
Synthesizing Test Data for Fraud Detection Systems

Emilie Lundin Barse H̊akan Kvarnstr̈om� Erland Jonsson
Department of Computer Engineering
Chalmers University of Technology

412 96 G̈oteborg, Sweden
femilie,hkv,erland.jonssong@ce.chalmers.se

Abstract

This paper reports an experiment aimed at generating
synthetic test data for fraud detection in an IP based video-
on-demand service. The data generation verifies a method-
ology previously developed by the present authors [7] that
ensures that important statistical properties of the authen-
tic data are preserved by using authentic normal data and
fraud as a seed for generating synthetic data. This enables
us to create realistic behavior profiles for users and attack-
ers. The data can also be used to train the fraud detection
system itself, thus creating the necessary adaptation of the
system to a specific environment. Here we aim to verify the
usability and applicability of the synthetic data, by using
them to train a fraud detection system. The system is then
exposed to a set of authentic data to measure parameters
such as detection capability and false alarm rate as well as
to a corresponding set of synthetic data, and the results are
compared.

1. Introduction

Fraud detection is becoming increasingly important in
revealing and limiting revenue loss due to fraud. Fraudsters
aim to use services without paying or illicitly benefit from
the service in other ways, causing service providers finan-
cial damage. To reduce losses due to fraud, one can deploy
a fraud detection system. However, without tuning and thor-
ough testing, the detection system may cost more in terms
of human investigation of all the false alarms than the gain
from reduction of fraud. Test data suitable for evaluating
detection schemes, mechanisms and systems are essential to
meet these requirements. The data must be representative of
normal and attack behavior in the target system since detec-
tion systems can, and should, be very sensitive to variations
in input data.

�Håkan Kvarnstr̈om is also with TeliaSonera AB, SE-123 86 Farsta,
Sweden

Using synthetic data for evaluation, training and testing
offers several advantages over using authentic data. Proper-
ties of synthetic data can be tailored to meet various condi-
tions not available in authentic data sets. There are at least
three application areas for synthetic data. The first is to train
and adapt a fraud detection system (FDS) to a specific en-
vironment. Some FDSs require large amounts of data for
training, including large amounts of fraud examples, which
are normally not available in the authentic data from the
service. The second application area is to test the proper-
ties of a FDS by injecting variations of known frauds or
new frauds into synthetic data to study how this affects per-
formance parameters, such as the detection rate. The false
alarm rate may also be tested by varying background data,
where background data is defined as normal usage with no
attacks. The third application area is to compare FDSs in a
benchmarking situation.

The aim of this work is to test the feasibility of generat-
ing and using synthetic data for training and testing a fraud
detection system. Our synthetic data generation is based on
the method proposed in [7], where we use small amounts of
authentic log data to generate a large amount of synthetic
data. The method identifies important statistical properties
and aims to preserve parameters important for training and
detection, such as user and service behavior. We apply the
data generation method on an IP based video-on-demand
(VoD) service running in a pilot test environment with real
customers. The authentic data collected from the service are
used to generate synthetic log files containing both normal
and fraudulent user behavior. The properties of the syn-
thetic log files are verified by visualizing them and using
them to train and test a fraud detection prototype.

Synthetic data are not commonly used in the fraud detec-
tion area, although, the use of manipulated authentic data is
discussed in some papers, e.g. [2] and [1]. In the intrusion
detection area, more work has been done using synthetic
test data. ([5] discusses similarities between fraud and in-
trusion detection systems.) Huge amounts of synthetic test
data were generated in the 1998 and 1999 DARPA intru-

sion detection evaluations [4]. Debar et al. [3] developed
a generic intrusion detection testbed, and suggest the use
of a finite state automata to simulate user behavior. While
this methodology is rather close to our approach, they did
not use this method in their testbed. They declared it prac-
tical only if the set of user commands is limited. Instead,
they used recorded live data from user sessions. Puketza et
al. [10] describe a software platform for testing intrusion
detection systems where they simulate user sessions using
the UNIX packageexpect. However, none of these methods
give sufficient control of the data properties of the synthetic
data. We believe that our method can provide better data
properties that are needed for training and testing in many
situations. Furthermore, our method provides scalability of
log data in both amount of users and time period.

Some interesting work has been done on measuring char-
acteristics in data and how they affect the detection systems,
e.g. Lee and Xiang [6], and Tan and Maxion [11]. In [8],
Maxion and Tan generate “random” synthetic data with dif-
ferent degrees of regularity and show that it affects the false
alarm rate drastically. The methods proposed in these pa-
pers may be useful for synthetic data validation, but have
not been used in this paper.

Below, Section 2 and 3 give a a summary of the method
proposed in [7]. The rest of the paper describes how we
apply the method on the VoD service and the verification of
the generated synthetic data.

2. Motivation for using synthetic data

This section gives the benefits of using synthetic data for
various types of testing and explains why authentic data are
not a solution in some cases.

2.1. Why not use authentic data?

Authentic data cannot be used in some cases for a num-
ber of reasons. The target service may still be under devel-
opment and thus produce irregular or only small amounts
of authentic data. We also have no control over what fraud
cases the data contain. Furthermore, it may be impossible
or at least very difficult to acquire the amount of or type of
data needed for tests. This in turn may be due to the fact
that only a limited number of users are available or that we
do not know whether the data set contains any frauds.

2.2. Benefits of synthetic data

Synthetic data can be defined as data that are generated
by simulated users in a simulated system, performing sim-
ulated actions. The simulation may involve human actions
to some extent or be an entirely automated process.

Synthetic data can be designed to demonstrate certain
key properties or to include attacks not available in the au-

thentic data, giving a high degree of freedom during test-
ing and training. Synthetic data can cover extensive peri-
ods of time or represent large numbers of users, a necessary
property to train some of the more ”intelligent” detection
schemes.

In [7], we provide an elaborate discussion of data prop-
erties that are important for training and testing fraud detec-
tion systems. These are summarized in the following bul-
lets:

� Data need to be labeled, i.e. we need to have exact
knowledge of the attacks included in the data.

� The attacks found in the input data are representative
of the attacks we expect to find in the target system.
(Not necessarily the same attacks that currently occur
in the system.)

� The number and distribution of attacks in the back-
ground data (fraud/normal data ratio) must be adapted
to the detection mechanism. Some detection methods
perform better if they are trained with data in which
attacks are overrepresented.

� The amount of data must be of a sufficient size. In
particular, certain AI algorithms need huge amounts of
training data to perform well.

� For testing, the number and distribution of attacks in
the background data (fraud/normal data ratio) should
be realistic.

� For testing, it is important that attacks in the input data
are realistically integrated in the background data. For
example, the time stamp of an attack, time between
attacks and the time between parts of an attack may
affect detection results.

� Normal (background) data should have similar statisti-
cal properties as authentic data from the target system.
Different behavior in the system may drastically affect
detection performance.

3. Data generation methodology

Synthetic data were generated by the methodology de-
scribed in [7]. For completeness, we briefly introduce the
method and refer to the original work for details.

The main components necessary for automating the data
generation process are specifications of desired user behav-
ior in the system, a user/attacker simulator and a system
simulator. The goal of the methodology is to guide the pro-
duction of these components. The starting point is the col-
lection of information about the anticipated user behavior
in the target system. The methodology includes generating
both background and attack data and thus it is necessary to
have information about possible attacks and normal usage.
These data serve as the basis for user and system modeling.

2

Figure 1 illustrates the methodology. The first step is the
collection of datathat should be representative of the antici-
pated behavior of the target system. Data may consist of au-
thentic background data from the target system, background
data from similar systems, authentic attacks and other col-
lections of possible attacks. The second step is toanalyze
the collected dataand identify important properties, such
as user classes, statistics of usage, attack characteristics and
statistics of system behavior. In step 3, the information from
the previous step is used to identify parameters that must be
preserved to be able to detect the anticipated attacks and to
create user and attacker profilesthat conform to the param-
eter statistics. Auser modelis created in step 4. This must
be sophisticated enough to preserve the selected profile pa-
rameters. Attackers are also modeled in this step. The user
and attacker simulators implement the models. The sys-
tem is modeled in step 5, and this model must be accurate
enough to produce equivalent log data as the target system
for the same type of input user actions. The system simula-
tor is then implemented according to this model.

Background data from similar systems

Data generation

User profiles

Authentic attacks

Authentic seed data:

5.

4.

3.

2.

1.

Authentic background data

Possible attacks

Attack statistics
User classes
User statistics

System statistics

Target

Data collection

system simulator

modelling

Data analysis

System modelling

Profile generation

User and attack
User simulator Attacker simulator

Figure 1. Synthetic data generation method

It is possible to use people instead of a user simulator to
create user actions and to use the whole or parts of the real
system instead of a system simulator. This may be prefer-
able in some situations, e.g. if the system or user behavior
is very complex and needs to be modeled in great detail. In
our experiments, we used humans to mimic fraudulent be-

havior and automata to generate normal background data.

4. Authentic data

This section describes how we implemented the collec-
tion of authentic data for the VoD service. The next section
(Section 5) presents the work of designing, implementing
and using the data analysis, user and system model.

4.1. The target Video-on-Demand system

The VoD service was in pilot operation and had a limited
number of users. It could thus provide only small amounts
of log data. This system consisted of a number of com-
ponents, shown in Figure 2. Each user had a set top box
(stb) at home, which was connected to the Internet via a fast
xDSL connection. When the set top box was turned on, it
automatically contacted the service providers DHCP server
(Dynamic Host Configuration Protocol server) to get a dy-
namic IP address. Then, the user could contact the applica-
tion server, login to it, browse the video database and order
a movie. The application server generated an authentication
ticket for the user. The VoD server then started delivering
the chosen movie after verification of the ticket.

router

serverDHCP

IP switch

Application
server

serverWWW

VoD
server

Database

set top box

DHCP client

Figure 2. VoD system components

In the VoD-system, a total of 12 ”test users” were active
during the service development. Thus, the amount of data
generated was not sufficient for training the fraud detection
modules. We used these twelve users as an approximation
of ”normal” users. They had no knowledge about the im-
plementation of the service or of the fact that their behavior
would be used for synthetic data generation.

4.2. Collection of the authentic seed data

We had the opportunity to work together with the devel-
opment team for the VoD service and could therefore spec-
ify the information collected in the log files. To be able to
decide what information to collect, we created a database
with expected frauds and the indicators or features needed
to detect them. Each indicator was analyzed to find out what
type of log data was needed to catch the indicator.

The test users of the VoD system were considered
”friendly users” and had been selected as test pilots based

3

on their physical location. All users were known to the de-
velopment team and thus no frauds were expected to occur.
These users generated the background data we collected.

We used employees that acted according to descriptions
of the expected fraud cases we had created. These fraud
cases were “injected” into the system by using two dedi-
cated set top boxes in the same way as we expect a fraudster
to use it.

Data were collected over a period of about three months
and the total amount of data was 65 MBytes.

4.3. Fraud data

Four fraud cases were “injected” into the authentic data:

Break-in fraud: The fraudster has “taken over” the iden-
tity of a legal user by hacking the user’s set top box. The
real user may use the service without knowing that he had
a break-in. An indication of a break-in could be a sudden
excessive usage of the service.

Billing fraud: To avoid paying for the movies ordered, the
fraudster has hacked the billing server. In our experiments
this was done by removing billing records in the application
server log file.

Illegal redistribution fraud: This means that a customer
receiving a movie in the VoD service transmits it to other
people not paying for the service. Our case of illegal distri-
bution was performed by uploading large files to a computer
on the Internet some time after the completion of a movie
download. Illegal redistribution of content could also be an
indication of an external break-in in the set top box where
the attacker in turn uses (and downloads) videos at the ex-
pense of a legitimate paying customer.

Failed logins: Several failed login attempts were added
with “dummy” user ID’s to imitate the behavior of people
trying to guess passwords.

4.3.1. Example of a fraud case.This subsection gives an
example of the process we used for each fraud case to de-
cide what the fraud indicators were and thus what informa-
tion we needed in the log files.

Fraud indicators for the fraud caseillegal (re)distribution
of servicesmay be:

� The ratio between transmitted and received data is sus-
piciously high.

� A great deal of data is transmitted (some period of
time) after data has been received.

� A great number of downloads are done.

For the first indicator we need user ID, IP address, bytes
transmitted and bytes received in the log data. The second
indicator requires IP address, bytes received, bytes transmit-
ted and time stamp. For the third indicator we need user ID,

IP address, time stamp, session ID, billing data and bytes
received.

Thus, we found that the following information needed
to be in the log data: (1) Data from the DHCP server con-
taining information about when a user has his set top box
switched on and off; (2) Router statistics in which the num-
ber of bytes to and from a user is registered; (3) Data from
the application server containing time stamp, user ID, IP
address, session ID etc. of user logins; (4) Detailed in-
formation about movie orders from the application server;
(5) Billing information generated by the billing system; (6)
VoD server information about what content was actually de-
livered to a certain user. These raw data records from the
service components were converted to a common format.

5. Generation of synthetic data

The goal of the synthetic data generation was to obtain
enough data of sufficient quality to be able to develop and
train a fraud detection prototype for a VoD service.

5.1. Data analysis and profile generation

The seed data were analyzed and we identified a num-
ber of parameters we considered important, which we then
included in the user profiles. The importance of the parame-
ters was evaluated by studying the features needed to detect
the identified template fraud examples. We also selected the
parameters necessary to determine statistical values for the
transitions in the state machine used to model user behavior.

The idea was to sort users into a number of classes based
on their behavior. Each class of users has one set of pa-
rameter values. Because of the limited number of authentic
users, it was difficult to find natural user classes without
letting each user form its own user class. This, and the
project time limits, resulted in the grouping of all normal
users into a single class, which is a coarse simplification of
normal user behavior. The frauds affecting user behavior
were assigned to their own classes. Normal user behavior
and fraudulent user behavior can both be scaled up during
the generation process. This allows us to vary the ratio be-
tween fraudulent and normal data for our test cases.

A perl program parsed the log files and collected data
for each transition in separate files. Smallmatlabprograms
plotted these data and fitted different probability distribu-
tion functions to the data. In our first data generation at-
tempt we used the normal probability distribution function
to model the time intervals for the transitions. It was ob-
vious when the data were plotted that most of our data sets
had the shape of an exponential or gamma distribution func-
tion. A chi-square test was used to check which distribution
had the best fit. An example of a plot of transition time and
the corresponding probability distribution function is shown
in Figure 3. This histogram shows the authentic transition

4

times from login to movie order, and the dashed line shows
the corresponding probability distribution, from which we
get the simulated transition times.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

20

25

Figure 3. Histogram of time from login to order (in
seconds)

The statistical profile contains the probability for each
transition and a distribution function with fitted parameters
for the transition time.

Statistics needed for the simulation of the system were
also analyzed. For example, traffic for different events,
the behavior of the DHCP server and delays were studied.
These statistics were collected in a configuration file for the
system simulation program.

5.2. Generation of synthetic data

The implementation of the user and system simulation
is a trade-off between simplicity and realism. This pro-
cess may be iterative, where a simple version is first imple-
mented and validated to identify whether a sufficient num-
ber of the properties considered important are preserved. If
this is not considered good enough, some level of detail can
be added.

In our experiments, both the user and system models
were implemented as an event-driven simulations inperl,
requiring about two thousand lines of code each.

User simulation.The goal of the user simulation is to pro-
duce a chronological list of actions for each simulated user.
What makes these actions realistic is the accuracy of the sta-
tistical profiles used as input and level of detail in the user
model implementation. Our simulation used a finite state
machine to mimic user behavior (Figure 4).

In state 0, the user’s set top box (stb) is switched off. The
only thing he can do in this state is to turn the set top box
on and enter state 1. In state 1, he can try to log in. If it is
a successful login, he is transferred to state 2, where he can
start to order movies. If he fails to log in, he is transferred
to state 4, where he can continue to make failed logins until

1

0

2 4

3 5

1: session state
 stb=on
 login=no failed_login=no
 order=no failed_order=no

0: initial state
 stb=off
 login=no failed_login=no
 order=no failed_order=no

2: login state
 stb=on
 login=yes failed_login=no
 order=no failed_order=no

stb_on

stb_off

failed_login

logout
login

logout

movie order

movie_order

failed_order

failed_order

failed_order

stb_off

stb_off

 stb=on
3: movie−order state

 login=yes failed_login=no
 order=yes failed_order=no

4: failed login state
 stb=on
 login=no failed_login=yes
 order=no failed_order=no

5: failed movie−order state
 stb=on
 login=yes failed_login=no
 order=no failed_order=yes

stb_off

stb_off

movie_order

logout

failed_loginlogin

stb_off

Figure 4. User state machine

he succeeds or gives up and switches the set top box off.
In state 2, the user can make movie orders. If he fails he
is transferred to state 5, where he can continue to try to or-
der movies until he succeeds, logouts, or switches the set
top box off. This models the actions that affect output log
data in the service. The statistics derived in the analysis of
authentic data are used to set the probabilities of transitions
to different states and the time between the entering of one
state until a certain transition is done.

Fraudulent users do not always follow this model. For
example, the break-in fraudsters skipped the login proce-
dure and were able to order movies without successful
authentication. This required some extra parameters and
“fraud flags” in the user simulation program. Other types of
deviant behavior may require further additions to the pro-
gram, even though this was the only modification we found
necessary in these experiments to mimic the behavior of the
injected frauds.

With this simple automata we could simulate a large
number of users and attackers covering extensive periods of
time. Despite its simplicity it provided sufficiently detailed
user actions for the next step, system simulation.

Video-on-demand system simulation.The actions of the
virtual users serve as input to the simulated target system to
generate synthetic data. We used statistics from the authen-
tic data (e.g. data volumes and delays in networks and com-
ponents) to configure the simulation. A further option was
added to control the generation of billing records in order to
simulate fraudsters that circumvent the billing subsystem.

We used an event-driven simulation. Each user action in
the input data was first fed to the set top box module. From
there it was added to the simulation list to be passed on to
the right component module after a configurable delay. The

5

possible user events wereturn on set top box, turn off set top
box, login, andmovie order. Figure 5 illustrates the result-
ing event flow in the simulated system when it is fed with a
login action. The login event is passed from the set top box
to the access node (IP switch) via the simulation list (“sim”
in the figure). From the access node, the event is passed
to the router module, which calculates router statistics for
the event, and also to the application server, where the login
is done. The success of the login is determined during the
user simulation and thus included in the input user action.
The application server generates an authentication log entry
(AuthenticationNotification) of the same format as that of
the real system. In this way all events are passed around in
the system, and the proper components generate log mes-
sages when events arrive.

log
server

AuthenticationNotification

login event

access
node server

router

set top box
application

simsim sim

Figure 5. Flow in simulated system at a login action

Our simulation model is a coarse approximation of the
real system environment. We do not model network behav-
ior at packet level, for example, as the router statistics are
only measured over a time interval. Other shortcomings are
described in Section 8.

6. Input data for the detection experiment

We verified the generated data by using them to develop
and train a fraud detection prototype, i.e. according to the
first application area mentioned in Section 1. This section
describes the data used in the experiment.

6.1. Authentic data

The authentic data needed for the detection experiments
are the data created by authentic fraud users. These users
have long periods of rather normal behavior and occasional
fraud sessions. The frauds are described in Section 4.3.
Since we had very few authentic fraud sessions, we had to
use the same data set here as we used as seed data for the
synthetic data generation process.

6.2. Generated synthetic data

The simulation described in Section 5, resulted in syn-
thetic data for seven months containing six hundred “nor-
mal” users. Three fraud types, out of the four described in
Section 4.3, were simulated. We used 100 break-in fraud-
sters, 100 fraudsters doing illegal redistribution, and finally
100 cases of fraudsters that hacked the billing server.

This resulted in several GBytes of synthetic raw log data
in unpacked text format. The raw log data were converted
to a common format where data were grouped into sessions
in the same way as the authentic log data were converted.
This resulted in about 80 MB of log data for each group of
100 users. It was possible to generate log data in less than a
day on a normal PC for 100 users acting under a period of
seven months.

6.3. Subjective assessment of data

To form a subjective concept of the simulated data and
try to estimate its validity, we did a great deal of visualiza-
tions of the authentic and synthetic users. Below we show
some of the plots produced in this process.

Normal users.The plots show the events for a user for a pe-
riod of 15000 minutes (about 10 days). The first two plots
(Figure 6 and 7) show the behavior of two different authen-
tic users. The next plot (Figure 8) shows the behavior of
one of the synthetic users.

The scale of the x-axis is in minutes (from the start date
of the log files). The y-axis shows which state the user cur-
rently is in. These numbers correspond to the states in the
user model (see Figure 4). The dotted red line (or grey if
viewed in black-and-white printing) follows the user state.

level 1.0:User has switched on the set top box
level 2.0:User is logged into the application server
level 3.0:User has ordered a movie
level 4.0:User has made a failed login
level 5.0:User has made a failed movie order
Finally we use “level 0.5” to show downloading or upload-

ing sessions (does not correspond to any user state).

The fourth and fifth levels are used less frequently since
these correspond to failed logins and failed movie orders,
which are not common. The events that cause the user to
switch states are plotted as spikes in the graph, with the
height of the state the user is entering, i.e. logins with a
height of 2.0 and orders a height of 3.0.

The user in Figure 6 is very active. His set top box is
switched on most of the time, several days in a row. The
plot shows two sessions. In the first session he waits a short
time before logging in. After some hours he orders a movie.
Shortly after the movie order, download starts and he con-
tinues to download data for several hours. Then the session
continues with several more logins and downloads. It seems
that the user is logged out automatically after some time,
but this is not possible to see in the log files. Downloads of-
ten start at login, and downloads are done even when there
are no movie orders. The reason for this is that users can
also watch free TV channels, and that they probably watch
movie trailers before ordering a movie.

6

0

1

2

3

4

5

50000 52000 54000 56000 58000 60000 62000 64000

st
at

e

time (minutes)

failed logins
failed movie order

movie order
logins
state

download

Figure 6. Plot of authentic user (user ID 0.123)

0

1

2

3

4

5

50000 52000 54000 56000 58000 60000 62000 64000

st
at

e

time (minutes)

failed logins
failed movie order

movie order
logins
state

download

Figure 7. Plot of authentic user (user ID 0.128)

0

1

2

3

4

5

14000 16000 18000 20000 22000 24000 26000 28000

st
at

e

time (minutes)

failed logins
failed movie order

movie order
logins
state

download

Figure 8. Plot of synthetic user (user ID 2.137)

On the opposite end, the authentic user in Figure 7 is
not an avid user of the service. He has several shorter ses-
sions but no movie order. Still, downloading is going on
during the sessions. The short sessions indicate that he al-
ways switches the set top box off when not watching TV.
Here the downloads starts regularly, and a detailed exami-
nation revealed that all these sessions occur in the evenings,
lasting less than a couple of hours. The conclusions that can
be drawn from these plots are that the first user seems to be
home during daytime, he has irregular TV habits, and leaves
the set top box switched on even when it is not used. The
second user probably has a more ordered life, works during
daytime, watch TV in the evenings, and sleep at night.

Since we use only one normal user profile in the sim-
ulation, the synthetic user in Figure 8 should behave like
a medium active user , which seems to be the case. Hence,
this synthetic user also has very similar behavior to the other
synthetic users. He has rather long sessions, but not as long
as the first authentic user. He also orders fewer movies and
downloads data less often. However, it seems that many of
the download sessions are comparatively long, which may
be an implementation mistake in the simulation.

Fraud users.An example of a break-in fraudster is shown
in Figure 9. In this figure, the fraud behavior is not obvious.
However, in the next Figure (10), only the logins and orders
are shown for the break-in fraud user. Here we can see that
there are orders in the sessions before the user has logged

in. Comparing this behavior to that of a normal user, we
see that there is always a login before an order in a normal
session.

The billing fraud plots looks very much like those of nor-
mal authentic and synthetic users. The absence of billing
records cannot be seen in these plots, and therefore we do
not show the plots here.

A mistake was made in the realization of the illegal redis-
tribution fraud in the authentic data which caused the router
log file to be empty during this period. This meant that we
did not have complete authentic seed data for this type of
fraud. Since we wanted our detection system to be able to
detect also this type of fraud, which was considered an im-
portant type, we decided to “manufacture” an illegal redis-
tribution profile manually. The profile reflected the planned
behavior, i.e. it contained traffic download after orders and
a great deal of upload traffic some hours after the download.
We used this to perform detection tests using a second set
of data. However, since we could not test this case against
authentic data our results are of limited value and we will
address this fraud case further in this report.

It should be noted that all types of frauds that we wish to
trigger our detection mechanism can be created “manually”
in this way, by editing the statistical profile. This can also be
used for testing the detection capability of a fraud detection
system when frauds or background traffic are varied.

7

0

1

2

3

4

5

2000 4000 6000 8000 10000 12000 14000 16000

st
at

e

time (minutes)

failed logins
failed movie order

movie order
logins
state

download

Figure 9. Plot of break-in fraudster in authentic data (user ID 0.131)

0

1

2

3

4

5

2000 4000 6000 8000 10000 12000 14000 16000

st
at

e

time

movie order
logins

Figure 10. Plot of break-in fraudster showing logins and orders (user ID 0.131)

7. Detection experiments

The fraud detection system used in the experiments was
a neural network with an added ability to handle temporal
dependencies. The neural network was trained with syn-
thetic data containing about 25% fraudulent and 75% nor-
mal behavior. The detection capability of the neural net-
work was then tested with authentic data containing frauds.
The detection results with authentic data were compared to
detection results with test sets created from the synthetic
fraud data to find out how much they differ.

7.1. The neural network

The neural network was trained using synthetic data and
was then used to detect the attacks existing in the authen-
tic data. A feed-forward neural network model was used,
consisting of seven inputs, a single hidden layer with seven
nodes, and a single output giving indications of fraud. The
net was trained independently for each fraud type, thus re-
quiring only a single output bit. The initial input weights
were randomized before training to prevent the network
from finding local minima. The neural network model was
implemented in C with approximately 900 lines of code.

As conventional neural network architectures and mod-
els are not well suited for patterns that vary over time, an
exponential trace memory was used [9]. The memory can
be viewed as a buffer maintaining a moving average (expo-
nentially weighted) of past inputs:�xi(t) = (1� �i)xi(t) +
�i�xi(t � 1). The moving average is calculated for all in-
put parameters over a configurable time interval grouping
events together. The configurable�i allows for the rep-
resentation of averages spanning various intervals of time.
The higher the value of�i, the fewer the current input pat-
terns influenced by input from previous intervals. We used
�i = 0:7 in our detection tests, which proved to provide a
sufficient decay rate for our purposes.

7.2. Neural network input

The sum of all input events (over an interval) was fed to
the inputs of the neural networks. For simplicity, we used
an interval of 1440 minutes (24 hours). This allowed our
detection scheme to detect fraud with a granularity of 24
hours, which should be sufficient for most service environ-
ments using fraud detection. A finer granularity could have
been chosen but would not have been useful, as most users
only order a few movies over a period of this length. The
input events were assigned to the neural network’s inputs as
follows:

1. Sum of successful login attempts
2. Sum of failed login attempts
3. Sum of successful movie orders
4. Sum of failed movie orders
5. Sum of movie delivery notifications
6. Sum of billing notifications
7. Ratio between uploaded and downloaded number of

bytes [(dl/(1+ul))/1000]

The values were not normalized as most input values
were roughly within the same range. An exception was in-
put 7, which was divided by 1000 to fall within a range of
magnitude similar to that of the other input values.

Parsing audit records, handling intervals and preparing
audit data according to the network inputs were done using
aperl script (approximately 500 lines of code).

7.3. Detection of billing fraud

Synthetic data containing occurrences of billing fraud
(see Section 4.3) were used to train the neural network.
Thirty-five synthetic users active in a total of 3,000 (1,440
minutes) intervals were randomly selected. Of these inter-
vals, 2,023 were non-fraudulent and 976 contained fraud-
ulent activities. In the plots below, we definethe epochas

8

the time interval containing the first available log entry. The
network was trained for 1,000 rounds, selecting input val-
ues from random intervals. One thousand rounds of training
took approximately 15 minutes on 350 MHz Silicon Graph-
ics O2+ having 650 MB of memory.

Figure 11 shows detection tests using a second set of syn-
thetic data. Intervals containing fraudulent activities were
successfully detected with few errors. A few occurrences
of false negativeswere found, which were caused by peri-
ods of user inactivity, i.e. the user did not order any movies
during the interval, which could be perfectly normal even
for a fraudulent user. In addition, at the end of the fraud
periods,false positiveswere observed for one to two inter-
vals. This was caused by the memory that handles temporal
correlation of data.

0

0.2

0.4

0.6

0.8

1

1.2

20 30 40 50 60 70 80

F
ra

ud
 li

ke
lih

oo
d

Days since epoch

Detection results - Billing fraud in synthetic data

Detected Fraud
Fraudulent period

Figure 11. Detection of Billing fraud in synthetic
data

If a significant number of events are processed during a
few intervals, the trace memory could contain enough his-
tory data to trigger an alarm. This should not pose a prob-
lem in most cases, as the error follows a period of actual
fraud. The value of�i, controlling the decay rate of the
trace memory, plays a role in controlling false positives and
negatives. A fast decay rate would lead to more false nega-
tives while a slower decay rate would lead to a higher num-
ber of false positives at the end of fraudulent periods.

Next, the events contained in the authentic data (with la-
beled occurrences of fraud) were fed to the network. The
data were known to contain billing frauds for a single user
between May 18 and June 14 (day 10 - day 30 in Figure 12).
The results are shown in Figure 12, which clearly shows that
our neural network detection model works as trained.

The problem of false positives at the end of a fraudulent
period remains, but does not prevent a security officer from
successfully identifying the occurrence of those fraudulent
activities, which can then be further investigated.

7.4. Detection of break-in fraud

The break-in frauds mimic a user who breaks into a cus-
tomer’s set top box and seriously alters the user’s usage

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

F
ra

ud
 li

ke
lih

oo
d

Days since epoch

Detection results - Billing fraud in authentic data

Detected Fraud
Actual Fraud

Figure 12. Detection of Billing fraud in authentic
data

behavior (e.g. by ordering a substantially higher number
of movies over some periods). As previously mentioned,
break-in frauds were simulated by a team of ”fraudsters”,
and from their actions synthetic data containing fraudu-
lent users were generated and used for training and test-
ing. Again, 35 synthetic users were chosen that were ac-
tive in a total of 3,000 intervals. Of these, 2,016 were non-
fraudulent and 984 contained fraudulent activities. Similar
to the training in billing fraud, the network was trained for
1,000 rounds with random input values.

Figure 13 shows the detection results of a second set of
synthetic data. A nearly perfect match is achieved in the
interval shown. However, two intervals show false negative
behavior, one in the beginning of the fraudulent period and
one at the end. Again, this does not seriously affect the
usefulness of the detection system.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

F
ra

ud
 li

ke
lih

oo
d

Days since epoch

Detection results - Breakin fraud in synthetic data

Detected Fraud
Fraudulent period

Figure 13. Detection of break-in fraud in synthetic
data

The detection of break-in frauds in authentic data is
shown in Figure 14. The result is not as promising as in
the synthetic data. In addition to the period of actual fraud
(days three to six), several false positives are shown at vari-
ous intervals (approximately at days 33, 62, 68, 71, 75, 81,
85). An investigation of the reason for this showed that the
fraudulent user did not deviate a great deal in consumption

9

compared to the ”normal” user. This made it difficult for the
neural network to distinguish between normal and fraudu-
lent behavior.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

F
ra

ud
 li

ke
lih

oo
d

Days since epoch

Detection results - Breakin fraud in authentic data

Detected Fraud
Actual Fraud

Figure 14. Detection of break-in fraud in authentic
data

The average numbers of movie orders per day are plot-
ted in Figure 15. The fraudulent period (day 4-7) did not
exceed forthcoming consumption enough to allow the net-
work to successfully differentiate fraudsters from normal
users. Clearly, our team of ”fraudsters” did not succeed in
their job of ordering an excessive amount of movies during
that time period. The false positives were also affected by
the temporal memory, as the false alarms were preceded by
quite a few days of moderate usage which together, over
time, built up sufficiently large input values for the neural
networks to trigger an alarm. Once again, this illustrates the
value of carefully balancing the decay rate of the memory
function for each type of fraud.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

M
ov

ie
 o

rd
er

s/
in

te
rv

al

Days since epoch

Average movie orders for a fraudulent user

Movie orders/interval

Figure 15. Movie order averages for a fraudulent
user (authentic data)

7.5. Quantitative results

Table 1 shows the detection results. TheSensitivityand
Specificityare shown in the first two columns of the table.
Sensitivity[true pos / (true pos + false neg)] shows to which
extent fraudulent activity is classified correctly. If detec-
tion is high in false negatives, the sensitivity becomes poor.

The Specificity[true pos / (true pos + false pos)] indicates
the degree of misclassification of non-fraudulent events. If
a test shows high a false positive value, the specificity be-
comes poor. A goal of classification systems is to be high
in both specificity and sensitivity. TheNumber (#) of pe-
riods defines the total time frame during which detection
was performed. In our tests, a single time quanta was 1440
minutes. The periods specified for each test are harmonized
with the graphs illustrated in Figures 13, 14, and 15. For
each fraud type,True positives, False Positives, False nega-
tivesandTrue negativesare shown.

As can be seen in the table,specificityis somewhat better
for the synthetic test data than for the authentic data. This
is expected as the neural network detector was trained using
synthetic data and also these data are more regular. How-
ever, thesensitivityis better for the authentic data, which is
more unexpected. This is likely a result from the fact that
the synthetic data had a higher fraud rate. In short, the au-
thentic data contained mostly of normal data with only short
periods of fraud, while the synthetic data had a significantly
higher percentage of fraud, which provided more opportuni-
ties for misclassification. Overall, we believe that the differ-
ences between synthetic and authentic data are reasonably
small and indicate that the training using our synthetic data
was successful.

8. Discussion of results and future work

Scalability versus complexity tests.We created hundreds
of simulated users acting for a period of seven months. This
was sufficient to train and test the fraud detection prototype.
We are thus satisfied with the ability of the method and the
implementation to scale the number of users and the time
period of the synthetic logs.

An interesting scalability issue that should be studied
further is the effects of a more complex modeling of the
users and the system. Implementing outliers and several
user classes should not affect the scalability very much, but
the use of a more complex state machine for user behav-
ior would probably affect the performance of the simulation
tool.

Diversity of background data. The background data were
rather homogeneous. There were, for example, no “out-
liers” among the users. One reason for this was that only
one user profile was used, which meant that all the simu-
lated users behaved according to the same statistical distri-
butions. The obvious solution to this problem is to use sev-
eral user classes with different profiles, which was our ini-
tial intention, but time limits in the project prevented this.
For our detection experiments, it seems that the diversity
of the background data was good enough for the billing
fraud, since the normal behavior in the authentic data did
not trigger very many false alarms. However, it posed a

10

Table 1. Detection results
Fraud Sensitivity Specificity # of periods True pos. False pos. False neg. True neg.
Billing fraud (synthetic data) 0.89 0.98 365 97 3 11 254
Billing fraud (authentic data) 1.0 0.93 61 3 4 0 54
Break-in fraud (synthetic data) 0.92 1.0 89 26 0 2 61
Break-in fraud (authentic data) 1.0 0.86 87 4 11 0 72

bigger problem for the break-in fraud, where normal users
and fraudsters showed very similar behavior. It would be in-
teresting to make tests using background data with different
degrees of homogeneity.

The user model.The user model may be too simplistic
for certain applications. Some behavior was deliberately
left out of the model to keep it simple, such as use of the
network for other things than downloading movies. Nei-
ther were long-term variations in users’ activity modeled.
It would be interesting to develop a more advanced user
model. However, we believe that the user model is of suffi-
cient detail in the VoD application.

The system model.We used static parameters for control-
ling delays and some of the router statistics in the system
model. In a real system, these would vary depending on
load etc. Future versions of our simulator will be more
dynamic in simulating such dependencies. Neither did our
simulator model distinguish “strange” user behaviors, such
as malformed network traffic, spoofing etc, which limits the
ability to simulate attacks based on bugs in the software and
the hardware. This could also be improved in future ver-
sions of the simulator.

Fraud cases.Our process of injecting frauds in authentic
data can be further improved. We injected frauds in only a
few users’ behavior and for only short periods of time. This
was acceptable for our application but makes it more diffi-
cult to verify that the modeling of the users and the system is
sufficient for more general use and other target applications.
We plan to establish a more lengthy list of fraud scenarios
for future experiments.

Suitability for other types of services.Future work will
show whether the data generation process works equally
well for other types of services and for intrusion detection.

9. Conclusions

We have developed a method for generating large
amounts of synthetic log data that preserve statistical prop-
erties of a selected set of authentic data used as a seed. We
have experimentally shown that the synthetic data generated
can be successfully used for training and testing a fraud
detection system. Future experiments will verify whether
this also holds for more general classes of seed data and for
other types of fraud detection systems. We learned several
lessons in the process of generating and testing data which
will help us to further improve our methodology.

10. Acknowledgments

We would like to thank Telia Research AB (nowadays
TeliaSonera) and the people working on the VoD service
for their cooperation and help. We would also like to thank
the participants of the EURESCOM project ”P1007”.

References

[1] P. Burge, J. Shawe-Taylor, Y. Moreau, B. Preneel, C. Stoer-
mann, and C. Cooke. Fraud detection and management in
mobile telecommunications networks. InProceedings of the
European Conference on Security and Detection ECOS 97,
London, April 1997. ESAT-SISTA TR97-41.

[2] P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo.
Distributed data mining in credit card fraud detection.IEEE
Intelligent Systems, 14(6), Nov/Dec 1999.

[3] H. Debar, M. Dacier, A. Wespi, and S. Lampart. An experi-
mentation workbench for intrusion detection systems. Tech-
nical Report RZ2998, IBM Research Division, Zurich Re-
search Laboratory, Zurich, Switzerland, Mar. 1998.

[4] J. W. Haines, R. P. Lippmann, D. J. Fried, E. Tran,
S. Boswell, and M. A. Zissman. 1999 darpa intrusion de-
tection system evaluation: Design and procedures. Techni-
cal Report Technical Report 1062, MIT Lincoln Laboratory,
Feb. 2001.

[5] H. Kvarnstr̈om, E. Lundin, and E. Jonsson. Combining fraud
and intrusion detection - meeting new requirements. InPro-
ceedings of the fifth Nordic Workshop on Secure IT systems
(NordSec2000), Reykjavik, Iceland, Oct. 2000.

[6] W. Lee and D. Xiang. Information-theoretic measures for
anomaly detection. InProceedings of the 2001 IEEE Sym-
posium on Security and Privacy, May 2001.

[7] E. Lundin, H. Kvarnstr̈om, and E. Jonsson. A synthetic fraud
data generation methodology. InLecture Notes in Computer
Science, ICICS 2002, Laboratories for Information Technol-
ogy, Singapore, Dec. 2002. Springer Verlag.

[8] R. A. Maxion and K. M. Tan. Benchmarking anomaly-based
detection systems. InInternational Conference on Depend-
able Systems and Networks, New York, New York, June
2000. IEEE Computer Society Press.

[9] M. C. Moser. Neural net architectures for temporal se-
quence processing.Addison-Wesley Publishing, Redwood
City, CA, 2001.

[10] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A.
Olsson. A methodology for testing intrusion detection sys-
tems.Software Engineering, 22(10), 1996.

[11] K. M. C. Tan and R. A. Maxion. Determining the operational
limits of an anomaly-based intrusion detector.IEEE Journal
on Selected Areas in Communication, 21(1), Jan. 2003.

11

