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Abstract

Randomization is a key concept in distributed computing to tackle impossibility results. This also holds for self-stabilization in
anonymous networks where coin flips are often used to break symmetry. Although the use of randomization in self-stabilizing
algorithms is rather common, it is unclear what the optimal coin bias is so as to minimize the expected convergence time.
This paper proposes a technique to automatically synthesize this optimal coin bias. Our algorithm is based on a parameter
synthesis approach from the field of probabilistic model checking. It over- and under-approximates a given parameter region
and iteratively refines the regions with minimal convergence time up to the desired accuracy. We describe the technique in
detail and present a simple parallelization that gives an almost linear speed-up. We show the applicability of our technique
to determine the optimal bias for the well-known Herman’s self-stabilizing token ring algorithm. Our synthesis obtains that
for small rings, a fair coin is optimal, whereas for larger rings a biased coin is optimal where the bias grows with the ring
size. We also analyze a variant of Herman’s algorithm that coincides with the original algorithm but deviates for biased coins.
Finally, we show how using speed reducers in Herman’s protocol improve the expected convergence time.

Keywords Randomized distributed systems · Self-stabilization · Parameter synthesis · Performance

1 Introduction

Self-stabilization [11,12] is a versatile fault-tolerance tech-
nique that ensures the convergence of a distributed system
to a good behavior in the presence of arbitrary initializa-
tions as well as transient faults. Similar to other techniques
in distributed computing, solving certain problems in self-
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stabilization turn out to be impossible mainly due to the
inability of a network to break symmetry. For example, while
there exist solutions to the self-stabilizing token circulation
problem in networks with a designated process that behaves
differently from the others, the problem is impossible to solve
in anonymous networks, where all processes are required to
execute exactly the same algorithm.

Randomization techniques are frequently used in dis-
tributed algorithms mainly as a means of breaking symmetry
when this is impossible in a deterministic setting. In par-
ticular, processes take an action based on a probabilistic
distribution and communicate it to the rest of the network.
The correctness of such algorithms stems from the zero prob-
ability of reaching a state infinitely often where the goal of
the algorithm (e.g., leader election, reaching agreement, or
self-stabilization) is not met. Even if processes can solve
the problem in a deterministic manner (e.g., by employing
unique IDs), randomization may lead to breaking symme-
try “faster”. Examples of randomized distributed algorithms
include seminal algorithms for leader election [23], find-
ing maximal independent set [26], crash consensus [6], and
self-stabilization [20]. Most research efforts on randomized
distributed algorithms focus on tackling impossibility results
and not so much on how fast such algorithms converge
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to a solution. However, fast convergence is crucial for the
performance of the algorithms, as it decreases the number
of computation steps and therefore the needed computing
resources. In the rest of this section, in order to motivate
the problem under investigation in this paper, we first delve
deeper in the particular context of impossibility results in
self-stabilization and techniques for enhancing performance.

1.1 Coping with impossibility results

Consider Herman’s algorithm [20] as means to tackle the
impossibility of self stabilization in anonymous networks in
a ring structure with unidirectional communication channels.
The protocol for one process is given in Algorithm 1. An
example for a ring of three processes is given in Fig. 1. Each
process i has one bit of memory xi and can only read the bit of
its predecessor xi−1. A process i has a token if and only if its
value is equal to the value of its predecessor, i.e., xi = xi−1.
In the left ring of Fig. 1, all three processes have a token
(indicated by the red color), because each process has the
same value as its predecessor. If a process has a token, it flips a
(possibly biased) coin to randomly decide its next value. With
probability p the bit is set to 0, with probability 1−p it is set to
1. If a process does not have a token—i.e., its value is different
from its predecessor—it uses the value of its predecessor as
its new value. This definition of Herman’s algorithm is also
called the random bit interpretation [25], because in case of a
token the next value is determined by a random bit. The initial
configuration of the token ring is determined by a uniform
distribution over all possible bit values for all processes. In
our example, in the initial configuration each process has
a token and, therefore, all processes flip a coin to determine
their next value. We assume that process π0 sets its bit to 0 and
the other processes flip value 1. The resulting configuration
is visualized by the ring on the right-hand side of Fig. 1.
In the new configuration, only process π2 has a token and
we have reached a legitimate configuration, i.e., exactly one
process has a token. Now, the question is whether the value of
probability p has an impact on the expected recovery time to
a legitimate state. Note that we use recovery and convergence
interchangeably in the following.

1.2 Enhancing the performance of distributed
algorithms

Another application of randomization is in increasing the
performance of distributed algorithms. More specifically, one

Algorithm 1 Herman’s (random bit) algorithm for process i

1: Variable: xi : boolean ∈ {0, 1}

2: Guarded Commands:

xi = xi−1 −→ p : xi := 0 + (1 − p) : xi := 1;

xi �= xi−1 −→ 1 : xi := xi−1;

Fig. 1 Self-stabilization via Herman’s protocol (color figure online)

Algorithm 2 Speed reducer (random pass) algorithm for pro-
cess i
1: Variables:

xi : boolean ∈ {0, 1}

si : boolean ∈ {0, 1}, initial value 0
2: Guarded Commands (Step):

xi = xi−1 ∧ si = 0 −→ 1 : xi := (1 − xi );

xi �= xi−1 ∨ si = 1 −→ 1 : xi := xi ;

3: Guarded Commands (Switch):

si = 0 −→ q : si := 1 + (1 − q) : si := 0;

si = 1 −→ p : si := 0 + (1 − p) : si := 1;

can compose the (possibly randomized) distributed algorithm
with a randomized algorithm, called a speed reducer [13],
that controls the spread of a fault by reducing the speed of,
e.g., multiple tokens traveling in a ring. In particular, one
can solve the self-stabilization problem by (randomly) giving
some processes a different behavior. Processes in “normal”
mode always pass along their token. Processes in “speed
reducer” mode always keep their token and do not forward
it. This protocol for one process is described in Algorithm 2,
where Step and Switch phase are executed sequentially. An
example for a ring of three processes is given in Fig. 2. Each
process has an additional bit si to store the current mode.
The process is in speed-reducer mode, if si = 1. Each pro-
cess starts in normal mode. In our example configuration,
all processes again hold a token and process π1 is in speed-
reducer mode (as indicated by the blue shading). If a process
holds a token and is not in speed-reducer mode, it forwards
the token by flipping its bit. If a process does not hold a token
or is in speed-reducer mode, it does nothing—and possibly
keeps the token. In our example, processes π0 and π2 hold
a token and are in normal mode. They thus flip their bit.
Process π1 is in speed-reducer mode and keeps its value. In
the resulting configuration (depicted in the middle of Fig. 2),
only π0 has one token. Intuitively, during the computational
step π1 held two tokens—one forwarded token from π0 and
its own token. Whenever a process has two tokens, both van-
ish. This results in π1 having no token. After all processes
have performed a step—i.e., either flipping their bit or doing
nothing—each process flips a coin to decide whether its mode
should be switched. Processes switch from normal to speed-
reducer mode with probability q, and switch in the reverse
direction with probability p. In our example, processes π0

and π1 stay in their current mode and π2 switches to speed-
reducer mode. It is of interest now to know which bias of p
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Fig. 2 Self-stabilization via speed-reducer protocol (color figure online)

and q results in the best expected performance of the speed
reducer.

1.3 Our contribution—synthesizing optimal bias

A crucial contributing factor in the performance of random-
ized distributed algorithms is the choice of the employed
probability distribution. For instance, an empirical study [25]
shows a counter-intuitive result: using a biased coin in Her-
man’s algorithm [20] for larger rings leads to faster average
recovery time than using a fair coin. We begin with the
premise that for most randomized distributed algorithms, it
is unclear what choice of a probability distribution results
in faster termination of the algorithm, or higher probabil-
ity of obtaining a correct solution. Lack of this knowledge
is primarily due to the subtlety of analytical methods (e.g.,
closed-form formulas that provide optimal probabilities by
using algebraic techniques) to characterize the performance
of randomized distributed algorithms. The result in [25] moti-
vates an even deeper and more challenging research problem
that we call synthesizing optimal bias:

Given a randomized distributed algorithm, is it possible

to automatically synthesize a probability distribution

resulting in the best performance for the algorithm

without changing its control flow?

This paper addresses the aforementioned problem in the
context of randomized self-stabilizing systems. Following
the results in [14,15], our choice of performance metric
is average recovery time. In particular, we propose a fully
automated technique that takes as input a randomized self-
stabilizing algorithm, where processes execute their actions
with some probability, and generates as output the probability
value based on which, the self-stabilizing algorithm exhibits
the minimum average recovery time. Our technique:

– First transforms a randomized self-stabilizing algorithm
into a parametric Markov chain (PMC). A PMC is rep-
resented by a symbolic transition probability matrix
(TPM), where each entry is a function over the param-
eters describing the probability of one-step reachability
of each state from other states.

– Next, to compute the optimal bias, we compute over-
and under-approximations of the average recovery time
for all parameter values inside a given parameter region
R ⊆ [0, 1]. By iteratively refining the regions which lead
to small convergence times, the optimal probability val-
ues can be approximated up to the desired precision. To
this end, we extend the existing techniques of approxi-
mation via parameter lifting [9,29]. Our algorithm also
effectively parallelizes the computation of independent
iterations, resulting in faster computation of the optimal
bias using multi-core platforms.

We emphasize that our technique does not change the
semantics (i.e., the structure of the transition system) of the
randomized self-stabilizing protocol. We merely identify the
probabilities that result in the best average recovery time.
Hence, our technique can potentially be applied in dealing
with network parameters and more importantly in identify-
ing the best distribution for probabilistic schedulers. We also
note that our techniques are completely independent of the
probabilistic scheduling policy in the underlying PMC. In
case the type of scheduler is of importance, one can combine
the techniques introduced in this paper with the composition
method in [1].

Our synthesis algorithm is fully implemented and we
demonstrate the effectiveness of our approach using two
detailed case studies: (1) Herman’s randomized self-
stabilizing token ring algorithm [20], and (2) the role of speed
reducers [13] to improve convergence time. While we give an
in-depth analysis of the performance of these algorithms, the
summary of our result is as follows. For Herman’s algorithm,
for different network sizes, we synthesize the probabilities
that result in nearly minimum average convergence time.
In particular, we show that while for smaller networks a
fair coin results in the best average convergence time, for
larger networks a biased coin is advantageous. This confirms
the findings in [25] by synthesizing the optimal bias in an
automated manner, rather than by sweeping over the anal-
ysis results for multiple variants (one per bias). In the case
of speed reducers, our experiments show that composing a
speed reducer with two variants of Herman’s algorithm (i.e.,
random bit and random pass) improves the performance of
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both. Experiments with Dijkstra’s deterministic k-state token
ring algorithm [11] reveal that speed reducers do not yield
better average recovery time (for rings of size 3 and 5).
Comparison to the conference version This work is based
upon [2]. While [2] presented three different solution
approaches to the parameter synthesis problem, in this work
we focus on the most promising approach based on param-
eter lifting and significantly improve it compared to the
original approach. Moreover, we considerably extend the
evaluation performed in [2] by creating and analyzing new
self-stabilizing algorithms based on speed-reducers. In sum-
mary, we make the following new contributions in this work:

– Major improvements of the approximation approach by
exploiting parallelization, using symbolic model building
and performing sampling.

– Parameter synthesis for optimal bias in Herman’s algo-
rithm and several extensions based on speed reducers.

– In-depth evaluation of the implemented approximation
approach and the considered self-stabilizing protocols.

Organization The rest of the paper is organized as follows.
Section 2 describes our computational model and introduces
(parametric) Markov chains. Section 3 presents the concept
of self-stabilization and formally states our fine-tuning prob-
lem. Section 4 introduces the approximation approach using
the parameter lifting algorithm [29] and provides details on
the improved implementation. Section 5 presents a detailed
evaluation of the approximation approach and parameter syn-
thesis for several self-stabilizing algorithms. Related work is
discussed in Sect. 6. Finally, we make concluding remarks
and discuss future work in Sect. 7.

2 Computational model

This section introduces the computational model of dis-
tributed algorithms.

2.1 Distributed programs

A distributed program DP consists of a finite set Π of pro-

cesses and a finite set V of discrete variables. The state space

SDP of DP is given by:

SDP =
∏

v∈V

Dv,

where Dv is the finite domain of variable v. A state s ∈ SDP

is denoted as vector s = 〈v1, . . . , v|V |〉. A state predicate is
a subset of SDP .

Each process π ∈ Π is associated with a read-set Rπ ⊆ V

of variables read by π and a write-set Wπ ⊆ V . Following

the shared-memory model, we require Wπ ⊆ Rπ and Wπ ∩

Wπ ′ = ∅ for all π, π ′ ∈ Π with π �= π ′. Processes π �= π ′

are called neighbors if Rπ ∩ Rπ ′ �= ∅.
The behavior of process π is described by a finite set Gπ

of probabilistic guarded commands of the form:

〈label〉 : 〈guard〉 → p1 : 〈statement1〉 + · · · +

pn : 〈statementn〉;

where guard is a Boolean expression over Rπ and

n
∑

i=1

pi = 1

where pi can be either a concrete value or a parameter. If
guard is true, statementi is executed with probability pi ,
updating the variables in Wπ while moving from state s ∈

SDP to s′ ∈ SDP . Thus, when a guard g is enabled at state
s, a set g(s) of successor states can be reached, generated by
executing all statementi . If multiple guards hold, an enabled
one is chosen with uniform probability.

Example 1 Consider a simple token-passing algorithm
described by the guarded commands in Algorithm 1 for pro-
cess πi , i ∈ {0, 1}, see Fig. 3. For the sake of simplicity, we
assume a process πi to have a token if and only if xi = 1. Each
process πi has a variable xi with Dxi

= {0, 1}. In state 〈0, 1〉,
variable x1 has value 1, i.e., process π1 has a token. Both pro-
cesses simultaneously execute the guarded command (i.e., a
synchronous timing model):

g : xi �= xi−1 −→ 1 : xi := xi−1;

and flip their value resulting in state g(〈0, 1〉) = {〈1, 0〉}.

States without outgoing transitions are assumed to be
equipped with a self-loop.

Definition 1 (Computation) A computation σ of a dis-
tributed program DP is an infinite sequence of states:

σ = s0 s1 s2 · · · ∈ Sω
DP

,

where for all i ≥ 0, si+1 ∈ g(si ) for some command g.

2.2 Markov chains

The operational behaviour of distributed programs is
described by Markov chains [4], i.e., finite automata whose
transitions are equipped with probabilities. Let Dist(S)

denote the set of discrete probability distributions over the
set S.

Definition 2 (DTMC) A Discrete-time Markov Chain is a
tuple D = (S, ιini t , P) where
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Fig. 3 Example of a ring of two processes

– S is a finite set of states.
– ιini t ∈ Dist(S) is the initial state distribution.
– P : S → Dist(S) is the transition probability matrix

(TPM).

A state s ∈ S with ιini t (s) > 0 is initial. Note that in self-
stabilizing systems, any state can be initial. Our parameter
synthesis algorithm uses an extension of DTMCs where in
each state there is a choice of possible distribution. This
model is known as MDPs [4,28].

Definition 3 (MDP) A Markov Decision Process is a tuple
(S, ιini t , Steps) with S and ιini t as above, and Steps : S →

2Dist(S) assigns to each state s a finite, non-empty set
Steps(s) of distributions on S.

An MDP with |Steps(s)| = 1 for any state s is a DTMC.
A parametric Markov chain (PMC) [5,8] is a DTMC where
the transition probabilities are multi-variate polynomials over
a fixed set of parameters. Let U = {p1, . . . , pk} be a finite
set of parameters and FU denote the set of multi-variate poly-
nomials over U .

Definition 4 (PMC) A parametric Markov chain over U is a
tuple P = (S, U , ιini t , P) with S as before, and

– ιini t : S → FU is the initial state distribution.
– P : S × S → FU is the transition probability matrix.

An evaluation function eval : U → Q assigns rational val-
ues to parameters in U . For polynomial f ∈ FU , eval( f )

denotes the value obtained by replacing each parameter pi

in f by eval(pi ).

Definition 5 (Instantiated PMC) The instantiated PMC for
PMC P = (S, U , ιini t , P) under evaluation function eval is
P[eval] = (S, ιini t eval , Peval) where

– ιini t eval(s) = eval(ιini t (s)) for all s ∈ S and
– Peval(s, s′) = eval(P(s, s′)) for all s, s′ ∈ S.

The evaluation function eval is valid for P if the instantiated
PMC P[eval] is a DTMC, i.e., if:

ιini t eval ∈ Dist(S) and ∀s ∈ S. Peval(s) ∈ Dist(S).

The transition system of a distributed program can be
straightforwardly modeled by a PMC. The TPM of a pro-
cess can be trivially derived from its set of probabilistic

Fig. 4 PMC for simple token-passing algorithm

guarded commands. We refrain from providing the technical
details of this mapping, and instead provide an example. The
reader may consult1 for a detailed semantics of probabilistic
guarded commands.

Example 2 The TPM of the algorithm for the two processes
in Example 1 is as follows:

⎡

⎢

⎢

⎢

⎢

⎣

00 01 10 11

00 p2 p(1 − p) p(1 − p) (1 − p)2

01 0 0 1 0

10 0 1 0 0

11 p2 p(1 − p) p(1 − p) (1 − p)2

⎤

⎥

⎥

⎥

⎥

⎦

A visualization of the PMC is given in Fig. 4. For exam-
ple, in state 〈0, 0〉 both processes have the same value as their
preceding process. Therefore, each process flips a coin and
changes its value accordingly. One outcome is that both pro-
cesses change their value to 1 with probability 1 − p. Thus,
there is a transition from state 〈0, 0〉 to state 〈1, 1〉 with prob-
ability (1 − p)2.

3 Problem statement

In this section, we formally state the problem of synthesis of
optimal bias. We start with introducing the notion of proba-
bilistic self-stabilization.

3.1 Self-stabilization and recovery time

In this section, we only consider distributed programs with
concrete probabilities—and no parameters.

Definition 6 (Self-stabilization [12]) Let LS be a state pred-
icate denoting the set of legitimate states. A distributed
program DP is called self-stabilizing for LS iff it satisfies
the following two conditions:

1 https://www.prismmodelchecker.org/doc/semantics.pdf.
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1. Strong convergence: starting from any arbitrary initial
state, every computation converges to a legitimate state
in a finite number of steps.

2. Closure: after reaching a legitimate state, the computation
is guaranteed to remain in LS as long as no fault occurs.

Strong convergence is a rather strict condition and has led
to several impossibility results [3]. Therefore, probabilistic

convergence and hence, probabilistic self-stabilization under
a probabilistic scheduler2 was introduced [20]. A distributed
program DP probabilistically converges if starting from any
arbitrary state it can reach a legitimate state with probability

one.

Example 3 In our running example cf. Fig. 4, LS consists of
all states in which exactly one process holds a token, i.e.,
xi = 1 for one and only one i :

LS = {s1 = 〈0, 1〉, s2 = 〈1, 0〉}.

This paper focuses on probabilistic self-stabilization. We
represent a probabilistic self-stabilizing program DP with
legitimate states LS by a DTMC DDP = (S, ιini t , P), where
LS ⊆ S and ιini t (s) = 1

|S|
, i.e., any arbitrary state is an initial

state with equal probability.

Definition 7 (Recovery path) Let DP be a probabilistic
self-stabilizing program, DDP = (S, ιini t , P) be the corre-
sponding DTMC. A recovery path of DDP from state s ∈ S

is a finite computation σr = s0s1 · · · sn with

– s0 = s,
– P(si , si+1) > 0 and si /∈ LS for all 0 ≤ i < n, and
– sn ∈ LS.

Let σr (s) denote the set of all recovery paths from state s.
The recovery probability from a state s is

P(s) =
∑

σ∈σr (s)

P(σ ) with P(σ ) =
∏

0≤i<n

P(si , si+1).

We now have everything in place to formally define proba-
bilistic self-stabilization.

Definition 8 (Probabilistic self-stabilization) Let LS be the
legitimate states and DP a distributed program. DP is prob-

abilistic self-stabilizing iff:

1. Probabilistic recovery: P(s) = 1 for all s ∈ S, and

2 A probabilistic scheduler chooses actions in a fully probabilistic way
(i.e., there is no nondeterministic choice of distributions as in MDPs).
Hence, systems that work under a fully probabilistic scheduler can be
modeled by DTMCs regardless of whether they are synchronous or
asynchronous.

2. Closure: for all s ∈ L S, all processes π ∈ Π and all
guarded commands g ∈ Gπ , we have g(s) ⊆ L S.

The recovery time of a recovery path σr = s0 · · · sn is
R(σr ) = n. The expected recovery time for a state s is

R(s) =
∑

σ∈σr (s)

P(σ ) · R(σ )

and the expected recovery time for a program DP with cor-
responding DTMC DDP = (S, ιini t , P) is

ERT(DDP ) =
∑

s∈S

ιini t (s) · R(s).

3.2 The optimal bias parameter synthesis problem

The synthesis problem takes as input a distributed program
DP (with parametric probabilities) which is modeled by a
PMC PDP . We consider all evaluation functions eval which
are valid for PDP . Each instantiated PMC PDP [eval] and
corresponding distributed program (with concrete probabil-
ities) satisfy Definition 8. The goal is to find the evaluation
function eval for which the expected recovery time of
PDP [eval] is minimal.

Optimal Bias Synthesis Problem

Instance A (parametric) distributed program DP

modeled by a PMC PDP over parameters U .

Problem Find a valid evaluation function evalmin :

U → Q for PDP , such that PDP [evalmin] is prob-
abilistic self-stabilizing and the expected recovery
time is minimal, i.e.,

evalmin = argmin
eval

ERT(PDP [eval]).

An approximate version of this problem requires to find
the minimal expected recovery time up to a given inaccuracy
ǫ. This problem variant is useful to consider for practical
efficiency purposes. Let ERTmin = ERT(PDP [evalmin]) be
the minimal expected recovery time for the optimal evalua-
tion function evalmin . The goal of the approximate optimal
bias synthesis problem is to find an evaluation function
evalapprox which is valid for PDP , the instantiated PMC
PDP [evalapprox ] is probabilistic self-stabilizing and the dif-
ference to the minimal expected recovery time is at most ǫ,
i.e.,

ERT(PDP [evalapprox ]) − ERTmin ≤ ǫ.
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4 Approximation via parameter lifting

The optimal bias synthesis problem can be seen as a parame-
ter synthesis problem on parametric Markov chains [8,24]. In
previous work [2], we presented three different approaches
to synthesize optimal parameter values:

1. using symbolic linear algebraic methods,
2. computing rational functions via state elimination,
3. approximation via parameter lifting.

The first two approaches compute exact solutions and are
very similar. Both approaches compute a closed form of the
expected recovery time in terms of a rational function over
the parameters. Finding the minima of this rational function
yields the desired exact optimal parameter values. However,
as shown in [2], both approaches do not scale well for larger
model sizes, because the rational functions can grow expo-
nential in the number of parameters and polynomial in the
number of states [22]. The third approach approximates the
optimal values which scales better. We therefore focus on
this approximation approach in the following.

4.1 Parameter lifting

The approximation approach is based on the parameter lifting

algorithm (PLA) first described in [29]. The idea is to lift the
parameter synthesis problem of a parametric Markov chain
(PMC) to a model-checking problem of a Markov decision
process (MDP).

Assume that we have a PMC with n parameters p1, . . . , pn

with possible values pi ∈ [li , ui ] ⊆ Q. The Cartesian prod-
uct of the intervals of all parameters [l1, u1] × · · · × [ln, un]

is called a region. For example [0.2, 0.8] × [0.3, 0.5] is a
region for two parameters. In the general case, a region is an
n-dimensional hyper-rectangle.

The key observation in PMCs is that for transition prob-
abilities of the form pi or 1 − pi , i.e., linear functions, the
minimal/maximal probabilities to reach a set of target states
occur at the extremal values of the parameters. To obtain
the minimal/maximal reachability probability (or expected
recovery time) it, therefore, suffices to consider the mini-
mal/maximal values (li or ui ) of the parameter pi instead
of all (infinitely many) values. Thus, we translate the PMC
into an MDP by replacing each parametric transition pi with
the two actions li and ui . This translation is illustrated in
Fig. 5, where the PMC is depicted in Fig. 5a and the result-
ing MDP in Fig. 5b. The MDP contains two different actions
indicated by the straight and dashed transitions. The first
action (straight transitions) uses the minimal bound li of the
parameter pi , the second action (dashed transitions) uses the
maximal bound ui .

(a) (b)

Fig. 5 PLA translation

By replacing the parameters with their bounds, the depen-
dencies between states which have the same parameter on
outgoing transitions are lost. In the PMC on all these states the
parameter must have the same value. However, in the MDP
we can choose to use the lower bound for one state and use the
upper bound on a different state. Thus, PLA does not obtain
precise results, but instead over- and under-approximations
of the exact result. Model checking on the MDP yields the
maximal and minimal probabilities for a given region. The
approximation will become more precise if the lower and
upper bound of the parameters become close, i.e., the region
becomes smaller. Thus, if the obtained result is not precise
enough yet, we use smaller regions by splitting a region. For
example, instead of analyzing the region [0.3, 0.5], we can
analyze the regions [0.3, 0.4] and [0.4, 0.5] instead.

4.2 Algorithm

We use the parameter lifting algorithm (PLA) to com-
pute regions containing the optimal parameter values for
our approximate optimal bias synthesis problem for dis-
tributed algorithms. By iteratively refining and tightening
these regions we can approximate the optimal values up to
a desired precision. To ease the presentation, we only con-
sider one parameter in the following, but the algorithm is
applicable to several parameters in the same manner.

The general steps of the approximate optimal bias synthe-
sis algorithm are visualized in Fig. 6. The exact probability
function is depicted in blue. Our goal is to approximate the
minima of this function. In our application setting, this corre-
sponds to minimize the ERT. We start with a PMC, a precision
bound ǫ and an initial parameter region R0 ⊆ (0, 1). The ini-
tial region excludes the bounds 0 and 1 as for those parameter
values transitions with probabilities of the form p or 1 − p

vanish and the graph of the PMC is not preserved. We note
that the PLA approach is only sound if the extremal values
for all transition probabilities occur at the region bounds.
While this is usually ensured by only allowing linear tran-
sition probabilities, we support arbitrary polynomials here.
For each polynomial occurring as a transition probability, we
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(a) (b) (c) (d)

Fig. 6 Steps of the approximate optimal bias synthesis algorithm (color figure online)

compute the parameter values which yield minimal/maximal
values. We split the initial region at these values into multiple
regions and therefore ensure that all extremal values can only
occur at the region bounds. In Fig. 6a, we indicate the initial
regions by the orange lines.

For each region, we compute a sample point by instantiat-
ing the PMC with the corresponding parameter values. The
sample points for each region are indicated by black dots in
Fig. 6b. Instantiating the PMC yields a DTMC which can be
analyzed by model-checking techniques to obtain the exact
ERT for a concrete parameter value. We use the minimal ERT
over all sample points as the new upper bound on the minimal
ERT. This upper bound is indicated by the green line and we
know that the optimal ERT must lie on or below this line.

In the next step, we translate the PMC into an MDP and
compute the over- and under-approximation for each region
via PLA. The resulting upper and lower bounds for each
region are given by the orange boxes in Fig. 6c. We use the
minimal lower bound over all regions as the new lower bound
on the minimal ERT. This lower bound is indicated by the red
line and we know that the optimal ERT must lie in between
the green and red line.

Each region with a lower bound greater than the (green)
upper bound on the ERT can be discarded, because even
in the best case the sampled ERT can never be reached. In
our example, the two outer regions and the middle region
can all be removed. For the remaining four regions, we need
more precise PLA approximations to narrow down the opti-
mal parameter values. We, therefore, split each region in half
and end up with 8 smaller regions as given in Fig. 6d. These
three steps—sampling, PLA, and refinement—are iterated.
Our approach terminates, if the difference between the upper
(green) and lower (red) bound of the ERT is smaller than the
desired precision ǫ. Then, the parameter evaluation corre-
sponding to the upper bound is a solution for the approximate
synthesis problem.

4.3 Parallelization

A natural way to improve the running times of the synthesis
algorithm is to exploit the availability of multiple CPU cores
on modern computer systems. Our algorithm can profit from
parallelization in the sampling and PLA steps. For each CPU
core, we create a new instance of the model checker with
the given PMC. These model checkers are used in a thread

pool configuration. That means each new task—sampling or
PLA—is appended to a work queue of the thread pool. Each
idle process takes the next task from the work queue and
performs the required operation. For both sampling and PLA,
we create tasks for each region and let the thread pool handle
them in parallel. The only communication between the main
process and the worker processes is the considered sample
point or region as input and the resulting ERT as output.
Thus, both sampling and PLA can easily be parallelized with
almost no overhead.

The parallelized synthesis algorithm is presented in detail
in Algorithm 3. The algorithm gets as input a distributed pro-
gram DP of a self-stabilizing algorithm, an initial region R0

and the desired precision ǫ. It returns the regions containing
the optimal parameter values, the approximation bounds for
the optimal ERT and the parameter values which yield the
upper bound.

We first build the PMC P from the distributed program
DP (line 1) and apply bisimulation minimization [18] to
obtain a smaller PMC (line 2). Next, we initialize the thread
pool and the bounds for the ERT (lines 3–4). The list of ini-
tial regions is computed by taking the extremal values of
the occurring polynomials into account (line 5). We iter-
ate the three steps—sampling, PLA and refinement—until
the desired precision of the ERT approximation is reached
(line 6). In the sampling step, we generate a task for each
center point of a region (line 8) and execute these tasks in
parallel on all available cores (line 10). The minimum over
all sampled ERTs and the previous upper bound is the new
upper bound for the ERT (line 11) and s stores the corre-
sponding sample point (line 12). For the PLA step, we again
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Algorithm 3 Approximate optimal bias synthesis alg.
Require: Probabilistic self-stabilizing program DP , initial region

R0 ⊆ (0, 1), precision ǫ > 0
Ensure: Regions R, bounds [l, u] for optimal value, best sample s

ensuring value u

1: P := BuildModel(DP);
2: P := ApplyBisimulation(P);

3: pool: = InitThreadPool(noCores, P);
4: [l, u] := [0,∞];
5: R := ComputeInitialRegions(R0);

6: while u − l > ǫ do

⊲ Step 1: sampling
7: for r ∈ R do

8: pool.Add(SampleTask(r .center));
9: end for

10: samples := pool.ExecuteParallel();
11: u := min{samples ∪{u}};
12: s := argmin{samples ∪{s}};

⊲ Step 2: PLA
13: for r ∈ R do

14: pool.Add(PLATask(r ));
15: end for

16: results := pool.ExecuteParallel();
17: lbounds := {};
18: for (r , lowerBound) ∈ results do

19: if lowerBound > u then

20: R := R \ {r};
21: else

22: lbounds := lbounds ∪ {lowerBound};
23: end if

24: end for

25: l := min{lbounds};
⊲ Step 3: Refinement

26: R := {r .split() | r ∈ R};
27: end while

28: return R, [l, u], s;

create tasks for each region (line 14) and execute them in
parallel (line 16). If the resulting lower bound of a region is
larger than the current upper bound of the ERT, we discard
this region as it cannot contain the optimal value (line 20).
Otherwise, we add the lower bound to the list of lower bounds
(line 22). After considering all region results, we set the cur-
rent lower bound of the ERT to the minimum of the lower
bounds among all regions (line 25). In the third step, we refine
the remaining regions by splitting each region and creating
new smaller regions (line 26). If the desired precision ǫ of
the approximation [l, u] is reached, the loop terminates and
we return the optimal regions R, the bounds of the ERT and
the parameter values s ensuring the upper bound (line 28).

Theorem 1 Algorithm 3 terminates and solves the approxi-

mate optimal bias synthesis problem.

Proof (Sketch) We start with the correctness. The iteration
in Algorithm 3 stops, if u − l ≤ ǫ (cf. line 6). That means the
difference between the upper bound u obtained from sample

point s (lines 11–12) and the lower bound l is at most ǫ. As
l is an under-approximation computed by PLA (line 25), the
minimum ERTmin must lie within [l, u] and in particular,
u − ERTmin ≤ ǫ. Thus, the evaluation corresponding to
sample point s is a solution of the approximate synthesis
problem.

We show that Algorithm 3 terminates. In each iteration,
all remaining regions are split into smaller regions (line 26).
As the regions become smaller, the under-approximations
computed by PLA become more precise for each region,
i.e., closer to the exact minimum. The sample point of each
region also yields a value closer to the minimum, because
the distance between this center point and the region bounds
decreases in each iteration. In other words, the regions con-
verge to point intervals and therefore the upper and lower
bounds converge to the same value. Overall, the difference
between the sampled value (upper bound) and the value
obtained by PLA (lower bound) becomes smaller when the
regions become smaller. Through splitting, the difference
between the overall upper bound u and the lower bound l

decreases and thus, the algorithm terminates. ⊓⊔

Note that the upper bounds on regions as computed by
PLA are never used in our synthesis algorithm. In contrast to
the previous algorithm of [2], upper bounds via PLA are not
computed. Instead, sampling is used to obtain upper bounds
which is faster to compute and gives better results.

Using upper bounds however allows to ensure that all
remaining regions yield ERT values within ǫ of the opti-
mal ERT. With samples, we can only guarantee that the best
sample point yields an ERT which is at most ǫ away from
the optimal ERT. For the remaining regions no such claim
is possible and we only know that the regions contain the
optimal parameter values.

5 Evaluation

5.1 Experimental setup

In the following, we evaluate our parameter synthesis algo-
rithm in detail. Our implementation and the model files for
the considered self-stabilizing algorithms are publicly avail-
able online.3

All computations were performed on an Intel Xeon Plat-
inum 8160 with up to 24 cores, each running on 2.1 GHz and
up to 768 GB of memory. A timeout of 12 h was used unless
indicated otherwise.

The approximate optimal bias synthesis algorithm is
implemented as a Python script and was executed using
CPython version 3.6.8. The script uses the probabilistic

3 https://github.com/moves-rwth/optimal-bias-synthesis.
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Fig. 7 Expected recovery times for Herman’s protocol

model checker Storm [10] (in version 1.4.1) as a back end
for model building, sampling and PLA calls. We use the
Python bindings of Storm called Stormpy

4 (in version
1.4.1). Stormpy offered us a great flexibility when devel-
oping the algorithm while simultaneously allowing us to use
the state-of-the-art model-checking algorithms without per-
formance loss.

5.2 Herman’s algorithmwith biased coins

We first study Herman’s token circulation algorithm [20] (cf.
Algorithm 1). Kwiatkowska et al. [25] showed by repeated
model checking of various instantiations of the coin bias
that using a biased coin in Herman’s algorithm improves the
worst-case performance of self-stabilization. Here, we syn-

thesize the optimal coin bias for minimal expected recovery

time in a fully automatic approach.
Figure 7 depicts the relationship between the coin proba-

bility p and the expected recovery time (ERT) for different
number of processes in the ring. We indicate the optimal
parameter values of p (as computed by our algorithm) by
black dots. Note that our algorithm returns parameter regions,
but for presentation purpose we depict a sample point from
within the region instead.

As can be seen, for up to 7 processes, a fair coin with
p = 0.5 yields optimal results. However, for 9 processes and

4 https://moves-rwth.github.io/stormpy/.

beyond, using a biased coin is optimal. Because of the sym-
metric nature of the protocol for every configuration there are
two symmetrical optimal solutions. On increasing the num-
ber of processes, the optimal values for p move further away
from the fair coin with p = 0.5. Thus, an interesting question
is what the optimal values are for larger number of processes.
To this purpose, we fitted a function to the given optimal val-
ues and obtained best results when using a cubic function for
each “side” of the optimal values. The corresponding two
functions are depicted in black in the plot and nearly per-
fectly fit the optimal parameter values. Looking at the cubic
function, we conjecture that the parameter values will con-
verge to the extremal values 0 and 1 in the limit. However,
to make an informed guess for the convergence and a better
estimation of the quality of our fitted function, some more
results are necessary. Obtaining results for larger number of
processes, however, requires immense computational efforts.
For 21 processes we were not able to approximate optimal
values due to memory exhaustion (with 768 GB available)
and, therefore, no black dot is shown.

A detailed overview of the results for Herman’s protocol
is given in Table 1. The first column depicts the number of
processes in the network. The next two columns give the
number of states and transitions of the resulting PMC. The
fourth and fifth columns give the same measures but after
applying bisimulation minimization on the PMC. The results
of the parameter synthesis algorithm (Algorithm 3 applied to
the minimized PMC) are given in columns six to eight. The
algorithm was executed in parallel with four processes and
used a symbolic PMC for the initial build. The algorithm
terminated if the desired precision ǫ = 10−2 was reached,
i.e., the difference between lower and upper bound of the
ERT was smaller than ǫ. In the sixth column, we give these
lower and upper bounds of the minimal ERT. The precise
optimal ERT is guaranteed to lie in this interval. The next
column gives the optimal regions for p which guarantee the
former ERT. The last column gives the total time (in seconds)
needed to compute the results. This time comprises building
the PMC, extracting the bisimulation quotient and iteratively
computing the optimal parameter regions. The second row for
each number of processes (depicted in italics) gives results for
the worst-case recovery time (WCopt) instead of the expected
recovery time.

We can see that the size of the resulting PMC is exponen-
tial in the number of processes, i.e., 2n states for n processes.
However, the PMC size after bisimulation clearly shows that
a huge part of the original states are bisimilar due to the
inherent symmetries in Herman’s protocol. Thus, applying
bisimulation minimization is a crucial preprocessing step
which is necessary to handle large rings. However, the num-
ber of transitions after bisimulation is still large compared
to the number of states and the resulting PMC has a nearly
complete graph leading to a dense matrix representation. The
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Table 1 Results for automated synthesis of ERTopt and popt in Herman’s protocol

Model PMC PMC (bisimulation) Results for Symb. P4 (1E−2)

Size # States # Trans. # States # Trans. ERTopt/WCopt popt Time

3 8 28 2 3 [0.333, 0.333] [0.000, 1.000] 1 s

[1.333, 1.333] [0.000, 1.000] 1s

5 32 244 4 11 [1.933, 1.933] [0.211, 0.789] 4 s

[3.200, 3.200] [0.211, 0.789] 2s

7 128 2188 15 122 [4.485, 4.493] [0.455, 0.545] 1 s

[6.848, 6.857] [0.469, 0.531] 2s

9 512 19,684 54 1149 [7.914, 7.921] [0.419, 0.581] 2 s

[11.994, 12.000] [0.498, 0.502] 3s

11 2048 177,148 181 9900 [12.097, 12.102] [0.352, 0.382], [0.618, 0.648] 5 s

[16.586, 16.595] [0.280, 0.297], [0.703, 0.720] 8s

13 8192 1,594,324 624 84,669 [16.942, 16.949] [0.322, 0.344], [0.656, 0.678] 15 s

[22.492, 22.499] [0.259, 0.273], [0.727, 0.741] 16s

15 32,768 14,348,908 2182 713,042 [22.445, 22.453] [0.301, 0.319], [0.681, 0.699] 105 s

[30.422, 30.430] [0.256, 0.267], [0.733, 0.744] 80s

17 131,072 129,140,164 7702 6,046,299 [28.603, 28.610] [0.291, 0.304], [0.696, 0.709] 1009 s

[37.318, 37.323] [0.248, 0.256], [0.744, 0.753] 728s

19 524,288 1,162,261,468 27,585 51,072,534 [35.406, 35.416] [0.279, 0.292], [0.708, 0.721] 8215 s

[45.887, 45.894] [0.242, 0.251], [0.749, 0.758] 7690s

21 2,097,152 10,460,353,204 99,868 431,475,455 – – >12 h

– – >12h

huge number of transitions makes analyzing the larger PMCs
very challenging and thus, these PMCs are at the boundary
of what is currently possible in probabilistic model check-
ing [17]. As the number of transitions grows exponentially
in the number of processes the time needed for analysis also
increases exponentially. Whereas 15 processes can be ana-
lyzed in less than 2 min, 19 processes require over 2 h of
computation.
Comparison with [25] We compare our results with the results
given in [25]. The main difference is a slightly different
measure in both computations: we focus on the expected

recovery time (ERT) here whereas in [25], the worst-case

(WC) recovery time was computed. The worst-case recov-
ery times obtained by our approach are given in Table 1 (in
italics). Comparing our results with the plots given in [25],
it seems that both approaches yield the same optimal val-
ues. However, we explicitly give the intervals for the optimal
values. This also allows a comparison between expected and
worst-case recovery times. The first difference is that for 9
processes a fair coin is still optimal for the worst-case recov-
ery time but a biased coin is better for the expected recovery
time. For larger number of processes, a biased coin is optimal
for both measures. However, the optimal bias differs between
both measures. For the worst-case, the optimal bias is far-
ther away from p = 0.5 compared to the expected recovery
time. For 15 processes for example, the optimal values for

the worst-case recovery time are p ≈ 0.26 and p ≈ 0.74
whereas the optimal values for the expected recovery time
are p ≈ 0.31 and p ≈ 0.69.

The approach in [25] plots the effect of different values
of p by sampling a large number of parameter values. The
approach can only return the best sample point but it is not
guaranteed to be optimal. In contrast, our approach ensures
that the returned intervals contain the optimal parameter val-
ues.

Kwiatkowska et al. [25] gave results for different param-
eter values for up to 15 processes. In comparison, we were
able to push the current state-of-the-art to 19 processes. Note
that [25, Fig. 3] does contain values for up to 21 processes,
but only for a fair coin p = 0.5. This is computationally
simpler because of the additional symmetry p = 1 − p. In
contrast, we compute results for all possible coin biases.

5.3 Timings of the parameter synthesis algorithm

The timings of different configurations of our algorithm for
increasing number of processes are depicted in Fig. 8. We
evaluate six different configurations of our parameter syn-
thesis algorithm and display the total time in a logarithmic
scale. Configuration Old Sparse(1) is the original algorithm
used in previous work [2]. This configuration uses a sparse
matrix representation of the PMC and is single-threaded. All
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Fig. 8 Timings for different configurations of the parameter synthesis algorithm on Herman’s protocol

remaining configurations use the improved version of the
algorithm as presented in Sect. 4. Configuration Sparse(1)

is most similar to the original algorithm as it also uses a
sparse matrix representation with one thread. Configuration
Symb(1) is single threaded as well but initially builds the
PMC in a symbolic representation using binary decision dia-
grams (BDDs). During bisimulation minimization a sparse
matrix representation is constructed [19]. This workflow
allows to quickly build the (large) original PMC in a memory
saving format and only use the memory exhaustive matrix
representation for the (smaller) bisimulation quotient. The
remaining configurations Symb(4), Symb(8) and Symb(16)

exploit the parallelization of the algorithm by using 4, 8, and
16 cores, respectively.

One can clearly see that the new algorithm significantly
improves upon the original one. Comparing Old Sparse(1)

and Sparse(1) which only differ in the used algorithm one
can clearly see that the improved algorithm is more than two
times faster. Using a symbolic representation improves the
runtime further. For Herman’s protocol with at least 13 pro-
cesses, Symb(1) is more than two times faster than Sparse(1).
Lastly, the parallelization again decreases the runtime. If we
compare for example Symb(4) to the original Old Sparse(1)

on Herman 13 and larger, the three main changes—improved
algorithm, symbolic building and parallelization—yield a
more than 14 times faster analysis. Instead of over 4 h for
Herman 17, the result can now be obtained within 17 min.

We provide a detailed breakdown of the timings on Her-
man’s protocol with 17 processes in Fig. 9 and compare the
different configurations. For each configuration we show the
total time (in seconds) on top of the corresponding bar. Addi-
tionally, we distinguish two separate timings:

1. Model building (in blue): the time needed to build the
PMC (either in symbolic or sparse representation) and
applying the bisimulation minimization,

2. Approximation algorithm (in red): the time needed to
perform the parameter synthesis via the approximation
algorithm.

Note that the total time also contains timings for e.g., dis-
tributing the PMC to all cores for parallel computation and
therefore is slightly larger than the sum of both build and
analysis time.

Figure 9a compares the old algorithm Old Sparse(1) from
[2] to the improved Sparse(1). We can again clearly see how
the revised algorithm shortens the analysis time by a factor
3.7 while the building time stays the same.

Figure 9b compares both model representations. Config-
uration Sparse(1) uses a sparse matrix representation while
Symb(1) initially starts with a symbolic BDD representation.
Comparing both configurations clearly shows the large influ-
ence of using the right model representation. Switching to a
symbolic representation yields a 20 times faster model build-
ing. Note that for Symb(1), building the initial PMC requires
only 3s and the remaining 200s are spent on the bisimulation
minimization.

Figure 9c compares the effect of parallelizing the algo-
rithm. We compare Symb(1) with the parallelized variants
Symb(4), Symb(8) and Symb(16) using 4, 8, and 16 cores,
respectively. Parallelization yields performance speed-ups
nearly linear in the number of cores. For example, the
approximation algorithm runs 3.25 times faster on 4 cores.
Moreover, the underlying operations for constructing and
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(a) (b) (c) (d)

Fig. 9 Detailed timings for different configurations of the parameter synthesis algorithm on Herman 17 (color figure online)

reasoning about BDDs are also performed on multiple cores,
thanks to functionality included in the multi-core BDD
library Sylvan [30]. As a result, using 4 cores instead of
1 core for model building also reduces the building time
by 50%. Using more than 4 cores does not seem to improve
the building time any further, most likely because the algo-
rithm for bisimulation minimization is still sequential.

Finally, Fig. 9d shows the influence of increasing the
desired precision from ǫ = 10−2 to ǫ = 10−4. Here, config-
uration Symb(1) is the baseline as before, whereas the other
four configurations SymbPr(1), SymbPr(4), SymbPr(8) and
SymbPr(16) are the more precise configurations which only
terminate if the approximation error is less than 10−4. We
see that increasing the required precision ǫ by a factor 100
leads to an increase in analysis time by a factor 4. However,
using more cores can mitigate this effect. The parallelization
becomes nearly perfectly linear for the higher precision: dou-
bling the number of cores reduces the analysis time by 50%.
This shows that the parallelization of our algorithm comes
with nearly no overhead and the cores are never idle.

Figure 10 shows the speed-up of all six considered config-
urations. The scale is logarithmic and configuration Symb(1)

is used as baseline. We discuss the trends for larger numbers
of processes (N > 9). We can again see how using a sparse
(instead of symbolic) representation leads to a decreased per-
formance. Combining the sparse PMC with the old algorithm
reduces the performance to one fourth of the baseline. On the
other side, using parallelization increases the speed-up com-
pared to a single process. Using 4 cores leads to a speed-up
of up to factor 3, 8 cores yield a speed-up of up to 4.5 and 16
cores yield a speed-up of up to 6. Note that these speed-ups
are not optimal. While with more cores the analysis times

gain a nearly perfect speed-up, the model building can not
be parallelized as efficiently.

Lastly, Fig. 11 considers the number of iterations of
the approximation algorithm and the correspondence to the
approximation error for configuration SymbPr(1) on Herman
17. Figure 11a plots the current upper and lower bound of
the ERT over the execution time of the approximation algo-
rithm. Each dot represents one iteration and is labeled with
the number of PLA calls within this iteration. In the begin-
ning (iteration 0), we choose zero as lower bound and obtain
an upper bound by sampling. This first upper bound is already
very close to the actual ERT and differs by only 3%. In gen-
eral, the initial sampling considers between a dozen and a
hundred sample points—depending on the number of initial
regions—and in most cases yields results close to the actual
ERT. After the first iteration, we also obtained a first lower
bound and the upper bound is already very near to the optimal
ERT. We can see that in further iterations mostly the lower
bound is improved while the upper bound remains nearly
unchanged. Thus, using the upper bound obtained after a
couple of iterations should already be very close to the opti-
mal ERT. The remaining time is spent improving the lower
bound by refining the parameter regions.

Figure 11b plots the difference between upper and lower
bounds over the execution time of the algorithm. Each dot
again represents one iteration and gives the number of PLA
calls per iteration. As in the previous figure, we can see that
the approximation error decreases very fast in the beginning.
After 13 min the precision is already smaller than 0.1 and
after 47 min it is smaller than 10−2. However, reaching a
precision of 10−4 takes more than 4 h. Later iterations also
take longer as far more regions must be checked. While for
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Fig. 10 Speed-up for for different variants of the algorithm on Herman’s protocol

(a) (b)

Fig. 11 Detailed timings for the iterations in one run of the algorithm on Herman 17

example, the first iterations need to check fewer than 100
regions, the last iterations check 20 times as many regions.
In general, reaching a good approximation with an error of
less than 0.1 can be reached within minutes while obtaining
more precise bounds might take several hours.

5.4 Speed reducer for Herman’s algorithm

Previously, we considered Herman’s algorithm in the random

bit interpretation (cf. Algorithm 1) and showed that using
different biases yields optimal expected recovery time for
different sizes of networks. The question however remains,
whether we can further improve the ERT for Herman’s
algorithm. We, therefore, consider several variants of the
algorithm in the following.

The first variant is a slightly different formalization of the
algorithm and is given in Algorithm 4. Here, with proba-
bility p the token is passed along by flipping the value xi

of the current process. With probability 1 − p the token is

Algorithm 4 Herman’s (random pass) algorithm for process
i
1: Variable: xi : boolean ∈ {0, 1}

2: Guarded Commands:

xi = xi−1 −→ p : xi := 1 − xi + (1 − p) : xi := xi ;

xi �= xi−1 −→ 1 : xi := xi ;

kept and xi remains unchanged. We call this variant the ran-

dom pass interpretation of Herman’s algorithm [25]. It was
already stated in [25] that for a fair coin with p = 0.5 both
interpretations random bit and random pass coincide. How-
ever, for biased coins this is not the case. This can be seen in
Fig. 12a, where we plotted the ERT of both interpretations for
Herman 9. For p = 0.5 both interpretations yield the same
result, but for other values of p, the random bit interpretation
performs better. Moreover, the random bit variant yields opti-
mal results for biased coins with p = 0.458 and p = 0.542
which are overall better then the results for random pass.
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(a) (b) (c)

Fig. 12 Expected recovery times for different variants of Herman’s protocol for 9 processes (color figure online)

Another possible improvement is to place a speed reducer

[13] on top of Herman’s algorithm (cf. Algorithm 2). We
extend both interpretations of Herman’s algorithm with a
speed reducer. Figure 12b shows the ERT for a speed reducer
on top of Herman’s random bit interpretation. The area col-
ored in green indicates ERT values which are better than
the optimal ERT of the random bit variant without speed
reducer. The best values can be achieved if q—the probabil-
ity to switch to speed-reducer mode—is small. The value
of p—the probability to switch back from speed-reducer
mode—is not as relevant but should also be small. Using
a speed reducer, we, thus, can further improve the ERT but
require 1 bit of additional memory, i.e., double the memory
consumption.

Figure 12c shows the speed reducer on top of the random
pass interpretation. Again, using a speed reducer improves
the ERT. In contrast to the previous variant, the random pass
speed reducer obtains optimal values for values of q ≈ 0.25
and p ≈ 0.1.

We also created a modified variant of the speed reducer,
called SR2. The steps of SR2 are given in Algorithm 5.
This variant is based on the regular speed reducer (cf. Algo-
rithm 2), but has a different behavior in speed-reducer mode.
Whereas normally the token is not passed along in speed-
reducer mode, in SR2 it is passed along with probability r and
kept with probability 1−r . SR2, therefore, combines all fea-
tures of the regular protocol—the probability r to pass along a
token—and the speed reducer—the two different modes. The
protocol requires three parameters which can be optimized.

We give a detailed comparison of all investigated variants
for Herman’s protocol in Table 2. The first column states
the considered variant of Herman’s protocol. We consider
Herman’s protocol in both the random bit and the random
pass variant. Both variants are also considered with a speed
reducer (SR) on top and with the modified variant of the
speed reducer (SR2). The second column in Table 2 indicates
the number of processes. The next four columns indicate the
number of states and transitions of the PMC after building and

Algorithm 5 Variant SR2 of speed reducer (random pass)
algorithm for process i

1: Variables:

xi : boolean ∈ {0, 1}

si : boolean ∈ {0, 1}, initial value 0
2: Guarded Commands (Step):

xi = xi−1 ∧ si = 0 −→ 1 : xi := (1 − xi );

xi = xi−1 ∧ si = 1 −→ r : xi := (1 − xi )

+ (1 − r) : xi := xi ;

xi �= xi−1 −→ 1 : xi := xi ;

3: Guarded Commands (Switch):

si = 0 −→ q : si := 1 + (1 − q) : si := 0;

si = 1 −→ p : si := 0 + (1 − p) : si := 1;

after applying bisimulation minimization, respectively. The
last three columns give the results for applying the parameter
synthesis algorithm. We used the configuration with sym-
bolic model building, 4 parallel processes and ǫ = 10−2.
The three columns give the optimal ERT, the optimal param-
eter values and the time (in seconds) required to obtain
these results. Note that multiple regions can contain optimal
parameter values. For the sake of simplicity, we, therefore,
output the best sample value which guarantees the upper
bound.

First of all, we see that using a speed reducer increases
the size of the resulting PMC by several orders of magni-
tude. This is due to the additional memory of 1 bit to keep
track of the current mode and to the change between the
speed-reducer modes which requires additional transitions
and therefore also additional states. Basically, we get a copy
of each PMC state for each speed-reducer mode. For 11 pro-
cesses, the PMCs contain more than 1 billion transitions and
cannot be analyzed further.

The results indicate that the random bit variant gives better
results than the random pass variant. For increasing number
of processes this difference becomes larger. The random bit
interpretations also profits from a biased coin whereas the
random pass variant yields the optimal results for a fair coin
with p = 0.5.
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The speed reducer variants significantly improve the ERT
compared to the original protocol. For example, for 9 pro-
cesses the random pass speed reducer variant is 12% better
than the original variant. Interestingly, for 9 processes the
random pass speed reducer variant is better than random
bit SR—whereas in the original protocol it is the other way
round. The variants SR2 with one additional parameter do not
further improve the ERT and yield exactly the same results
as the SR variant. Thus, adding more randomization to the
protocol does not change the ERT any more.

The timings for the analysis of the speed reducer variants
are orders of magnitude larger than for the original vari-
ants. This is mostly due to the increased state space sizes.
Additionally, the SR2 variants need again orders of magni-
tude more time than the SR variants. While the state spaces
sizes are similar between SR and SR2 the additional overhead
comes from the additional third dimension in the parameter
space. The additional parameter yields 8 new regions after
every split—compared to only 4 regions in 2 dimensions.

The last plot in Fig. 13 visualizes the improvements for
the ERT for all considered variants of Herman’s protocol. We
use the random pass interpretation with a fair coin as baseline
and depict the (absolute) differences for increasing number
of processes. As stated before, the random bit interpretation
with biased coin clearly improves the ERT and yields sig-
nificantly better results for large number of processes. The
speed reducer variants are even better and the random pass

SR yields the overall best results. The SR2 variants yield the
same results as SR and are therefore indistinguishable.

In conclusion, using a speed reducer seems promising to

improve the expected recovery times in Herman’s protocol.

5.5 Speed reducer for Dijkstra’s algorithm

As an additional example, we analysed Dijkstra’s self-
stabilizing algorithm [11]. We consider two variants: the
algorithm with a 3-state machine and the one with a K -
state machine where K = N equals the number of processes
N . Note that both variants are deterministic algorithms and
therefore require a dedicated process which behaves differ-
ently than the other processes. We also consider variants
where we extended both algorithms with a speed reducer.

The results are given in Table 3. We see that using a speed
reducer does not improve the ERT of Dijkstra’s algorithm.
The optimal parameter values are such that the speed-reducer
mode is nearly never entered (q ≈ 0) and also immediately
left again (p ≈ 1).

We can only analyze the variants for a small number of pro-
cesses (N ≤ 5), because the state space sizes of the resulting
PMCs explode. For the larger PMCs we run into a memory
out (MO). Additional state space reduction techniques such
as symmetry reduction are required to support the analysis
for larger number of processes. Note that for all considered
protocols, the bottleneck of the analysis is not our synthesis
algorithm, but the building of the model. In general, if we
obtain a simplified PMC, our algorithm is able to compute
the optimal parameter regions.

6 Related work

6.1 Model repair in probabilistic systems

In [5], the authors modify the probability of controllable
transitions to achieve a new model of the program that satis-
fies a desired property represented in the form of a rational
function over a set of parameters while minimizing the cost

Fig. 13 Improvements on ERT (compared to fair coin) for different variants of the algorithm on Herman’s protocol
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function. They use the state elimination method presented
in [8] to obtain the rational parametric function. They show
that this problem can be reduced to a non-linear optimiza-
tion problem. Their work is similar to the second approach
from our previous paper [2] which also uses the rational func-
tion. However as seen in [2] and proven in [22], this approach
does not scale well making the use of approximation methods
necessary. While they present a solution to the model repair
problem, their work differs from ours in two aspects. First,
they consider only one initial state. This significantly reduces
the memory and computation time. Second, their solution
works for models representing a single process or networks
that are not necessarily anonymous since their approach does
not guarantee the preservation of anonymity of processes.
Recall that the TPM of a distributed program is a function of
the TPMs of the underlying processes which is not accounted
for in this work.

In [27], instead of performing non-linear optimization as
done in [5], which is not scalable, the authors take a greedy
approach to finding the optimal evaluation of parameters that
results in satisfying the property. This greedy approach is
correct under monotonicity of the parameters. Our work is
different from this work as we are not only interested in
satisfying the property, e.g., having a recovery time below
a certain threshold, but in achieving the optimal recovery
time. Moreover, we approximate the optimal numerical val-
ues for parameters up to a desired precision and do not rely
on monotonicity. Also, in [7], the authors study an orthogo-
nal problem, where they use abstraction-refinement in order
to tackle the state explosion problem in model repair. We,
however, use parameter regions in order to find optimal bias.
One can of course combine the two techniques to gain more
scalability but this is outside the scope of this paper.

In [21], the authors analyze the fault-tolerance of inter-
process communication in a space probe. They use para-
metric probabilistic model checking to compute rational
functions for the availability of the space probe and find the
optimal parameter values. Their approach is similar to the
second approach from [2]. Due to the scalability issues with
the approach the authors restrict their analysis to one param-
eter. In contrast, our approximation approach also works for
multiple parameters and allows to analyze larger models with
significantly more states.

6.2 Analysis of self-stabilizing algorithms

In [25], the authors verified the asymptotic bounds on the
worst-case recovery time of Herman’s token circulation algo-
rithm with probabilistic model checking. By calculating
the worst-case expected recovery time for different prob-
abilities and network sizes, they made an interesting and
surprising observation that a fair coin does not lead to
minimum worst-case expected recovery time for networks

of size greater than 9. In this paper, for each network
size, we focus on the average-case expected recovery time
of the algorithm instead of the worst-case. Moreover, the
analysis in [25] was performed by sampling and there-
fore cannot guarantee finding the optimal parameter value.
In contrast, our approach computes bounds for the exact
optimum which can be refined up to the desired preci-
sion.

In [31], the authors approached our problem with genetic
algorithms. Although their results may be obtained using our
approach as well, the drawback of using genetic algorithms
is that there are no guaranteed theoretical bounds on the opti-
mality of the result. In contrast our approximation approach
gives sound error bounds on the result.

Finally, in [15], the authors studied the role of different
parameters on the convergence time of self-stabilizing sys-
tems using probabilistic model checking. In particular, they
showed that the asymptotic worst-case complexity is not nec-
essarily the best metric to characterize the performance of
self-stabilizing systems. The parameters studied include the
type of faults, place of occurrence of faults, etc. Also, in
[14], the authors used the same technique to study the per-
formance of weak-stabilizing algorithms. In [1], the effect of
schedulers, not the internal behavior of the program, on the
possibility and speed of convergence is studied through an
empirical study.

7 Conclusion

In this paper, we proposed an automated method to compute
the probability values that result in the minimum aver-
age recovery time in a given randomized self-stabilizing
distributed algorithm. We call this the optimal bias syn-

thesis problem. This work is based upon [2]. While [2]
presented three different solution approaches to the param-
eter synthesis problem, in this work we focus on the most
promising approach based on parameter lifting [29] and sig-
nificantly improve it compared to the original approach.
Our algorithm works as follows. First, we transform a
given randomized self-stabilizing algorithm into a para-
metric Markov chain (PMC). Next, to compute the best
probabilities, we compute over- and under-approximations
of the average recovery time for all parameter values. By
iteratively refining parameter regions which lead to small
convergence times, the optimal probabilities can be approx-
imated up to the desired precision. Our algorithm exploits
multi-core platforms by evaluating independent regions in
parallel.

Compared to [2], we delve deeper into evaluating the per-
formance of randomized self-stabilizing algorithms. First,
our results systematically confirmed the previous empirical
method [25] that a fair coin (p = 0.5) does not necessarily
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yield minimum expected recovery time in Herman’s random-
ized self-stabilizing token circulation. Given the observed
trend in our experiments, we conjecture that as the net-
work size grows, increasing the bias becomes more effective.
We also showed that our parallelization yields speed-ups
nearly linear in the number of cores. Furthermore, we com-
pared different techniques of model building and showed that
a combination of BDD-based model building with sparse
matrix computations significantly outperform explicit-state
techniques. Finally, we studied the impact of composing
speed reducers [13] with Herman’s algorithm and identified
probabilities that improve the performance of Herman’s algo-
rithm.

Future work includes the study of the problem in the
context of other distributed algorithms such as random-
ized leader election and consensus, and for probabilistic
programs [16]. One can also study the same problem in
the presence of different scheduling schemes (modeled as
a Markov decision process). A more challenging avenue
of research is to not only parameterize the probability
function, but also make the computational model paramet-
ric in terms of the number of processes. Finally, we can
use our techniques to automatically generate state encod-
ing [14,15] schemes to orthogonally improve the recovery
time.
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