
Synthesizing Number Transformations

from Input-Output Examples

Rishabh Singh1,� and Sumit Gulwani2

1 MIT CSAIL, Cambridge, MA, USA
2 Microsoft Research, Redmond, WA, USA

Abstract. Numbers are one of the most widely used data type in pro-
gramming languages. Number transformations like formatting and
rounding present a challenge even for experienced programmers as they
find it difficult to remember different number format strings supported
by different programming languages. These transformations present an
even bigger challenge for end-users of spreadsheet systems like Microsoft
Excel where providing such custom format strings is beyond their exper-
tise. In our extensive case study of help forums of many programming
languages and Excel, we found that both programmers and end-users
struggle with these number transformations, but are able to easily ex-
press their intent using input-output examples.

In this paper, we present a framework that can learn such number
transformations from very few input-output examples. We first describe
an expressive number transformation language that can model these
transformations, and then present an inductive synthesis algorithm that
can learn all expressions in this language that are consistent with a given
set of examples. We also present a ranking scheme of these expressions
that enables efficient learning of the desired transformation from very
few examples. By combining our inductive synthesis algorithm for num-
ber transformations with an inductive synthesis algorithm for syntactic
string transformations, we are able to obtain an inductive synthesis al-
gorithm for manipulating data types that have numbers as a constituent
sub-type such as date, unit, and time. We have implemented our algo-
rithms as an Excel add-in and have evaluated it successfully over several
benchmarks obtained from the help forums and the Excel product team.

1 Introduction

Numbers represent one of the most widely used data type in programming lan-
guages. Number transformations like formatting and rounding present a chal-
lenge even for experienced programmers. First, the custom number format
strings for formatting numbers are complex and take some time to get accus-
tomed to, and second, different programming languages support different format
strings, which makes it difficult for programmers to remember each variant.

� Work done during an internship at Microsoft Research.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 634–651, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Synthesizing Number Transformations from Input-Output Examples 635

Number transformations present an even bigger challenge for end-users: the
large class of users who do not have a programming background but want to cre-
ate small, often one-off, applications to support business functions [4]. Spread-
sheet systems like Microsoft Excel support a finite set of commonly used number
formats and also let users write their own custom formats using a number for-
matting language similar to that of .Net. This hard-coded set of number formats
is often insufficient for the user’s needs and providing custom number formats
is typically beyond their expertise. This leads them to solicit help on various
online help forums, where experts typically respond with the desired formulas
(or scripts) after few rounds of interaction, which spans over a few days.

In an extensive case study of help forums of many programming languages and
Excel, we found that even though both programmers and end-users struggled
while performing these transformations, they were able to easily express their
intent using input-output examples. In fact, in some cases the initial English
description of the task provided by the users on forums was inaccurate and
only after they provided a few input-output examples, the forum experts could
provide the desired code snippet.

In this paper, we present a framework to learn number formatting and round-
ing transformations from a given set of input-output examples. We first describe
a domain-specific language for performing number transformations and an in-
ductive synthesis algorithm to learn the set of all expressions that are consistent
with the user-provided examples. The key idea in the algorithm is to use the
interval abstract domain [2] to represent a large collection of consistent format
expressions symbolically, which also allows for efficient intersection, enumera-
tion, and execution of these expressions. We also present a ranking mechanism
to rank these expressions that enables efficient learning of the desired transfor-
mation from very few examples.

We then combine the number transformation language with a syntactic string
transformation language [6] and present an inductive synthesis algorithm for
the combined language. The combined language lets us model transformations
on strings that represent data types consisting of number as a constituent sub-
type such as date, unit, time, and currency. The key idea in the algorithm is
to succinctly represent an exponential number of consistent expressions in the
combined language using a Dag data structure, which is similar to the Bdd [1]
representation of Boolean formulas. The Dag data structure consists of program
expressions on the edges (as opposed to Boolean values on Bdd edges). Simi-
lar to the Bdds, our data structure does not create a quadratic blowup after
intersection in practice.

We have implemented our algorithms both as a stand-alone binary and as
an Excel add-in. We have evaluated it successfully on over 50 representative
benchmark problems obtained from help forums and the Excel product team.

This paper makes the following key contributions:

– We develop an expressive number transformation language for performing
number formatting and rounding transformations, and an inductive synthesis
algorithm for learning expressions in it.

636 R. Singh and S. Gulwani

– We combine the number transformation language with a syntactic string
transformation language to manipulate richer data types.

– We describe an experimental prototype of our system with an attractive
user interface that is ready to be deployed. We present the evaluation of our
system over a large number of benchmark examples.

2 Motivating Examples

We motivate our framework with the help of a few examples taken from Excel
help forums.

Example 1 (Date Manipulation). An Excel user stated
that, as an unavoidable outcome of data extraction
from a software package, she ended up with a series
of dates in the input column v1 as shown in the table.
She wanted to convert them into a consistent date
format as shown in the output column such that
both month and day in the date are of two digits.

Input v1 Output

1112011 01/11/2011

12012011 12/01/2011

1252010 01/25/2010

11152011 11/15/2011

It turns out that no Excel date format string matches the string in input
column v1. The user struggled to format the date as desired and posted the
problem on a help forum. After a few rounds of interactions (in which the user
provided additional examples), the user managed to obtain the following formula
for performing the transformation:

TEXT(IF(LEN(A1)=8,DATE(RIGHT(A1,4),MID(A1,3,2),LEFT(A1,2)),

DATE(RIGHT(A1,4),MID(A1,2,2),LEFT(A1,1))),"mm/dd/yyyy")

In our tool, the user has to provide only the first two input-output examples from
which the tool learns the desired transformation, and executes the synthesized
transformation on the remaining strings in the input column to produce the
corresponding outputs (shown in bold font for emphasis).

We now briefly describe some of the challenges involved in learning this trans-
formation. We first require a way to extract different substrings of the input date
for extracting the day, month, and year parts of the date, which can be performed
using the syntactic string transformation language [6]. We then require a number
transformation language that can map 1 to 01, i.e. format a number to two dig-
its. Consider the first input-output example 1112011 -> 01/11/2011. The first
two characters in the output string can be obtained by extracting 1 from the in-
put string from any of the five locations where it occurs, and formatting it to 01

using a number format expression. Alternatively, the first 0 in the output string
can also be a constant string or can be obtained from the 3rd last character in
the input. All these different choices for each substring of the output string leads
to an exponential number of choices for the complete transformation. We use an
efficient data structure for succinctly representing such exponential number of
consistent expressions in polynomial space.

Synthesizing Number Transformations from Input-Output Examples 637

Example 2 (Duration Manipulation). An Excel user
wanted to convert the “raw data” in the input col-
umn to the lower range of the corresponding “30-min
interval” as shown in the output column. An expert
responded by providing the following macro, which
is quite unreadable and error-prone.

Input v1 Output

0d 5h 26m 5:00

0d 4h 57m 4:30

0d 4h 27m 4:00

0d 3h 57m 3:30

FLOOR(TIME(MID(C1,FIND(" ",C1)+1,FIND("h",C1)- FIND(" ",C1)-1)+0,

MID(C1,FIND("h",C1)+2,FIND("m",C1)-FIND("h",C1)-2)+0,0)*24,0.5)/24

Our tool learns the desired transformation using only the first two examples.
In this case, we first need to be able to extract the hour and minute components
of the duration in input column v1, and then perform a rounding operation on
the minute part of the input to round it to the lower 30-min interval.

3 Overview of the Synthesis Approach

In this section, we define the formalism that we use in the paper for developing
inductive synthesizers [8].

Domain-Specific Language: We develop a domain-specific language L that is
expressive enough to capture the desired tasks and, at the same time, is concise
for enabling efficient learning from examples.

Data Structure for Representing a Set of Expressions: The number of
expressions that are consistent with a given input-output example can potentially
be very large. We, therefore, develop an efficient data structure D that can
succinctly represent a large number of expressions in L.

Synthesis Algorithm: The synthesis algorithm Synthesize consists of the
following two procedures:

– GenerateStr: The GenerateStr procedure learns the set of all expressions in
the language L (represented using the data structure D) that are consistent
with a given input-output example (σi, si). An input state σ holds values for
m string variables v1, . . ., vm (denoting m input columns in a spreadsheet).

– Intersect: The Intersect procedure intersects two sets of expressions to
compute the common set of expressions.

The synthesis algorithm Synthesize takes as input a set of input-output

Synthesize((σ1, s1), . . . , (σn, sn))

P := GenerateStr(σ1, s1);
for i = 2 to n:

P ′ := GenerateStr(σi, si);
P := Intersect(P, P ′);

return P;

examples and generates a set of expres-
sions in L that are consistent with them.
It uses GenerateStr procedure to gener-
ate a set of expressions for each individ-
ual input-output example and then uses the
Intersect procedure to intersect the corre-
sponding sets to compute the common set of expressions.

Ranking: Since there are typically a large number of consistent expressions for
each input-output example, we rank them using the Occam’s razor principle that

638 R. Singh and S. Gulwani

states that smaller and simpler explanations are usually the correct ones. This
enables users to provide only a few input-output examples for quick convergence
to the desired transformation.

4 Number Transformations

In this section, we first describe the number transformation language Ln that can
perform formatting and rounding transformations on numbers. We then describe
an efficient data structure to succinctly represent a large number of expressions
in Ln, and present an inductive synthesis algorithm to learn all expressions in
the language that are consistent with a given set of input-output examples.

4.1 Number Transformation Language Ln

The syntax of the number transformation language Ln is shown in Figure 1(a).
The top-level expression en of the language denotes a number formatting ex-
pression of one of the following forms:

• Dec(u, η1, f): formats the number u in decimal form (e.g. 1.23), where η1
denotes the number format for the integer part of u (Int(u)), and f represents
the optional format consisting of the decimal separator and the number format
for the fractional part (Frac(u)).

• Exp(u, η1, f, η2): formats the number u in exponential form (e.g. 1.23E+2). It
consists of an additional number format η2 as compared to the decimal format
expression, which denotes the number format of the exponent digits of u.

Expr. en := Dec(u, η1, f)

| Exp(u, η1, f, η2)

| Ord(u)

| Word(u)

| u

Dec. Fmt. f := (�, η) | ⊥
Number u := vi

| Round(vi, r)

Round Fmt. r := (z, δ,m)

Mode m := ↓ | ↑ | �
Num. Fmt. η := (α, β, γ)

[[Dec(u, η1, f)]]σ = [[(Int([[u]])R, η1)]]
Rσ � [[f]]σ

[[Exp(u, η1, f, η2)]]σ = [[(Int([[u]])R, η1)]]
Rσ �

[[f]]σ � [[(E([[u]])R, η2)]]
Rσ

[[Ord(u)]]σ = numToOrd([[u]]σ)

[[Word(u)]]σ = numToWord([[u]]σ)

[[(�, η)]]σ = [[�]]σ � [[(Frac([[u]]), η)]]σ

[[⊥]]σ = ε

[[vi]]σ = σ(vi)

[[Round(vi, r)]]σ = RoundNumber(σ(vi), z, δ,m)

where r = (z, δ,m)

[[(d, η)]]σ = FormatDigits(d, α, β, γ)

where η = (α, β, γ)

(a) (b)

Fig. 1. The (a) syntax and (b) semantics of the number transformation language
Ln. The variable vi denotes an input number variable, z, δ, α, β, and γ are integer
constants, and � denotes the concatenation operation.

Synthesizing Number Transformations from Input-Output Examples 639

RoundNumber(n,z,δ,m)

1 n′ :=
[n− z

δ

]
× δ + z;

2 if (n = n′) return n;
3 if (m =↑) return n′ + δ;
4 if (m =↓) return n′;
5 if (m =� ∧ (n− n′)× 2 < δ)

return n′;
6 if (m =� ∧ (n− n′)× 2 ≥ δ)

return n′ + δ;

FormatDigits(d,α,β,γ)

1 if (len(d) ≥ β)
2 return significant(d, β);
3 else if (len(d) ≥ α)
4 {z := 0; s := 0;}
5 else {s := Min(γ, α− len(d));
6 z := α− len(d)− s;}
7 return concat(d, 0z,

′ ′
s);

(a) (b)

Fig. 2. The functions (a) RoundNumber for rounding numbers and (b) FormatDigits

for formatting a digit string

• Ord(u): formats the number u in ordinal form, e.g. it formats the number 4
to its ordinal form 4th.

• Word(u): formats the number u in word form, e.g. it formats the number 4 to
its word form four.

The number u can either be an input number variable vi or a number obtained
after performing a rounding transformation on an input number. A rounding
transformation Round(vi, z, δ,m) performs the rounding of number present in vi
based on its rounding format (z, δ,m), where z denotes the zero of the rounding
interval, δ denotes the interval size of the rounding interval, and m denotes one
of the rounding mode from the set of modes {upper(↑), lower(↓), nearest(�)}.

We define a digit string d to be a sequence of digits with trailing whitespaces.
A number format η of a digit string d is defined by a 3-tuple (α, β, γ), where α
denotes the minimum number of significant digits and trailing whitespaces of d
in the output string, β denotes the maximum number of significant digits of d in
the output string, and γ denotes the maximum number of trailing whitespaces in
the output string. A number format, thus, maintains the invariant: γ ≤ α ≤ β.

The semantics of language Ln is shown in Figure 1(b). A digit string d is for-
matted with a number format (α, β, γ) using the FormatDigits function shown
in Figure 2(b). The FormatDigits function returns the first β digits of the digit
string d (with appropriate rounding) if the length of d is greater than the maxi-
mum number of significant digits β to be printed. If the length of d is lesser than β
but greater than the minimum number of significant digits α to be printed, it re-
turns the digits itself. Finally, if the length of d is less than α, it appends the digit
string with appropriate number of zeros (z) and whitespaces (s) as computed in
Lines 5 and 6. The semantics of the rounding transformation is to perform the
appropriate rounding of number denoted by vi using the RoundNumber function
shown in Figure 2(a). The function computes a number n′ which lies on the
number line defined by zero z with unit separation δ as shown in Figure 3. It
returns the value n′ or (n′ + δ) based on the rounding mode m and the distance
between n and n′ as described in Figure 2(a).

The semantics of a decimal form formatting expression on a number u is
to concatenate the reverse of the string obtained by formatting the reverse of

640 R. Singh and S. Gulwani

zz − δ z + δ

n

n′ n′ + δ

δ

Fig. 3. The RoundNumber function rounding-off number n to n′ or n′ + δ

integral part Int(u) with the string obtained from the decimal format f . Since
the FormatDigits function adds only trailing zeros and whitespaces to format
a digit string, the formatting of the integer part of u is performed on its reverse
digit string and the resulting formatted string is reversed again before performing
the concatenation. The semantics of decimal format f is to concatenate the
decimal separator � with the string obtained by formatting the fractional part
Frac(u). The semantics of exponential form formatting expression is similar to
that of the decimal form formatting expression and the semantics of ordinal form
and word form formatting expressions is to simply convert the number u into its
corresponding ordinal form and word form respectively.

We now present some examples taken from various help forums that can be
represented in the number transformation language Ln.

Example 3. A python programmer posted a query on
the StackOverflow forum after struggling to print
double values from an array of doubles (of different
lengths) such that the decimal point for each value
is aligned consistently across different columns. He
posted an example of the desired formatting as shown
on the right. He also wanted to print a single 0 after
the decimal if the double value had no decimal part.

Input v1 Output

3264.28 3264.28

53.5645 53.5645

235 235.0

5.23 5.23

345.213 345.213

3857.82 3857.82

536 536.0

The programmer started the post saying “This should be easy”. An expert replied
that after a thorough investigation, he couldn’t find a way to perform this task
without some post-processing. The expert provided the following python snippet
that pads spaces to the left and zeros to the right of the decimal, and then
removes trailing zeros:

ut0 = re.compile(r’(\d)0+$’)

thelist = textwrap.dedent(

’\n’.join(ut0.sub(r’\1’, "%20f" % x) for x in a)).splitlines()

print ’\n’.join(thelist)

This formatting transformation can be represented in Ln as Dec(v1, η1,
(“.”, η2)), where η1 ≡ (4,∞, 4) and η2 ≡ (4,∞, 3).

Example 4. This is an interesting post taken from a help
forum where the user initially posted that she wanted to
round numbers in an excel column to nearest 45 or 95,
but the examples later showed that she actually wanted
to round it to upper 45 or 95.

Input v1 Output

11 45

32 45

46 95

1865 1895

Synthesizing Number Transformations from Input-Output Examples 641

Some of the solutions suggested by experts were:

=Min(Roundup(A1/45,0)*45,Roundup(A1/95,0)*95)

=CEILING(A1+5,50)-5

=A1-MOD(A1,100)+IF(MOD(A1,100)>45,95,45)

This rounding transformation can be expressed in our language as:
Dec(Round(v1, (45, 50, ↑)), (0,∞, 0),⊥).

4.2 Data Structure for a Set of Expressions in Ln

Figure 4 describes the syntax and semantics of the data structure for succinctly
representing a set of expressions from language Ln. The expressions ẽn are now
associated with a set of numbers ũ and a set of number formats η̃. We represent
the set of numbers obtained after performing rounding transformation in two
ways: Round(vi, r̃) and Round(vi, np), which we describe in more detail in sec-
tion 4.3. The set of number formats η̃ are represented using a 3-tuple (i1, i2, i3),
where i1, i2 and i3 denote a set of values of α, β and γ respectively using an
interval domain. This representation lets us represent O(n3) number of number
format expressions in O(1) space, where n denotes the length of each interval.

The semantics of evaluating the set of rounding transformations Round(vi, r̃)
is to return the set of results of performing rounding transformation on vi for all
rounding formats in the set r̃. The expression Round(vi, (n1, n

′
1)) represents an

infinite number of rounding transformations (as there exists an infinite number
of rounding formats that conform to the rounding transformation n1 → n′

1).
For evaluating this expression, we select one conforming rounding format with
z = 0, δ = n′

1 and an appropriate m as shown in the figure. The evaluation of a
set of format strings η̃ = (i1, i2, i3) on a digit string d returns a set of values, one
for each possible combination of α ∈ i1, β ∈ i2 and γ ∈ i3. Similarly, we obtain
a set of values from the evaluation of expression ẽn.

4.3 Synthesis Algorithm

Procedure GenerateStrn: The algorithm GenDFmt in Figure 5 takes as input
two digit sequences d1 and d2, and computes the set of all number formats η̃
that are consistent for formatting d1 to d2. The algorithm first converts the digit
sequence d1 to its canonical form d′1 by removing trailing zeros and whitespaces
from d1. It then compares the lengths l1 of d′1 and l2 of d2. If l1 is greater
than l2, then we can be sure that the digits got truncated and can therefore set
the interval for i2 (the maximum number of significant digits) to be [l2, l2]. The
intervals for α and γ are set to [0, l2] because of the number format invariant. On
the other hand if l1 is smaller than l2, we can be sure that the least number of
significant digits need to be l2, i.e. we can set the interval i1 to be [l2, l2]. Also,
we can set the interval i2 to [l2,∞] because of the number format invariant. For
interval i3, we either set it to [ξ, ξ] (when l2−ξ �= l1) or [ξ, l2] (when l2−ξ = l1)
where ξ denotes the number of trailing spaces in d2. In the former case, we can
be sure about the exact number of trailing whitespaces to be printed.

642 R. Singh and S. Gulwani

ẽn := Dec(ũ, η̃1, f̃)

| Exp(ũ, η̃1, f̃ , η̃2)

| Ord(ũ)

| Word(ũ)

| ũ

f̃ := (�, η̃) | ⊥
ũ := vi

| Round(vi, r̃)

| Round(vi, np)

Pair np := (n1, n
′
1)

η̃ := (i1, i2, i3)

Interval i := (l, h)

[[Dec(ũ, η̃1, f̃)]] = {Dec(u, η1, f) | u ∈ ũ, η1 ∈ η̃1, f ∈ f̃}
[[Exp(ũ, η̃1, f̃ , η̃2)]] = {Exp(u, η1, f, η2) | u ∈ ũ, η1 ∈ η̃1,

f ∈ f̃ , η2 ∈ η̃2}
[[Ord(ũ)]] = {Ord(u) | u ∈ ũ}

[[Word(ũ)]] = {Word(u) | u ∈ ũ}
[[(�, f̃)]] = {(�, f) | f ∈ f̃}

[[⊥]] = ε

[[vi]] = {vi}
[[Round(vi, r̃)]] = {Round(vi, (z, δ,m)) | (z, δ,m) ∈ r̃}

[[Round(vi, np)]] = {Round(vi, (0, n′
1,m)) | np ≡ (n1, n

′
1),

if (n1 ≤ n
′
1) m ≡ ↑ else m ≡ ↓}

[[(d, (i1, i2, i3))]] = {(d, α, β, γ) | α ∈ i1, β ∈ i2, γ ∈ i3}

(a) (b)

Fig. 4. The (a) syntax and (b) semantics of a data structure for succinctly representing
a set of expressions from language Ln.

The GenerateStrn algorithm in Figure 5 learns the set of all expressions
in Ln that are consistent with a given input-output example. The algorithm
searches over all input variables vi to find the inputs from which the output
number n′ can be obtained. It first converts the numbers σ(vi) and n′ to their
canonical forms nc and n′

c respectively in Line 3. We define canonical form of
a number to be its decimal value. If the two canonical forms nc and n′

c are not
equal, the algorithm tries to learn a rounding transformation such that nc can
be rounded to n′

c. We note that there is not enough information present in one
input-output example pair to learn the exact rounding format as there exists an
infinite family of such formats that are consistent. Therefore, we represent such
rounding formats symbolically using the input-output example pair (nc, n

′
c),

which gets concretized by the Intersect method in Figure 6. The algorithm
then normalizes the number σ(u) with respect to n′ using the Normalizemethod
in Line 6 to obtain n = (ni, nf , ne) such that both n and n′ are of the same form.
For decimal and exponential forms, it learns a set of number formats η̃ for each of
its constituent digit strings from the pairs (nR

i , n
′R
i), (nf , n

′
f), and (nR

e, n
′R
e) where

nR
i denotes the reverse of digit string ni. As noted earlier, we need to learn the

number format on the reversed digit strings for integer and exponential parts.
For ordinal and word type numbers, it simply returns the expressions to compute
ordinal and word forms of the corresponding input number respectively.

Procedure Intersectn: The Intersectn procedure for intersecting two sets of
Ln expressions is described as a set of rules in Figure 6. The procedure computes
the intersection of sets of expressions by recursively computing the intersection of
their corresponding sets of sub-expressions. We describe below the four cases of

Synthesizing Number Transformations from Input-Output Examples 643

GenDFmt(d1: inp digits, d2: out digits)

1 d′
1 := RemoveTrailingZerosSpaces(d1);

2 l1 := len(d′
1); l2 := len(d2);

3 ξ := numTrailingSpaces(d2);
4 if (l1 > l2)
5 (i1, i2, i3) := ([0, l2], [l2, l2], [0, l2]);
6 else if (l1 < l2) {
7 i1 := [l2, l2]; i2 := [l2,∞];
8 if(l2 − ξ = l1) i3 := [ξ, l2];
9 else i3 := [ξ, ξ];}

10 else (i1, i2, i3) := ([0, l2], [l2,∞], [0, l2]);
11 return η̃(i1, i2, i3);

Normalize(n: inp number, n′: out number)
n1 = n = (ni, nf , ne);
if(Type(n) = ExpNum ∧ Type(n′) = ExpNum)

n1 := n × 10ne;

if(Type(n) = ExpNum ∧ Type(n′) = ExpNum)

{n′ = (n′
i, n

′
f , n

′
e); n1 := n/10n

′
e;}

return n1;

GenerateStrn(σ: inp state, n′: out number)

1 Sn := ∅;
2 foreach input variable vi:
3 nc = Canonical(σ(vi)); n′

c = Canonical(n′);
4 if (nc = n′

c) u := Round(vi, (nc, n
′
c));

5 else u := vi;
6 (ni, nf , ne) := Normalize(σ(u), n′);
7 match n′ with

8 DecNum(n′
i, n

′
f ,�) →

9 η̃1 := GenDFmt(nR
i, n

′R
i);

10 if (� = ε) Sn := Sn ∪ Dec(u, η1,⊥);
11 else {η̃2 := GenDFmt(nf , n

′
f);

12 Sn := Sn ∪ Dec(u, η̃1,�, η̃2);}
13 ExpNum(n′

i, n
′
f , n

′
e,�) →

14 η̃1 := GenDFmt(nR
i, n

′R
i);

15 η̃3 := GenDFmt(nR
e, n

′R
e);

16 if (� = ε) Sn := Sn ∪ Exp(u, η̃1,⊥, η̃3);
17 else { η̃2 := GenDFmt(nf , n

′
f);

18 Sn := Sn ∪ Exp(u, η̃1,�, η̃2, η̃3);}
19 OrdNum(n′

i) →
20 Sn := Sn ∪ Ord(u);
21 WordNum(n′

i) →
22 Sn := Sn ∪ Word(u);
23 return Sn;

Fig. 5. The GenerateStrn procedure for generating the set of all expressions in lan-
guage Ln that are consistent with the given set of input-output examples

intersecting rounding transformation expressions. The first case is of intersecting
a finite rounding format set r̃ with another finite set r̃′. The other two cases
intersect a finite set r̃ with an input-output pair np, which is performed by
selecting a subset of the finite set of rounding formats that are consistent with
the pair np. The final case of intersecting two input-output pairs to obtain a
finite set of rounding formats is performed using the IntersectPair algorithm
shown in Figure 7.

IntersectPair((n1, n
′
1),(n2, n

′
2))

z := n′
1;

δ̃ := Divisors(‖n′
2 − n′

1‖);
S := ∅;
foreach δ ∈ δ̃:

if(δ ≥ Max(‖n1 − n′
1‖, ‖n2 − n′

2‖))
if(2× Max(‖n1 − n′

1‖, ‖n2 − n′
2‖) ≤ δ)

S := S ∪ (z, δ, �);
if(n1 > n′

1 ∧ n2 > n′
2)

S := S ∪ (z, δ, ↓);
if(n1 < n′

1 ∧ n2 < n′
2)

S := S ∪ (z, δ, ↑);
return S;

Fig. 7. Intersection of Round expressions

Consider the example of rounding
numbers to nearest 45 or 95 for which
we have the following two examples:
32 → 45 and 81 → 95. Our goal is
to learn the rounding format (z, δ,m)
that can perform the desired rounding
transformation. We represent the infi-
nite family of formats that satisfy the
rounding constraint for each example
as individual pairs (32, 45) and (81, 95)
respectively. When we intersect these
pairs, we can assign z to be 45 with-
out loss of generality. We then compute
all divisors δ̃ of 95− 45 = 50. With the
constraint that δ ≥ (Max(45 − 32, 95 − 81) = 14), we finally arrive at the set
δ̃ = {25, 50}. The rounding modes m are appropriately learned as shown in
Figure 7. For decimal numbers, we compute the divisors by first scaling them
appropriately and then re-scaling them back for learning the rounding formats.

644 R. Singh and S. Gulwani

Intersectn(Dec(ũ, η̃1, f̃), Dec(ũ
′, η̃′1, f̃

′)) = Dec(Intersectn(ũ, ũ
′), Intersectn(η̃1, η̃′1),

Intersectn(f̃ , f̃
′))

Intersectn(Exp(ũ, η̃1, f̃ , η̃2), Exp(ũ, η̃
′
1, f̃

′, η̃′2)) = Exp(Intersectn(ũ, ũ
′), Intersectn(η̃1, η̃′1),

Intersectn(f̃ , f̃
′), Intersectn(η̃2, η̃′2))

Intersectn(Ord(ũ), Ord(ũ
′)) = Ord(Intersectn(ũ, ũ

′))

Intersectn(Word(ũ), Word(ũ
′)) = Word(Intersectn(ũ, ũ

′))

Intersectn(vi, vi) = vi

Intersectn((�, η̃), (�′, η̃′)) = (Intersectn(�,�′), Intersectn(η̃, η̃′))

Intersectn(Round(vi, r̃), Round(vi, r̃
′)) = Round(vi, Intersectn(r̃, r̃

′))

Intersectn(Round(vi, r̃), Round(vi, np)) = Round(vi, Intersectn(r̃, np))

Intersectn(Round(vi, np), Round(vi, r̃)) = Round(vi, Intersectn(np, r̃))

Intersectn(Round(vi, np), Round(vi, n
′
p)) = Round(vi, IntersectPair(np, n

′
p))

Intersectn((i1, i2, i3), (i
′
1, i

′
2, i

′
3)) = (Intersectn(i1, i

′
1), Intersectn(i2, i

′
2),

Intersectn(i3, i
′
3))

Intersectn((l, h), (l
′, h′)) = (Max(l, l′), Min(h, h′))

Fig. 6. The Intersectn function for intersecting sets of expressions from language Ln.
The Intersectn function returns φ in all other case not covered above.

In our data structure, we do not store all divisors explicitly as this set might
become too large for big numbers. We observe that we only need to store the
greatest and least divisors amongst them, and then we can intersect two such
sets efficiently by computing the gcd of the two corresponding greatest divisors
and the lcm of the two corresponding least divisors.

Ranking: We rank higher the lower value for α in the interval i1 (to prefer
lesser trailing zeros and whitespaces), the higher value of β in i2 (to minimize
un-necessary number truncation), the lower value of γ in i3 (to prefer trailing
zeros more than trailing whitespaces), and the greatest divisor in the set of
divisors δ̃ of the rounding format (to minimize the length of rounding intervals).
We rank expressions consisting of rounding transformations lower than the ones
that consist of only number formatting expressions.

Theorem 1 (Correctness of Learning Algorithm for Ln).
(a) The procedure GenerateStrn is sound and complete. The complexity of
GenerateStrn is O(|s|), where |s| denotes the length of the output string.
(b) The procedure Intersectn is sound and complete.

Example 5. Figure 8 shows a range of number formatting transformations and
presents the format strings that are required to be provided in Excel, .Net,
Python and C, as well as the format expressions that are synthesized by our
algorithm. An N.A. entry denotes that the corresponding formatting task cannot
be done in the corresponding language.

Synthesizing Number Transformations from Input-Output Examples 645

Formatting of Doubles

Input Output Excel/C# Python/C Synthesized format
String String Format String Format String Dec(u, η1, (“.”, η2)) or

Exp(u, η1, (“.”, η2), η3)

123.4567 123.46
#.00 .2f

η1 ≡ ([0, 3], [3,∞], [0, 3])
123.4 123.40 η2 ≡ ([2, 2], [2, 2], [0, 0])

123.4567 123.46
#.## N.A.

η1 ≡ ([0, 3], [3,∞], [0, 3])
123.4 123.4 η2 ≡ ([0, 1], [2, 2], [0, 1])

123.4567 123.46
00.00 05.2f

η1 ≡ ([2, 2], [3,∞], [0, 0])
3.4 03.40 η2 ≡ ([2, 2], [2, 2], [0, 0])

123.4567 123.46
00.## N.A.

η1 ≡ ([2, 2], [3,∞], [0, 0])
3.4 03.4 η2 ≡ ([0, 1], [2, 2], [0, 1])

9723.00 9.723E+03
#.### E 00 N.A.

η1 ≡ ([0, 1], [1,∞], [0, 1])
η2 ≡ ([0, 3], [3,∞], [0, 3])

0.823 8.23E-01 η3 ≡ ([2, 2], [2,∞], [0, 0])

243 00243
00000 05d η1 ≡ ([5, 5], [5,∞], [0, 0])

12 00012

1.2 1.2
#.?? N.A.

η1 ≡ ([0, 1], [2,∞], [0, 1])
18 18. η2 ≡ ([2, 2], [2,∞], [2, 2])

1.2 1.2
???.??? N.A.

η1 ≡ ([3, 3], [3,∞], [2, 3])
18 18. η2 ≡ ([3, 3], [3,∞], [3, 3])

1.2 1.20
???.00? N.A.

η1 ≡ ([3, 3], [3,∞], [2, 3])
18 18.00 η2 ≡ ([3, 3], [3,∞], [1, 1])

Fig. 8. We compare the custom number format strings required to perform formatting
of doubles in Excel/C# and Python/C languages. An N.A. entry in a format string
denotes that the corresponding formatting is not possible using format strings only.
The last column presents the corresponding Ln expressions (denotes whitespaces).

5 Combining Number Transformations with Syntactic
String Transformations

In this section, we present the combination of number transformation language
Ln with the syntactic string transformation language Ls [6] to obtain the com-
bined language Lc, which can model transformations on strings that contain
numbers as substrings. We first present a brief background description of the
syntactic string transformation language and then present the combined lan-
guage Lc. We also present an inductive synthesis algorithm for Lc obtained by
combining the inductive synthesis algorithms for Ln and Ls respectively.

Syntactic String Transformation Language Ls (Background) Gulwani [6] intro-
duced an expression language for performing syntactic string transformations.
We reproduce here a small subset of (the rules of) that language and call it
Ls (with es being the top-level symbol) as shown in Figure 9. The formal se-
mantics of Ls can be found in [6]. For completeness, we briefly describe some
key aspects of this language. The top-level expression es is either an atomic
expression f or is obtained by concatenating atomic expressions f1,. . .,fn using

646 R. Singh and S. Gulwani

es := Concatenate(f1, . . . , fn) | f
Atomic expr f := ConstStr(s) | vi | SubStr(vi,p1,p2)

Position p := k | pos(r1, r2, c)
Integer expr c := k | k1w + k2

Regular expr r := ε | T | TokenSeq(T1, . . . ,Tn)

Fig. 9. The syntax of syntactic string transformation language Ls

the Concatenate constructor. Each atomic expression f can either be a con-
stant string ConstStr(s), an input string variable vi, or a substring of some
input string vi. The substring expression SubStr(vi, p1, p2) is defined partly by
two position expressions p1 and p2, each of which implicitly refers to the (sub-
ject) string vi and must evaluate to a position within the string vi. (A string
with 	 characters has 	 + 1 positions, numbered from 0 to 	 starting from left.)
SubStr(vi, p1, p2) is the substring of string vi in between positions p1 and p2. A
position expression represented by a non-negative constant k denotes the kth po-
sition in the string. For a negative constant k, it denotes the (+1+k)th position
in the string, where 	 = Length(s). pos(r1, r2, c) is another position expression,
where r1 and r2 are regular expressions and integer expression c evaluates to
a non-zero integer. pos(r1, r2, c) evaluates to a position t in the subject string
s such that r1 matches some suffix of s[0 : t], and r2 matches some prefix of
s[t :], where 	 = Length(s). Furthermore, if c is positive (negative), then t is
the |c|th such match starting from the left side (right side). We use the expres-
sion s[t1 : t2] to denote the substring of s between positions t1 and t2. We use
the notation SubStr2(vi, r, c) as an abbreviation to denote the cth occurrence of
regular expression r in vi, i.e., SubStr(vi, pos(ε, r, c), pos(r, ε, c)).

A regular expression r is either ε (which matches the empty string, and there-
fore can match at any position of any string), a token T, or a token sequence
TokenSeq(T1, . . . ,Tn). The tokens T range over a finite extensible set and typi-
cally correspond to character classes and special characters. For example, tokens
CapitalTok, NumTok, and WordTok match a nonempty sequence of uppercase
alphabetic characters, numeric digits, and alphanumeric characters respectively.

A Dag based data structure is used to succinctly represent a set of Ls expres-
sions. The Dag structure consists of a node corresponding to each position in the
output string s, and a map W maps an edge between node i and node j to the set
of all Lc expressions that can compute the substring s[i..j]. This representation
enables sharing of common subexpressions amongst the set of expressions and
represents an exponential number of expressions using polynomial space.

Example 6. An Excel user wanted to modify the delimiter in dates present
in a column from “/” to “-”, and gave the following input-output example
“08/15/2010”→ “08-15-2010”. An expression in Ls that can perform this trans-
formation is: Concatenate(f1, ConstStr(“ − ”), f2, ConstStr(“ − ”), f3), where
f1 ≡ SubStr2(v1, NumTok, 1), f2 ≡ SubStr2(v1, NumTok, 2), and f3 ≡ SubStr2(v1,

Synthesizing Number Transformations from Input-Output Examples 647

NumTok, 3). This expression constructs the output string by concatenating the
first, second, and third numbers of input string with constant strings “-”.

5.1 The Combination Language Lc

f := ConstStr(s) | vi
| SubStr(vi, p1, p2) | en

u := g | Round(g, r)
g := vi | SubStr(vi, p1, p2)

The grammar rules Rc for the combined lan-
guage Lc are obtained by taking the union of
the rules for the two languages Rn and Rs

with the top-level rule es. The modified rules
are shown in the figure on the right. The com-
bined language consists of an additional expression rule g that corresponds to
either some input column vi or a substring of some input column. This expression
g is then passed over to the number variable expression u for performing num-
ber transformations on it. This rule enables the combined language to perform
number transformations on substrings of input strings. The top-level expression
of the number language en is added to the atomic expr f of the string language.
This enables number transformation expressions to be present on the Dag edges
together with the syntactic string transformation expressions.

The transformation in Example 1 is represented in Lc as: Concatenate(f1,
ConstStr("/"), f2, ConstStr("/"), f3), where f1 ≡ Dec(g1, (2,∞, 0),⊥),
g1 ≡ SubStr(v1, 1,−7), f2 ≡ SubStr(v1,−7,−5), and f3 ≡ SubStr(v1,−5,−1).
The transformation in Example 2 is represented as: Concatenate(f1, ":", f2),
where f1 ≡ SubStr2(v1, NumTok, 2), f2 ≡ Dec(u1, (2,∞, 0),⊥), and
u1 ≡ Round(SubStr2(v1, NumTok, 3), (0, 30, ↓)).

5.2 Data Structure for Representing a Set of Expressions in Lc

Let R̃n and R̃s denote the set of grammar rules for the data structures that
represent a set of expressions in Ln and Ls respectively. We obtain the grammar
rules R̃c for succinctly representing a set of expressions of Lc by taking the union
of the two rule sets R̃n and R̃s with the updated rules as shown in Figure 10(a).
The updated rules have expected semantics and can be defined as in Figure 4(b).

f̃ := · · · | ẽn
ũ := g̃ | Round(g̃, r̃)
g̃ := vi | SubStr(vi, p̃1, p̃2)

GenerateStrc(σ: Inp, s: Out)

η̃ = {0, · · · , Length(s)};
ηs = 0;
ηt = Length(s);

ξ̃ = {〈i, j〉 | 0 ≤ i < j < Length(s)};
foreach substring s[i..j] of s:

W [〈i, j〉] = ConstStr(s[i..j])
∪ GenerateStrs(σ, s[i..j])
∪ GenerateStr′

n(σ, s[i..j])

return Dag(η̃, ηs, ηt, ξ̃,W);
(a) (b)

Fig. 10. (a) The data structure and (b) the GenerateStrc procedure for Lc expressions

648 R. Singh and S. Gulwani

5.3 Synthesis Algorithm

Procedure GenerateStrc:
We first make the following two modifications in the GenerateStrn procedure

to obtain GenerateStr′n procedure. The first modification is that we now search
over all substrings of input string variables vi instead of just vi in Line 2 in
Figure 5. This lets us model transformations where number transformations are
required to be performed on substrings of input strings. The second modification
is that we replace each occurence of vi by GenerateStrs(σ, vi) inside the loop
body. This lets us learn the syntactic string program to extract the correspond-
ing substring from the input string variables. The GenerateStrc procedure for
the combined language is shown in the Figure 10(b). The procedure first creates
a Dag of (Length(s)+1) number of nodes with start node ηs = 0 and target node
ηt = Length(s). The procedure iterates over all substrings s[i..j] of the output
string s, and adds a constant string expression, a set of substring expressions
(GenerateStrs) and a set of number transformation expressions (GenerateStr′n)
that can generate the substring s[i..j] from the input state σ. These expres-
sions are then added to a map W [〈i, j〉], where W maps each edge 〈i, j〉 of the
dag to a set of expressions in Lc that can generate the corresponding substring
s[i..j].

Procedure Intersectc: The rules for Intersectc procedure for intersecting
sets of expressions in Lc are obtained by taking the union of intersection rules
of Intersectn and Intersects procedures together with corresponding inter-
section rules for the updated and new rules.

Ranking: The ranking scheme of the combined language Lc is obtained by
combining the ranking schemes of languages Ln and Ls. In addition, we pre-
fer substring expressions corresponding to longer input substrings that can be
formatted or rounded to obtain the output number string.

Theorem 2 (Correctness of Learning Algorithm for combined
language).
(a) The procedure GenerateStrc is sound and complete with complexity O(|s|3l2),
where |s| denotes the length of the output string and l denotes the length of the
longest input string.
(b) The procedure Intersectc is sound and complete.

6 Experiments
We have implemented our algorithms in C# as an add-in to the Microsoft Excel
spreadsheet system. The user provides input-output examples using an Excel
table with a set of input and output columns. Our tool learns the expressions in
Lc for each output column separately and executes the learned set of expressions
on the remaining entries in the input columns to generate their corresponding
outputs. We have evaluated our implementation on over 50 benchmarks obtained
from various help forums, mailing lists, books and the Excel product team. More
details about the benchmark problems can be found in [22].

Synthesizing Number Transformations from Input-Output Examples 649

0

5

10

15

20

25

30

35

1 2 3

N
um

be
r o

f B
en

ch
m

ar
ks

Number of Input-Output Examples

Ranking Measure

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ru
nn

in
g

Ti
m

e
(in

 se
co

nd
s)

Benchmarks

Performance Measure

(a) (b)

Fig. 11. (a) Number of examples required and (b) the running time of algorithm (in
seconds) to learn the desired transformation

The results of our evaluation are shown in Figure 11. The experiments were
run on an Intel Core-i7 1.87 Ghz CPU with 4GB of RAM. We evaluate our
algorithm on the following two dimensions:

Ranking: Figure 11(a) shows the number of input-output examples required
by our tool to learn the desired transformation. All benchmarks required at
most 3 examples, with majority (76%) taking only 2 examples to learn the de-
sired transformation. We ran this experiment in an automated counter-example
guided manner such that given a set of input-output examples, we learned the
transformations using a subset of the examples (training set). The tool itera-
tively added the failing test examples to the training set until the synthesized
transformation conformed to all the remaining examples.

Performance: The running time of our tool on the benchmarks is shown in
Figure 11(b). Our tool took at most 3.5 seconds each to learn the desired trans-
formation for the benchmarks, with majority (94%) taking less than a second.

7 Related Work

The closest related work to ours is our previous work on synthesizing syntactic
string transformations [6]. The algorithm presented in that work assumes strings
to be a sequence of characters and can only perform concatenation of input
substrings and constant strings to generate the desired output string. None of
our benchmarks presented in this paper can be synthesized by that algorithm as
it lacks reasoning about the semantics of numbers present in the input string.

There has been a lot of work in the HCI community for automating end-user
tasks. Topes [20] system lets users create abstractions (called topes) for different
data present in the spreadsheet. It involves defining constraints on the data to
generate a context free grammar using a GUI and then this grammar is used to
validate and reformat the data. There are several programming by demonstra-
tion [3] (PBD) systems that have been developed for data validation, cleaning

650 R. Singh and S. Gulwani

and formatting, which requires the user to specify a complete demonstration or
trace visualization on a representative data instead of code. Some of such sys-
tems include Simultaneous Editing [18] for string manipulation, SMARTedit [17]
for text manipulation and Wrangler [15] for table transformations. In contrast
to these systems, our system is based on programming by example (PBE) – it
requires the user to provide only the input and output examples without provid-
ing the intermediate configurations which renders our system more usable [16],
although at the expense of making the learning problem harder. Our expression
languages also learns more sophisticated transformations involving conditionals.
The by-example interface [7] has also been developed for synthesizing bit-vector
algorithms [14], spreadsheet macros [8] (including semantic string manipula-
tion [21] and table layout manipulation [12]), and even some intelligent tutoring
scenarios (such as geometry constructions [10] and algebra problems [23]).

Programming by example can be seen as an instantiation of the general pro-
gram synthesis problem, where the provided input-output examples constitutes
the specification. Program synthesis has been used recently to synthesize many
classes of non-trivial algorithms, e.g. graph algorithms [13], bit-streaming pro-
grams [26,9], program inverses [27], interactive code snippets [11,19], and data-
structures [24,25]. There are a range of techniques used in these systems including
exhaustive search, constraint-based reasoning, probabilistic inference, type-based
search, theorem proving and version-space algebra. A recent survey [5] explains
them in more details. Lau et al. used the version-space algebra based technique
for learning functions in a PBD setting [17], our system uses it for learning
expressions in a PBE setting.

8 Conclusions

We have presented a number transformation language that can model number
formatting and rounding transformations, and an inductive synthesis algorithm
that can learn transformations in this language from a few input-output exam-
ples. We also showed how to combine our system for number transformations
with the one for syntactic string transformations [6] to enable manipulation of
data types that contain numbers as substrings (such as date and time). In addi-
tion to helping end-users who lack programming expertise, we believe that our
system is also useful for programmers since it can provide a consistent number
formatting interface across all programming languages.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

2. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

3. Cypher, A. (ed.): Watch What I Do – Programming by Demonstration. MIT Press
(1993)

Synthesizing Number Transformations from Input-Output Examples 651

4. Gualtieri, M.: Deputize end-user developers to deliver business agility and reduce
costs. Forrester Report for Application Development and Program Management
Professionals (April 2009)

5. Gulwani, S.: Dimensions in program synthesis. In: PPDP (2010)
6. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-

amples. In: POPL (2011)
7. Gulwani, S.: Synthesis from examples. In: WAMBSE (Workshop on Advances in

Model-Based Software Engineering) Special Issue, Infosys Labs Briefings, vol. 10(2)
(2012)

8. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using exam-
ples. Communications of the ACM (to appear, 2012)

9. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

10. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions.
In: PLDI, pp. 50–61 (2011)

11. Gvero, T., Kuncak, V., Piskac, R.: Interactive Synthesis of Code Snippets. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 418–423.
Springer, Heidelberg (2011)

12. Harris, W.R., Gulwani, S.: Spreadsheet table transformations from examples. In:
PLDI, pp. 317–328 (2011)

13. Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple inductive synthesis
methodology and its applications. In: OOPSLA (2010)

14. Jha, S., Gulwani, S., Seshia, S., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ICSE (2010)

15. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual spec-
ification of data transformation scripts. In: CHI (2011)

16. Lau, T.: Why PBD systems fail: Lessons learned for usable AI. In: CHI Workshop
on Usable AI (2008)

17. Lau, T., Wolfman, S., Domingos, P., Weld, D.: Programming by demonstration
using version space algebra. Machine Learning 53(1-2), 111–156 (2003)

18. Miller, R.C., Myers, B.A.: Interactive simultaneous editing of multiple text regions.
In: USENIX Annual Technical Conference (2001)

19. Perelman, D., Gulwani, S., Ball, T., Grossman, D.: Type-directed completion of
partial expressions. In: PLDI (2012)

20. Scaffidi, C., Myers, B.A., Shaw, M.: Topes: reusable abstractions for validating
data. In: ICSE, pp. 1–10 (2008)

21. Singh, R., Gulwani, S.: Learning Semantic String Transformations from Examples.
PVLDB 5(8), 740–751 (2012),
http://vldb.org/pvldp/vol5/p740_rishabhsingh_vldp2012.pdf

22. Singh, R., Gulwani, S.: Synthesizing number transformations from input-output
examples. Technical Report MSR-TR-2012-42 (April 2012)

23. Singh, R., Gulwani, S., Rajamani, S.: Automatically generating algebra problems.
In: AAAI (to appear, 2012)

24. Singh, R., Solar-Lezama, A.: Synthesizing data structure manipulations from sto-
ryboards. In: SIGSOFT FSE, pp. 289–299 (2011)

25. Solar-Lezama, A., Jones, C.G., Bod́ık, R.: Sketching concurrent data structures.
In: PLDI, pp. 136–148 (2008)

26. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: PLDI, pp. 281–294 (2005)

27. Srivastava, S., Gulwani, S., Chaudhuri, S., Foster, J.S.: Path-based inductive syn-
thesis for program inversion. In: PLDI (2011)

http://vldb.org/pvldp/vol5/p740_rishabhsingh_vldp2012.pdf

	Synthesizing Number Transformations from Input-Output Examples
	Introduction
	Motivating Examples
	Overview of the Synthesis Approach
	Number Transformations
	Number Transformation Language Ln
	Data Structure for a Set of Expressions in Ln
	Synthesis Algorithm

	Combining Number Transformations with Syntactic String Transformations
	The Combination Language Lc
	Data Structure for Representing a Set of Expressions in Lc
	Synthesis Algorithm

	Experiments
	Related Work
	Conclusions
	References

