsfied:
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CAL1 - each variable in the algorithm is associated with an index vector (i1 24eenin )y L, is an ele-
ment of an n-dimensional array. In other words, there is a one-to-one correspondence between

the n-tuples in /" and the dimensions of any array used in the algorithm.

CA2 - if § is an assignment statement indexed by (i 1,i....,i, ), and a variable on the right side of

§ is indexed by (jy_jz,....ja), then each i, may depend only on jj.

CA3 - The dependence vector of a variable is defined as the difference of the index vectors of

Compuranons where the variable is used and generated [8]. The data dependence vectors

- -

dy, ....d, associated to the variables of a recurrence can be represented as a mamix

D=[d, - - - d,], whose columns are labelled by the variable names. A variable may have many
dependencies each corresponding to a different index vector. In the canonic form we assume that

data dependence vectors are constant, i.e. independent of the index vectors.

CA4 - avariable is used exactly once after it is generated.

We will refer to the above specification of an algorithm as to the canonic form of the algorithm.

The canonic form does not explicitly specify any ordering among the computations; the
lexicographical ordering in /" is arbitrary and therefore irrelevant to our purposes. Rather, an

implicit partal ordering of the computations is given by the data dependencies. A pariial ordering

>p defined by the data dependencies is such that 7 >, 7' if 7= T+ 4; for some d;eD.

B. Mapping a canonic form into a VLSI array

It is possible, under certain conditions, to automatically map a recurrence into a VLSI aray

(20]-[23]). Consider the following simplified model of a VLSI array. Each processor of the array
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is assigned a label [e L""'c Z"~! | The connection pattern of the array is described by the marmix

A=[8,,54, . . ., 8] which specifies the links among the processors. Precisely, 5; is the difference

vector of the integer labels of adjacent cells in the nerwork.

A linear time-space transformation of the computations indexed by I inw the VLSI array

is defined by:

aH

S
where T is a mapping from /* — 2 and S is a mapping from /* —s L"~!, The time function T
transforms 2 inw 7D . Thus, to ensure a correct execution ordering, T must satisfy the following

condition:
T(d;) >0 for eack d;eD 4))

System (1) may have no solution or several solutions. In this laier case, the one which minimizes
the total execution time (defined as the difference berween the maximum and minimum value of

T ) is chosen.

The space mapping § is a mapping from the set of computations to the set of processing

elements such that for each 7,/ € [*

SO=S() implies TO=T( (2)

i.e. concufrent computations cannot be mapped into the same processor. Determining a solution

for § which satisfies constraint (2) is equivalent to solving the diophantine equations:
SD =AK (3)

for which the mam’x‘ ;.' J is non-singular. X is an integer matrix with positive clements. The

equations may have no solution or several solutions. If no feasible solution is found, the design
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procedure is repeated by starting with a different iming funcdon or else a different interconnec-
tion network. If several solutions are possible, the one which is optimal according to some given

criterion is chosen.

C. Algorithm transformacions

To derive a canonic form from the high-level problem specification, transformations similar
1o those used for software compilers are generally used {14]). The goal of such ransformations is
t0 enhance pipelining and local communication in an algorithm. This is accomplished by (i)
adding indeces to eﬁsdng variables in the algorithm, (ii) renaming variables, or (iii} inwroducing
new variables. Such transformadons do not c¢hange the algorithin fundamentzily, but only the
data dependencies among the variables. The new data dependencies in the resulting specification
of the problem are therefore not characteristic of the problem itself but of its parallel implemcn-
tadon. Indeed. as is well known, there are in general several ways to transform a given problem
specificadon, according to the previous rules, each way producing a different set of data depen-
dencies. However, not all the possible transformations lead to a feasible VLSI design. Moreover,
different transformadons may result in different performances. Consider the two following

examples:

Example 1. The convolution problem is defined by : given 2 sequence xy,...,x, and a set of

weights wy, .. ., w;, determine the sequence yy, . . . , ¥, such that:
Yi = Ek:l; W - X
Broadcasting of x and w can be eliminated by adding one more index to all variables x, w, and

¥. At least two different index transformations can be applied which produce the two

recurrences in canonic form below. The first is a backward recurrence, where the variable y;  is



defined in terms of y; 4
l€i<n; 12k <5
Wik = Wik
iy = Xiji (%)
Yik =Yig—1 T Wi Xip
with inidal conditions:
Yio=0 wop =wis X=X X0, =0

The second is forward recurrence, where the variable y; & is defined in terms of y; 4.5.

lgi€n,;, 1€k <s
Wiz =Wi_ix
Xk = Xi—ix—1 6}
Yie =Viket T Wip Xk
with initial conditions:
Yiga1 =0 Wor = wi xi_10= 25 X4y =0

Data dependencies comresponding to the two recurrences inoduce two different partial orderings
in I2%={(i,k) | 1=ign; 1<k<s }, which translate into two different schedules for the computations
and consequently into different systolic designs. We first derive a systolic design for recurrence
(4). Dara dependencies for variables y, x and w in (4) are respectively:

d=01) d,=(11) dy=(0y.
The coefficients T, and T'; of a linear transformaticn T must satisfy (1), that is:

To>0 Ti#T2>0 T,>0.
Several solution to the above equations are possible; the one which minimizes the execution time
is given by:
T''=0 T,=1

The resulting riming function is:

TG, k) = i+k.
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A space mapping of the recurrence into a linear array of processing elements obtained from (3 is

given by:

SU. k)=k.

The resulting desigm, identicat to the one presented by Kung [12], is summarized in table

1. Similarly, by applying the mapping procedure o recurrence (5) we obtain two other designs

presenied in [12]. These latter are summarized in table 2. Notice that design W2 cannot be gen-

erated starting from recurrence (5) and, viceversa, designs R2 and W1 cannot be generated from

recurrence (4). Finally, we mention thar other designs for convoiution are possible [3], [12], but

they cannot be generated from recurrences (4) or (3).

Design | Output (y) Input (x) Weighrs (w)
W2 Move in the same direction Stay
at different speeds

Table 1. Systolic design for recurrence (4)

Design | Output (y) Input (x} Weights (w)
W1 Move in opposite directions Stay
R2 Stay Move in the same direction

atdifferent speeds

Table 2. Systolic designs for recurrence (35)

Example 2. Recursive convolution
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This problem can be expressed as: given a sequence of weights w,..,w,, determine the sequence
¥ 1s---¥a Such that;

Yi = Xpm1s Wk ik
Of the two recurrences which can be derived by using transformarions similar to those used in
Example 1, only the forward recurrence has 1o be considered for a sysiolic implementation. The

backward recurrence does lead to a any reasonable design since it cannot overlap computations

of y; , for different values of index £,

For more compiex problems, such as optimal parenthesizatdon using dynamic program-
ming, selecting a good initial transformation is not an obvious task and in facr straightforward
transformations such as those applied to the convolution problem fail. It is clear that this part of
the synthesis procedure sometimes requires creativity and programming experience. We suggest a
way o assist the human designer in this crucial rask. Obviously, it is not always possible 10
transform a given problem into canonic form. For problems which do not have such representa-
ton we artempt o rewrite them into a form of many modules each being in canonic form. The
method we propose here relies on identifying a set of constant data dependencies in the original

formulaton of the problem.

OI. DERIVING A VLSI ALGORITHM FROM THE HIGH-LEVEL SPECIFICATION OF THE

PROBLEM

We assume that the high level specification of a problem is written in the form of a nested
loop with the index set /” defined by:
I"={(y, ..., 0 | {40 iE, . L)< <02y,
We assume thar, unlike the canonic form, the loop contains a variable which is an 5 -dimensional

array. More specifically, we let s=r-1 and assume that the loop contains an assignment
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statement of the form:
c(@®) = F e~ dDy ., c ¥ d2)) (6)
where: i*=(iy is,..., {;) is an s-tuple of indices of the loop;

dj!':(aj‘l, - aj_{—l- i[_lin ] aj‘:-{-l: -y aj_g) ' j=11--m;

and where 4;; are integer consuants. In other words, the index i, on the left side of (6) is replaced

on the right side by the index {,. Each vector 3}", (j=1...m), represents a non-constant data

dependence for variable ¢, since its £-th component is a function of the two indices i, and i,. We

can expand &7 into a number of data dependence veciors, each corresponding o a specific value

of index i, in the r-th component. Then, we associaic 1o each pair

(variable index vector ¢, 1,) the set D: of all the data dependence vectors obtained by

expanding d3,...4=..

Our swategy to select the inital index wansformation consists of a two-step procedure. Let
1= {{iy,ends) | 1{<h<IF, ... 1'<i, <12}, First. determine from the high-level specification of
the problem a coarse dme function T; /° — Z. This function will be used in the subsequent siep
of the procedure to guide the search for a schedule of computations indexed by /. We derive T
from a subset of the dara dependencies of the algorithm, namely, the subset of constant dara
dependencies, thus, T provides only a lower bound for an acral timing function for /°. Further-
more, T depends only on the implicit dependencies of the problem since it is derived before any

arbitrary ordering of the computadons is introduced. The set D¢ of data dependencies is non-
‘.l'

constant in the computation space. However, the set D¢ defined as the intersection of D? forall

i e I contains only constant data dependencies. For a nested loop with constant data depen-
dencies, a linear (or quasi-affine) timing function can be determined by applying the transforma-

tional method described in section 1. Thus, if D€ is not empty we can derive a linear timing
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function T : /*— Z which is compatible with the set D°, i.e. i¥ >p. 7 implies T(°) > T ().

The function T must satsfy (1), that is:
T(d;) > 0 for each d;eD* Q)
If system (7) has several solutions, the one which minimizes the otal execution time is chosen,

Tt obvious that if 1T is an actual timing function for /* then it must be T(i*) T(i-’) foreach

i* e I*. Moreover, because of the raonotenocity of an expanded data dependence vector in Dt n

must be 1(*) > T(@*) if T@) > TE*).

The partial ordering defined by T on the set of computations /° defines a partial ordering in

a subset of /" based on the availabiliry of operands. Consider the set J*< I™ consisting of the n-

tuples (i¥, i,) for any given i*e [* and for [,1<i, <12 For any rwo such n-tuples, we introduce the

relation > defined by:
(i) >7 @) <=
Max{T(F=d ), TE—d)} > Max (TG =), TE =)}

where d; and d;’ (j=1,../n) are the data dependence vectors in (6) comresponding to values i, and
i, respectively, of index i,. Obvicusly, the reladon >t is a partial ordering in J*. Thus, J* can
be decomposed into a number of chains, i.e. subsets whose elements are linearly ordered (relative
to each other). Of course, there will be only one chain if the relation >+ is linear to start with.
Each chain consists of indexed computations which have to be carried out one after the otherin a
specific linear ordering. Computations belonging to different chains can be carried out indepen-
dently. There can be many decompositions of a partially ordered set into chains. Minimal chain
decompositions can be found by network flow techniques [5]. We are interested in a simpier
problem, namely in finding a chain decomposition of >7 such that the computations in a chain

are also sorted ( either in increasing or decreasing order) according to the index i, .
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At this point, we are ready to restucture the given algorithm. Let us denote by s the
number of chains. We partition the computations indexed by J” into s separate recurrences,
each comesponding to a distinct chain. In each recurrence the ordering for index {, is chosen
according to its ordering in the chain. Then, we transform each recurrence into canonic form
using the three previous rules: 1) adding missing indices, 2) adding new variables, and 3) renam-
ing old variables. In addidon we also add statements between recurrences to correlate variables
in distnet recurrences. In fact, a recurrence may use a variable generated in another recurrence.

This last step may inwroduce non-constant data dependencies in the system.

In conclusion, the obrained new specification is expressed as a system of s modules, each
module being a recuirence equaiion in canonic form. Non-consiant daia dependencies may occur

berween variables of different modules.

IV. AN APPLICATION TO DYNAMIC PROCRAMMING

Consider the dynamic programming technique applied to such problems as optimal
parenthesization, and shoriest path. Both problems can be expressed by the recurrence;
1€ign;i<j<n
i, j =MiNj e F(Ci, e Ci, j) (&
with initial conditions:
Cijs1 =Ci 1=iZn
for some function f. Note that no explicit ordering for the indices {,/, and k is specified. If we
choose the normal lexicographical ordering for the three indices and we apply some index
transformaton we can derive a canonic form from the above recurrence; however, the systolic

implementation of it will have execution time O (n?) since it does not overlap the computations

of ¢; ; for differenc k.



-14-

Let PP={(i,j k) | i<i,j<n;i<k<;j} be the index ser of the recurrence above: and let

I%={(i,j) | 1<i, j<n} be the index set defined by varniable ¢. Each pair (c, (i, j)) is associated
with a distinct set of data dependencies, here represenied in marricial form:

0 ik
Dgjp=
jk 0

or in the expanded form below where each column corresponds to specific value of the index k:
0 w 0 0 -1 2 . i+l

DG p=
L. 2 1 0 0 .. 0

The intersection D¢ of all the sets D§, py (1=i, j<n)is non empty and is given by:

c
an =

We derive atime funcrion T : /°— Z compatible with D°. Since D¢ contains only constant
data dependencies, we can apply the methodology discussed in section I to determine a linear
ume functon. Conditions (7) applied to the data dependence vectors in D¢ give:

T1>0 and Tzs—l

The least integer values that satisfy the above equations are:

Tl=0 and T2=_l-

Thus, the optimal time transformation is:

TU.j)=j—1.
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Next we consider the partial ordering > in J={({,j,k) | i,j are fixed and i <k < J } defined

by:

(k) > (k) <>

Max{T@k), Tk j)} > Max{TG.k"), T®&"j)}

Notice that the minimal elements with respect to > are:

(i, J, ({+j¥2) ifi+jisevenor

(6, jy G+j-1y2)and (i, j, (+j+1)2) if i+ is odd.

By repeatedly finding minimal elements after removing the previous minimal elements
from the set we obtain a decomposition of J° in the two chains below (here we only write the

third component of the index vectors):

{if (i+]) is even}

702, G021, ., i+

IR+, i+ )2+2, ..., j-L

{if (1+)) is odd}

G/ =12, G+f-1)2-1, ., i+1;

((+j+1)2, ((+j+1)I2+1, ., j-1;

We can now rewrite (8) into a form where the execution ordering of index k is specified
according to the above chains. The new specification of the problem consists of two recurrences:
the first recurrence is a forward recurrence where the index & varies from (i +j)/2 to i+1 (or from

(¢+j-1¥2 to i+1 if i+j is odd); and the second is a backward recurrence where & varies from

(@+)2 w j-1 (or from (J+j+1}2 to j—1 if i+j is odd) . To transform each rccurrence into
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canonic form some further manipulation is necessary. We first add missing indices to variables on
both sides of (8) and then inroduce new recurrence variables to eliminate broadcast of a variable
to different destnadons. We use different sets of variables for the two recurmrences. Each
recurrence initializes some of its variables to values generated by the other recurrence. Now
equations (8) can be converted into the following system of mutally dependent recurrence equa-

Hons:
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fori:=110 7—1do & ju1,i41:= Ci,isls Ci,ivl, i+1"= €0 i41)
for/:=2 ton—1do

fori:=11to n do begin

At
A2

A3

Ad:

AS:

j=iH,
if ({ +/ )=even} then begin
k=(i+j)2;

G k= 8 j1 ko

"

ifk=i+lthend; ; ¢ =cip,j,; €lSe b j k= biey j i 3
Ci’,j,k I=f(ﬂ.",j,:c -bi',j,k % C:‘Tj,.'c = C:‘:j,k
end
else begin  {i+j=odd};
k=(i+j—1)/2
a:".j.t =0 gk
if k= i+l menb;, j, x = ciu j,j elsed; ; g 1= biy1 j.u ;
Csr,j,z = f(a;,j,x ' b:",j_k )
k= ({+j+1)/2;
ifk:= j—1 then a,-':_,-‘ k =& g, j-u else a,-':j‘ g = a,-':j_;_ E
bi jox = Bist ik
Gk = F@ e B e )

end

for k:=[(i+j-1)2 - 1] downw i+1 do begin

a ok T4 i1,k
ifk=i+1 then b;‘j‘ ir] = C:‘+1,j.j clse b,"j‘ B = bi-i-l,j.k 4
Cijox = R jeef (GG ;x50 )0

end;

fork:=|(i+/+1)y2 +1] to j—1 do begin
ifk=j-lthena; ; x =c; jo,jrelsed j o =a; j1. ¢ ;
bi ik =biv, .k ;
C:":j,k = h (C:",'j,k 1 f (af’,'j.k -b:",'j.a': )):
end;
Ci.j,; = h (Ci:j,£+lv C:‘Tj.j—[);
end;

©)

module 1
moduie 2
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From the above specificaton we extract distnct sets D and D of local data dependencies for the two
modules.

¢’ a’ b’ ¢ a b
0 0 -1 0 0 -1
D1= 0 1 0 D?._ 0 1 0
-1 0 0 1 0 0

Non-constant dependencies berween variables of distinct recurrences are defined by starements Al to A3

in the algorithm, We will refer to such dependencies as global dependencies.

VY. MAPPING THE ALGORITHM INTO HARDWARE
A. Time function

Once the algorithm has been converted into the new form, the mapping into a VLSI array can be
accomplished in two steps:

I} Finding for each individual module in the algorithm representation a separate time function
whichl is compatible with the local data dependencies and also sartisfies the constraints imposed by the
global dependencies.

2) Finding a space mapping for each module into the processors of a physical network which is
compatibie with the time functon and satsiies global constraints.

Referring again to the dynamic programming algorithm, we first seek linear time transformations A
and  for module 1 and 2, respectively. Furthermore, let ¢ be the ime  function for computation in A5

outside the two modules. The linearity requires that for the dependence vectors of the modules it must

be:

A@>0 fordeD;, and u(d) >0 for deD-
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that is:

Constraints introduced by A1-AS lead to the following equations:
A, J, (5 02) > ud, j-1, (+5)2)
A, i+ > 641, 4. D
wi, j, j=1) > o(i, j-1, j-1)
U(i, j, G+j+1¥2) > A@+1, §, G+j+1)/2)

G(I ’ jl J) 2 ma-x[)‘-(l ) j! f+1)-l-’-(f ' j-a J'_l)]

It easy to check that an optimal solution to the above system is given by:

Hence:
Aij &) =—-i+2j-%
Ry k) =2 +j+k

0@ .j ) = —2i+2).

The next step is 1o find a mapping of the computations indexed by /3 into the processors of a

VLSI armay.

B. Space Function
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The automatic procedure for determining the mapping of computations into the cells of a systolic
array is analogous to the one for the time function. Again, we look for separate solutions to the different
modules in the algorithm subject to global constraints. We consider a 2-D VLSI array of processing ele-
ments modelled by the pair [L 2 A}, where L2 is the set of labels (x.y) assigned to processing elements and
A'is a matrix describing the interconnection nerwork between processing elements. Different intercon-
necton pattemns may result in different classes of designs. In the following, we generate the optimal

design when A is chosen to be:

A corresponds to a nerwork with unidirectional links, as shown in fig. 1.

LetS’, S ,and § be the space functons for module 1, medule 2, and statement A5, respectively.

I o~ £l L
Su’ S Sy | Sn Sz Sn Sn Siz Sn
S'= A S=
Su' Sz S Sa  S»p  Sum S Sm Sz

In addidon to saﬁsfy (3), the coefficients of $*, §”, and § must satisfy the constraints imposed by global
dependencies. Precisely, if a global dependence involves two variables belonging to different modules
which are compuied at times ¢ and ¢* with (—¢’=d then the distance of the cells where the two variables
will be mapped cannot be more than d. By distance we mean the length of a path consisting of intercon-

nection links between the two cells. From Al we have:
S i joGE2Y = 8T i j-1 @2 |f o+ dyg dieA,
since A(f,j,(i+j)2) — o(i ,j-1,(i+j¥2) = | and, consequently, the two compurations must occur either

in the same cell or in adjacent cells. Similarly, from A2-A4 we obtain:
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S i j i+l |* =8 i+l j jl'+dy dhed; 10}
"N jojrt =8 )i j-1 j-1' + 25 ds el
STl AR = ST JiEl ORI 1 dy de=8; +5; 854

S 1ijjlt =81 i+l +ds ds eA;

One solution to above system of equations is:
Su=Sp3=0:Sp=1  Sp=Spn=0S;=1
for the first recurrence and:
Si1=8S3=08p=1 Say =833 =0, 84 =1

for the second recurrence. Thus

SU.jk)y=8"(,j.k)=50.j.j)= ()

The resuiring design is identical 10 the one first inwoduced in {9]. The corresponding systolic armay and

the acton of a cell 2t different times is depicted in figure 1.

V1. ANEW DESIGN FOR DYNAMIC PROGRAMMING

As shown in (8], a new design for dynamic programming c¢an be automatically generated if we
choose a different interconnection pattern for the network. This design uses fewer processing elements
than the one in [9]; precisely 3/8n° instead of n%2. Consider an array of processing elements whose

communication pattern is described by:



Cells in the array are connected by bidirectional horizontal links as well as by diagonal and vertical links,
as shown in fig. 2. An optimal design for dynamic programming is generated for such an array using
the same mapping procedure. Again we solve equations (4) subject to giobal constraints (10). We derive
for the first recurrence:

Siu=Sp=0S3=1  Sp=S;3=05;=!

and for the second recurrence:

Su=Sp=LSp=-1 Sp=55=055=1

Thus we have:

S (k)= (k,i)and S( j k) = G+j—k. D).

These transformarions lead to the sysiolic design of figure 2. The array consists of 3/8n2 cells. All cells
are identical. However, the action of a cell varies from time to time. It does computation relative io
module 1 or module 2 depending on the values of indeces i, j, and &. Also, the direction of darta streams
varies for the two modules. The transformation of data dependence vecrors D | into communication vec-

tors A is derived from S°. From:

¢’ a b
S Sy Sy 0o 0 -l -1 0 0 I
321’ 522’ S23’ 0 1 0 =|0 0 =1
-1 0 0

we derive that variables c,-:,- & move (o the left along the horizontal links, variables a,-'J & do not move
along the array but stay inside the cells, where they are updated. Finally, variables b;'J- 4 Mmove up, except
at the boundary, where they move along the diagonal (from (10)). The direction of variables in module 2

is derived from the mapping S~. Variables a,-:,- 4 move to the right along the horizontal links, variables
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bi j, move up 1o the left along the diagonal links. Variables ¢;;, move with the same partem as in the

other module. The acdon of a cell at each time is illustrated in figure 2.

VII. CONCLUSION

We have suggested a methodology to assist a human designer into the difficult task of designing a

VLSI algorithm starting from a sequential specification of a problem. Among the many possible transfor-

mations which can make parallelism explicit in a program the method helps selectng a feasible and

opumal sequence of transformations. The methodology appears useful for complex nonnumerical prob-

iems for which standard restructuring techniques seem inadequate. The class of obtainable designs is not

resmicted to designs having constant daw flow.
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Fig. 1. A sysiolic array for dynamic programming
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Fig. 2. A new design for dynamic programming
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