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ABSTRACT

In this paper we propose a method to derive systolic designs with non-uniform data flow.

One of the major difficulties in systematic design is in transforming the original sequential

specification of a problem into a Conn suitable [0 VLSI implementation. Our approach [Q

auromatically restructuring a problem is based on a subset of me data dependencies eXITacted

from the original problem specification. By using such dependencies we are able to identify

chains of dependem computations which are then convened into recurrence equations. The map­

ping of the new specification imo hardware is also based on data dependencies. We illusrrate

the methodology by applying it [0 algorithms using dynamic programming.
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I. INIRODUCTION

The development of efficient VLSI algorithms is relevant to many applications including

signal and image processing, which justifies the considerable interest for this topic. In recent

years, the problem of synthesizing VLSI design - and systolic design, in panicular - has also

received much attention [IJ-[4], [8], [1O]-[l1l, [13J-[24]. Systematic methodologies for the

derivation of systolic algorithms have proved useful both in finding new designs and in verify­

ing the correcmess of old ones. Moreover. the possibiliry of automatically generating a number of

viable algorithms for the solution of a given problem enables the selection of an optimal alga­

rirhm among a wider seL of candidates. The optimality can be based on such parameters as com­

pletion time T I number of processors P, chip area, etc.[l8]. Most of the exisiing s}'lUhesis

methods tend to minimjze the completion time.

The first and probably most challenging part of the systematic design process is in the

transformation of the high-level problem specification into a fonn berrer suited to VLSI imple­

mematioIL Such a fonn can be, for example, a system of first-order recurrence equations, a uni­

form recurrence equation, or a nested loop with constant data dependencies. Often, this transfor­

mation is obtained by using techniques similar lO those used for software compilers: buffering of

variables. addition of new variables, etc. However, it is not well WlderslOod how to select a good

transformation especially for some complex nonnumerical problems. Some authors assume that

the problem is already given in the required form. and concentrate on how to map it into

hardware.

A fundamental distinction between different approaches to !.he mapping problem is whether

they use dam dependence based tr.lIlSfonnations [1]-[4], [71, [14], [16], [201-[24], or delay

operators applied to the mathematical expression of !he algoritJun [lOHll]. For a survey of the

various methods see [6].

The transformational approach based on data dependencies has been successfully applied [0

a variety of algoritJuns characterized by constant dam dependencies. For such algoritluns linear
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time and space rransformations of the computations into VLSI arrays have been derived {14J.

(20]-[23]. The resulting designs have cOl1Stam and regular dam flow. However, a number of more

complex problems with non-constant data dependencies require non linear transformations. A

typical example is the optimal paremhesization problem. which llses dynamic programming. In

[9] a systolic algorithm for dynamic programming was presented that can be cast in a triangular

array of processing elements. The design is quite complex: the data flow in non-consram

throughOut the array and the action of a processing element varies at different clock cycles.

Attempts have been made to synthesize non-unifonn design<;:. A non-linear transformation

for dynamic programming was indicated in [22]. However, the paper does not precisely describe

how the rransfor::::nation is obtained from L1e algOriUIffi specification. Chen [1] presents a melho­

dology for m1pping algorithms expressed as systems of first order recurrence relations into sys­

tolic arrays. The synthesis procedure allows designs with non-uniform communication patterns.

The mapping is done inductively, starting at the boundary conditions. By using Utis tectmique.

various designs, corresponding [Q different communication patterns in the systolic array, are

derived for dynamic programming. The procedure, based on a point-by-point mapping, appears [Q

be quite lengthy. In [19] a ma!hematical model, based on a sequence noration, is used to

represent index transformations. The model provides a precise specification of systolic designs. It

allows arbiuary interconnections in systolic networks and is not restriCted to linear rransforma­

tions. The paper does not give a constructive methodology to find the transformations.

1bis paper presentS a systematic method for the design of VLSI algorithms. The method

consistS of transforming the high-level problem specification into a set of mutually dependem

recurrence equations. To select the appropriate transformations we propose a two-step refinement

procedure. The procedure first determines a coarse timing function of the computations in the

original specification of the problem, based on a subset of constant data dependencies; then uses

this function to guide the search for an index: transformation. Ordered chains of dependent com­

putations are identified in the algorithm, according !o such function, and an index: transformation
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is applied to each singie chain. The index transformation must be compatible with the timing

function, Le. all the computations whose operands are available first will be performed first. Sub­

sequently, the mapping of the obtained system of recurrence equations imo a VLSI nerwork is

performed by applying linear time and space uansformations separately to each recurrence sub­

ject ro global constraints. The resulting design may have non-uniform data flow.

This paper is organized as follows. Section IT presents the computational models for VLSI

arrays and algoril.hms and reviews the transformational approach to derive linear timc·space

transformations for mapping an algorithm imo a VLSI array. Section III presents a method

which helps deriving from an absuact algorilhm a set of murually dependent recurrence equii­

tiens. Section IV illustrates me method by applying it ro d)'namic programming. In section V

time-space transformations are used to map lhe obtained system of mutually dependem

recurrence equations inra a VLSI array. Finally, section VI shows how w derive a new design for

dynamic programming mat uses fewer processing elemems man me one in (9].

II. COMPUTATIONAL MODELS

A. Definitions

We will review me transformational approach [20]-(23] by referring to a specific algo­

rithmic model. We consider a structured set of computations written as a recurrence relation or a

nested loop. The set includes input srat.emems, outpm st<Hemems, assigrunen[ statements, and

conditional <lSsignmem S[a[ements, where me latter are of the form "IF predicate THEN assign­

ment". Conditional assignments are resuicted ra those where the predicate depends only on the

values of the loop indeces and nor on the values of lhe variables. The recurrence relation or

nested loop defines an index set /"={(i I, ...• ill) I n$.i (S.lf, ... , 1"15i,, 5.1,,,2} , subset of me set

2" of the n -tuples of integers. We assume mat the following condilions are satisfied:
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CAl - each variable in the algorithm is associated with an index VeCWf (i1.i2•...• i,,), Le. is an ele­

ment of an n-dimensional array. In other words, mere is a one-to-one correspondence between

the n-ruples in 1" and me dimensions of any array used in the algorirnm.

CAl· if S is an assigrunem sratemem indexed by (i 1oi2, ... ,i,,), and a variable on me right side of

S is ind~xed by (j IJ2•... ,jl1), then each it may depend only on h:.

CA3 . The dependence vector of a variable is defined as me difference of the index vectors of

computations where the variable is used and generated [8J_ The data dependence vectors

db .... d:.n associated [0 the variables of a recurrence can be represented as a marrix

D=[J t •.• amJ. whose columns are labelled by the variable names. A variable may have many

dependencies each corresponding to a different index vecror. In me canonic form we assume mat

data dependence vectors are constant, Le. independent of me index vectors.

CA4 - a variable is used exactly once after it is generated.

We will refer to the above specification of an algorithm as to the canonic fonn of the algorithm.

The canonic form does not explicitly specify any ordering among the computations; the

lexicographical ordering in r is arbitrary and therefore irrelevant to our purposes. Rather, an

implicit partial ordering of the computations is given by the data dependencies. A panial ordering

>D defined by the data dependencies is such mat 7 >0 l'if 7= 7'+ aj for some ajED.

B. Mapping a canonic form into a VLSl array

It is possible, under certain conditions. to automatically map a recurrence into a VLSI array

[20]-[23]. Consider the following simplified model of a VLSI array. Each processor of the array
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is assigned a labell eLn-ic 2,,-1 . The connection pattern of me array is described by the macrix

.1=fOI'Oz, ... ,O.fJ which specifies the links among the processors. Precisely, Sj is the difference

vector of the integer labels of adjacent cells in the network.

A linear time-space transformation of the compmations indexed by Til (me me VLSI array

is defined by:

IT=I;I
where T is a mapping from r ~ Z and S is a mapping from I" ~ U- l . The Lime function T

transforms D imo TD. Thus. to ensure a correct execution ordering, T must satisfy the following

condition:

TCdi ) > a for each (liED (I)

System (1) may have no solution or several solutions. In tllis laner case, me one which minimizes

me total execution time (defined as the difference between the maKimum and minimum value of

T ) is chosen.

The space mapping S is a mapping from me set of computations to the set of processing

elemenrs such that for each 7.7 E In

SUpS I]) implies T[J)~T(j) (2)

i.e. concurrem computations cannot be mapped into the same processor. Detennining a solution

for S which satisfies constraint (2) is equivalent [0 solving the diophantine equations:

SD = t>K (3)

for which the mauix jJ J is non-singular. K is an integer matrix with positive clements. The

equations may have no solution or several solmions. If no feasible solution is found. the design
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procedure is repeated by starting wilh a different timing function or else a different imerconnec­

tion network. If several solutions are possible. the one which is optimal according to some given

criterion is chosen.

C. Algorithm transjonnations

To de!ivc a canonic fonn from L'1e high·level problem specification. transformations similar

to those used for software compilers are generally used (14]. The goal of such transformations is

to enhance pipelining and local communication in an algorithm. TIlls is accomplished by (i)

adding indeces to existing variables in the algorirnm. (ii) renaming variables, or (ii.i) imroducing

new variables. Such transformations do not change me algorictun fundamentally, but only the

data dependencies among the variables. The new data dependencies in the resulting specification

of the problem are therefore not characteristic of the problem itself but of its parallel implemen­

tation. Indeed. as is well known. there are in general several ways to transform a given problem

specification, according to the previous rules, each way producing a different set of data depen­

dencies. However, not all the possible transformations lead to a feasible VLSI design. Moreover,

different transformations may result in different performances. Consider the twO following

examples:

Example 1. The convolmion problem is defined by : given a sequence Xlo ... ,x" and a set of

weights w" .... w,p detennine me sequence Y \•... ,y" such that;

Broadcasting of x and w can be eliminated by adding onc more index to all variables x. w. and

y . At least two different index transfonnations can be applied which produce the two

recurrences in canonic fonn below. The first is a backward recurrence, where the variable Yi,k is
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defined in tenns ofYi ,k-I:

l$i:5:n; l.5:k:5s

Wi): = Wi-I,k

Xi,k = Xi-l)::-l

Yi.,k = Yi,k-l + Wi,k' Xi.k

with initial conditions:

y;.o = 0; WO,k = w.l:; Xi-l.a = xi; XO,k-l = 0

(4)

The second is fonvard recurrence, where the variable Y;,k is defined in teITIlS OfYi.k+I.

with initial conditions:

ISiS"n; lS;kS:s

wi,.( = wi_l;:

Xi;- = xi_Ll:_!

Yo;:' =Y;,.I;+I +Wi,.l:" xi);

Yi ,s"'! = 0; WO,..!: = w,/;-; Xi-l,a = Xi; XO,k-l = 0

(5)

Data dependencies corresponding to the two recurrences ina-oduce two differem partial orderings

in {'-{(i,k) I 1:5:i:91; IQ.ss}, which translare imo two different schedules for the computations

and consequently into different systolic designs. We first derive a systOlic design for rec'JITe~ce

(4). Dam dependencies for variables y, x and w in (4) are respectively:

dl~(O 1)' d, = (l I)' d, = (10)'.

The coefficients T I and T2 of a linear rransfonnation T must satisfy (1), that is:

Several solution to the atove equations are possible; the one which minimizes the execution time

is given by:

The resulting timing function is:

TU.k)~i+k.
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A space mapping of the recurrence into a linear array of processing elements obtained from (3) is

given by:

S(i,k)=k.

The resulting design, identical EO me one presented by KWlg [12], is summarized in table

1. Similarly, by applying the mapping procedure to recurrence (5) we obtain two other designs

presented in [12]. These lal1er are summarized in tlble 2. Notice that design W2 cannot be gen.

erated srarring from recurrence (5) and. viceversa, designs R2 and WI cannot be generated from

recurrence (4). Fmally, we mention that other designs for convolution are possible [3], [12], bur

they cannor be generated from recurrences (4) or (5).

Design Output (y) Input (x) Weights (w)

W2 Move in the same direction Stay

at different speeds

Table 1. Systolic design for recurrence (4)

Design Output (y) Input (x) Weights (w)

WI Move in opposite directions Stay

R2 Stay Move in the same direction

at different speeds

Table 2. Systolic designs for recurrence (5)

Example 2. Recursive convolution

.'



-10 -

This problem can be expressed as: given a sequence of weigh[S w l."'ws ' determine the sequence

Y1""Y" such that:

Yi = L.i:=l,.r W.t . Yi-k

Of the two recurrences which can be derived by using transformations similar [0 mose used in

Example 1. only me forward recurrence has to be considered for a sysrolic implementation. The

backward recurrence does lead to a any reasonable design since it CaJInor overlap compmations

ofYi,1:: for different values of index k.

For more complex: problems. such as optimal parenthesization using dynamic program­

ming, selecting a good initial transformation is nm an obvious laSk and 10 fact srraighcforward

tnII1Sformations such as !:hose applied to the convolution problem faiL It is clear that this part of

the synthesis procedure sometimes requires creativity and programming experience. We suggest a

way [Q assist the human designer in this crucial task. Obviously, it is nm always possible to

transform a given problem into canonic fonn. For problems which do not have such represema­

tion we attempt to rewrite them into a form of many modules each being in canonic form. The

method we propose here relies on identifying a set of constant data dependencies in me original

formulation of the problem.

III. DERN!NG A VLSI ALGORITHM FROM THE HIGH-LEVEL SPECIFICATION OF TIlE

PROBLfuVl

We assume Lhat the high level specification of a problem is written in the form of a nested

loop with the index set I" defined by:

1'_{(O 0) 11\<· <12 11<. <12l- 1,•...• 1" \_I\_\ •...• "_l,,_,,.

We assume that, unlike the canonic form, the loop contains a variable which is an s -dimensional

array. More specifically. we let s=n-l and assume thal me loop contains an assignmem
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statement of the form:

(6)

where: is=(i l, £2•... , is) is an s -tuple of indices of the loop;

and where ajJ are integer consmms. In other words. the index i, on the left side of (6) is replaced

on the right side by the index il!.' Each vecrof dJ, U=l,..,m), represents a non-constant dam

dependence for variable c. since its I-rh component is a function of the two indices ir and i". We

can expand dj inlO a number of data dependence vecmI'S, each corresponding ro a specific value

of index in in the t-rh component. Then. we associate' to each patr

(variable ,index vecror)=(c. Is)

expanding dt .. ,d"";..

the set D~ of all the data dependence vectors obtained by
i'

OUf srrategy to select the initial index cransformation consists of a two-step procedure. Let

/ ' - [(' ') 1"<' <I' 1'<' <I'J F' d' ' fro th hia"l 1 'fi' f- 11>""'s -1 _ll- 1 ' ...• of _l,r _ s . lfSt. e.errmne m e ;u- eve speer cauon 0

the problem a come dIne function T; P ~ Z. 1his function will be used in !.he subsequem step

of me procedure [0 guide me search for a schedule of computations indexed by I". We derive T

from a subset of the data dependencies of the algorithm, namely, the subset of constant data

dependencies, thus, T provides only a lower boW1d for an acrual timing function for IS . Funher·

more, T depends only on the implicit dependencies of the problem since it is derived before any

arbitrary ordering of the computations is introduced. The set D~ of data dependencies is non-
i'

constant in the computation space. However, the set DC defined as the intersection ofD~ for ali,

i"i E P contains only constant data dependencies. For a nested loop with constant data depen-

dencies, a linear (or quasi-affine) timing [unction can be determincd by applying the transforma-

tional method described in section I. Thus, if DC is nor empty we can derive a linear timing
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function T : [S---:; Z which is compatible with the set Dt:. i.e. is >D< 7'9 implies T(iS) > T(I'S).

The function T must satisfy (I), mat is:

(7)

If system (7) has several solutions, the one which minimizes the roral execution time is chosen.

It obvious mat if 't is an actual timing function for r then it must be 't(i""i) 2: T(iS) for each

is els
. Moreover. because of the rnonotcnocity of an expanded data dependence vector in D~ I it,.

muSt be 'tcj"i) > 't(l'S) if T CiS) > T (7'S).

The partial ordering defined by T on the set of computations IS deJines a partial ordering in

a subset of r based on the availabili[y of operands. Consider the set J" c 1" consisting of the n-

tuples Cis, ill) for any given is E [S and for t"l-;;i" '5./,,'2. For any two such n-tuples, we introduce the

relation >T defined by:

Max{TU'-d;)..... TU'-d-;')} > Max{TU'-d;\... TU'-d:::)}

where tI; and dj' U=l,...m) are the data dependence vectors in (6) corresponding to values i~ and

i",", respectively, of index i". Obviously, the relation >r is a panial ordering in J". Thus, J" can

be decomposed into a number of chains, i.e. subsets whose elements are linearly ordered (relative

to each other). Of course, there will be only one chain if the relation >T is linear to starr with.

Each chain consists of indexed computations which have to be carried out one after the other in a

specific linear ordering. Computations belonging to different chains can be carried out indcpen-

dently. There can be many decompositions of a partially ordered set into chains. Minimal chain

decompositions can be found by network flow techniques [5]. We are interested in a simpler

problem, namely in finding a chain decomposition of >r such that !.he computations in a chain

are also sorted ( eilher in increasing or decreasing order) according to lhe index. i" .
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At this point, we are ready to resrrucrure the given algoritlun. Let us denore by s !he

number of chains. We partition the computations indexed by 1" into s separate recurrences,

each corresponding [0 a distinct chain. In each recurrence the ordering for index ill is chosen

according to its ordering in me chain. Then, we transfonn each recurrence into canonic form

using the three previous rules: 1) adding missing indices. 2) adding new variables. and 3) renam­

ing old variables. In addition we also add statemems between recurrences to correlate variables

in distinct recurrences. In fact. a recurrence may use a variable generated in another recurrence.

TItis last Step may inrroduce non-constant data dependencies in the system.

In conclusion, the obtained new specification is expressed as a system of s modules, each

module being a recurrence equation in canonic form. Non....:::onstant data dependencies may occur

between variables of different modules.

IV. AN APPLICATION TO DYNAI,fiCPROGRfuVliVlING

Consider the dynamic programming technique applied co such problems as optimal

parenthesization, and shortest path. Both problems can be expressed by the recurrence;

1991.;i <j0t

(8)

with initial conditions:

C;,i+l = Ci l~i:91

for some function f. Note that no explicit ordering for the indices i ,j, and k is specified. If we

choose the normal lexicographical ordering for the three indices and we apply some index

transfonnation we can derive a canonic fonn from the above recurrence; however, the sys[Qlic

implementation of it will have execution time 0 (n:!) since it does not overlap the computations

of Ci J for different k_
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Let /J=[(i,j,k) j 15.i,j91;i<k<j} be the index set of the recurrence above; and let

l~{(i,j) I 19. j5.n} be the index set defined by variable c. Each pair (c. (i, j)) is associated
with a distinct set ofdata dependencies. here represented in mauicial form:

o i-k

D ' ­(i j) -

j-k 0

or in tb.e expanded form below where each column corresponds to specific value of the index k:

o o 0 -1 -2 i-j+I

j-i+l 210 o o

The intersection DC of alllhe sets D{!. j) (15.i. j$n) is non empty and is given by:

o -1

D(i j) =
1 0

We derive a time function T : 12~ Z compatible wiili DC. Since DC contains only cOP.$[aIlt

dam dependencies, we can apply me methodology discussed in section I [Q determine a linear

time function. Conditions (7) applied to the dara dependence vectors in DC give:

The least integer values that satisfy the above equations are:

Thus, the optimal time lIansfonnation is:

TCi,j)=j-i.
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Next we consider the partial ordering >T in f 3={(i ,jt) Ii,} are fixed and j <k <j} defined

by:

(i.j .k'l >T (i.j.k") ¢::::>

Ma:c{ T(i.k), T(k',j)} > Ma:c{ T(i.n. T(k ",j)}

Notice that me minimal elemems with respect to >T are:

(i,), (i+j)/2) ifi+} is even or

(i,j, (i+j-l)/2)and(i,j, (i+j+l)/2) ifi+j is odd.

By repeatedly finding minimal elements after removing the previous minimal elements

from the set we obtain a decomposition of J3 in the two chains below (here we only write the

third componem of the index vectors):

{if (i+j) is even}

(i+j)/2, (i+j)/2-1 • ...• i+l;

(i+j)/2-+1, U+j)/2+2, ... , j-1.

{if (i+j) is odd}

(i+j-l)/2. (i+j-l)/2-1 • ...• i+l;

(i+j+l)l2, (i+j+l)/2+1 • ... , j-l;

We can now rewrite (8) into a form where lhe execution ordering of index k is specified

according to the above chains. The new specification of the problem consists of two recurrences:

the first recurrence is a forward recurrence where the index k varies from (i +j)/2 to i +1 (or from

(i+j-l)/2 to i+l if i+j is odd); and the second is a backward recurrence where k varies from

(i+j)/2 La j-l (or from (i+j+l)/2 to j-l if i+j is odd) _To transfonn each recurrence into



- 16 -

canonic form some further manipulation is necessary. We first add missing indices to variables on

both sides of (8) and then inrroduce new recurrence variables to eliminate broadcast of a variable

to different destinations. We use different sets of variables for me two recurrences. Each

recurrence initializes some of its variables to values generated by the orner recurrence. Now

equations (8) can be convened imo !:he following system of mutually dependent recurrence equa­

tions:
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for j :=1 to n-l do at ;+1, £+1:= Ci. i+'; Ci. i+l. ;+1;= Ci. ;+1;

for1:=2 ton-Ida

for i:= 1 to n do begin

j:=i+l;
if (i+j)=even) then begin

k:=(i+j)/2;

Al' ai,i,le= ai,j_l,k

A2' ifk= i+l then bj : i . .l: :=Cj+l.j,j elsebi',j,k. := bi~l.i.k. ;

ci:i,k :=!Cai:i,k ,bi',J,!); Ci~j.k :=Ci:j,i:

end

else begin {i+j=odd};

k;=(i+j-l)l2;. .
ai,J,k := ai,i-1.le ;

ifk=i+lLi'J.enb:,i,k. :=Cj+i,J,j elseb;',j,k :=bi~l.i.1c

';.i,k :=j(ai',i,k • b",j.! )

k;= U+j+l)/2;

(9)

A3'

A,4:

ifk:=j-lthenati,k :=ci,i-(,i-lelseati,k .­

bi':i.k := bi~l.j,k ;

ci,i,k '- f(ai~j.ic' bi~j,k);

end

for k:= rU+j-I)l2 - 11 dOwnlO i+1 do begin

..
ai,1'-l,1: ;

•
. .

ai,j,k :=ai,j-l,k.;

ifk=i+l rhenbi:i, •..-,:=Ci+l,i,jelsebi:j,k :=bi~l,j,ic;

c;',i,ic := h (C;'.j,ic+l,j (ai:j,k ,bi',i,k »;
end;

J
module 1

for k:= LU+j+I)/2 +IJ to j-l do begin

if k= )-1 then ai: i. k := Ci. j-I, j-I else a/:i. k

bt},k := bi:,,},k ;

ctj,It;:= h (ctj,It;-I.! (a/:j,k ,btj.;; )):

end;

AS, Ci,J,J .- h (Ci:j, i+l. Ci~J,J-[);

end;

..
:=ai.j-I,k; module 2
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From the above specification we extract distinct sers D I and D 2 of local data dependencies for the two
modules.

e' a' b' e a b"

0 0 -1 0 0 -1
0 1 = 0 1 0 O2 = 0 1 0

-1 0 0 1 0 0

Non~constant dependencies between variables of distinct recurrences are defined by statements Al to AS

in the algorithm. We will refer to such dependencies as global dependencies.

v. Mlu'PING TIlE ALGORITHM INTO HARDWARE

A. Time function

Once the algorithm has been convened into the new form, the mapping imo a VLSI array can be

accomplished in two steps:

1) Finding for each individual module in the algorithm representation a separate time function

which is compatible with me local data dependencies and also satisfies the consrraints imposed by the

global dependencies.

2) Finding a space mapping for each module into me processors of a physical network which is

compatible with the time function and satisfies global constrnints.

Referring again to the dynamic programming algorithm. we first seek linear time c.ransformations A.

and /l for module I and 2, respectively. Furthermore. le[ cr be me time function for computation in AS

outside the two modules. The linearity requires mm for the dependence vectors of the modules i[ mus[

be:

'- (d) > 0 for aED I and 11 (d) >0 for aED,
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that is:

J.L1 :5 -1 J.lz;;:: 1 J.l3;;:: 1.

Coosuaints introduced by AI-AS lead to the following equations:

1.(1, j, U+j)/2) > IlU, j-I, U+j)/2)

'A.(i. j, i+l) > a(i+l, j. j)

IlU, j, j-l) > erU, j-I, j-I)

IlU, j, U+j+I)/2) > 1.(1+1, j, (i+j+I)/2)

er(i, j, j) ~ max[A(I, j, I+1),Il(i, j, j-I)]

It easy to check that an optimal solution to the above system is given by:

A, =-1 ).,,2 = 2 Aj =-1

J.l1 =-2 )J.2 = 1 III = 1

<11 =-2 0'2 = 1 0'3 = 1.

Hence:

AU,} ,k) = -i+2j-k

Il(i ,j ,k) = -2i +j+k

aCt ,j ,j) = -2i+2j.

The next step is to find a mapping of the computations indexed by 13 into the processors of a

VLSf array.

B. Space Function
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The automatic procedure for detennining !.he mapping of computations into the cells of a systolic

array is analogous to the one for the time funCtiOIl Again, we look for separate solutions to the different

modules in the algoriLhm subject [0 global consrraints. We consider a 2·D VLSI array of processing ele·

mems modelled by the pair [L 2AJ, where L 2 is the set oflabels (x.y) assigned to processing elements and

d is a matrix describing the imerconnection network between processing elements. Differem lntercon-

nection patterns may result in different classes of designs. In the following. we generate the optimal

design when.1. is chosen [0 be:

010

lOG -1 I

Ll corresponds to a nerwork with unidirectional links. as shown in fig. 1.

Let 5', 5", and S be the space functions for module 1, module 2. and statement AS, respectively.

Sll
,

S 12' SIj
,

S ~'l S;~ S;'3 Sll SI2 SIJ
5'= S"", S~

521
,

512
,

S"
,

5;1 S~'2 S;:' 521 Sll S,--,

In addition LO satisfy (3), [he coefficiems of S', S", and S must satisfy me constraims imposed by global

dependencies. Precisely, if a global dependence involves two variables belonging to different modules

which are computed at times c and c' wiili c-c'=d, men me dismnce of me cells where the two variables

will be mapped cannot be more than d. By distance we mean !:he lengtll of a pam consisting of intercon-

nection links between !:he two cells. From Al we have:

S· [i j (i+j)/2[' = S" [i j-l (i+j)/2 [' + d l ;

since :\.(i ,j ,U +j)/2) - cr(i,j -1,(i +j)/2) = 1 and, consequently, the two compmations must occur either

in the same cell or in adjacent cells. Similarly, from A2·A4 we obtain:
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,
I' jl' + a,; a2 ED..;s Ii j i+l = S li+l j

S" 1i j j-I I' ~ S Ii j-l j-ll/+Gj; G3 e 6.;

S" Ii j U+J+l)/2 II = S' li+1 j (i+j+I)/2I t + a,,;

S Ii j j II = S Ii j i+ll f +Cis;

One solution to above system of equations is:

s~ =S~ =0; S~l = 1

for !he first recurrence and:

for the second recurrence. Thus

s'u ,j ,k) ~ S"U.j ,k) = SU ,j.j) = U.iJ.

The resulting design is identical IO me one first inrroduced in [9J. The corresponding systolic array and

the action of a cell at differem times is depicted in figure 1.

VI. A NEW DESIGN FOR DYNA,vlIC PROGRA,\1MlNG

As shown in [8], a new design for dynamic programming can be amomatically generated if we

choose a differem interconnection pattern for the network. This design uses fewer processing elements

than the one in [9]; precisely 3/8n 2 insteJd of n 2/2. Consider an array of processing elements whose

communication pattern is described by:
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J 0

o .J

-J

o
-J I
-J

Cells in the am.y are connected by bidirectional horizomallinks as well as by diagonal and venicallinks,

as shown in fig. 2. An optimal design for dynamic programming is generated for such an array using

the same mapping procedure. Again we solve equations (4) subject to global constraints (10). We derive

for the first recurrence:

and for me second recurrence:

Thus we p.2ve:

s'U ,j.l:) ~ (k ,i) and S'U ,j ,k) = U+j-k ,i),

These transformations lead to me sysm!ic design of figure 2. The array consists of 3fSn1 cells. All cells

are identical. However, the action of a cell varies from time to time. It does computation relative to

module 1 or module 2 depending on the values of indeces i. j, and k. Also. the direction of dara streams

varies for me [wo modules. The transformation of data dependence vecrors D 1 imo commlUlication vec-

tors n is derived from S' . From:

c' a' b'

IS u' S 12' S 13
,

0 0 -J -1 0 0
521 ' S12' S"

,
0 1 0 0 0 -J~

-J 0 0

we derive that variables c;'J,.! move to the left along the horizontal links. variables a/J.k do nO[ move

along the array but stay inside lhe cells. where they are updaled. Finally. variables bi'J.k move up. except

at the boundary, where lhey move along the diagonal (from (10». The direction of variables in module 2

is derived from the mapping S". Variables a/J.k move to the right along lhe horizom.a1links. variables
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bj'J.k move up [Q the left along the diagonal links. Variables Cj'j.k move wiIh the same pattern as in the

other module. The action of a cell at each time is illustrated in figure 2.

VlI. CONCLUSION

We have suggested a methodology to assist a human designer imo the difficult task of designirlg a

VLSI algorirnm starting from a sequential specification of a problem. Among the many possible transfor­

mations which can make parallelism explicit in a program the method helps selecting a feasible and

optimal sequence of t::ralt';formations. The methodology appe3I'S useful for complex nonnumerical prob­

lems for which standard resrrucruring techniques seem inadequate. The class of obtainable designs is not

resrricted to designs having constaD[ data flow.
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Fig. 1. A systolic array for dynamic programming
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