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Abstract
We develop the theory of radar imaging from data measured by a moving
antenna emitting a single-frequency waveform. We show that, under a
linearized (Born) scattering model, the signal at a given Doppler shift is due to
a superposition of returns from stationary scatterers on a cone whose axis
is the flight velocity vector. This cone reduces to a hyperbola when the
scatterers are known to lie on a planar surface. In this case, reconstruction
of the scatterer locations can be accomplished by a tomographic inversion in
which the scattering density function is reconstructed from its integrals over
hyperbolas. We give an approximate reconstruction formula and analyse the
resolution of the resulting image. We provide a numerical shortcut and show
results of numerical tests in a simple case.

1. Introduction

Standard synthetic-aperture radar imaging systems [23] transmit wideband waveforms, and the
corresponding radar return signals are processed to synthesize the response from a sharp delta-
like pulse. Such wideband waveforms are called high-range-resolution waveforms because
their radar returns can be used to obtain accurate estimates of the distance (range) to a scatterer.

When a high-range-resolution system is used to image the scatterers on a flat surface, the
radar return at each time t is a superposition of all the returns due to those scatterers positioned
at distance 2t/c from the radar. The imaging problem can then be formulated [7, 1, 2, 11]
in terms of reconstructing the scattering density function ρ from its integrals over all circles
centred on the flight path of the antenna (see figure 1).

Radar systems can be designed, however, to operate in a complementary mode: instead
of transmitting high-range-resolution pulses and estimating target range, they can transmit
a high-Doppler-resolution waveform (a fixed-frequency waveform, also called a continuous-
wave or CW waveform) and estimate the relative target velocity from the Doppler frequency
shift of the return. For an antenna moving at a constant velocity over a flat surface, the return at
a given Doppler shift is a superposition of all the returns due to scatterers with the same relative
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Figure 1. A high-range-resolution system.

Figure 2. A high-Doppler-resolution system.

velocity, and all the scatterers with the same relative velocity lie on a certain hyperbola, called
an iso-Doppler curve or isodop. This suggests a corresponding imaging approach: reconstruct
the scattering density function ρ from its integrals over the iso-Doppler hyperbolas (see
figure 2).

High-Doppler-resolution imaging systems (which we refer to as simply Doppler imaging
systems) require only a relatively simple (inexpensive) transmitter and may thus have
advantages over high-range-resolution systems in some situations. In addition, Doppler
imaging systems may be useful in scenarios in which the radar signals must penetrate through
a medium with a frequency-dependent attenuation.

The concept of Doppler imaging is not entirely new. The notion appears in [13]—
in the context of a rotating target and stationary radar—to motivate the development
of range-Doppler or inverse-synthetic-aperture imaging. Doppler-only imaging has also
been applied to radar-based planetary imaging, but it appears that this work is restricted
to very limited geometries [18]. The idea is also implicit in the theory of space-time
adaptive processing [9]. Moreover, reconstruction of a scattering density function from
its integrals over hyperbolas was developed, for wideband range-Doppler radar imaging, in
[12]. Doppler imaging of a planar surface, however, does not seem to have been studied in its
own right.
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The purpose of this paper is to develop the theory of Doppler imaging for the case of a
single sensor moving above a collection of scatterers lying on a surface. In section 2 we set
forth our notation and a model for the received radar signal. In section 3 we specialize to the
case of a flat earth and constant-velocity flight path. For this case, we develop an approximate
image reconstruction algorithm.

2. Radar data

The basic physics behind radar detection is simple to understand. A time-varying voltage
s in(t) ∈ C is passed to a transmitting antenna where it activates a radiating electromagnetic
field Ein(x, t) ∈ C3 defined at spatial position x ∈ R3 and time t. This radiating field obeys
the vector wave equation and interacts with radar targets by inducing time-varying charge
distributions j(x, t) on and within their support. In turn, these induced currents establish
a response electromagnetic field Esc(x, t) (the ‘scattered field’) which radiates to a radar
receiving antenna where it excites an echo signal voltage ssc(t) that is fed to the radar receiver.
The radar system then uses the known function s in(t) and the measured function ssc(t) to
estimate various properties of the target that are encoded in j(x, t) (for example, the support
of j can be used to determine the target’s distance and bearing).

The details of the physics underlying the sequence s in → Ein → j → Esc → ssc is
usually quite complicated and, in practice, various simplifying approximations are applied to
keep the analysis tractable.

2.1. The scattered field

The most common radar echo model is based on a linearized and polarization-insensitive
scattering approximation to the electric or magnetic field integral equations. In this ad hoc
approximation to the electromagnetic scattering problem, we consider only one electric field
component, namely the one for which the antenna is designed to be sensitive. The weak-
scatterer or Born approximation takes the induced current j to be proportional to the (scalar)
ρ̃Ëin, where ρ̃ is the target reflectivity function, and Ëin(z, t) denotes the second time derivative
of (one component of) the electric field incident upon the target. The Born-approximated
scattered field is given by

Esc
B (x, t) ≈ −

∫ ∫
δ(t − t ′ − |x − z|/c0)

4π |x − z| ρ̃(z)Ëin(z, t ′) dt ′dz (1)

where Esc
B (x, t) ∈ C denotes the designated component of the scattered electric field. The

weak scatterer approximation is well documented in the literature (cf [3, 4, 13, 20, 23, 24] and
references cited therein) and will not be further motivated here.

We assume that the radar emits a continuous wave at the fixed angular frequency ω0. Then
the incident field can be expressed in terms of the Green’s function for the three-dimensional
Helmholtz equation:

Ein(z, t) = E0(ẑ − y)
e−iω0(t−|z−y|/c)

4π |z − y| , (2)

where y denotes the phase centre of the transmitting antenna. Substitution into equation (1)
yields

Esc
B (x, t) = ω2

0

(4π)2

∫
ρ̃(z)

e−i(ω0/c)(ct−|z−y|−|z−x|)

|z − y||z − x| E0(ẑ − y) dz. (3)

Below we consider only the case where the transmit and receive antennas are co-located,
have the same phase centres and travel along the flight path x = γ(t). Moreover, we
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assume that the scattering takes place in a thin region at the surface z = ζ(zT ), where
zT = (z1, z2). Thus we write ρ̃(z) = ρ(zT )δ(z − ζ(zT )). We also introduce the notation:
R(zT , t) = ζ(zT ) − γ(t); R(zT , t) = |R(zT , t)|; and R̂(zT , t) = R(zT , t)/R(zT , t). The
field (3) is then

Esc
B (γ(t), t) = ω2

0

(4π)2

∫
ρ(zT )

e−iω0(t−2R(zT ,t))/c)

R2(zT , t)
E0(R̂(zT , t)) dzT . (4)

The measured signal voltage ssc(t) arises from the interaction of Esc with the antenna and
we can write

ssc(t) = ω2
0

(4π)2

∫
ρ(zT )

e−iω0(t−2R(zT ,t))/c)

R2(zT , t)
W(R̂(zT , t)) dzT , (5)

where W is a weighting factor accounting for the combined transmit and receive antenna
patterns [21].

2.2. Correlation data

The radar receiver correlates the echo signal (5) with e−iωt , which is a frequency-shifted version
of the incident signal s in(t) = e−iω0t , over a finite time window; in other words it measures the
windowed Fourier transform. We denote by ψ̃(t − τ) the time windowing function centred at
t = τ ; we write the (Fourier transform) frequency as ω = ω0µ. With this notation the radar
data are

η(τ, µ) =
∫

ssc(t) eiω0µ(t−τ)ψ̃(t − τ) dt

= ω2
0

(4π)2

∫ ∫
ρ(zT )

e−iω0(t−2R(zT ,t)/c)

R2(zT , t)
W(R̂(zT , t)) eiω0µ(t−τ)ψ̃(t − τ) dt dzT . (6)

Then, using the Taylor expansion

γ(t) = γ(τ ) + γ̇(τ )(t − τ) + · · · (7)

to write

R(zT , t) = |ζ(zT ) − γ(t)| = |ζ(zT ) − γ(τ ) − γ̇(τ )(t − τ) + · · · |
≈ R(zT , τ ) − R̂(zT , τ ) · γ̇(τ )(t − τ),

(8)

in the exponent of (6), we obtain

η(τ, µ) ≈ ω2
0

(4π)2

∫ ∫
ρ(zT )

e−iω0(t−2[R(zT ,τ )−R̂(zT ,τ )·γ̇(τ )(t−τ)]/c)

R2(zT , τ )
(9)

×W(R̂(zT , t)) eiω0µ(t−τ)ψ̃(t − τ) dt dzT .

Finally, in (9) we make the change of variables t ′ = t − τ to obtain

η(τ, µ) ≈
∫ ∫

e−iω0t
′(1−µ+2R̂(zT ,τ )·γ̇(τ )/c)Ã(zT , t ′, τ ) dt ′ρ(zT ) dzT (10)

where t ′ = t − τ and

Ã(zT , t ′, τ ) = ω2
0 e−iω0(τ−2R(zT ,τ )/c)ψ̃(t ′)

(4πR(zT , τ ))2
W(R̂(zT , t ′ + τ)). (11)

We see that the t ′ integration results in an approximate delta function along the
curve formed by the intersection of the earth’s surface with the constant-Doppler cone
µ − 1 = 2R̂(τ, xT ) · γ̇(τ )/c. When the earth’s surface is a flat plane, this curve is a
hyperbola.
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We use the dimensionless parameter β = ω0t
′ to write A(zT , β, τ ) = Ã(zT , t ′, τ ) and

ϕ(β, zT , τ, µ) = β[1 − µ + 2R̂(zT , τ ) · γ̇(τ )/c] (12)

so that (10) is

η(τ, µ) =
∫ ∫

A(zT , β, τ ) e−iϕ(β,zT ,τ,µ) dβρ(zT ) dzT . (13)

3. The case of a straight flight path and flat earth

We choose coordinates so that the flight path is along the z1 axis: γ(τ ) = (vτ, 0,H), and we
assume that the radar is operating in strip-map mode, meaning that the antenna beam is fixed
and side-looking. We assume that the antenna beam illuminates the region |z1 −vτ | � ε. The
phase (12) is thus

ϕ(β, zT , τ, µ) = β

1 − µ +
2v

c

z1 − vτ√
(z1 − vτ)2 + z2

2 + H 2



= β

1 − µ +
2v/c√
z2

2 + H 2
(z1 − vτ) + O

(
(z1 − vτ)2) (14)

where in the second line of (14) we have done a Taylor expansion about the point z1 = vτ .
We use the notation µ̃ = µ − 1 and use φ for the approximate form of the phase:

φ(β, zT , τ, µ̃) = β

[
−µ̃ +

2v/c√
(z2/H)2 + 1

( z1

H
− vτ

H

)]
. (15)

The leading-order contribution to η comes from the critical set ∂φ/∂β = 0, which, in this
approximation, is a straight line in the µ̃–τ plane. If instead of τ we use the dimensionless
variable τ̃ = vτ/H , then we find that the straight line in the µ̃–τ̃ pane has τ̃ -intercept z1/H

and slope −2(v/c)((z2/H)2 + 1)−1/2. We note that z1 can be found from the τ̃ -intercept, and
z2 from the slope.

3.1. Image formation

We form an image by backprojection:

I (yT ) =
∫ ∫ ∫

eiφ(β,yT ,τ,µ̃)B(β, yT , τ, µ̃) dβη(τ, µ̃) dµ̃ dτ (16)

where B is to be determined below.
To determine the degree to which the image I reproduces ρ, we insert (13) into (16) and

perform a stationary phase reduction in µ̃ and one of the β variables. This results in

I (yT ) =
∫

K(yT , zT )ρ(zT ) dzT , (17)

where the point spread function K is given by

K(yT , zT ) =
∫ ∫

exp

iβ
2v

c

 y1 − vτ√
y2

2 + H 2
− z1 − vτ√

z2
2 + H 2

 A(zT , τ )

×B(β, yT , τ, µ(yT , τ ))ψ(β) dβ dτ (18)
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and where µ(yT , τ ) = −(2v/c)(y1 − vτ)
(
y2

2 + H 2
)−1/2

. We would like to choose B so that
K(yT , zT ) = δ(yT − zT ) = (2π)−2

∫
e−i(yT −zT )·ξ dξ.

The leading-order contributions to (18) come from the critical points of (18), which are
determined by

0 = ∂φ

∂β
∝ y1 − vτ√

y2
2 + H 2

− z1 − vτ√
z2

2 + H 2
, 0 = ∂φ

∂τ
∝ 1√

y2
2 + H 2

− 1√
z2

2 + H 2
. (19)

These equations have solutions only when (y1, y2) = (z1,±z2), which implies that the only
artefacts are the usual left–right ones. (And these artefacts can be avoided by a judicious
choice of W(R̂, τ ).)

In (18), we expand the phase using the identity

f (zT ) − f (yT ) = (zT − yT )

∫ 1

0
∇f (yT + λ(zT − yT )) dλ ≈ (zT − yT ) · ∇f (yT ) (20)

applied to f (yT ) = (y1 − vτ)
(
y2

2 + H 2
)−1/2

. We then make the change of variables

(β, τ ) → ξ = (2βv/c)∇f (yT ) = β
2v

c

 1√
y2

2 + H 2
,
−(y1 − vτ)y2(
y2

2 + H 2
)3/2

T

(21)

where the superscript T denotes transpose. This converts (18) into

K(yT , zT ) =
∫

ei(zT −yT )·ξA(zT , τ )B(β, µ(yT , τ ), τ, yT )ψ(β)

∣∣∣∣∂(β, τ )

∂ξ

∣∣∣∣ dξ (22)

where now β and τ are understood to refer to β(ξ) and τ(ξ). The Jacobian in (22) is the
reciprocal of

∣∣∣∣ ∂ξ

∂(β, τ )

∣∣∣∣ = 4v2β

c2

∣∣∣∣∣∣∣∣∣∣

1√
y2

2 + H 2
0

−(y1 − vτ)y2(
y2

2 + H 2
)3/2

vy2(
y2

2 + H 2
)3/2

∣∣∣∣∣∣∣∣∣∣
= 4v3βy2

c2
(
y2

2 + H 2
)2 . (23)

From (22), we see that B should be chosen according to

B(β,µ, τ, yT ) =
χ(β, τ, yT )

∣∣ ∂ξ
∂(β,τ )

∣∣
(2π)2A(yT , τ )ψ(β)

(24)

where χ is a cutoff function that prevents division by zero in (24). With this choice of B, (22)
becomes

K(yT , zT ) = 1

(2π)2

∫
�y

ei(zT −yT )·ξ dξ (25)

where the integration is over the set �y of ξ swept out according to (21) as τ and β range over
the data collection region for the point yT .

3.2. Resolution

The resolution of image (16) is determined by the region �y of integration in (25), which is
the set of ξ defined by (21) as τ and β range over the subset of the data collection region
[τmin, τmax] × [βmin, βmax] that is relevant at the point yT . In particular, the region �y is also
restricted by the beam pattern W : the maximum X of x = |y1 − vτ | is the distance along the
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flight path for which the point y remains in the beam. Thus x is in the interval [−X,X] where
X = vT with T being half the persistence interval.

Since β = ω0t
′ = ω0(t −τ), the length of the interval [βmin, βmax] is 2π times the number

of cycles in our time window. We write βmin = −� and βmax = �. We assume that the
antenna beam is directed to the left of the flight path, so that y2 > 0.

The boundary of the region � is formed by the four curves C�, C−�, CX, C−X:

C±� = {(ξ1, ξ2(x)) : ξ1 = ±a�, ξ2 = ±�bx, x ∈ [−X,X]}
(26)

C±X = {ξ(β) = (a,±Xb)β : β ∈ [−�,�]}
where we have written a = 2(v/c)

(
y2

2 + H 2
)−1/2

and b = −2(v/c)y2
(
y2

2 + H 2
)−3/2

.
We see that for a given target location (y1, y2), the curves C±� are vertical lines (in which

only ξ2 varies). Similarly, the curves C±X are radial lines through the origin. The region �y is
thus a bowtie. The size of �y depends not only on the target location (y1, y2) but also on the
system parameters v,H,ω0.

To obtain the point spread function (ambiguity function) for a particular image point
(0, y2), we calculate the right-hand side of (25). We write p = zT − yT in (25) and change
variables from ξ = (a, bx)β to (x, β), obtaining

Ky(p) = 1

(2π)2

∫
�y

eip·ξ dξ = 1

(2π)2

∫ �

−�

∫ X

−X

ei(a,bx)·pβ

∣∣∣∣ ∂ξ

∂(β, x)

∣∣∣∣ dx dβ. (27)

The Jacobian |∂ξ/∂(β, x)| is easily found to be equal to |abβ|; K can be calculated as follows:

Ky(p) = −1

(2π)2

(∫ 0

−�

∫ X

−X

ei(a,bx)·pβabβ dx dβ −
∫ �

0

∫ X

−X

ei(a,bx)·pβabβ dx dβ

)
= a

(2π)2ip2

(
ei(a,bX)·p� − 1

i(a, bX) · p
− ei(a,−bX)·p� − 1

i(a,−bX) · p

− 1 − e−i(a,bX)·p�

i(a, bX) · p
+

1 − e−i(a,−bX)·p�

i(a,−bX) · p

)
= a

π2p2

(
sin2((a, bX) · p�/2)

(a, bX) · p
− sin2((a,−bX) · p�/2)

(a,−bX) · p

)
. (28)

Down-range resolution. Down-range resolution is obtained by setting p1 = 0 in (28):

Ky(0, p2) = a

π2p2

(
sin2(�bXp2/2)

bXp2
− sin2(−�bXp2/2)

−bXp2

)
∝ sin2(�bXp2/2)

(�bXp2/2)2
, (29)

where we have used sin2 A = sin2(−A). From the right-hand side of (29), we see that the
down-range resolution is

�p2 = 4π

�bX
= 2πc

(
y2

2 + H 2
)3/2

�Xvy2
, (30)

where the resolution is defined as the width of the central lobe of (29). We see that the down-
range resolution is improved by taking a larger synthetic aperture 2X; this is consistent with
our expectation that a single Doppler measurement will provide no range information. Range
information is obtained only from combining measurements across the synthetic aperture.

For ω0 = 2π×100 MHz, v = 8 m s−1, a 0.5 s time window and y2 = 400, the down-range
resolution is roughly �p2 ≈ 80 m.
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Cross-range resolution. Cross-range or azimuthal resolution is obtained by calculating the
p2 → 0 limit of (28) ; this can be done by means of l’Hospital’s rule:

lim
p2→0

Ky(p1, p2) ∝ sin(�ap1/2) cos(�ap1/2)

�ap1/2
− sin2(�ap1/2)

2(�ap1/2)2

= 1

�ap1

[
sin(�ap1) − sin2(�ap1/2)

�ap1/2

]
= 1

�ap1

sin(�ap1)

�ap1

[
�ap1 − 1 − cos(�ap1)

sin(�ap1)

]
= 1

�ap1

sin(�ap1)

�ap1
[�ap1 − tan(�ap1/2)] . (31)

The width of the central lobe of Ky(p1, 0) is an estimate of the cross-range resolution and
the first zero, which arises from the term in brackets in the last line of (31), involves solving
the transcendental equation α − tan(α/2) = 0, α �= 0. We obtain α = 2.33 . . ., and so the
cross-range resolution is

�p1 ≈ 2 × 2.33

�a
= 2.33c

(
y2

2 + H 2
)1/2

�v
. (32)

For the same parameter values given above, the cross-range resolution is roughly
�p1 ≈ 100 m.

We see that both down-range and cross-range resolutions are improved by having a larger
number of wave cycles within the time window (i.e., by increasing the frequency ω0 or using a
longer time window) and increasing the flight velocity v. Resolution is worse for points more
distant from the flight path.

3.3. Numerical implementation

A full implementation of the scheme in section 3.1 is, computationally, very expensive.
Equation (16) is a triple integral with kernel B given by equation (24). Moreover,
evaluation of this filtering kernel requires calculation of A (equation (11)) and the Jacobian
(equation (23)). Even with the use of look-up tables, the computation requirements associated
with such spatially-varying kernels can be daunting.

Instead, we make use of our previous observation: the leading-order contribution to η

comes from the critical set ∂φ/∂β = 0 which, in this approximation, is a straight line in the
µ̃–τ plane. Consequently, an alternative approach can be based on identifying the straight line
components in η(τ, µ̃).

An efficient line-detection algorithm makes use of the Radon–Hough transform that
integrates over all possible lines:

H{η}(d, θ) =
∫ ∫

η(τ, µ̃)δ(d − τ cos θ − µ̃ sin θ) dτ dµ̃. (33)

The transform-image of η yields a detected (matched) line’s perpendicular offset from the
origin d and the angle θ of this offset. The offset d and angle θ are related to the slope m and
τ -intercept b via d = b cos θ and m = tan θ . Because τ has the dimensions of time, m has the
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Figure 3. The Doppler return from three point scatterers.

Figure 4. The (resampled) Radon–Hough transform of the data in figure 3. The true locations are
marked by ◦; the flight path is along the z1 axis.

dimensions of reciprocal time. These dimensional quantities are related to the dimensionless
τ̃ -intercept b̃ and slope m̃ of the line in the µ̃–τ̃ plane via b̃ = vb/H and m̃ = Hm/v.
According to our analysis above, we can therefore form the estimates

z1 = vd

cos θ
and cot θ = H

v

(−c

2v

) √( z2

H

)2
+ 1

⇒ z2 = 1

H

√
4v3 cot2 θ

H 2c2
− 1 (34)

to locate the scattering centre. Our expedient imaging scheme is therefore performed as a
two-step process: (1) form the Radon–Hough transform H{η}(d, θ) of the correlation data;
and (2) map (resample) according to equation (34).

Figure 3 shows the (magnitude of the) Doppler frequency response of three isolated
equal-strength scatterers as a function of time. (The difference in relative strength of each
curve is due to a difference in scatterer range.) The simulated data were constructed under
the model assumptions of a straight flight path for the radar with transmit frequency of ω0 =
100 MHz and relative velocity of 8 m s−1. Each data point was determined from a 0.5 s
modelled measurement interval (according to equation (13)).

Figure 4 was formed from the data of figure 3 by resampling the Radon–Hough transform
according to equation (34). The figure displays the magnitude of the simple transform and no
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attempt has been made to correct for range-dependent magnitude errors—although this next
image processing step could be easily made once the individual scatterer locations have been
determined. Figure 4 could be improved by image-processing techniques such as high-pass
filtering or thresholding. We leave this topic for the future.

We note that figure 4 shows a superposition of three point-spread functions for our
expedient imaging scheme.

4. Conclusions and future work

We have developed a mathematical model for the radar return signal resulting from a
transmitted CW waveform in the case of an antenna moving above a scattering surface.
For the case of a flight path with constant velocity over a flat surface, we have also developed
two imaging algorithms. Finally, we have displayed the results of numerical simulation for a
simple case.

CW radar is attractive for a variety of reasons including simplicity of hardware design
and data analysis. For monostatic systems, however, the issue of direct coupling between the
co-located transmitter and receiver can be significant and transmitted energy ‘spillover’ into
the receiver can mask detection of weak targets. Isolating these two radar components in CW-
Doppler systems is an area of ongoing engineering development [19] and current capabilities
restrict the practical implementation of this imaging method to specialized situations. Of
course, this problem is not generally manifest in bistatic systems for which the transmitter and
receiver are widely separated and our analysis can be readily modified to include such radar
configurations.

Much more work remains to be done, especially for cases in which the geometry is more
complicated. In addition we leave for the future the problem of developing fast numerical
implementations [16] of the general imaging formula.
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