
Synthesizing Third Normal Form Relations 

from Functional Dependencies 

PHILIP A. BERNSTEIN 

University of Toronto 

It has been proposed that the description of a relational database can be formulated as a set of 
functional relationships among database attributes. These functional relationships can then 
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1. INTRODUCTION 

Research on the relational database model has shown that the functional relation- 
ship is an important concept when one is considering how to group attributes into 
relations [3, a-121. It has been proposed by some that the basic description of a 

database can be formulated purely as a set of such functional relationships from 
which the relational schema can be synthesized algorithmically [3, 121. It is the 

purpose of this paper to develop a provably sound and effective procedure for 
synthesizing relations satisfying Codd’s third normal form from a given set of 

functional relationships. Also, the schema synthesized by our procedure will be 
shown to contain a minimal number of relations. 

This method assumes the existence of at most one functional relationship con- 

necting any one set of attributes to another. This uniqueness assumption, which is 
required by all earlier methods as well, raises difficult semantic questions that will 

be discussed in detail. 
The first three sections are an introduction to the problem of synthesizing rela- 

tions from functional dependencies. Section 2 of the paper reviews the relational 
model, the concept of functional dependency, and Codd’s normal forms. Two new 
concepts are introduced, “superkey” and “embodiment.” Section 3 outlines the 
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general synthesis problem and presents a simple algorithm for synthesizing rela- 

tions from functional dependencies. Section 4 introduces Armstrong’s axiomatization 

of functional dependencies and comments on the uniqueness assumption and other 
semantic considerations of this theory. The main synthesis algorithm is described 

in Section 5. Section 6 examines Codd’s third normal form property applied to re- 
lations that are synthesized by two versions of the synthesis algorithm. The section 

concludes with the presentation of a new algorithm for synthesizing provably third 
normal form relations. In section 7, the synthesized schema is shown to be minimal 
in size. 

2. THE RELATIONAL MODEL 

2.1 Relations 

In Codd’s relational database model, mathematical relations over a set of domains 
are used to describe connections among data items [7]. However, not all relations 

serve equally well in describing these connections [S], To judge the efficacy of various 
classes of relations, we begin by reviewing the terminology associated with the re- 
lational model. 

Conceptually, a relation is a table in which each column corresponds to a distinct 
attribute and each row to a distinct entity (or tuple) . For each attribute there is a 

set of possible associated values, called the domain of that attribute. It is common 
for different attributes to share a single domain. For example, the attributes QUAN- 

TITY-IN-STOCK and SIZE-OF-CLASS both assume values from the do- 
main called NONNEGATIVE INTEGERS. 

An (entity, attribute) entry in a relation is a value associated with the entity 
chosen from the domain of the attribute. Formally, a relation is a (finite) subset of 
the Cartesian product of the domains associated with the relation’s attributes. 

The notation for describing the structure of a database relation includes a rela- 
tion name (say R) and a set of attributes in R (say { A1 , Az , . . . ,. A,]) and is 

written R(A, , A, , . . . , A,) ; e.g. see Figure (la). The ordering of attributes is 
immaterial since attribute names are distinct within a relation. (This is one reason 

for distinguishing between attributes and domains.) Notationally we will use upper 
case letters near the beginning of the alphabet for simple (i.e. singleton) attributes 

and ones near the end of the alphabet for composite (i.e. groups of) attributes. 
The set of entities that comprise a relation normally changes over time as en- 

tities are inserted, deleted, and modified. This is one important way that database 
relations differ from mathematical relations. 

The word “relation” is often used in the literature to describe both the structure 

of the relation (e.g. R(A1 , . . . , A,,)), called its intention, which is static, and the 

EMPLOYEE(EMP#, NAME, DEPT#) 

DEPARTMENT(DEPT#, MGR#) -- 
INVENTORY(STOCK#, DEPT#, QTY) 

(4 

EMP# --f NAME 

EMP# --) DEPT# 

DEPT# + MGR# 

STOCK#, DEPT# 4 QTY 

(b) 

Fig. 1. Relations and functional dependencies: (a) an example of a relational schema 

(underlined attributes are keys); (b) functional dependencies for the schema of (a). 
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, 
set of tuples in the relation, called its extension. In what follows, the word “relation” 

will refer to an intention unless explicitly stated otherwise. That is, we will usually be 
referring to the structure of a relation, rather than the set of tuples themselves. 

2.2 Functional Dependencies 

As we will see in later sections, it is important to consider functional relationships 
when choosing how to group attributes into relations. Functional relationships 

among database attributes are formalized in the concept of functional dependency. 
Let A and B be attributes, let DOM(A) be the domain of A and DOM(B) be 

the domain of B, and let f be a time-varying function such that f: DOM(A) --, 
DOM(B) . $ is not a function in the precise mathematical sense because we allow 

the extension off to vary over time in the same sense that we allow extensions of 
database relations to change over time. That is, if f is thought of as a set of ordered 

pairs ((a, b) ( a E DOM(A) and b E DOM(B)}, then at every point in time for 
a given value of a E DOM(A) there will be at most one value of b E DOM(B). 
To distinguish f from a mathematical function, we call f a functional dependency 

(abbreviated FD) . For notational convenience, we generally leave out the “DOM” 
and write f: A + B. If there is an FD f: A + B, then B is said to be functionally 
dependent on A. 

The above definitions are generalized in the obvious way for functional depen- 
dencies over compound attributes. If X = {A, , . . . , A,] and Y = {Bl , . . . , B,,,) 
are sets of attributes, then f: X -, Y means f: DOM(AI) X . . * X DOM(A,) 
--) DOM(B1) X . . . X DOM(B,) . We will normally leave off the set notation in 
FDs and write S: {At , . . . , A,} -+ {B1 , . . . , B,] simply as f: A1 , . . . , A, -+ 

Bl,..., B, . As an example, the functional dependencies for attributes in Fig- 
ure 1 (a) are given in Figure l(b). 

In this paper we will assume that for any two sets of attributes X and Y, there is at 

most one FD X + Y. Attributes may need to be renamed to guarantee this 51~- 
sumption. This restriction is an important one, and it will be discussed in detail 
in Section 4.2. We will also show later that nonfunctional relationships need not 
satisfy this uniqueness assumption. 

Given this assumption, if f: A -+ B we will frequently write A -+ B as an ab- 
breviation. The notation A -I+ B means that there is no FD A -+ B that is of in- 
terest (although at a given point in time in some relation, it may be true that no 
value of A has more than one corresponding value of B) . 

Let R(A,, . . . , A,) be a relation and let X be a subset of {Al , . . . , A,,]. X is 
called a key of R if every attribute in {A1 , . . . , A,) that is not in X is functionally 
dependent upon X and if no subset of X has this property. Clearly a relation can 

have many keys. A superkey of R is any set of attributes in R that contains a key 
of R. (Every key is also a superkey.) The concept of superkey is introduced mainly 
to simplify our proofs in later sections. 

2.3 Operations on Relations 

In his original description of the relational model, Codd introduced the relational 

algebra as a data manipulation language for the relational database model [7]. 
There are two basic relational algebraic operations that will be of some interest 
to us: projection and join. 
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The projection of the extension of a relation R on a subset of its attributes X 
is the set of tuples obtained by excising those attributes not in X. If two tuples are 
now indistinguishable because they only differed in the attributes that were elimi- 
nated, then they are “merged” into a single tuple. That is, the result of the projec- 
tion must be a subset of the Cartesian product of the domains associated with the 
attributes of X. 

The join operation is used to make a connection between attributes that appear 
in different relations. The only join operation we shall consider here is the natural 

join (i.e. equality join). The natural join of the extension of a relation R(A, B) 
with the extension of relation S(B, C) on domain B, denoted R*S, is defined to 
be ( (a, b, c) 1 (a, a) E R and (b, c) E S}. Th t a is, it links together all values of 
A and C that are related to common B values. 

2,4 Schemas 

The purpose of any data model, relational or otherwise, is to allow the user of the 
model to describe and manipulate those relationsips among objects in the real 
world that he intends to store in the database. In the relational model, such a 
collection of relationships is represented in a relational schema. A relational schema 
consists of a set of database relations and for each relation the specification of 
one or more keys (e.g. see Figure 1 (a) ) . 

We will say that a functional dependency X + A is embodied in a relation 
R if X is a key of R and A is any other attribute of R. The set of FDs embodied in a 
schema is the union of the FDs embodied in all of the relations of the schema. 

Note that this formulation of schema is a modification of Codd’s [S], where FDs 
are given as information additional to the relations and their keys. We have adopted 
this modified notion of schema for several reasons. First, all data definition languages 
that we know of only allow the specification of relations and keys. Second, our 
definition of schema eliminates the need to talk explicitly of FDs. The FDs exist 
implicitly by virtue of our definition of the keys and embodiment. Third, we will 
see that the third normal form organizes a relational schema so that every FD that 
is given as external information is either embodied in some relation or can be re- 
covered from embodied FDs by the join and projection operations. Taking this 
notion of embodiment as a primitive concept simplifies the ensuing theory con- 
siderably. 

2.5 Normalization 

Codd observed that certain relations have structural properties that are undesir- 
able for describing databases. This led him to define a series of three normal forms 
for relations. 

First, relation-valued domains are excluded from relations, A relation is in Jirst 
normal form (abbreviated 1NF) if each domain contains simple values. There are 
two main advantages to 1NF [7]. First, it allows the database to be viewed as a 
collection of tables-a very simple and understandable structure. Second, it per- 
mits the definition of a small class of primitive operators that are capable of manipu- 
lating relations to obtain all necessary logical connections among attributes. 

The second and third normal forms are introduced to correct problems caused 
by certain functional dependencies. To examine these problems, consider the re- 
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lation DEPT-INV (STOCK#, DEPT#, QTY, MGR#) obtained by joining the 

DEPARTMENT and INVENTORY relations of Figure l(a) on the attribute 
DEPT#. The insertion of the first inventory item for a particular DEPT# into the 
extension of DEPT-INV creates a new connection between that DEPT# and 
its MGR#. The deletion of the last inventory item for a particular DEPT# loses the 
connection between that DEPT# and its MGR#. These side effects, called insertion- 
deletion anomalies, only occur when the first or last tuple of a DEPT# is inserted 
or deleted. Also, the repetition of the connection between a DEPT# and its MGR# 
for each STOCK# in the DEPT# can lead to an inconsistent relation if arbitrary 
updates on individual tuples are permitted. These problems arise because MGR# 
is functionally dependent on only part of the key STOCK#, DEPT#. To eliminate 
these problems from DEPT-INV, DEPT-INV must be put into second normal 
form. 

A partial dependency occurs when an attribute is functionally dependent upon a 
subset of a set of attributes. Let f: A1 , , . . , A,, + B and g: A1 , . . , , A, + B 
be functional dependencies where m < n. The attributes Am+l, Am+2, . . . , A, 
are extraneous in f since A1 , . . . , A, are sufficient to functionally determine B. 
In this case, B is said to be partially dependent on Al , . . .#, A,, . If for a given f 
there is no g with the above property, then B is fully dependent on A1 , . . . , A, . 
That is, there are no extraneous attributes in the domain off. 

If an attribute Ai appears in any key of R thenit is said to be prime in R. Other- 
wise it is nonprime in R. A relation is in second normal form (abbreviated 2NF) 
if i;t is in 1NF and each of its nonprime attributes is fully dependent upon every key 
[S]. The relation DEPT-INV (STOCK#, DEPT#, QTY, MGR#) is not in 2NF 

because MGR# is a nonprime attribute and is partially dependent on the key 
STOCK#, DEPT#. The relations DEPT and INVENTORY in Figure l(a) are 
in 2NF. 

Consider now the relation EMP-DEPT (EMP#, NAME, DEPT#, MGR#) 

obtained by joining the EMPLOYEE and DEPARTMENT relations of Figure 
1 (a) on DEPT#. Although EMP-DEPT is in 2NF, it displays the same problems 
as DEPT-INV. Inserting or deleting the first EMP# in a particular DEPT# 
creates an anomaly, for a DEPT#-MGR# connection is created or destroyed in 
the process. The repetition of the DEPT#-MGR# connection for each EMP# in 
the DEPT# creates the same consistency problem as in DEPT-INV. In this case, 
the problems arise because MGR# is functionally dependent on the key EMP# 
via the attribute DEPT#. To eliminate the problems, the relations EMP-DEPT 

must be put into third normal form. 
Let R(A,,..., A,) be a relation. An attribute Ai is transitively dependent upon 

a set of attributes X if there exists a set of attributes Y G (A1 , . . . , A,] such that 
X + Y, Y -t+ X, and Y + Ai with Ai not an element of X or Y. 

A relation is in third normal form (abbreviated 3NF) if none of its nonprime at- 
tributes are transitively dependent upon any key [8]. A 3NF relation is also in 
2iW, for if an attribute Ai is partially dependent on a key X, then Ai is transi- 
tively dependent on X since X --+ X’, X’ -H X, and X’ + Ai for some X’ C X. 
The relation EMP-DLCPT is not in 3NF because MGR# is nonprime and is transi- 
tively dependent upon the key EMP#. All of the relations in Figure l(a) are in 
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3NF (and hence 2NF), given the FDs of Figure 1 (b) . Further examples of normal 
form relations and surrounding problems can be found in [7-g], 

3. SYNTHESIZING A RELATIONAL SCHEMA 

3.1 The Synthesis Problem and Nonfunctional Relationships 

Codd showed that by applying simple decomposition steps to a 1NF relation in 

which the FDs were known, the relation could be split up into a set of relations in 
3NF that embodies all of the FDs [8]. In [3] it was proposed that since the FDs 

completely determine whether or not a relation is in 3NF, one could choose the 

FDs as the basic concept and build 3NF relations from them. In advancing this 
proposal, an efficient algorithmic technique was presented to actually construct 
relations from FDs. In this paper we present an improved algorithm and then 

discuss properties of schemas synthesized by this algorithm. 
The approach of building a relational schema from FDs rests entirely on the 

ability to represent all data relationships as FDs. Clearly though, not every logical 
connection in the world is functional. Nevertheless, we claim that all connections 

among attributes in a database description can be represented by FDs. As long as 
connections are functional there is of course no problem. Nonfunctional connections 

require special treatment. 
A nonfunctional connection f among a group of attributes Al , AZ , . . . , A, will 

be represented as the following FD : f: A1 , AZ , . . . , A,, + 0. 8 is an attribute 
that is unique to $; it does not appear in any other FD. Each FD representing a 

nonfunctional relationship has its own private 8 attribute. The underlying domain 
for all of these 0 attributes is the set { 0, l} . For each element (al , uz , . . . , a,) E 
DOM(A1) X DOM(A2) X . . . X DONI( f(e) u2,. . . , a,) = 1 if and 

onlyif (ar,a~,..., a,) is related under f, Thus, the extension off completely de- 
fines a nonfunctional relationship among A, , . . . , A, . For example a nonfunc- 
tional relationship between a DRIVER and AUTOMOBILE, where each AUTO- 
MOBILE can be driven by more than one DRIVER and each DRIVER can drive 

more than one AUTOMOBILE, is represented by the FD DRIVER,AUTOMO- 
BILE + 81. 

Note that more than one nonfunctional relationship can exist among a set of 
attributes without violating the uniqueness assumption of FDs. For example we 
can have a second relationship between DRIVER and AUTOMOBILE that 

indicates ownership: DRIVER,AUTOMOBILE ---f 02. By assigning a unique 0 

to each nonfunctional relationship, the uniqueness assumption for FDs is retained. 
This 8 notation allows us to represent all nonfunctional relationships as FDs. 

The synthesis algorithm will produce approximately one relation for each of these 
nonfunctional relationships. In Section 5 we shall show precisely how each of these 

“nonfunctional FDs” becomes embodied in the synthesized relational schema. 

3.2 Formalizing the Synthesis Problem 

Although the motivation for the synthesis problem is from database management, 
one can formalize the problem in purely symbolic terms as follows. We are given 
a set S of symbols (i.e. attributes) and a set F of mappings of sets of symbols into 
symbols (i.e. FDs) . The problem is to find a collection C = 1 Cl , . . . , C,) of 
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We are given the following set of FDs: 
fi:A-+B f,:B + D 
fz: A-1 C f6:D-+B 
fa:B-,C f,j: ABE -+ F 

We group the FDs according to common left-hand sides, obtaining four groups: 

91 = lfl,fil 93 = Ifs) 
82 = lfa,frl Sr = IfsI 

For each group we construct a relation consisting of all of the attributes in the group: 

RI&B,C) Ra QYV 
WELCP) R~WVW) - 

where the underscored attributes are keys. 

Fig. 2. Deriving a schema from FDs 

subsets of S (i.e. a collection of relations) and for each Ci a collection of subsets of 
Ci (i.e. a collection of keys for each relation) satisfying three properties: First, F 
is “embodied” in C (i.e. the relations embody the given FDs) . Second, each Ci 

can have no transitive dependencies (i.e. it is in 3NF). Third, the cardinality of 
C is minimal. 

This treatment of the problem is still somewhat fuzzy since we have not yet 
discussed the algebraic rules for composing FDs. To motivate the need for these 

rules, we present a simple synthesis algorithm. This algorithm ignores algebraic 
considerations and will be shown to be inadequate. 

3.3 A Simple Synthesis Procedure 

One (overly) simple way to obtain relations from a given set of FDs is to group 
together all attributes that are functionally dependent upon the same set of at- 
tributes. This suggests the following procedure. First, partition the given set of 
FDs into groups such that all of the FDs in each group have identical left sides. 
Then, for each group construct a relation consisting of all the attributes appearing 
in that group. The left side of the FD in each group is a kev of the corresponding 
relation. For example see Figure 2. 

Several undesirable properties of this method can be seen in the example. First, 

the synthesized relations are not in 3NF. For example, in relation RI of Figure 

2, C is transitively dependent on the key A. In R4, B is partially dependent on 
the key AE. The unnormalized relations are due to redundancies in the given set 
of FDs. We will see later that fi is redundant and that B is an extraneous attribute 
in&. 

Second, the left sides of FDs are not necessarily keys of the relations, although 
they are always superkeys. In Rq ABE is a superkey, but not a key, since B is ex- 
traneous. 

Third, this procedure synthesizes too many relations. Since f4 and fs are inverses 
of each other, the relation Ra is extraneous. This results from a failure of the pro- 

cedure when constructing RZ to recognize D as a second key by virtue of f5 , rather 
than to put fb into a separate relation. 

To solve these problems, we must first formalize the concept of a redundant 

FD. We will then return to a presentation of a synthesis algorithm that overcomes 
the above difficulties. 
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4. THE ALGEBRA AND SEMANTICS OF FUNCTIONAL DEPENDENCIES 

4.1 Armstrong’s Axiomatization of Functional Dependencies 

The complete axiomatization of FDs given by Armstrong [l] provides a theoretical 
background to the study of the algebra of FDs that is treated in later sections. 

Armstrong shows that if a given set of FDs exist in (the extension of) a relation, 
then any FDs that can be derived from the given set by using the axioms must 
also exist. Armstrong presents several equivalent axiomatizations of FDs. The 

one we will use is based on properties of FDs proved by Delobel and Casey [lo]. 
They are 

Al. (reflexivity) X --+ X. 
A2. (augmentation) if X + Z then X + Y + Z. 

A3. (pseudotransitivity) if X -+ Y and Y + Z + W then X + Z -+ W. 
where the symbol “+” means “set union” (of not necessarily disjoint sets) . 

If R(A, B) is a relation, then axiom Al can be applied with X = {A, B) to show 

that A, B + A, B or with X = {A] to show that A ---f A. 
The meaning of A2 is simply that if f: X + Z, then one can create another FD, 

g, where the domain of g includes X as well as some other extraneous attributes Y 

whose values have no effect on the value of Z selected by g. So, knowing that 
A-+A,wecanobtainA,B-+A(i.e.X = (A}, Z = {A),andY = (B}). 

Axiom A3 is a substitution rule for composing FDs. Let f: X --+ Y and g: Y + 

Z -+ W. The axiom claims that there is an h: X + Z + W. TO see where h comes 
from, consider the application of h to a given r E DOM(X) and z E DOM(Z) 

in two steps. First, f is applied to 2, yielding a unique y E DOM(Y). Second, 
g is applied to y and z, yielding a unique w E DOM(W) and thereby completing 
the application of h. Symbolically we can say h(x, z) is defined to be g(f(z) , z) . 
Also, note that in the statement of axiom A3 if Z is the null set, then pseudotransi- 
tivity becomes simple transitivity. 

Let G be a set of FDs. The closure of G, denoted G+, is defined to be the smallest 
superset of G that is closed under Al, A2, and A3. For a given G, Gf can be shown 
to be unique. By Armstrong’s theory we know that if G is a given set of FDs for a 
relation R, then each FD in Gf also exists in R. 

An FD g E G is redundant in G if Gf = (G - {g} ) +. H is a nonredundant covering 
of a given set of FDs G if GC = Hf and H contains no redundant FDs. 

An important property of FDs that will be used later to prove a number of 

theorems is stated in Lemma 1. It is based on the concept of a “derivation,” which 
we will informally consider to be a series of applications of Armstrong’s axioms 

on a given set of FDs. A formal development appears in the Appendix. 
LEMMAS. LetGbeasetofFDs,andletg:X+YbeanFDinG.Ijh:V+W 

is in Gf and g is used for some derivation of h from G, then V + X is in G’. 
PROOF. We give here an intuitive argument using an informal notion of a der- 

ivation. A formal proof using the “derivation tree” model of derivations is given 
in the Appendix. 

We introduce the notation U =+ Z to mean that the FD U -+ Z can be derived 

by an application of one of Armstrong’s axioms on a given set of FDs. The nota- 
tion U =+* Z means that U --+ Z is derivable by using several applications of the 

axioms. Now the lemma states that there is a derivation V 3, W using g. That is, 
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there is a derivation V ** ZX =+ ZY =+* W for some (possibly empty) set of 
attributes Z (the step ZX j ZY is the step that uses g) . But V =+* ZX implies 
V + ZX, which implies V + X, thereby proving the lemma. q 

4.2 Semantics of Functional Dependencies 

The treatment of FDs in this paper is a strictly syntactic one based on Armstrong’s 

axioms. To use this approach, we must make the following assumption of unique- 
ness: For a given set of FDs G and an FD X --+ Y, either X -+ Y is not in Gf or 

there exists a unique FD X + Y in G+. That is, if there are two FDs on the same 

set of attributes, then they are the same FD ; if f : X 3 Y and g : X + Y, then 
f is identical to g, Thus, the set of FDs that are accepted as input to the synthesis 

algorithm is assumed to satisfy not only Armstrong’s axioms, but also the unique- 
ness assumption. (Both of these assumptions are also required for all previous 

syntactic approaches to 3NF (e.g. [lo, 11, 121)). That this assumption is quite 

strong can be seen from several examples. 
Let fi: DEPT# --+ MGR# and fi: MGR#,FLOOR 4 NUMBER-OF-EM- 

PLOYEES. One interpretation of fi and fi is that fi determines the manager of each 

department and fi determines the number of employees working for a particular 
manager on a particular floor. By applying pseudotransitivity to fi and fi we ob- 

tain f3: DEPT#,FLOOR --f NUMBER-OF-EMPLOYEES, which determines 
the number of employees of the manager of a particular department on a particular 
floor. If a manager can manage more than one department, then $3 is not the same 
as the syntactically identical FD gl: DEPT#,FLOOR + NUMBER-OF- 
EMPLOYEES, which determines the number of employees of a particular depart- 
ment on a particular floor. To make g1 distinct from fa , one has to change an at- 
tribute name to make the FDs syntactically distinct. For example one could change 
fi and gl such that fi : MGR#,FLOOR + NUMBER-OF_EMPLOYEES-OF- 

MANAGER and g, : DEPT#,FLOOR --) NUMBER-OF-EMPLOYEES-OF- 

DEPT. Now gl is distinct from the composition of fi andfi . 
As a second example, let f4: EMP# --) MGR# and f5: MGR# + EMP#. It must 

be the case here that f4 is the inverse of f6 , For if we compose 14 and fh , we obtain 

g2: EMP# + EMP#. Since there is only one FD connecting EMP# to EMP# (by 
our assumption), and since by Armstrong’s axioms the identity function must 
exist, then gz must be the identity map. This implies f4 = f?. If we take the in- 
terpretation that f4 maps an employee into his manager and f6 maps a manager’s 
MGR# into his corresponding EMP#, then of course f4 # fbl. So to take this in- 
terpretation, one must make f4 and fs syntactically distinct (e.g. fs: MGR# + 
EMP#-OF-MGR) . 

As a third example, let f6: STOCK# + STORE# and f,: STOCK#,STORE# 

+ QTY. Since the composition of f6 and f? is g3: STOCK# + QTY, it must be (by 
our assumption) that the attribute STORE# in f7 is not needed. But suppose fs 
maps a STOCK# into the STORE# of the store that is in charge of ordering that 

item and f7 maps the STOCK# of an item and the STORE# of the store in which 
it is being sold into the quantity on hand, In this case g3 does not imply that STORE# 
is extraneous in f7 . To prevent this syntactic inference from taking place, we must 
change an attribute name (e.g. fs : STOCK# + ORDERING-STORE#) . 

In each of these examples, a syntactic inference was either erroneous or mislead- 
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ing. In each case, we solved the problem by renaming an attribute to distinguish 
it from another attribute. This renaming essentially moves some semantic knowl- 

edge that we have about an FD onto the syntactic level, where it can be used by 
the algebra of FDs. 

Specifying a set of FDs that can lead to no invalid syntactic inferences is clearly 
a difficult problem. For no syntactic check based only on the algebra of FDs can 

determine whether a given set of FDs satisfies the uniqueness assumption. Yet, 
if we are to make use of a formal algebra of FDs, we must make the assumption 

that all syntactic inferences are valid. If we had an automated semantic analyzer 

that could judge the validity of each syntactic inference, then we could use it as a 
sieve to toss out invalid inferences. Unfortunately such a semantic analyzer is well 

beyond the state of the art. So we will add to our assumption of the validity of 
syntactic inferences the proviso that all syntactic inferences are (or at least can be) 

checked for semantic validity. If an inference is invalid, it can either result in re- 

naming of some attributes or be simply rejected. 
Third normal form is a strictly syntactic property that is governed by the 

algebra of FDs. In this paper we give a complete account of mapping from FDs 
into a 3NF schema, given that Armstrong’s axioms and the uniqueness assumption 

are accepted. Given Armstrong’s completeness proof, we believe these assumptions 
to be quite reasonable in modeling relational databases. We are not attacking the 
problem of how to judge the semantic validity of syntactic inferences. Semantic 
problems of this type are not well understood and seem to be more difficult than 

the syntactic probIem of determining 3NF. Their solution remains a matter for 
further research. 

5. A MORE SOPHISTICATED SYNTkiESlS PROCEDURE 

5.1 A Description of the Algorithm 

The simple synthesis procedure of Section 3.3 led to problems because the rules 
for composing FDs were ignored. The main difficulty is that the redundant FDs 

that filter into the synthesized schema create extra attributes and contribute to 
unnormalized connections among attributes. By first taking a nonredundant 
covering of the given set of FDs, the normalization problems can be alleviated. 
In Figure 2 for example, fi is redundant and therefore will not appear in a non- 
redundant covering of the given FDs, and the 3NF violation of RI is thereby 
avoided. 

Finding a nonredundant covering is not sufficient to avoid problem FDs such as 
fa in Figure 2. This further problem can be eliminated by excising extraneous at- 
tributes from the left sides of FDs. An attribute Xi is extraneous in an FD g E G, 

9: X1, . . . , X, --+ Y, if X1,. . . , Xi-l, Xi+1 , . . . , X, + Y is in Gf. Eliminating 
extraneous attributes helps to avoid partial dependencies and superkeys that are 
not keys, as in R4 of Figure 2. 

If two relations have keys that are functionally dependent upon each other (i.e. 
are equivalent), then the two relations can be merged together. This can be ac- 
complished in the synthesis procedure by merging together two groups of FDs if 
their left sides are functionally equivalent, For example g2 and g3 in Figure 2 can 

be merged into a single group. 
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The following procedure includes the above improvements : 

ALGORITHM 1 

1. (Eliminate extraneous attributes.) Let F be the given set of FDs. Eliminate extraneous 
attributes from the left side of each FD in F, producing the set G. An attribute is extraneous 
if its elimination does not alter the closure of the set of FDs. 

2. (Find covering.) Find a nonredundant covering H of G. 
3. (Partition.) Partition H into groups such that all of the FDs in each group have identical 

left sides. 
4. (Merge equivalent keys.) For each pair of groups, say HI and Hz , with left sides X and Y, 

respectively, merge HI and HI together if there is a bijection X ++ Y in H+. 

5. (Construct relations.) For each group, construct a relation consisting of all the attributes 
appearing in that group. Each set of attributes that appears on the left side of any FD in 
in the group is a key of the relation. (Step 1 guarantees that no such set contains any extra 
attributes.) All keys found by this algorithm will be called synthesized. The set of constructed 
relations constitutes a schema for the given set of FDs. 

In what follows, we shall refer to Algorithm 1 with step 4 excised as Algorithm 

l(a). 
A linear time algorithm for testing membership in the closure of a set of FDs is 

presented in [2]. Using this procedure, one can implement Algorithm 1 with a time 

bound of O(L’) , where L is the length of the string encoding the given set of 

FDs. 

5.2 Completeness of the Synthesized Schema 

A schema S completely characterizes a set of FDs F if the closure of the FDs embodied 
in S equals F+. To show that Algorithm 1 synthesizes a schema that is a complete 

characterization of the given FDs, consider a set of FDs F that is given as input 
to Algorithm 1. Let H be the set of FDs that result from eliminating extraneous 
attributes and redundant FDs. Clearly, H+ still equals FC. Let S be a schema 

synthesized from F. Since H is exactly the set of FDs embodied in S and Hf = 
F+, every FD in F can be derived from a subset of the FDs embodied ins. Hence, 

S completely characterizes F. 
We would like to be certain that the extension of every FD in the given set F 

can be retrieved from the extension of the synthesized schema S using relational 
algebra. We will argue that this follows from the fact that S completely characterizes 
F. 

Consider some f: X + A E F. We begin by noting that extraneous attributes in 
X can be ignored. That is, if the extension of an FD j’: X’ + A where X’ E X 
can be retrieved from the extension of S, then since f can be obtained from j’ simply 
by augmentation, we can treat j’ to be the same FD as j. Now, since S completely 
characterizes F, there is a derivation for j’ based on the FDs H that are embodied 
in S. In the Appendix, we show that if f’ has no extraneous attributes, then it can 
be derived from H using only the pseudotransitivity axiom. Since an application of 
psuedotransitivity corresponds exactly to a join in relational algebra, the deriva- 
tion for j’ from H can be simulated by a sequence of joins on the extension of the 
relations of S. In this way, the extension of every j E F can be retrieved from the 

extension of S using relational algebra. That is, our notion of “complete characteri- 
zation” satisfies the intuition that all relationships specified in the given set of 
FDs are actually retrievable from the extension of the synthesized schema. 
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5.3 Nonfunctional Relationships 

We introduced a special notation for representing nonfunctional relationships in 

our input FDs. We must now make sure that these FDs behave in the expected 

way. 
If X ---f 8 is in the set of FDs given to Algorithm 1, then either X + 8 or Y + 0, 

where Y ts X, appears in the schema synthesized by the algorithm. This is a conse- 
quence of the following lemma, which is proved in the Appendix. 

LEMMA 2. If X 3 8 is in a set of FDs G, then for any nonredundant covering 
H of G, either X + 8 is in H or Y 4 8 is in H, where X --t Y and Y + X. Cl 

Thus the nonfunctional relationships appear in the schema in nearly the same 
form in which they are specified in the given set of FDs. 

By the above lemma, the 0 attributes, which were invented to permit the repre- 

sentation of nonfunctional relationships, always appear in the synthesized schema. 
How are they interpreted? To see this, consider the following example. Suppose 
two nonfunctional relationships were specified in the given set of FDs, fl: AB + 81 
and fi: AB + 02 . (Note again that the uniqueness assumption of FDs does not 

force’uniqueness of nonfunctional relationships between A and B.) Step 4 of Alg. 
1 merges these two FDs into a single group, yielding a relation R(A, B, 81, 02). 

In order to distinguish whether a given pair of values for A and B satisfies 

fi , fi , or both fi and fi , the O1 and 02 attributes must be retained. For example 
(a, b, 0, 1) E R means a, b satisfies j2 but not fl . Note that if there is only one 
nonfunctional relationship among a set of attributes, then the 8 attribute can gen- 
erally be dropped, since this problem of distinguishing among relationships dis- 

appears. For example, if only fi were present, then it is customary only to include 
(a$) pairs that are related under fi; a tuple (a,b,O) would normally not be in- 
cluded in the extension. Therefore in this case, the 8 attribute would be dropped 

altogether. 

6. THIRD NORMAL FORM SCHEMAS 

6.1 Introduction 

In this section we show under what conditions various synthesized relations are in 

3NF. We begin by showing that Algorithm l(a) (i.e. Algorithm 1 without step 4) 

always produces a 3NF schema. We then examine Algorithm 1. A property of der- 
ivations of nonprime attributes is introduced and shown to be a sufficient con- 

dition for Algorithm 1 to produce a schema in 3NF. Unfortunately there are cases 
of FDs that do not satisfy this property and therefore can lead to relations with 
transitive dependencies. One such example is presented and shown to be a counter- 
example to a theorem given by Delobel and Casey. 

6.2 Algorithm 1 (a) ‘Schemas 

To prove that every relation synthesized by Algorithm l(a) is in 3NF, we show 
that a transitive dependency implies the existence of a redundant FD in the non- 
redundant covering. We will use Lemma 1 to show the existence of an FD that 
creates the contradiction. Lemma 1 will be used in this way in all succeeding 3NF 
proofs. 
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THEOREM 1. Let R(A). . . , A,) be a relation synthesized from the set of FDs F 
by using Algorithm l(a). Then no nonprime attribute of R is transitively dependent 
upon any key of R. That is, R is in 3NF. 

PROOF. Suppose Ai is nonprime and is transitively dependent upon a key K 

of R. (K need not be synthesized.) That is, there is an X C (A1 , . . . , A,] such 
that. K +X, X -H K, and X --+ Ai are in F+, and Ai is not in X. 

We first observe that Ai is transitively dependent upon the synthesized key of 

R. Let Z be the key of R that appears on the left side of the FDs that were used 
in synthesizing R. Z + X is in Ff since Z is a key of R. Furthermore X -H Z, for 

if X --+ Z, then X + Z and Z -+ K would imply X -+ K, contradicting X -tf K in 

the original transitive dependency. Hence Z --+ X, X +P Z, and X -+ Ai is also a 
transitive dependency. 

Let H be the nonredundant covering of G computed in Algorithm l(a). We shall 

now show that Z + Ai , which appears in H, is redundant. To do this it is suffi- 
cient to show that Z + X and X + Ai can both be derived from H - {Z -+ Ai]. 

Since the only FDs used in synthesizing R are of the form Z -+ Aj , it must be 

that Z ---f Xk is in H for all Xk E X. Since Ai is not in X, Z --f Xk is in H - (Z + 

Ai] * 
Suppose there is a derivation for X -+ Ai in H that uses Z -+ Ai . Then by Lemma 

1, we have X + Z. But this violates X ++ Z in the transitive dependency. So X + 
Ai must be derivable without the use of Z -+ Ai . 

Since Z -+ X and X -+ Ai can both be derived from H - {Z + Ai), it must be 
that Z + Ai is redundant in H, contradicting that H is nonredundant. But this 
in turn must mean that the transitive dependency did not exist. 0 

The above theorem was first presented by Wang and Wedekind [la]; however 
their proof was incorrect [4]. In their proof they only argued that the transitive 
dependency was derivable in H, not H - (Z -+ Ai). In terms of the above proof, 
they claimed that if K -+ X and X + Ai is a transitive dependency, then K + Ai 
is derivable by pseudotransitivity. This, they asserted, violates the fact that K + 
Ai is in a nonredundant covering. However, the latter is only true if one can show 

that both K + X and X + Ai are derivable from the closure without the use of 
K -+ Ai . For example, G = {A -+ B, B -+ A, A + C) is a set of FDs where A -+ B 

and B + C are in the closure but A --f C is not redundant because B -+ C cannot 
be derived from G without A + C. In any case, their theorem was correct as stated, 
and the above argument corrects their proof, using Lemma 1 and the important 
fact that X -++ K in the transitive dependency. 

It is interesting to note that they did not eliminate superkeys in their version of 
Algorithm l(a). This was not an error, since they explicitly assumed that extra- 
neous attributes did not exist on the left sides of FDs. However, one need not make 
this general assumption, since some extraneous attributes can be eliminated al- 

gorithmically. In fact, to be entirely consistent with the algebra of FDs, one must 
eliminate such extraneous attributes. Of course not all such extraneous attributes 
can be eliminated in this way; many semantic errors must remain the user’s re- 
sponsibility for reasons discussed in Section 4.2, 

One might expect the proof of Theorem 1 to generalize to schemas synthesized 
by Algorithm 1. Unfortunately this is not the case. A schema that is not in 3NF 
can be synthesized by Algorithm 1, as shown in Figure 3(b) . In the next section we 
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will add a further precondition that is sufllcient to guarantee 3NF for schemas 
produced by Algorithm 1. 

6.3 A Sufficient Condition for 3NF 

To show that no nonprime attribute is transitively dependent upon any key of R, 
we will use the following property: 

An attribute A is said to satisfy properly P in relation R if the following proposi- 
tion holds: Let H be the nonredundant covering produced from step 2 of Al- 
gorithm 1. If K + A is in H and K + A is used in synthesizing R, then for any 
prime attribute B of R, the FD K + B can be derived without the use of K + A 
(i.e. can be derived in H - (K --) A}). 

Property P is strictly a syntactic property of derivations of FDs and to our knowl- 
edge has no semantic interpretation in terms of real world relationships. It is the 
weakest property we know of that is su&ient to guarantee that Algorithm 1 
produces 3NF relations. The proof that property P is sufficient to guarantee 3NF 
follows the same lines as the proof of Theorem 1. 

THEOREM 2. Let R(A1, . . . , A,,) be one of the relations synthesized by using 

Algorithm 1 from a set of FDs F. If all nonprime attributes of R satisfy property 
P, then R is in 3NF. 

PROOF. Let Ai be a nonprime attribute of R that is transitively dependent 
upon some key Y of R. That is, there is a Z c {Al , . . . , A,,} such that Y + Z, 
Z -++ Y, and Z + Ai with Ai not in Z. 

Let H be the nonredundant covering computed in Algorithm 1. Let K be a key 
such that h: K + Ai is in H. That is, h is an FD that brought Ai into R by Al- 
gorithm 1. 

Since K is a key, K + Z. Furthermore Z ++ K, for if Z + K, then Z ---f K and 
K ---) Y implies Z + Y, a contradiction. So we have a new transitive dependency: 
K+Z,Z-++K,andZ+Ai.Wewanttoshow%hatK-+ZandZ+Aiarein 
(H - (K + Ai})+ to establish the contradiction that H is redundant. 

FDs Schema synthesized by Algorithm 1 

ji: XI,& -+ A RI(XI,X&,A) (from fl and f2) 
f*: c -+ x1,x2 
&:A,Xl-+B RkG’L,B) 

j,: B,X, --+ C RdWLC) 

A does not satisfy property yet RI is in 3NF. 

(4 

FDs Schema synthesized by Algorithm 1 

gl: XI,& + A,D Sl(Xl,X,,C,D,A) (from g1 and 82) -- 
ge: C,D -+ X1,Xa 
ga:A,Xl+B Sa(A,XI,B) 
g4: B,Xa -+ C SdB,X,,C) 

g,:C+A WGA) 
S1 is not in 2NF since A is partially dependent upon the key CD. 

(b) 

Fig. 3. An example of a violation of property P 
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Let Z = { B1, . . . , B,}. We distinguish two cases, If Bj is prime, then property 

P guarantees that K + Bj is derivable without the use of K + Ai . If Bj is not 

prime, then there is an FD K’ + Bj that brought Bj into R. Since K + K’ is de- 
rivable (by property P) from H - {K +Ai} andK’+BjisinH - {K+Ai), 

we obtain that K + Bj is derivable without the use of K -+ Ai . Hence K 4 Z 

isin (H - {K+Ai))+. 
Now assume Z -+ Ai uses K + Ai in its derivation. Then by Lemma 1, Z + K, 

contradicting the transitive dependency. Hence Z --t Ai is in (H - {K -+ Ai))+. 
The FDs K + Z and Z -+ Ai are in (H - (K + Ai}) +, establishing that H is 

redundant, a contradiction. Hence the transitive dependency could not have 

existed. 0 
The need for property P arises from the merging of equivalent keys in step 4 

of Algorithm 1. Suppose K1 and Kz are merged in step 4 because K, t) Kz , and 

suppose K, 4 Z, Z + K1, Z + A is a transitive dependency in the synthesized re- 
lation. This transitive dependency would not exist if K1 and Kz were the keys of 
two separate relations, as would be the case if Algorithm l(a) were used. One rea- 
son why the transitive dependency can arise is that there is a Zi E Z, with KS 4 Zi 

(and I(, 4 A) in the nonredundant covering, but K1 + Zi (and Kz + A) not in 
the covering. Thus a relation must contain both K1 and K, to manifest the transi- 

tive dependency. The FD K, + Z in the transitive dependency is a composition of 

K1 + Kz + Z. If A does not have property P, then K1 + A may be necessary to 
obtain K1 + Kz , in which case K1 + A need not be redundant (as it would be in 
Algorithm l(a) ) . However, if A does have property P, then K, + Kt does not 

need K1 + A, so K, -+ A is redundant, and we have the theorem. 
Consider the set of FDs in Fig. 3(a) which produces the relation RI(XI,Xz , C, A) - - 

via Algorithm 1. (The reader can check that X1 , X2 + C is in the closure of 
the given FDs.) The attribute A is nonprime in RI and does not satisfy property P 
since the only way to derive X1 , X2 -+ C is by using X1 , Xz + A. However, despite 

the violation of property P, relation R1 is in 3NF. Hence property P is not a neces- 
sary condition for 3NF. 

Figure 3(b) presents an example of FDs that exhibit the same violation of prop- 

erty P as Figure 3(a) but induce a partial (and, hence, a transitive) dependency. 
In terms of the above discussion regarding transitive dependencies, we have X1 , 
XZ + C, C f-f X1, X2, and C + A, but X1, Xz + A is not redundant since X, , 
X2 + C needs X1 , X2 + A in its derivation. 

Property P affects one other published procedure that synthesizes relations 
from FDs. Delobel and Casey [lo] claim that their decomposition procedure, which 
is in some sense comparable to our Algorithm 1, produces 3NF relations. Their 

claim, however, is incorrect in that the example in Figure 3(b) falsifies their theo- 
rem 161. 

6.4 Putting Relations into 3NF 

A violation of property P may induce a 3NF violation. Once a particular violation 
of 3NF is found, in order to put the relation into 3NF the offending dependency 
must be removed. Conveniently enough, if a nonprime attribute is transitively de- 
pendent upon a key of a relation, then the attribute can simply be removed from 
the relation, and the resulting schema will still embody the same FDs. 
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THEOREM 3. Let Rk(A1,. . . , A,) be a relation in a schema S = (RI , . . . , R,) 
that was synthesized by using Algorithm 1. Let H be the set of FDs embodied in S. 
Let Ai be an attribute of Rj that appears in none of the synthesized keys of Rj, and 
let Ai be transitively dependent upon a key of Re . Suppose Ai is removed from Rk , 
resulting in a new relation R,v and hence a new schema S’ = {RI , . . . , Rkf, . . . , R,) . 
Then the closure of the set of FDs embodied in S’ equals H+. 

PROOF. Suppose Ai is removed from Rk . Since Ai does not appear in any of the 

keys synthesized by Algorithm 1, its removal can only affect embodied FDs of 
the form f: X --) Ai, where X is a synthesized key of Rk . Let H’ be the set of 
FDs embodied in S’. If we show that all such f are in (HI)+, then H+ = (H’)+. 

By the same argument used in the proofs of Theorems 1 and 2, if Ai is transitively 

dependent upon any key of Rk , then it is transitively dependent upon all of them. 
For eachf of the above form, X is a key. Therefore, for each such X, X -+ V, V * X, 
and V + Ai, Ai not in V, are a transitive dependency. 

Since Ai is not in V, for each X the FD X -+ V is still embodied in Rk even after 
Ai is removed. Hence each X -+ V is in H+. 

TO show V * Ai E (H’)+, we must show that V + Ai cannot use any of the 
FDs X -+ Ai in its derivation. But this follows directly since if X + Ai is used to 
derive V -+ Ai, then by Lemma 1 V -+ X, contradicting V -H X in one of the 
transitive dependencies. 

Since X --) V and V --f Ai are in (H’)+, f: X --f Ai is in (H’) + for all such f. 
Hence (H’) + = H+. q 

Theorem 3 provides us with a simple means of removing an unwanted transitive 
dependency: Namely, excise the offending attribute from the relation. The theorem 
guarantees that the resulting schema still embodies the given set of FDs. 

That a transitive dependency can be removed so easily is rather surprising 
since the FDs that form the schema are nonredundant. It would seem that ex- 
cising an attribute should result in the loss of an FD. However, in synthesizing the 
schema from a nonredundant covering of FDs, we have implicitly added new FDs to 
the covering in step 4 of Algorithm 1, and these FDs are explicitly embodied in the 
schema. If X and Y are the left sides of two distinct FDs in the nonredundant 
covering H with X --f Y and Y 3 X in H+, then X and Y are merged and put 

into a single relation. This adds X + Y and Y -+ X as two new FDs that are ex- 

plicitly embodied in the schema, even though they may not have appeared in the 
covering. For example, in Figure 3(b) the FDs X1 , X, -+ C, D and C, D -+ X1 , Xz 

are explicitly embodied in S1 , even though the former FD is not in the covering. 
It is the addition of the extra FDs that allows us to excise a transitive dependency 
without affecting the closure of the embodied FDs. 

Looking at Theorem 3 in a different light, we can now modify Algorithm 1 to 
synthesize schemas that are guaranteed to be in 3NF. Let H be the nonredundant 
covering resulting from step 2 of Algorithm 1. Let J be the set of all FDs X 4 Y 

such that X and Y are equivalent keys discovered in step 4 of Algorithm 1. Let 
h: Z -+ Ai, h E H, be embodied in Rk in such a way that Ai appears in no syn- 
thesized key of Rk and Ai is transitively dependent upon a key of Rk . Then Theorem 
4 says that h is redundant; that is, h E (H + J - {h})+. So, if we eliminate every 
FD h E H whose right side is not in any synthesized key and for which 
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h E (H + J - (h}) +, then we will have eliminated all transitive dependencies. 

If there were a nonprime Ai that was transitively dependent on a key of Rk , then 
Theorem 4 would guarantee that our extra redundancy check would have elimi- 
nated it. This leads us to our main result, Algorithm 2, which synthesizes a prov- 

ably 3NF schema. 

ALGORITHM 2 

1. (Eliminate extraneous attributes.) Let F be the given set of FDs. Eliminate extraneous at- 
tributes from the left side of each FD in F, producing the set G. An attribute is extraneous 
if its elimination does not alter the closure of the set of FDs. 

2. (Find covering.) Find a nonredundant covering H of G. 
3. (Partition.) Partition H into groups such that all of the FDs in each group have identical 

left sides. 
4. (Merge equivalent keys.) Let J = 0. For each pair of groups, say Hi and Hi , with left 

sides X and Y, respectively, merge HI and Hz together if there is a bijection X f--) Y in 
H+. For each such bijection, add X --t Y and Y ---) X to J. For each A E Y, if X -+ A is 
in H, then delete it from H. Do the same for each Y -+ B in H with B E X. 

5. (Eliminate transitive dependencies.) Find an H' C H such that (H’ -I J)+ = (H + J)+ 
and no proper subset of H’ has this property. Add each FD of J into its corresponding group 
of H'. 

6. (Construct relations.) For each group, construct a relation consisting of all the attributes 
appearing in that group. Each set of attributes that appears on the left side of any FD in 
the group is a key of the relation. (Step 1 guarantees that no such set contains any extra 
attributes.) All keys found by this algorithm will be called synthesized. The set of constructed 
relations constitutes a schema for the given set of FDs. 

Steps l-4 are effectively implemented as in Algorithm 1. Step 5 can be effectively 
implemented by using the membership algorithm of [5]. Algorithm 2 can then be 

implemented in the same O(L’) time bound as Algorithm 1. 

7. PROOF OF MINIMALITY 

The purpose of this section is to examine the number of relations synthesized by 

Algorithm 2 (or 1) for a given set of FDs, compared with any other relational 
schema that embodies those FDs. We will show that all nonredundant coverings 

generate the same number of relations by showing that the number of equivalence 
classes of synthesized keys is the same across all nonredundant coverings of a given 
set of FDs. This will then imply that the schemas synthesized by Algorithm 2 are 
minimal in the number of relations synthesized. 

LEMMA 3. Let G1 and Gz be two nonredundant sets of FDs with G,’ = Gz’ . If 
g:X--,AisinG,,thenthereexistsanh:Y-tBwithhEGzandwithY--tXand 
X-+ YinG1+. 

PROOF. If g E G‘ and G1’ = Gz+, then g E Gzt. Hence there is a derivation for 
g in Gz . Each FD h used to derive g is in GZ , so each such h is in G:. 

If no h requires g in its derivation in G, , then we can construct a derivation for 
g in G1. The derivation is constructed by mimicking the derivation of g in Gz , 
replacing each h in this derivation with an h derived in G, . Since this derivation 
does not use g, g must be redundant in G1 , a contradiction. So at least one h must 
require g in its derivation in G1 . 

Suppose that h: Y + B requires g : X -+ A in its derivation in G, . Then by Lemma 
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G = (gl:C --+ D, H = (ht: C --f D, 
gz:D --+C, hz:D -PC, 
ga: CE --* F) h3: DE -+ F) 

G and H are nonredundant and G+ = H+. However, g3 and h, generate different relations. This 
is an example of Lemma 3 where X # Y. 

Fig. 4. Two equivalent coverings with different keys 

1, X -+ Y. Also, since h appeared in a derivation for g in Gz , by Lemma 1 Y -+ X. 

Hence h: Y ---f B is in Gz with X + Y and Y -+ X, completing the proof. Cl 
Lemma 2 cannot be strengthened so that X = Y. That is, one can have two non- 

redundant coverings with equivalent closures such that the two coverings have 
different left sides representing a key equivalence class. For example, in Figure 4 
g3 and ha have functionally equivalent left sides since CE f-t DE, yet CE # DE. 

Using Lemma 3 and recognizing that Algorithm 2 synthesizes a relation from 
each maximal group of FDs that have functionally equivalent left sides, we can 
now see that all nonredundant coverings of a given set of FDs produce the same 
number of relations by Algorithm 2. 

THEOREM 4. Let F be a set of FDs. Any two nonredundant coverings of F will 

produce the same number of relations via Algorithm 2. 
PROOF. Let G1 and Gz be two nonredundant coverings of F. By Lemma 3, if 

anFDg:X+AisinG1,thenthereisanh:Y+BinGzwithX+Yand Y+X. 
Thus for any group of FDs in G1 with functionally equivalent left sides, there must 

be exactly one such group in GZ, namely, the one that has the same functionally 

equivalent left sides. Since each such group generates one relation, G1 and GZ must 
produce the same number of relations. q 

Theorem 4 states that all choices of nonredundant coverings are equally good in 
terms of number of relations synthesized. This is somewhat surprising in that it 

contradicts the intuition that a minimal-sized nonredundant covering would per- 
haps produce fewer relations than other larger nonredundant coverings. 

The theorem also shows that on the logical level there is not very much choice 
as to how to pick relations that cover the given set of FDs. Some of the decomposi- 
tion approaches (e.g. [lo, 11, 121) claim to allow the system to choose among a 
class of possible schemas, directing the choice by efficiency considerations. Since 
all coverings have the same set of equivalence classes of keys, the class of possible 
schemas,is really quite small. Hence if one is guided on the logical level by nor- 
malization considerations rather than by efficiency considerations, one arrives at a 
set of nearly identical possible schemas. 

From Theorem 4, we can see that the number of relations generated by Algorithm 
2 is minimal among all those that embody the same given set of FDs. This gives a 
complete characterization of the optimal 3NF schemas discussed in [8]. 

COROLLARY 1. Let S be a schema synthesized from a set of FDs F by using Al- 
gorithm 2. Let S’ be any schema embodying a set of FDs G that covers F. Then 1 S’ 1 

2 ISI. 
PROOF. Let H c G be a nonredundant covering of F. Certainly H will generate, 

via Algorithm 2, no more relations than are in s’. Furthermore, by Theorem 4, 

Algorithm 2 will generate the same number of relations from G as from F. Hence 

Is’/ 2 ISI. q 
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8. CONCLUSION 

The purpose of this paper was to develop an algorithm for synthesizing a 3NF 
schema from a given set of FDs and to examine some properties of such schemas. 
The main results were: 

(1) Certain simple algorithms for synthesizing schemas either produce too many 
relations or violate 3NF. 

(2) An algorithm that synthesizes provably 3NF schemas was presented. The 
essential aspect of this algorithm is that it eliminates as much redundancy as pos- 
sible from the given set of FDs. 

(3) All nonredundant coverings produce the same number of relations when 
this latter method is used. Hence synthesized schemas contain a minimal number 
of relations. 

This is the first successful attempt, to our knowledge, to implement Codd’s 
normalization procedure [8] both provably and effectively. (Errors in two earlier 
similar attempts were isolated.) Furthermore, by Corollary 1, the synthesized re- 
lations satisfy Codd’s optimality criterion-no other schema covering the same 
FDs has fewer relations. 

APPENDIX 

Let X be a set of attributes, let G be a set of FDs over X, and let g: D1, . . . , D, 
+ E be an FD over X. If g E G”, then there is a sequence of applications of axioms 
Al, A2, and A3 on G that yields g. In this section we shall develop a graph model, 
called derivation trees, for such a sequence of applications of the axioms. 

Derivations trees (abbreviated DTs) are formally defined as follows: 

(1) If C is an attribute, then the labeled node C is a DT. 
(2) If 3 is a DT with C as a leaf node and f: B1 , , . . , B, -+ C is an FD, then 

the tree constructed from 3 by adding each of B1 , . . . , B, as children of the leaf 
node C is also a DT. 

The derivation tree is therefore a simple model for the successive composition of 
FDs by pseudotransitivity (this is formalized below). A sample derivation tree 
construction is given in Figure 5. 

Since a DT is characterized mainly by its leaf set, we will abbreviate the ex- 
pression “a DT whose leaf set is contained in 1 X1 , . . . , X,} ” by “an 1 X1 , . . . , X,) - 
DT.” 

The main property of DTs is described in Lemma 4. 
LEMMA 4. Let 3 be a derivation tree constructed using a given set of FDs G. Let 

X be a nonempty subset of the nodes of 3 and let Y be the set of all attributes that appear 
as leaves of 3. Then Y + X is in G+. 

PROOF. Consider first the case that Xis simply the root node. This sublemma 
can be proved by induction on the number of FDs that are added to the DT (i.e. 
applications of (2) above) . This follows directly since each such addition preserves 
the desired property that the root is functionally dependent upon the set of leaves 
by virtue of the pseudotransitivity rule. 

Now suppose Xi E X is any internal node of 3. Since Xi roots a Y-DT, by the 
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Given: G = {gl: AE->C; gZ:C->D; g2:DE->F; f4:A->E} 

Show: f: AB-> F E G+ 

Used FD Derivation Current FD 
in this Step Tree Construction Represented by 

the Tree 

93 

/‘\ 

DE- F 

D E 

94 F DA-F 

/\ 
D E 

92 

gl 

/i 

‘i i 
C A 

, A B 

CA- F 

AB - F 

Fig. 5. A sample derivation 

above sublemma we have Y -+ Xi. By a property proved by Armstrong [l], if 

Y + Xi for all Xi E X, then Y +X, completing the proof. 0 
To make the DT model complete with respect to Armstrong’s axioms we have to 

consider axioms Al (reflexivity) and A2 (augmentation) as well. In a DT, reflex- 
ivity corresponds to taking a leaf node, making a copy of it, and connecting the 

copy as a child of the original leaf. Clearly this rule can add no new nodes to the 
leaf set of a DT, and hence it is basically a null operation. Except for FDs of the 
form X + X, any FD that can be derived with reflexivity and pseudotransitivity 

can also be derived without reflexivity simply by eliminating all of the null replace- 
ments. The FD X -+X is handled by part (1) of the DT definition. 

Augmentation corresponds to the addition of extra leaf nodes connected to an 
internal node of the DT. All of the children of any node that was added by aug- 
mentation could have themselves been added by augmentation. Consider a DT in 
which augmentation was used to produce what is now a nonleaf node E of the tree. 
One can eliminate E from the tree by replacing it with all of its descendants that 
are leaves. Doing this to all internal nodes that were produced by augmentation 
yields a DT in which all applications of augmentation produce leaves. It follows 
that one application of augmentation at the very last step of a derivation is all 

that is needed to derive any derivable FD. (Notice that if the FD being represented 
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by the DT has no extraneous attributes, then no augmentation is required.) This 
leads us to the following theorem for the completeness of DTs. 

THEOREM 5. For a given FD g : X + C and a set of FDs G, g E: Gf if and only 
if there is an X-DT, 5, rooted at C. 

PROOF. 3 represents an FD X’ + C in G+ where X’ 5 X. Hence by Lemma 1 
and augmentation, g E G’. To prove the converse, we know that if g E G’, then 
there is a sequence of (say) N applications of Armstrong’s axioms yielding g from 
G. From the above discussion, we can assume there are no applications of reflexivity 
in the sequence, since they are all null steps, and that applications of augmentation 
are all postponed to the last application. Thus the first N - 1 applications are 
all pseudotransitivity and can be simulated by an X-DT rooted at C. q 

Now, by using Theorem 5 and Lemma 4, Lemma 1 follows directly. 
LEMMA 1. LetGbeasetojFDs,andletg:X+YbeanFDinG.Ijh:V-+W 

is in G+ and g is used for some derivation of h in G’, then V + X is in Gf . 

PROOF. If h E G+, then there is a V-DT, 3, using G. Since g is used in 3, every 
attribute of X is a node of 3. Hence we can apply Lemma 4 to obtain V --+ X. 0 

The proof of Lemma 2 uses Lemma 1 and the fact that each 0 attribute appears 
in only one FD. 

LEMMA 2. If X + 8 is in a set of FDs G, then for any nonredundant covering 

H of G, either X + 8 is in H or Y ---f 8 is in H, where Y + X and X + Y. 

PROOF. If X ---f 8 is in H, then we are done, so assume not. Since H covers G, 
there must be a derivation for X + 8 in H. Let Y -+ 8 be the root FD of a deriva- 
tion tree for X -+ 8 in H. By Lemma 1, X + Y. To show Y + X, we examine 
G+. In G, X + 8 is the only FD containing 8. Thus any derivation for any FD 
in G+ with 8 on the right side must use X + 8 as the root FD. In particular X --+ 8 
is the root FD of any derivation for Y --f 8 in G+. Hence by Lemma 1, Y + X. 0 
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