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Summary. Several approaches to computing body wave seismograms in 2-D 
and 3-D laterally inhomogeneous layered structures are suggested. They are 
based on the Gaussian beam method, which has been recently applied to the 
evaluation of time-harmonic high-frequency wavefields in inhomogeneous 
media. Three variants are discussed in some detail: the spectral method, the 
convolutory method and the wave-packet method. The most promising seems 
to be the wave-packet approach. In this approach, the wavefield, generated by 
a source, is expanded into a system of wave packets, which propagate along 
rays from the source in all directions. The wave packets change their proper- 
ties due to diffusion, spreading, reflections/transmissions, etc. The resulting 
seismogram at any point of the medium is then obtained as a superposition 
of those packets which propagate close to the point. The final expressions in 
all the three methods are regular even in regions, in which the ray method 
fails, e.g. in the vicinity of caustics, in the critical region, at boundaries 
between shadow and illuminated regions, etc. Moreover, they are not as sensi- 
tive to the minor details of the medium as the ray method and, what is more, 
they remove the time-consuming two-point ray tracing from computations. 
Numerical examples of synthetic seismograms computed by the wave-packet 
approach are presented. 

1 Introduction 

Various alternative methods are now available for evaluating body wave synthetic seismo- 
grams in vertically inhomogeneous and radially symmetric media. The situation is, however, 
more complicated in 2-D and 3-D laterally inhomogeneous media with curved interfaces. For 
these types of media, analytical solutions of the elastodynamic equation are not known. The 
three most common approaches to the investigation of seismic wavefields in such complex 
2-D and 3-D structures are: (a) methods based on direct numerical solutions of the elasto- 
dynamic equation, such as the finite-difference and the finite-element method: (b) the 
perturbation method; (c) the approximate high-frequency asymptotic methods. We do not 
intend to give a review of all these methods here, because it can be found elsewhere (see, e.g. 
Richards 1979; Aki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Richards 1980; Chapman & Drummond 1983; Cervenq et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQZ. 1981). 
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Here, we shall pay attention only to  high-frequency approximate methods, which are most 
suitable for investigating seismic body waves in models which are large in comparison with 
the prevailing wavelength, e.g. in the Earth's crust and the uppermost mantle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A typical high-frequency approximate method is the ray method. The ray method has 
found many useful applications in seismology (see Cerveny, Molotkov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& PSenEik 1977; Aki& 
Richards 1980). Effective programs to evaluate the ray synthetic seismograms exist both for 
2-D and 3-D laterally inhomogeneous, layered structures. For more details and examples of 
computations of ray synthetic seismograms in 2-D media refer to, e.g. Hron & Kanasewich 
(1971), terven9 et al. (1977), Cerveny & PSenEik (1977), Hron, Daley & Marks (1977), 
Hong & Helmberger (1977), May & Hron (1978), Cerveny (1979), McMechan & Mooney 
(1980), Cerveny & Ps'enc'ik (1981) and Cassell (1982). Similarly, for 3-D media see KlimeS 
(1 982a) and Cervenp, KlimeS & PSenEik (1982). 

The ray method, however, has certain disadvantages. In principle, it can only be applied 
to  smooth media, in which the characteristic dimensions of all inhomogeneities are consider- 
ably larger than the prevailing wavelength of the propagating wave. Even in the case of 
smooth media, the ray method has some other limitations. We shall mention two of them 
here. The first major problem consists in its limited accuracy in the so-called singular regions 
(caustic region, critical region, transition between shadow and illuminated region, etc.). 
Unfortunately, particularly the singular regions are often very important in the interpre- 
tation, as the amplitudes of body waves reach their maximum values there. Various modifi- 
cations of the ray method have been suggested which increase considerably the accuracy of 
ray methods in singular regions. However, they are of limited value, because they can only 
be applied to simple separated singular regions, and singular regions in laterally inhomo- 
geneous layered structures very often overlap. Moreover, the modifications complicate 
considerably the algorithms for evaluating synthetic seismograms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe second problem is 
connected with the high sensitivity of ray amplitudes to  the approximation of the medium 
and to the thin details of the model (such as the artificial interfaces of higher order and 
edges in interfaces, small fictitious oscillations of the velocity function introduced by 
approximation methods, etc.). Very often, these small details are responsible for the anoma- 
lous behaviour of ray amplitude-distance curves and ray synthetic seismograms. 

There is yet another difficulty in evaluating ray synthetic seismograms which is not 
principal from a physical point of view, but which complicates the computer algorithms and 
computations. It is connected with the necessity to  perform two-point ray tracing. It makes 
the evaluation of synthetic seismograms rather cumbersome and time consuming, particu- 
larly in 3-D media. 

An extensive literature is devoted to  the problem of high-frequency asymptotics for the 
seismic wavefield in individual singular regions. Several asymptotic high-frequency approaches, 
however, treat the problem of singularities from a more general point of view. Let us 
mention some of them. 

One of these methods is the well-known parabolic equation method. The method was 
first used by Leontovich and Fock in investigating the propagation of electromagnetic waves 
around the Earth (Leontovich & Fock 1946; Fock 1965). Since then the method has been 
used in many wave-propagation applications, in which the waves propagating in certain 
preferred direction were studied (Babich & Buldyrev 1972; Landers & Claerbout 1972; 
Babich & Kirpichnikova 1974; Claerbout 1976; McCoy 1977; Tappert 1977; Hudson 1980, 
etc.). The method has also been applied to study of solutions concentrated close to rays 
(Gaussian beams), as will be discussed in detail later. 

Another promising method is based on the applications of KirchojTS integral (Hilterman 
1970, 1975 ; Trorey 1970, 1977; Haddon & Buchen 1981 ; Buchen & Haddon 1981 ; Sinton 
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& Frazer 1981, etc.) Klem-Musatov (1980) proposed a modification of the seismic ray 
method for piecewise block structures, based on the application of edge waves. Similarly, a 
new general approach to the evaluation of finite frequency body wave seismograms in 
laterally inhomogeneous media, based on the generalization of the phase integral method, 
was suggested by Frazer & Phinney (1980) and Sinton & Frazer (1982). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA rigorous, but 
simple method for evaluating synthetic body wave seismograms, based on the application of 
Maslov’s asymptotic theory (Maslov 1965, 1977) was proposed by Chapman & Drummond 
(1983). The method is quite general; it avoids the oscillatory integrals of the asymptotic 
theory and provides smoothed, discrete seismograms directly. 

An alternative general method for the evaluation of time-harmonic wavefields in 2-D and 
3-D structures was suggested recently. It is based on the simulation of the high-frequency 
wavefield by a system of Gaussian beams, concentrated close to rays (see extensive 
references in Sections 2 and 3). The wavefield concentrated close to rays is evaluated by the 
parabolic equation method. Solutions of the parabolic wave equation (Schrodinger equation) 
decrease exponentially with the increasing square of distance from the ray. Thus, the ampli- 
tude profile perpendicular to the ray is bell-shaped. This is the reason why these solutions 
are called Gaussian beams. The width and curvature of the phase front of the beam change 
along the ray due to diffusion, to spreading and reflections/transmissions as the wave pro- 
gresses. The final expressions for the Gaussian beams are regular even at caustics. More 
details on Gaussian beams will be given in Section 2. 

The time-harmonic wavefield generated by a specified source is then evaluated as follows: 
the wavefield in the neighbourhood of the source is expanded into a system of Gaussian 
beams. Each beam is continued along the corresponding ray and the final wavefield at any 
point is obtained as a superposition of all the beams arriving in some neighbourhood of the 
receiver. The asymptotic expansions into Gaussian beams are still only known for simple 
types of sources, but we believe that similar expansions will be soon found even for more 
realistic types of sources. For details on these expansions see Section 3. 

The method of Gaussian beams effectively combines the broad possibilities of the ray 
method and the accuracy of wave methods. For numerical examples of computing time- 
harmonic seismic wavefields by the Gaussian beam approach in various singular regions refer 
to Katchalov & Popov (1981) for a wavelength, to cerveny, Popov & PSenEik (1982a) for 
caustic region, and to Hronovd (1982) for critical regions. 

In this paper, we are primarily interested in evaluating synthetic seismograms, not in the 
time-harmonic wavefield. Several approaches can be used to change the Gaussian beam 
approach, described above, from the frequency domain to the time domain. 

It is simplest to apply the Fourier transform (see Section 4.1). The expressions it yields 
give an approximate high-frequency generalization of the well-known reflectivity method 
(see Fuchs 1968; Fuchs & Muller 1971) for laterally inhomogeneous 2-D and 3-D layered 
structures. The other possibility is to rewrite the obtained solution in terms of convolutory 
integrals. In this approach, the oscillatory integrals of the spectral method are replaced by 
simple, non-oscillatory integrals which resemble, in many respects, the slowness method 
suggested by Chapman (1978) and the Wiggins disc ray theory (see Wiggins 1976). Our 
integrals are, however, applicable to laterally inhomogeneous 2-D and 3-D structures (for 
details see Section 4.2). The third possibility consists in the application of the Fourier trans- 
form or convolution directly to individual Gaussian beams. In this way, the wave packets 
which propagate along rays are obtained. The final expressions for the wave packets are 
surprisingly simple. The synthetic seismogram at any point of medium is obtained by a 
superposition of all wave packets which propagate in the neighbourhood of the point. 

A special case of wave packets are delta packets and Gaussian packets. The Gaussian 
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packets have approximately a bell-shaped envelope both in time and space. The expressions 
for the delta packets and Gaussian wave packets can be written analytically. This makes the 
evaluation of synthetic seismograms very effective and fast. 

The Gaussian beam approach removes the two main problems of the ray method, listed 
above. The final expressions for synthetic seismograms are regular even in regions where the 
ray fields are singular no matter how complicated the singular regions are (they may, of 
course, overlap). Similarly the final expressions are not so sensitive to the details in the 
structure of the medium as the ray method. The smoothing effect is, of course, frequency 
dependent. With increasing prevailing frequency, also the resolving power of the method 
increases. Finally, two-point ray tracing is not needed in the method; the ray field may be 
computed by initial-value ray tracing. This is a very useful property, particularly in comput- 
ing synthetic seismograms in 3-D media (see KlimeS 1982b). 

Note that the Gaussian beam approach can be formally used even in the limiting case of 
infinitely broad Gaussian beams. In this case, the expressions for the Gaussian beam give the 
paraxial ray approximation. The integral superposition of Gaussian beams leads to the 
superposition of paraxial approximations, constructed along individual rays. At any point of 
the medium, the wavefield can be obtained as a superposition of the paraxial ray approxi- 
mations corresponding to  rays passing in the close neighbourhood of the receiver; the 
paraxial ray approximations corresponding to remote rays do not contribute to the final 
wave field due to destructive interference. 

The algorithms and programs for evaluating body wave seismograms, based on the 
Gaussian beam approach, are no more complicated than those based on  the standard ray 
method. They may even be simpler. The reason for this is that two-point ray tracing is not 
needed in these programs. The computation itself may also be faster than the evaluation of 
ray synthetic seismograms, mainly if the synthetic seismograms have to be computed at 
many receiver positions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs soon as a sufficiently dense system of rays is determined, the 
evaluation of synthetic seismograms at any point situated in the region covered by the 
system of rays is fast and easy. 

For completeness, note that two-point ray tracing can be avoided even in the evaluation 
of ray synthetic seismograms; it may be replaced by dynamic ray tracing and the paraxial 
ray approximation. This approach is very useful particularly in 3-D media and for sources 
situated outside the profile. For details refer to KlimeS (1982a) and t o  Cerveny etal.  (1982). 

Any program for ray tracing and ray amplitude computation in 2-D and 3-D media, in 
which geometrical spreading is computed by dynamic ray tracing, can be easily adapted to 
the Gaussian beam approach. The program package S E I S ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (terveny zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& PSenEik 1981) for 
evaluating ray synthetic seismograms in 2-D laterally inhomogeneous structures was 
rewritten in this way for the Gaussian packet computations. The program was tested on 
various simple structures (see details in Section 5). All the results are promising. A similar 
program was written for 3-D laterally inhomogeneous layered structures by KlimeS (1 982b). 
Numerical tests show that the Gaussian packet approach is effective even in 3-D media. It is, 
of course, more time-consuming, as a two-parametric system of rays must be computed. 

2 Gaussian beams 

Let us consider a scalar wave equation or a vectorial elastodynamic equation, and the corres- 
ponding wavefield. Let us select an arbitrary ray and denote it by R. In case of the elasto- 
dynamic equation, this may be the ray of either a compressional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P) or a shear ( S )  wave. We 
introduce the ray-centred coordinate system (s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41, q 2 )  connected with this ray. The 
coordinate s measures the arc length along the ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR from an arbitrary reference point, q 1  
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq2 represent the length coordinates perpendicular to the ray at s. The vector basis of the 
new coordinate system is formed by the triplet of unit vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, e l ,  e2, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt is tangent 
to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR and e l ,  e2 are perpendicular t o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52. They are specified in such a way that the coordinate 
system (s, q l ,  q 2 )  is orthogonal. In other words, (s, q I ,  q 2 )  form a natural coordinate system 
connected with the ray R. This ray-centred coordinate system was introduced into seismol- 
ogy by Popov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& PSenEik (1978a, b) (for details see also cerveny & Hron 1980). Note that 
the ray-centred coordinate system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s, q l ,  q 2 )  is not regular at larger distances from the ray 
R when the ray R is curved. We consider here only a region along R at which the ray- 
centred coordinate system (s, q I ,  q 2 )  is regular and call it 'the regularity region'. 

The ray-centred coordinate system is suitable for studying the high-frequency part of the 
wavefield which propagates along the ray R. It is not difficult t o  show that the high- 
frequency solutions of  the wave equation and of the elastodynamic equation, concentrated 
close to  the ray R, can be expressed in terms of  the solutions of  the parabolic equation. 
From a physical point of view, these solutions represent Gaussian beams, their amplitude 
profiles perpendicular t o  the central ray R are bell-shaped (Gaussian). In the limiting case of 
an infinitely broad Gaussian beam, they represent the paraxial ray approximation. (We 
consider these solutions, of course, only in the regularity region along SZ, even when we 
formally speak about the infinitely broad Gaussian beams.) 

The parabolic equation method was first used t o  study the solutions o f  a wave equation, 
concentrated close to  a ray, by Babich (1968). The asymptotic analytical expressions for 
Gaussian beams, concentrated close to  rays, are now known both for the wave equation and 
for the elastodynamic equation, even for general multiply reflected and refracted rays in 
layered inhomogeneous media. For references see Kirpichnikova (1 971), Babich & Buldyrev 
(1972), Babich & Kirpichnikova (1974), Babich & Popov (1981), Popov (1981, 1982), 
Cerveny (1981a, 1982), Cerveny et al. (1982a), Cerveny & PSenEik (1983) and KlimeS 
(1 982b). Similar expressions for Gaussian beams can undoubtedly be easily written even for 
other types of  wavefields in laterally inhomogeneous layered structures. 

All the above-mentioned solutions refer t o  the frequency domain. To adjust the time- 
harmonic Gaussian beams t o  the time domain, it is not necessary to present detailed 
formulae for the time-harmonic Gaussian beams. It is sufficient t o  write these expressions in 
some schematic form, which remains valid in all situations (even in situations for which the 
concrete formulae for Gaussian beams have not yet been derived). We shall give all the 
expressions for a 3-D case; the specification for a 2-D case is straightforward. 

We consider a time-harmonic Gaussian beam with the circular frequency w. We assume 
that the frequency w is positive and high. The factor exp(- iwt) ,  where t is the time, is 
omitted in the following equations. We denote by V(s, q , ,  q 2 )  the velocity of propagation. 
In case of elastodynamic Gaussian beams, V(s, q l ,  q 2 )  may be the velocity of  either a 
compressional wave (when the Gaussian beam is concentrated close to  the ray o f  theP-wave) 
or a shear wave (for the Gaussian beam concentrated close to  the ray of  the S-wave). We 
shall also use the notation u(s) = V(s, 0, 0). In this way, u(s) denotes the velocity measured 
at the central ray R. 

Let us now consider a point S, situated close to the ray 52, specified by the ray-centred 
coordinates (s, q l ,  q 2 ) ,  i.e. SE [s, q l ,  q 2 ] .  The scalar Gaussian beam, connected with the 
central ray R, then gives the following contribution at point S, 

Here u(S, w )  may represent various physical quantities in various wave propagation 
problems. The same equation can be used even for the vectorial solution, only the scalar 
quantities u(S, a) and A(s)  must be replaced by vectorial quantities u(S, a) and A(s). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
3
/2

/3
8
9
/7

1
4
6
4
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



394 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACerveny 

For simplicity, only the scalar solutions will be given in the following, which can be simply 
changed to vectorial solutions in any case under consideration. By the argument S we under- 
stand three variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the coordinates of the point S.  

The quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(s)  in (1) is a complex-valued amplitude factor which does not depend on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w and on the coordinates q l ,  q 2 .  For Gaussian beams with a finite width, A(s )  remains finite 
along the whole ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR; it has no singularity at the caustic. It has exactly the same form as 
the corresponding amplitude factor in the ray method (see Cerveny et al. 1977; PSenc'ik 
1 !I??), only the geometrical spreading is replaced by a complex-valued function which does 
not vanish at any point of the ray. We shall call this function the complex-valued spreading. 
(Remember that geometrical spreading in the ray method is either real or imaginary.) More 
details on the complex-valued spreading will be given later. In case of a multiply reflected/ 
refracted ray, the quantity A($)  also contains the product of reflection/transmission 
coefficients at the individual points of incidence at interfaces, the coefficient of conversion, 
etc. In case of elastodynamic Gaussian beams, the scalar quantity A(s)  should be replaced by 
the vectorial quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(s). (For simplicity, we consider here only the principal components 
of the elastodynamic Gaussian beam.) For Gaussian beams concentrated close to the ray 
R of a P-wave, A(s) points along the ray R. The situation is more complicated for a 
Gaussian beam concentrated close to the ray of an S-wave, when A(s) is perpendicular to the 
ray R. In an inhomogeneous medium without interfaces, the components of A(s) into el 
and e2 are not coupled to each other and propagate independently, even when the ray R is 
three-dimensional with non-zero torsion. Both the components, however, may become 
coupled when the ray strikes an interface. 

The phase factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(s, q l ,  q 2 )  again does not depend on the frequency w ,  but it depends 
on all the three ray-centred coordinates of the point S, namely s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq l ,  q 2 .  It is given by the 
re la t ion 

where 

The integral in (3) is taken along R and { denotes the arc-length along R. The symbol T 
denotes the transpose. Finally K(s) is a 2 x 2 symmetrical real-valued matrix, not specified 
here. It can be interpreted as the curvature matrix o f  the phase front o f  the Gaussian beam. 
The first term in (2) ,  ~ ( s ) ,  measures the travel time along the ray R. 

The expression C(s, q l ,  q 2 )  in equation (1) controls the decay of amplitudes of the 
Gaussian beam in the direction perpendicular to the ray R and can be expressed as 

C(s, 4 1 , q 2 ) =  '/2qTB(s)q, (4) 

where B(s) is a 2 x 2 positive definite real-valued matrix, q and qT being given by (3). 
Note that a complex-valued 2 x 2 matrix M(s), given by the expression 

1 
M(s) = -- K(s) + i B ( s ) ,  

4 s )  

(where i is the imaginary unit) may be introduced. The quantity M (s) may then be called the 
complex-valued matrix of second derivatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the travel-time field and u(s)  M(s) the 
complex-valued curvature matrix. Using M(s), equation (1) for the Gaussian beam can be 
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written as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u(s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A ( s )  exp ( i w  [ T ( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%qT M(s)q] } . (6) 

Matrix M(s) is a complex-valued solution of the matrix Riccati equation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dM 
- i- v M ’ + v - ~ V = O ;  
dS 

(7) 

where V(s) is a real-valued 2 x 2 matrix with elements Qj given by the expression 

The non-linear Riccati equation (7) can be rewritten into a system of two matrix linear 
ordinary differential equations of the first order introducing new 2 x 2 complex-valued 
matrices Q and P by the relations M = u-l dQ/ds Q-’ = PQ-’. The system reads 

dQ dP 

ds ds 
- - u - ~  VQ. - u p ,  - - - _  

Note that the complex-valued spreading discussed above is given by the expression (det Q)”’. 
In a 2-D case, all the above equations remain valid, only the 2 x  2 matrices (K, B, M, V,  

0, P) are replaced by scalars ( K ,  B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, V, Q, P), corresponding, e.g. to the upper left 
elements of corresponding matrices. The vector q from (3) is also replaced by its first 
component. 

The real-valued form of the above differential equations has found broad applications in 
the ray method. The systems (7) and (8) are called in this case the dynamic ray tracing 
systems, and the matrix B and the quantity G identically vanish. Equation (1) can be used 
effectively even in this case. It describes the wavefield in the close neighbourhood of the 
specified ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL?. We shall call it here the paraxial ray approximation. In this sense, the 
paraxial ray approximation corresponds formally to  an infinitely broad Gaussian beam. The 
curvature matrix of the phase front of the beam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(s) yields then the standard curvature 
matrix of the wavefront, and the complex-valued spreading (det Q)l” reduces to the 
geometrical spreading of the standard ray theory. The paraxial ray approximation is, of 
course, singular at caustics, where the geometrical spreading vanishes. For references see 
Popov (1977), Popov & Ps‘enEik (1978a, b), terveny & Hron (1980), Hubral(l979, 1980), 
Azbel, Dmitrieva & Yanovskaya (1980) and terveny (1981a, c). A detailed discussion of 
various applications of the dynamic ray tracing in 2-D media in seismology and in seismic 
prospecting can be found in terveny (1981~) .  The dynamic ray tracing can be used to 
evaluate the second derivatives of the travel-time field, the curvatures of the wavefront, the 
geometrical spreading, etc. It can also be applied to perform a simple and fast ray tracing in 
the vicinity of a known specified central ray L? (including the two-point ray tracing). Several 
applications in seismic prospecting are described in Gol’din (1979) and in Hubral & Krey 
( 1 9 80). 

The complex-valued form of the dynamic ray tracing systems (7) and (8) was discussed 
by Babich (1968), Kirpichnikova (1971), Babich & Buldyrev (1972), Popov (1981) and 
terveny (1981a, 1982). For a 2-D version of the complex-valued systems see Babich & 
Kirpichnikova (1 974), eervenq (1 981 a), Cervenq et al. (1 982a) and tervenf & Ps’enEik 
(1983). It should be noted that any complex-valued solution of (8) can be constructed from 
a system of real-valued linearly independent solutions of (8). The complex-valued solution 
is obtained as a superposition of the real-valued linearly independent solutions, multiplied 
by some complex-valued constants. These constants fully determine the behaviour of the 
Gaussian beam along the whole ray L? (i.e. both the curvature matrix of the phase front of 
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the Gaussian beam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK(s) and the matrix B(s), controlling the amplitude profiles perpen- 
dicular to R). We shall call these constants the initial parameters of Gaussian beams. It was 
shown by Cerveny et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 982a), that the Gaussian beam in a 2-D medium is fully specified 
by two real-valued initial parameters, e.g. by the curvature of the phase front and the half- 
width of the beam at s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso. The 3-D Gaussian beam is specified by six real-valued initial 
parameters. Simpler types of 3-D Gaussian beams can be specified by a lower number of 
initial parameters. For example, a 3-D circular Gaussian beam is fully specified by only two 
real-valued initial parameters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA more detailed discussion of this problem will be published 
elsewhere. 

As we have seen above, the evaluation of Gaussian beans is algorithmically very similar 
to  the evaluation of ray solutions. In fact, the algorithms for the evaluation of Gaussian 
beams may be even simpler than these for the ray solutions. No special attention must be 
devoted to the caustic point in the evaluation of Gaussian beams, the caustic points are 
quite standard and regular points in this case. In the ray theory, however, a familiar phase 
retardation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ~ T  or T must be introduced at each point where the ray trajectory touches 
the caustic surface. Thus, a permanent attention must be devoted to the position of caustic 
points and to the type of the caustic when evaluating the ray solutions. Of course, the same 
applies to the paraxial ray approximations. 

Equation (1) is not the only solution of the parabolic equation. When G + 0, an infinite 
number of linearly independent solutions of the parabolic equation can be constructed using 
Hermite polynomials; the solution (1) being the basic (zero) mode. In the following, we shall 
consider only the basic mode ( I ) .  (The higher modes can find applications, e.g. in various 
problems of diffraction of Gaussian beams and of constructing beams with a non-Gaussian 
amplitude profile.) 

Similarly, we shall not discuss the higher terms of the asymptotic series for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(S, a) in 
powers of I /(- ia)1’2 here. For example, in the case of elastodynamic Gaussian beams, the 
Gaussian beam concentrated close to  the ray of a P-wave also has transverse components, 
perpendicular to the ray. Similarly, the Gaussian beam concentrated close to the ray of an 
S-wave also has a longitudinal component, parallel to the ray. These ‘additional components’, 
however, are of a higher order than the principal components and will not be discussed here. 
For details see Kirpichnikova (1971), Cerveny & PSenEik (1983) and KlimeS (1982b). 

As mentioned above, the complex-valued amplitude factor A(s )  in (1) does not depend on 
frequency. Similarly as in the ray method, it may be useful to modify our results slightly and 
allow some factors in A(s)  to be frequency-dependent. One such a situation is described in 
the following. Let us consider the model of a medium, composed of thick inhomogeneous 
layers separated by thin transition layers with abrupt changes of velocity. A modification of 
the ray method was suggested by Ratnikova (1973) for vertically inhomogeneous layered 
structures, in which the ray theory is applied to  thick vertically inhomogeneous layers and 
the reflection/transmission coefficients at transition layers are evaluated by matrix methods, 
e.g. by the Thompson-Haskel method. Then the reflection/transmission coefficients are 
frequency-dependent and the quantity A(s)  also becomes frequency-dependent. The hybrid 
ray-matrix method described above has been used broadly in various applications. See also a 
short description of the method in Cerveny et al, (1977). Daley & Hron (1982) used an 
analogous method to study the SH-waves in stacks of thin and thick layers and called it the 
ray-reflectivity method. In the Gaussian beam approach, this modification is even more 
natural than in the ray method (see more details in Section 4). 

In the conclusion of this section it should be emphasized that our attention has been 
devoted to the high-frequency Gaussian beams, concentrated close to a ray R in an inhomo- 
geneous medium. We found that these Gaussian beams are the solutions of the parabolic 
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equation. Gaussian beams, however, can be derived and investigated also by other 
approaches, particularly in some special situations (e.g. in a piecewise homogeneous 
medium). They have found many important practical applications in optics, electromagnetic 
waves, acoustics, and even in seismic prospecting. For references see Kogelnik ( l965) ,  
Deschamps (1971), Marcuse (1972), Felsen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Marcuvitz (1973), Felsen (1976) and 
Claerbout (1 9 8  1 a,  b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Expansion of the wavefield into Gaussian beams 

Let us now consider a wavefield (scalar or vectorial) generated by some idealized source. 
Examples are a point source, a line source, a ‘plane’ source, etc. The source may, generally, 
be more complex, we only assume that the corresponding system of rays is two-parametric 
and that it uniquely determines the system of wavefronts (orthonomic system of rays, see 
Stavroudis 1972). We denote the two ray parameters by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 6 .  They may have a different 
meaning in different wave-propagation problems. They may correspond t o  some angles or 
direction cosines or slowness vector components in some problems, and may have the dimen- 
sion of length in other problems. For example, in the case of a point source, 4 and 6 may be 
taken as the take-off angles at  the point source. They specify the initial direction of the ray 
at the source. In the case of a line source, 4 may be the polar angle in the plane perpen- 
dicular to the line source and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 the length along the source, measured from some reference 
point at the line source. The ray parameters can also be specified along a selected wavefront 
of the wave; they may be regarded as curvilinear coordinates on the wavefront. In case of  a 
plane wave, @I and 6 may be the Cartesian coordinates in the plane. In case of a more 
complex source, 4 and 6 may be specified in a similar way. 

The Gaussian beam procedure can even be applied to  more complex sources, for which 
the wavefield can hardly be described by an orthonomic system of rays. In such cases, it 
would be possible t o  use the principle of superposition and form the source by super- 
imposing simpler sources, for which the assumption is valid. The whole procedure will, of 
course, be simpler if we consider sources for which the ray field forins an orthonomic two- 
parameter system of rays. 

We shall discuss a general 3-D case here. For a 2-D problem, the orthonomic system of 
rays will, naturally, be one-parametric. 

Babich & Pankratova (1 973) first suggested describing the wavefield in the high-frequency 
approximation by means of an expansion into the solutions concentrated close t o  the rays. 
According to  Babich & Pankratova (1973), such a proposal was made even earlier by V. S. 
Buldyrev and V. F. Lazutkin at a seminar on diffraction and wave propagation of LOMI 
(Mathematical Institute of the Academy of  Sciences of the USSR, Leningrad Division). 
Such asymptotic expansions are now known for several types of sources, both for the wave 
equation and for the elastodynamic equation. For a point source, refer to the details in 
Popov (1 9 8  1, 1982) and KlimeS (1 982b), for a line source to cerveny et al. (1 982a). For a 
plane wave, the expansion of  the plane wave into Gaussian beams is exact, valid even for 
small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo (Cerveng 1981a, 1982). A summary of  various expansions can be found in 
tervenp (1981a). It will not be complicated to  write such expansions for even more complex 
types of  sources. 

As in the case of  Gaussian beams, we shall write the equations for the asymptotic high- 
frequency expansions of  the wavefield into Gaussian beams only in a schematic form, which 
remains valid in various situations (hopefully even in situations for which the concrete form 
of these expansions has not yet been derived). To distinguish between the wavefield 
corresponding to an individual Gaussian beam (1) and the wavefield obtained by super- 
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position of Gaussian beams, we shall use, in the latter case, the capital U,  instead of the 
lower-case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ,  reserved for individual Gaussian beams. Note that the wavefield u(S, w )  
corresponding to an individual Gaussian beam (given by 1) is a function of ray parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@, 6 ,  which specify its central ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 under consideration. Thus, we shall write u(S, w ,  4,s) 
instead of u(S, w). 

Let us assume that the medium in the vicinity of the source is locally homogeneous and 
again denote the observation point by S .  We can then express the wavefield U(S, w )  as 

U(S, w )  = (- iw)k /2  J@: J&6y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ ( A 6 ) u ( S ,  w,@,6)d@d6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a(@, 6)  is some complex-valued function not specified here, which depends on the type of 
source. The limits in both integrals, do,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@p~ and tio, 6M, may be different for different 
sources. They must be chosen in such a way as to guarantee that the Gaussian beams, con- 
centrated close to rays with parameters $, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 outside the range of integration limits, do not 
contribute effectively to the complete wavefield at S.  The factor ( - iw)k /2  is optionally 
included in the expansion formula (9) to obtain a frequency-independent far-field amplitude 
of the generated wavefield. In the known expansion formulae mentioned above, the quantity 
k was found to be different for 2-D and 3-D media. For a 3-D case, with a double integral in 
(9), the quantity k was found to equal 2. Equation (9), however, can also be applied to a 2-D 
case [superposition of 2-D Gaussian beams u(S, 0, 4)]. Then it contains only one integral 
over @, and k equals 1. 

As was shown in Section 2, the expression u(S, w ,  @, 6) for Gaussian beams can be used 
only in the regularity region along the ray f2 specified by the ray parameters 4,s. Therefore, 
the function u(S, w ,  @, 6) in the integral (9) should be multiplied by some windowing func- 
tion which vanishes outisde the regularity region. The influence of the artificially introduced 
windowing function on the final results will be generally small. Since we usually work with 
narrow beams, the situation that u(S, w, 4, 6) is not negligible outside the regularity region 
will occur only exceptionally. Even in the case ofbroad Gaussian beams, however, the influence 
of the windowing function is expected to be small due to the effects of the destructive 
interference of remote Gaussian beams. (The effect of the destructive interference will be 
briefly discussed later.) 

Note that the coordinates of point S in the expression U(S, w )  on the Ihs of (9) may be 
specified in any general coordinate system. In the integrand on the rhs of (9), however, S is 
specified by the ray-centred coordinates (s, 4 I ,  q 2 )  corresponding to individual rays with 
parameters @ and 6 .  In other words, the quantities s, 4 

Equation (9) can again be written even for a vectorial case (e.g. for elastic waves). The 
scalar quantities U(S, 0) and u(S, w, 6, 6) in (9) should then be replaced by vector quan- 
tities U(S, w )  and u(S, w ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@,ti). 

When the integrand of (9) is sufficiently smooth for given S and w ,  the integral (9) may 
be evaluated by numerical quadratures. This gives 

qz depend on 4 and 6 .  

where the quantities A@i and Atii are determined from a given system of and 6 j  

(i = 0, 1, 2, . . . , N ;  j = 0,  1, . . . , M )  in agreement with specific numerical quadrature pro- 
cedure. Note that equation (9) gives a continuous and equation (10) a discrete expansion of 
the wavefield into Gaussian beams. 

In the case of a layered medium, a large number of various multiply reflected/refracted, 
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possibly converted, waves may propagate in the medium. The expansion (9) or (1 0) must then 
be written for each of these waves and the complete wavefield is obtained as the super- 
position of all these expansions. The situation is fully equivalent to the ray method in this 
respect. In stacks of thick and thin layers, the number of waves can be radically decreased if 
the modification with frequency-dependent reflection/transmission coefficients, described 
at the end of the preceding section, is applied. 

The accuracy of the asymptotic integral (9) or of its discrete version (10) depends on 
various parameters. The most straightforward way to  investigate it is based on  numerical 
computations of test examples. Certain such computations will be presented in Section 5; 
a more extensive investigation was performed by Hronova (1 982) and will be described else- 
where. Some analytical estimates regarding the accuracy of equation (9) for a point source in 
a 3-D medium were found by KlimeS (1 982b). 

Let us now summarize the procedure of computing the time-harmonic wavefield 
generated, say, by a point source. For simplicity, we shall consider only one elementary 
wave; the procedure may be repeated for all waves under consideration. The procedure is as 
follows: 

First, a sufficiently dense, regular or irregular, system of rays running from a source in 
various directions, specified by ray parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@i, 6, (i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 ,  1 , 2 ,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ;  j = 0, 1 , 2 ,  . . . , M )  
is computed. The rays are computed as an initial-value (Cauchy) problem. The computed 
rays must cover the whole region in which the receivers are situated, with some reserve of 
rays outside this region. 

Secondly, the dynamic ray tracing system (8) is solved several times to obtain all its 
linearly independent solutions. (For example, in a 2-D medium, the system (8) has two 
linearly independent solutions and must be solved twice.) 

Thirdly, the ray-centred coordinates of the receiver point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS are found for all rays. For 
each individual ray, the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( s ) ,  K(s), B(s) and A(s)  (or some other alternative 
functions) are determined. If we know all these functions, we can compute the Gaussian 
beam connected with the ray under consideration. The Gaussian beams corresponding 
to remote rays having no substantial effect on the results at the point S are eliminated, only 
beams passing in the neighbourhood of the point S need be considered. 

Fourthly, the wavefield at the receiver point S is then obtained by a weighted super- 
position of contributions, corresponding to individual beams (see equation 9 or 10). 

The great advantage of the procedure described above in comparison with the ray method 
is that the rays may be computed as an initial-value (Cauchy) problem and that time- 
consuming two-point ray tracing is not required. This makes the computer algorithms for 
evaluating the wavefield, based on the Gaussian beam approach, simpler than the algorithms 
based on the ray method. For the same reason, the application of the Gaussian beam 
approach may be even less time-consuming than the applications of the standard ray 
method. 

Moreover, as soon as the region under consideration is covered by rays and these results 
are stored in the computer, the wavefield can simply be computed at any point of the 
region. It is not necessary to repeat the ray tracing and the dynamic ray tracing if we are 
interested in the wavefield in a new system of receivers within the region under investigation. 

For more details on the procedure see Babich & Pankratova (1973), Popov, PSenc'ik & 
Cerveny (1980), Popov (1981, 1982), Katchalov & Popov (1981), Cerveny (1981a, 1982), 
tervenp et al. (1982a), CervenL, Popov & PSenc'ik (1982b), Hronovri (1982) and KlimeS 
(1982b). 

Some difficulties appear in step 3 of the procedure. The determination of the ray-centred 
coordinates (s, q l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 2 )  of the receiver point S, connected with a ray a, is simple (see details 
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in Cerveny et al. 1982a, section 6). However, it requires that the trajectories of all computed 
rays, together with a number of auxiliary quantities at all points of these rays, are stored in 
the computer. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA simplified approach based on  the paraxial ray approximation can be applied 
in certain situations which removes this difficulty (see Cerveny 1981~) .  For example, when 
the receiver point is situated close to the Earth’s surface, all the necessary parameters of 
Gaussian beams can be determined from the termination points of the rays along the Earth’s 
surface. In this way, only the termination points of the rays at the Earth’s surface (not the 
whole rays) together with the auxiliary quantities determined at these points can be stored 
in the computer. 

As was shown in Section 2, Gaussian beams remain regular even at caustics and in their 
neighbourhood where the ray method itself is singular. There may, however, still be some 
other singularities in the ray field. The integration (9) removes most of these singularities. 
The singularities of the ray method, which are removed by the integration in (9), are 
connected, e.g. with the singular behaviour of reflection/transmission coefficients (e.g. 
critical regions), boundaries of shadow zones, etc. Using (9) or (lo), the wavefield pene- 
trating into a half-shadow is automatically obtained. (The wavefield in the deep shadow, 
however, is not obtained.) 

Let us emphasize one interesting point. Integral (9) remains valid even for infinitely broad 
Gaussian beams zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ) ,  assuming that the windowing function discussed above is used. 
Integral (9) represents in this case an expansion of the wavefield into the paraxial ray 
approximations connected with the orthonomic system of rays. It leads easily to various 
local asymptotics known from the literature. In contrast to these asymptotic results, derived 
usually for simple, specific situations (e.g. for vertically inhomogeneous media), equation 
(9) can be used quite generally for 3-D laterally inhomogeneous media with curved inter- 
faces. To evaluate integral (9), the method of stationary phase and its various well-known 
modifications can be used. The method of stationary phase also shows that only the rays 
passing close to the receiver S contribute effectively to the wavefield at S. The reason for 
this is the destructive interference of paraxial ray approximations corresponding to remote 
rays, not the amplitude decrease of beams perpendicular to  the ray. 

It would be also possible to interpret these results using the terminology of Fresnel zones 
and Fresnel volumes known from optics, see Born & Wolf (1968), Kravcov & Orlov (1 980, 
section 10). The energy arriving at the receiver is due not only to the ray propagating with 
the stationary travel time, but also due to the bundle of neighbouring rays. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Construction of synthetic seismograms 

In the two preceding sections, we considered the propagation of time-harmonic waves. It is 
not difficult to rewrite the results from the frequency domain to the time domain, and to 
write expressions for synthetic seismograms. As the problem is linear, we can use the Fourier 
transform (see Babich & Pankratova 1973), but the results can also be rewritten in several 
other useful forms (convolutory form, wave-packet approach, etc.). We shall derive several 
of these forms, here, starting with the spectral (Fourier transform) method, and discuss them 
from the seismological point of view. Several forms presented in this section (e.g. the wave 
packet approach) were shortly discussed even earlier in cerveny (1981a, 1983). 

For simplicity, we shall use the same symbol U for the wavefield in the time domain 
which we have used in the frequency domain, but writing U = U(S, t )  instead of U = U(S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). 
The quantity U(S, t )  may again be either a scalar or a vector quantity. 

We denote the source-time function by f ( t )  and assume thatf(t) is absolutely integrable. 
We understand that f(t) corresponds t o  the far-field approximation. We denote the spectrum 
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f(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Re J F(w) exp(- iwt )dw.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 

We also assume that f ( t )  is a high-frequency function. This means that the Fourier spectrum 
F(w) of f(t) effectively vanishes for small frequencies, 

F ( o ) = O  for 0 4  w 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwo, (1 1’) 

where wo is high. 

4.1 T H E  S P E C T R A L  A P P R O A C H  

Using the Fourier transform, we obtain 

(-iw)k/2 F(o) exp( - io t )  
71 

x u(S, w, @ , 6 ) d # d 6 d o ,  

from (9). The above expression can be rewritten in the following form (see l ) ,  

U(S, t )  = - Re 1; ( - i ~ ) ~ / ’ F ( w )  
1 

J6‘; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(A 6 ) A  exP(-wC) 
71 

x exp [- io(t  - B ) ]  d@d6do, (13) 

where A = A  (s, #, 6 ) ,  G = G(s, q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, q 2 ,  4, S ) ,  B = 8 (s, q 1, q 2 ,  4,s). Thus, the functions A ,  G 
and 0 depend on the ray-centred coordinates of point S ,  corresponding to the selected ray 
with ray parameters @, 6. In other words, the ray-centred coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, q l ,  q 2  depend on 
$,6;s =s(@, 6 ) ,  q =q l (@,  6 ) ,  q2 = q2(@, 6). The functionA depends only on the ray-centred 
coordinate s, not on q1 and q 2 .  

Equation (13) is suitable for computing synthetic seisnograms mainly when A also 
depends on the frequency, e.g. when we consider the frequency-dependent reflection/ 
transmission coefficients from some thin transition layers (see the discussion at the end of 
Section 2) .  Equation (13) then gives an approximate high-frequency generalization of the 
well-known reflectivity method (see Fuchs 1968; Fuchs & Miiller 1971) for 2-D and 3-D 
laterally inhomogeneous layered structures. If A does not depend on the frequency, it will 
be more effective to use the methods described in Sections 4.2 and 4.3. More details on 
integral (13) and on its connection with the reflectivity method with some examples of 
computation will be given elsewhere. 

Note that the term exp(-wG) gives some position-dependent windowing of the ray 
parameters @, 6 automatically. Similar windowing of the angle of incidence is also artificially 
introduced in the reflectivity method. 

It should be emphasized that equations (1 2) and (13) yield the time dependence f(t) in 
regular ray regions, although the spectrum F(w) off(t) is multiplied by ( - i w ) k / 2 .  

4.2 C O N V O L U T O R Y  A P P R O A C H E S  

By changing the order of integrals in (13), we obtain 
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where 

w(S, t, cp, 6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - 

To simplify the above expressions, we introduce two new real-valued time functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( - ~ w ) ~ / ~ F ( w )  exp(-wG) exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ - i ~ ( t - 0 ) ]  dw.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71 l: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 r-a 

x(t)= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Re J ( - io )k /2F(w)exp( - iw t )dw,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 1 0  

= Im ) ( - i ~ ) ~ f ’ F ( o )  exp( - i o t )do .  
71 0 

The relation between x(t) and f(t) is controlled by the integer k.  For example, for k = 2, 
x(t) is the time derivative of f ( t ) ,  x(t) = df(t)/dt. For k = 1 ,  the relation between x(t) and 
f ( t )  is as follows: 

d 
x ( t )  = ?I-’/* - [ H ( t )  t-”’ *f(t)] = n-”*H(t) t-”2*df(t)/dt, 

d t  

where H ( t )  is the Heaviside function. As we can see from (16), h(t) is the Hilbert transform 
of x(t). Using this notation, (1 5) can be rewritten in the two following forms: 

1 
w(S, t, @, 6) =x( t ) *  - 

71 

or, alternatively, 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w(S, t, @, 6 )  = i ( t )  * - 

71 

1 

G + i ( t - 0 )  ’ 

I 
Im -~ 

t-0-iG ’ 

where Im denotes the imaginary part. In (18), i ( t )  is the analytical signal corresponding to 
the function x(t) (see Bracewell 1965), 

i ( t )  = x(t) + ih(t). 

Inserting (1 7) into (14) yields a useful formula, 

(PA 
d@d6. 

Similarly, equation (1 8) with (14) gives 

Alternatively we can write equation (21) in the following form: 

1 @N 6~ GRe((PA) 

71 j~~ (t-0)’ + G Z  
U(S, t )  =x(t) * - d@d6 
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As we can see from equations (20)-(22), the oscillatory integrals of  the spectral method 

are replaced by non-oscillatory integrals, which it is simple t o  compute. 
The integrals presented in this section have many properties similar t o  those of the slow- 

ness method discussed in detail by Chapman (1978) and of  the disc ray theory (Wiggins 
1976). They are, however, applicable t o  general 2-D and 3-D laterally inhomogeneous struc- 
tures. They also remain valid in the limiting case of  infinitely broad Gaussian beams, G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ 0. 

The expression Im(t -0  -iG)-' = G [( t  - 0)' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt G']-' in the integrands of (21) and (22) 
approaches for G + 0 the delta function and the integrals lead t o  simple analytical expres- 
sions. For a detailed discussion of  similar integrals refer t o  Chapman (1978) and Chapman 
& Drummond (1 983). 

4.3 THE WAVE-PACKET APPROACH 

Equation (14) can be rewritten in the following form: 

where 

g(S, t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 6 )  = - Re (4, J: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( - ~ U ) ~ / ~ F ( W ) A  e x p ( - o G )  exp [ - iw(t-0)]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7T 

We can call function g(S, t ,  @, 6)  the wave packet. It propagates from the source along the 
ray specified by ray parameters @, 6 and is effectively limited both in space and in time. We 
remind that f ( t )  is a high-frequency function. Consequently, g(S, t ,  4,s) is a high-frequency 
packet. 

Similar t o  equation (lo), we can again write a discrete form of (23), assuming that the 
functiong(S, t, @, 6)  is sufficiently smooth for a given S and t ,  

where di, 6 i ,  
The physical explanation of  (25) is as follows: The wave packetsg(S, t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ j ,  6i)are emitted 

from the source into directions &, 6i (i = 0 ,  1, . . . , N ;  j = 0, 1 , .  . . , M ) .  These wave packets 
propagate along rays specified by parameters @i, 6 i .  They change their properties continu- 
ously due to  diffusion, spreading, reflections, etc. The resulting synthetic seismogram 
U(S, t )  at any point S of the medium is then obtained as a superposition of  the wave packets 
which 'fly' in the close neighbourhood of  the observation point S. It should be emphasized 
that the wave packets are firmly tied to  the rays, even if they correspond t o  a multiply 
reflected/refracted (possibly converted) wave. 

Equation (24) may be applied even i f a  frequency-dependent A is considered (see the end 
of Section 2). If A does not depend on frequency, (24) yields 

and A6i have the same meaning as in (1 0). 

g(S, t, @, 6 )  = Re {@Aw(S ,  t, 6 , s )  1 , (26)  

where w(S, t, @, 6 )  is given by (15). 
If the amplitude spectrum IF(o) I is very narrow, highly concentrated close to a pre- 

vailing fiequency w = a*, we can use (26) approximately even if A is slightly frequency- 
dependent. We must then put A =A(w*) in (26). In the following, we shall assume that A 

does not depend o n  frequency, and, if so, t h e n A  corresponds toA(o*) .  
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Alternative forms of (26) are as follows (see 17 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18), 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 1 

T t-0-iG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(S, t, @ , 6 )  = Re ( i ( t )  * -- Im - 

From (27), we obtain another useful equation, 

1 G Re(@A) + ( t - 0 )  lm(@A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71 G2 + (t-0)2 

g(S, t, @, 6 )  = x ( t )  * - ~- ~ ~~ 

Similarly, (28) yields, 

1 G Re(@A) 1 G Im(@A) 
R(S, t ,  = x ( t )  * - ~ -h ( t )  * -- ~ -~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ll (t-e)2++2 ll (t-e)2+cT ’ 

Equations (27)-(30) are surprisingly simple, although they are valid for arbitrary multiply 
reflected/transmitted (possibly converted) body waves propagating in 2-D or 3-D laterally 
inhomogeneous layered structures. They are also very efficient from a computational point 
of view. 

In the following, we shall consider special cases of two wave packets, which may be useful 
In applications. The first will be called the delta packet, and the second the Gaussian 
packet. 

4.3. I Delta packets 

Let us now formally consider that x ( t )  equals the Dirac impulse function, x ( t )  = 6(t). (We 
hope that the fact that we use the symbol 6 both for the Dirac function and for one ray 
coordinate will not prove confusing.) Note that the Dirac function 6(t)  is not a high- 
frequency wavelet, but it can be used very effectively as an auxiliary function, assuming 
that, later on, the results will be convolved with a real high-frequency wavelet. We denote 
the wave packet corresponding to x(t) = 6(t)  bygo(S, t ,  @ , 6 )  and call it the ‘delta packet’. 

Forgo@, t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@,ti) (29) immediately yields 

1 G Re(@A) + ( t - 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIm((PA) 

ll G’ + (t-0)’ 
g,(S, t, @, 6 )  = - - ~- 

As we can see from (31), the evaluation of the delta packet is really very simple, when 
the parameters of the beam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, A ,  G, 0 )  are known. 

Let us now denote the wavefield U(S, t )  for x ( t )  = 6 ( t )  by Uo(S, t) .  From (20) or from 
(23), we immediately obtain 

or, in a discrete form, 
N M  

Equations (32) and (33) are some equivalents of ‘impulse seismograms’, used broadly in 
seismic prospecting. For a wavefield generated by a source with the source time function 
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f ( t )  we then obtain 

U(S, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( t )  * U,(S, t). (34) 

Remember that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( t )  is different from the source time function f ( t ) !  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An alternative form of (3 1)-(34) can be also useful. Equation (3 1) can be divided into 

two terms. The first term has a delta-like symmetrical form, concentrated close t o  the time 
t = 0. The second term, however, is antisymmetrical and broader. From a computational 
point of view, the first term has a more suitable form. It is simple t o  show that (31) can be 
rewritten as follows 

where 

Both g: and g: have now a delta-like form, concentrated close to  the time t = 0 .  Equation 
(32) then yields 

The discrete form of the above integrals is straightforward. Thus, we can evaluate indepen- 
dently the two time series @(S, t )  and UA(S, t ) ,  and then convolve the latter with 1 /nt. The 
final result U(S, t )  is again given by (34), which can be also rewritten in the form 

up, t )  = x ( t )  * @(S, t )  - h( t )  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu&, t). (39) 

4.3.2 Gaussian packets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As was shown above, the wave packets can be computed either by Fourier transform (see 
24), or by convolution (see 27-30). Both the procedures are simple and sti-aightforwai-d, 
especially the procedure based on convolution. It would, however, be useful also to  seek 
some realistic source-time function for which the expressions for the wave packets can be 
written in an analytical form, even if approximately. 

Here we shall describe one such signal for which we can write approximate expressions 
for the wave packets. Let us consider the wavelet f ( t )  given by the formula 

f(t)=exp[-(271fNIt/y)’] cos(2nfMf +’), (40) 

with three free parameters, f M ,  y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv. Wavelet (40) corresponds to a harmonic carrier with a 
Gaussian (bell-shaped) envelope. The quantity y controls the width of the Gaussian enve- 
lope, with respect to the prevailing frequency f M .  We assume that the prevailing frequency 
f M  is high. The envelope is narrow for small y and broad for large y. Wavelet (40) has been 
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broadly used in ray methods and in computing ray synthetic seismograms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA detailed discus- 
sion of the wavelet f ( t )  can be found, e.g. in Cerveny et al. (1977). Wavelet (40) has also 
been used in other branches of science, not only in wave propagation problems. Let us 
mention, e.g. time series, processing, holography, etc. It has been known under different 
names. Examples are the Puzyrev’s wavelet, Gabor’s wavelet, Gaussian envelope wavelet, etc. 
It has very interesting properties. For example, it can be differentiated an infinite number of 
times. It has a smooth, non-oscillating amplitude spectrum highly concentrated close to  the 
prevailing frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = fM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, especially when y is high (say, y > 3). Similarly as general time 
records can be decomposed into harmonic components using the Fourier transform, they 
can also be decomposed into Gabor’s wavelets f ( t )  using so-called Gabor’s transformation. 
For details see Gabor (1946), Bastiaans (1980), Morlet (1981) and Morlet et al. (1982). A 
detailed discussion of Gabor’s transformation from the point of view of applications in the 
processing of seismic data can be found in Morlet et al. (1 982). 

Let us note that the function f ( t )  given by (40) is not strictly a high-frequency signal, as 
it does not satisfy (1 1’). For large y, however, its spectrum is concentrated close to  the high 
prevailing frequency fM and its low-frequency components effectively vanish. 

Let us now write the expressions for the analytical signal f ( t )  corresponding to  f ( t ) .  It 
is given by the expression (see Bracewell 1965), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(o) is the Fourier spectrum of f ( t ) .  It is easy to see that for large y we can write 
approximately 

f( t)  - exp [-(271fMt/y)2 - i2r fMt - iv] (42) 

(for details see Cerveny 1976). Equation (42) can be analytically continued even to  complex- 
valued t to  yield 

f(t-0-iG) - exp [-(2rfM(t-O-iG)/r)‘ - i2nfM(t-O-iG) - iv]. 

This simply leads to the final equation 

f ( t  - O - iG) - exp [ - (2rfM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t -O) /y )2  - 471’ f $  G 2/y2 - 2nf*G] 

x exp { - i [ 2 ~ r f * ( t - O )  + v ] }  , 
where 

f* = fM ( 1  - 4 2 )  . 
Y2 

(43) 

(44) 

Note that (43) is a special case of a more general equation derived by Cerveny & FrangiC 
(1 980) in the connection with the propagation of seismic wavelets in media with a causal 
absorption. 

Let us now write similar expressions for the analytical signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( t )  corresponding to 
x(ij (see 19 and 16), where F(w)  is the Fourier spectrum of the wavelet (40). If k = 2, 
i = dfidt and (43) immediately yields 

i(t-O-iG) = -i27rfM [ I  +i2nfM(t-O-iG)/y2] f(t-0-iG), (45) 

where f ( t  - O -iG) is given by (43). For k = 1 ,  the resulting equation is more complicated. 
As i = n-’/’H(t) t - ’ l2  * df ( t ) /d t ,  we obtain 

i ( t -8- iG)  = ~ - ” ~ H ( t ) t - ” ~  * (-i271fM [1 +i2nfM(t-O-ic)/y2] f(t-0-iG)} , (46) 
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wheref(t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 -iG) is again given by (43). Both formulae can be simplified for larger y, when 
we take into account that the amplitude spectrum is strongly concentrated close to the 
prevaling frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfM . Equations (45) and (46), or alternatively (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ) ,  then yield 

i(t-e-iG) - (- i2nfM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlk lZ f(t -8- i ~ ) .  (47) 

Using the simple equation (47), the final formula for the Gaussian wave packet g(S, t, @, 6 )  
is as follows, 

x cos ;2nf*(t-8) + v - arg(@A) + k n / 4 }  . (48) 

Equation (48) clearly shows that the prevailing frequency of the Gaussian packet is,/’* and 
(44) describes quantitatively the decrease of the prevailing frequency f* with increasing 
distance from the central ray. From (44) and (48) immediately follows the decrease of the 
prevailing frequency of the wavefield for waves penetrating into shadow zones. It should be 
noted that the approximate equation (48) for the Gaussian packet is valid only in some 
neighbourhood of the central ray, for which the correction 4n2fhG2/y2 in (48) is small 
with respect to 2nfMG, i.e. for which 2nfMG/y2 is small with respect to unity. A modifi- 
cation of (48) for larger 4n2f$ G2/yZ was suggested by Klime; (1 982b). 

As we can see from (48), the Gaussian packets have an approximately Gaussian envelope 
both in space and time. The envelope is strictly Gaussian in the time domain and does not 
change as the wave progresses; see the exponential term exp [- (2nfM ( t  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO)/’Y)~] in 
(48). In the direction perpendicular to the ray, the envelope is not strictly Gaussian; we have 
obtained two terms depending on G and G 2  in the expression for the envelope. The term 
depending on G 2 ,  however, has only the character of a correction, and (48) can only be used 
from the network of velocity points. 

5 Synthetic seismograms by the Gaussian packet approach. Numerical examples 

To write programs for the evaluation of synthetic body wave seismograms based on the 
Gaussian packet approach is even simpler than to write the program for the ray synthetic 
seismograms. There are two reasons for this: (1) The Gaussian packet approach does not 
require two-point ray tracing; it is sufficient to compute the rays as an initial-value problem 
and cover the region where the receivers are situated by these rays. (2) The Gaussian packet 
approach is not so sensitive to details of the velocity distribution in the model as the ray 
method, so that simpler approximations can be used to determine the velocity distribution 
from the network of velocity points. 

5.1 A S H O R T  D E S C R I P T I O N  O F  T H E  P R O G R A M  P A C K A G E  BEAM 8 1  

A program package, B E A M  8 1 ,  for evaluating body-wave seismograms by the Gaussian 
packet approach in a general 2-D laterally inhomogeneous layered structure has been 
written. A line source of elastic waves perpendicular to the plane of the model is considered. 
Optionally, a multiplicative amplitude factor is used which converts the source into a point 
source (see Cerveng & PSenEik 1979; Cerveny 1981~). The source may be situated at any 
point of the medium. The 2-D radiation pattern of the source may be specified indepen- 
dently for P- and S-waves. Both vertical and horizontal components (or one of them) can be 
evaluated. 
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408 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. i‘erveny zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Interfaces are specified by irregularly distributed grid points. They are approximated by a 

cubic spline interpolation. The interfaces may optionally have corner points and may be 
fictititous in certain parts. Various interfaces may also partially coincide. In this way, the 
models with vanishing layers, block structures, fractures, isolated bodies. etc., can be 
handled by the program. The surface of  the model may also be curved. 

The velocity distribution in the individual layers is specified by a 2-D rectmgular network 
covering the whole layer, independently for each layer. The velocity distribution is then 
determined by a suitable approximation, e.g. by a bicubic spline approximation. 

The program package consists of  five programs. The first program of the package, also 
called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB E A M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 1 ,  is the most extensive. In the program, the numerical codes of  elementary 
waves are successively generated. The generation is semi-automatic, automatically giving 
all primary reflected waves (including zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFS- and SP-waves converted at  the reflection point) 
and refracted waves. Any type of  other multiply reflected/refracted wave (which may also 
be converted) can be generated manually, by the input data. 

For each wave, a system of rays with ray parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@i, i = 0, 1 ,  2, . . . , N ,  is computed 
by Rurlge-Kutta’s method. The ray parameters can be chosen irregularly to get a more 
uniform distribution of rays in the investigated region. For all rays with termination points 
within a specified region of the surface of the Earth, dynamic ray tracing is performed 
(twice) and all the quantities necessary for evaluating Gaussian beams are stored for all 
the termination points of  the rays. These stored data can be used t o  compute the synthetic 
seismograms in any system of receivers distributed regularly or irregularly at the surface 
within the region under consideration. 

The data concerning ray diagrams of individual waves, corresponding travel times and 
amplitudes can also be optionally stored during the computations for plotting purposes. 
These plottings can be performed by the program K A Y P L O T ,  another program of the 
package. 

In the program G B D I E ’ ,  which processes data generated by the program B E A M  8 1 ,  the 
system of receivers is specified. The receivers are distributed regularly or  irregularly along 
the Earth’s surface. The program determines the contributions of individual Gaussiaii 
packets at the receiver points. A simplified approach based on the paraxial ray approxi- 
mation described in Section 3 is used which determines the Gaussian packets from the quan- 
tities stored at the termination points of  individual rays along the Earth’s surface. 

Other input data of the program G B D I I :  control the initial parametersof Gaussian beams 
(initial half-width and the initial curvature of  the phase front of the beam), the selection of 
rays from those evaluated in the program B E A M  81 and stored in the computer which are 
used in the discrete expansion formulae, the windowing function which truncates the 
theoretically infinite width of Gaussian beams, etc.  The windowing is controlled by a para- 
meter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa which has the following meaning: only those Gaussian beams are considered at the 
receiver point, the amplitude of  which at the receiver point is larger than a per cent of  the 
amplitude at the corresponding central ray. 

Thus, when the file generated in the program B E A M  8 1  is available, the program G B D I F  

(with the program B E A M P L  described below) allows fast and effective evaluation of  syn- 
thetic seismograms for different systems of receivers, with different initial parameters of 
Gaussian beams, with different selection of rays and different windowing of  Gaussian beams. 

It should be noted that the initial parameter corresponding t o  the half-width of the 
Gaussian beam at the source was used in G B D I F  in the form suggested by terveny & PSenEik 
(1 983), i.e. frequencyindependent. It corresponds to  the same parameter given in terveny 
ef al. (1 982a) when we put w = 277. 

The file generated in G B D I F  can be used to  evaluate the Gaussian packet synthetic body- 
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Synthetic body wave seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA409 

wave seismograms for various parameters of the source-time function (40),fM, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ,  for a 
vertical and/or horizontal component, for a specified time interval and a reduction velocity. 
This can be done in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB E A M P L  program. The approximate equation (48) is used for this 
purpose. The resulting synthetic seismograms are stored in a file, which is used in the 
SEISPLOT program to  plot results (with optical amplitude-distance scaling). 

The program package was written and all the computations presented in the following 
were performed with the VAXl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 computer at the Department of Geophysics, Stanford 
University. The program uses extensively parts of the R A Y  8 1  program for initial-value ray 
tracing and ray amplitude computation in 2-D media, written by I .  PSenEik (see PSenEtk 
1983). Some routines from the SEIS 8 1 program for evaluating ray synthetic seismograms 
are also used in the package. Both the R A Y  8 1  and S E I S ~ I  progt-ams are described by 
Cerveng & PSenCik (1 981). Certain results of  computations performed by the program 
package B E A M  8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 were presented earlier (see Cerveny 1981 b). 

5.2 N U M E R I C A L  E X A M P L E S  

I t  would be possible to  use the B E A M  8 1  program package for computing synthetic body- 
wave seismograms in general 2-D laterally inhomogeneous structures. It is, however, useful 
to start with investigating simpler situations t o  see the behaviour of Gaussian packet 
synthetic seismograms in a more lucid form. 

The accuracy of  the Gaussian packet approach and its possible dependence on the initial 
parameters of Gaussian beams (initial half-width and the initial curvature of  the phase front 
of the Gaussian beams at  the source) will be investigated in detail elsewhere. Comparisons 
with more accurate methods (e.g. with the reflectivity method) in types of  media, to which 
these methods can be applied, will be used for this purpose. Here we shall present only a few 
examples which may give us a better insight into the whole procedure. In all the examples 
presented here, the initial half-width of  the Gaussian beams at  the source was chosen close to 
the optimum value suggested in Cerveny et al. (1982a). Similarly, the initial curvature of the 
phase front of the beam at the source was chosen equal t o  0. As the applications of the 
Gaussian beam approach in a smooth medium (including the caustic region) was investigated 
by Cerveny zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet aZ. (1982a), OUT attention will be concentrated on models with interfaces. The 
simplest possible case is a plane interface between two homogeneous media. Attention will 
be devoted both to  the regions in which the ray field behaves regularly and to singular 
regions (critical region, etc.). In all the presented examples, we shall consider idealized 
simplified models of the Earth's crust. The models are 6 0 0 k m  long and 5 0 k m  deep. (Only 
400km of the models will be shown in the following pictures, but the region covered by the 
rays in computations was 6 0 0 k m  long.) A line source of the explosive type with a circular 
radiation pattern is situated close to the Earth's surface at the horizontal coordinate 
x = 200 km. The source radiates only P-waves. A multiplicative amplitude factor is used to 
convert the line source into a point source. The source-time function is given by (40), with 
y = 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 0. (This value of y is sufficiently high to  apply the approximate expression 
48.) The prevailing frequency fM is different in the individual pictures, varying from 

Only one inner interface is considered in the model. It is situated a t  a depth of 30 km 
below the source. In the first example, the interface is a horizontal plane, in the next two 
examples, a step oi a corner point in the interface occurs at x = 250 km (i.e. at an epicentral 
distance o f  50 km). 

The P velocity in the overburden is 6 .4km s-', in the substratum 8 km s-'. The ratio of 
compressional-to-shear velocity equals d3 in the whole model, and the density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is deter- 
mined from the P velocity Q by the relation p = 1.7 + 0.201. 

fp,q = 3  t o  16Hz .  
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410 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Cerveny 

Only PP reflected waves are considered, converted waves are not taken into account. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As mentioned above, the initial half-width Lo of the Gaussian beams at the source was 

chosen close to the optimum value in all the examples. The calculated synthetic seismograms 
depend generally only slightly on the choice of Lo. In regions, in which the ray field behaves 
regularly, the wavefield is practically independent on Lo. Some slight dependence was 
obtained in singular regions. Generally, the most accurate results are obtained for larger Lo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; 
the decrease of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALo causes some smoothing of spatial distribution of amplitudes. 

Let us add one remark regarding the head waves. In the ray method, the head waves are 
not automatically included in the reflected wavefield, they must be evaluated independently. 
In the Gaussian beam approach, however, the reflected wavefield includes automatically the 
head waves due to the singularity of the reflection coefficient in the integrand of the expan- 
sion integrals discussed above. Special computations (not presented here) with a denser 
system of rays close to the critical point and with higher values of Lo gave really even the 
head waves. No special care was devoted to  this problem in the computations presented 
here, only a regular step in the ray parameter was used outside and inside the critical region. 
With this regular step, and with the standard value of Lo,  the head waves were not obtained. 
Due to these facts, the results presented here give some slightly smoothed results. The 
detailed discussions of these problems will be published elsewhere. 

First example. Plane interface 

In this example, we consider a plane interface and investigate the PP reflected wavefield. 
This is a classical problem of theoretical seismology, broadly discussed in many papers and 
books. We shall pay attention both to  the regular regions and to the singular region (neigh- 
bourhood of the critical ray). The ray diagram, the travel-time curve and the ray amplitude- 
distance curve corresponding to the PP-wave are shown in Fig. l(a, b, c). To make Fig. 
1 (a-c) more consistent with the synthetic seismograms presented later, the two-point ray 

. -  
o 5c loo 150 zoo mi m o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA350 4011 

n i s t o n c e  in km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. (a) A simple model with a plane interface used for the computation of synthetic seismograms of 
reflected PP-waves in Figs 2 - 6 .  The source is situated at the horizontal distance x = 200 km. The ray 
diagram of reflected waves is quite regular. (b) Travel times of reflected PP-waves for the model shown in 
(a). (c) Ray amplitudes of  reflected PP-waves for the model shown in (a). The increase of amplitudes at 
epicentral distances of 80 k m  (x = 120 and 280 km) corresponds to critical regions. 
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Synthetic body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwave seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA411 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Distance in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i m  

-4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 50 100 150 200  250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 350 400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Distance in k m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1 - continued 

tracing was used to obtain the regular distribution of termination points along the Earth’s 
surface in these pictures. (In actual Gaussian packet synthetic seismogram computations, 
initial value ray tracing was, of course, used.) The travel-time curve has the well-known 
hyperbolic form. Similarly, the form of the amplitude-distance curve is also well known. 
The only, but important singularity in the amplitude-distance curve is connected with the 
critical region. The critical points in our model are situated symmetrically on either side of 
the source, at epicentral distances of 80km, i.e. at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 120 and 280km. With increasing 
epicentral distance, the ray amplitudes of reflected PP-waves slowly and smoothly decrease 
at small epicentral distances, they then increase abruptly before reaching the critical point 
and attain a maximum value just at the critical point. After this, they again decrease slowly. 
It is well known from comparisons with exact computations that the ray method does not 
give correct results in the critical region. The maximum of the amplitude-distance curve 

14 
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computed by more accurate method is not situated at the critical point, but is shifted 
beyond the critical point, the shift being frequency-dependent. The amplitude distance 
curve is smooth even at the critical point. For details see Cervenf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ravindra (1971) and 
Cerveng zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef al. (1 977). 

Fig. 2 shows the formation of the synthetic body-wave seismograms by superposition of 
Gaussian packets. The prevailing frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfM equals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Hz. The synthetic seismograms are 
shown on a reduced time-scale, with the reduction velocity UR = 7 km s-'. The reduced 
time-scale transforms the hyperbolic travel-time curves into a symmetrical curve with the 
maximum at zero epicentral distance. The synthetic seismograms cover both the normal 
incidence and the critical region. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 250 300 

Distance i n  km 

150 200 250 300 

Distonce in km 

350 400 

350 400 

10 

rn 
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 8  

~ 

a, 
> 
F 6  

U 
m 4  cc 

150 200 250 300 350 400 

Distance in k m  

Figure 2. Gaussian packet synthetic seismograms of reflected PP-waves for the model shown in Fig. l(a). 
The prevailing frequency is f~ = 3 Hz, the reduction velocity U R  = 7 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-'. The number of Gaussian 
packets covering the whole region is four in the top picture, 16 in the middle picture, and 64 in the 
bottom picture. 
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Synthetic body wave seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA413 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the top picture, the whole region of interest was covered just by four Gaussian beams. 

In the picture it is clearly seen that the number of Gaussian packets is not yet sufficient to 
form the reflected wavefield. In the middle picture, the number of Gaussian packets was 
increases four times, to 16 packets. The synthetic seismograms look better, the individual 
Gaussian packets form a continuous wavefield. The number of packets, however, is not yet 
sufficient. The bottom picture shows the synthetic seismograms constructed from 64 
Gaussian packets. They give an excellent numerical agreement to three or four valid digits 
with the ray synthetic seismograms in regular regions (normal incidence and its vicinity) and 
a good description of the wavefield in the critical region. The amplitude maximum is shifted 
from the epicentral distance of 80 km to about 100 km (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 km), which corresponds 
fully to exact computations. (Note that a picture practically identical to the bottom one was 
obtained even from 32 packets.) 

Thus, we can see that the evaluation of only 30-60 packets was quite satisfactory for the 
computations of synthetic seismograms in over a 250 km range of epicentral distances (for a 
prevailing frequency of 3Hz). To be more precise, several packets were added with the 
termination points outside the range covered by the receivers. 

The following pictures are devoted to a more thorough investigation of the critical region, 
for epicentral distances ranging from 50 km (x  = 250 km) to 150 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = 3 50 km). The 
reduction velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUR is again UR = 7.0 km s- l .  Fig. 3 shows the comparison of the ray syn- 
thetic seismograms (top) with the Gaussian packet seismograms (bottom) for a prevailing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
al 
€ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 

- 
al 
> - F 4  

U 
0) 
K 

2 

290 310 330 350 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA250 270 

i 2 f O  

Dislance i n  k m  

Disrance i n  k m  

Figure 3. Comparison of ray synthetic seismograms (top picture) and the Gaussian packet synthetic 
seismograms of reflected PP-waves in the critical region for the model shown in Fig. l(a). The prevailing 
frequency is f~ = 4 Hz, t he  reduction velocity U R  = 7 k m  s-'. While the ray synthetic seismograms have a 
sharp amplitude maximum at the critical distance of  80 km from the source ( x  = 280 km), the maximum 
amplitudes in the Gaussian packet synthetic seismograms are shifted to  distances of - 100 km from the 
source (x = 300 km). 
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414 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAterven9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
frequency of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfM = 4 Hz. All the above discussed pecularities of the wavefield in the critical 
region are clearly seen in both pictures. While the ray seismogram is anomalous at the critical 
point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = 280 km), the Gaussian packet seismogram is quite regular at this point and the 
maximum amplitudes are shifted to a distance of x = 300 km, which corresponds to the 
more accurate computations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The shift of the maximum of the amplitude-distance curve is frequency-dependent . 
Fig. 4 shows Gaussian packet synthetic seismograms for various prevailing frequencies, 
f~ = 4,lO and 16 Hz. As we can see, the shift is the larger, the smaller the frequency. 

It is obvious that a larger number of Gaussian packets must be evaluated to obtain 
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Figure 4. Gaussian packet synthetic seismograms of reflected PP-waves in the critical region for the model 
shown in Fig. l(a). The reduction velocity is UR = 7 km s-'. The prevailing frequency f~ equals 4 Hz in 
the top picture, 10 Hz in the middle picture and 16 Hz in the bottom picture. The frequency behaviour of 
synthetic seismograms in the critical region is clearly seen in the pictures. 
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smooth synthetic seismograms for higher prevailing frequencies. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 shows how the high- 
frequency body wave synthetic seismograms are formed by the superposition of Gaussian 
packets, when the frequency is really high (fM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 16 Hz). In the first picture (Fig. Sa), we can 
see just one packet and some small parts of two other packets, with the central rays outside 
the range of interest. The resulting seismogram, of course, does not resemble anything useful 
and is very far from the exact synthetic seismogram. The number of Gaussian packets was 
successively doubled from one picture to another. Even in Fig. 5(d), constructed approxi- 
mately with 24 packets, the number of packets is not sufficient due to the high prevailing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figre 5. Gaussian packet synthetic seismograms of reflected PP-waves in the critical region for the model 
shown in Fig. l(a). The reduction velocity UR = 7 km s-', the prevailing frequency f~ = 16 Hz. The 
number of Gaussian packets covering the whole region is successively doubled from one picture to 
another. i t  equals 2-3 in 5(a) and close to 50-100 in 5(f). 
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Figure 5 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontinued 

frequency. For 48 packets, the results look well but some small non-causal oscillations still 
appear in the picture. Finally, in Fig. 5(f), the resulting synthetic seismogram is quite clean. 

It is clear that the Gaussian packet may be effectively truncated at some distance from 
the central ray, where its amplitude is negligibly small in comparison with the amplitude on 
the central ray. Fig. 6 shows three systems of Gaussian packet seismograms for the prevailing 
frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfM = 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz, constructed with different values of a. (The parameter a controls the 
width of the windowing, see Section 5.1 .) In the top picture, a - 13 per cent, in the middle 
picture a - 37 per cent and in the bottom picture, a - 50 per cent. We can see that all three 
synthetic seismograms are very similar, at least from an interpretational point of view. This 
is a very surprising result: only a narrow, central part of the Gaussian packet can be used to 
obtain satisfactory results. This fact, of course, increases the effectiveness of the method. The 
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Figure 6 .  Gaussian packet synthetic seismograms of reflected PP-waves in the critical region for the model 
shown in Fig. l(a). The reduction velocity VR = 7 km s-', the prevailing frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf~ = 4 Hz. The figure 
shows a small effect on the synthetic seismogram of windowing of Gaussian packets. In the top picture, 
o ~ l y  a slight windowing is applied, in the bottom picture the windowing is very strong, only narrow parts 
of Gaussian packets close to the central rays are used for computation. For details see text. 

physical reason for this behaviour consists in the destructive interference of remote Gaussian 
beams, discussed in Section 3 .  

There is still a large number of other important questions regarding the sensibility of the 
Gaussian packet approach to some other quantities (initial half-width of the beam, initial 
curvature of the phase front of the beam, etc.). More detailed results, both in the time and 
frequency domain, will be published elsewhere. 
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Second example. A block structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel similar to that in the first example is also considered in this example, only a step in 
the interface has been introduced at x = 250km. In this way, a simple block structure is 
formed; the reflections from the continuation of the interface beyond the step are not 
considered (see the ray diagram in Fig. 7). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E 
Y 

C 
.- 

5 20 

a 

0 

30 

An 
I -  

0 50 100 150 200 250 300 350 400 

Distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin km 
Figure 7. A simple block structure used for computation of synthetic seismograms of reflected PP-waves 
in Figs 8 and 9. As can be seen from the ray diagram, an extensive shadow zone is formed due to the step 
in the interface. 

330 

1 330 

350 

~ 350 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Comparison of ray synthetic seismograms (top picture) and the Gaussian packet synthetic 
seismograms (bottom picture) of reflected PP-waves for the model shown in Fig. 7. The range of distances 
covers both the critical region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x - 280 km) and the transition zone between the illuminated region and 
shadow (x - 300 km). 
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The comparison of the ray synthetic seismograms and Gaussian packet seismograms for 

this model is shown in Fig. 8 for the prevaling frequency fM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4 Hz. The top picture shows 
the ray synthetic seismograms, the bottom the Gaussian packet synthetic seismograms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
we can see from Fig. 7, the ray method yields a sharp boundary between the illuminated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and shadow zone for the reflected wavefieid at distance x > 300 km, as no rays exist at 
x >  300 km. The Gaussian packets, however, give a smooth wavefield in this region. Some 
energy penetrates even into the shadow zone. Of course, the amplitudes decrease rapidly 
with increasing distance from the boundary to the shadow zone. The decrease of amplitudes 
is frequency-dependent. Fig. 9 shows synthetic seismograms evaluated for the same model as 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Gaussian packet synthetic seismograms of reflected PP-waves for the model of a simple block 
structure shown in Fig. 7. The reduction velocity UR = 7 km s-'. The prevailing frequency fM equals 4 Hz 
in the top picture, 10 Hz in the middle picture and 16 Hz in the bottom picture. The frequency-dependent 
behaviour of the synthetic seismograms both in the critical region and in the transition zone between the 
illuminated region and the shadow is clearly seen in the figure. 
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420 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. terveny 

above, for three prevailing frequencies, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4, 10 and 16 Hz. It can be clearly seen that the 
decrease of amplitudes into the shadow zone is faster for higher frequencies. 

No attempt has been made to compare our results with exact computations. In any case, 
it can be concluded from the presented pictures that the Gaussian packet approach gives 
more satisfactory results than the standard ray theory. 

It should be noted that the model of the block structure presented here cannot be, 
strictly speaking, constructed as a superposition of simple Gaussian packets described above. 
It would be necessary to  consider the diffraction of Gaussian packets whose central rays are 
close to the diffraction (edge) point. The presented results, however, show that even without 
considering the diffraction of Gaussian packets the method yields promising results. 

Third example. Corner at the interface 

The object of this example is to show that the Gaussian packet approach is not as sensitive 
to the approximation of the medium as the ray method. We shall present the results of just 
two simple computations for the corner at the interface. The corner is situated at an epi- 
central distance of 50 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = 250 km). 

In Fig. 10, the model and ray diagram are shown. The interface beyond the corner is 
dipping. Due to the corner, a small shadow zone is formed close to epicentral distances of 
105-110km (x = 305-310km). The ray synthetic seismogram (top) and Gaussian packet 
seismograms (bottom) for this model are shown in Fig. 11. The shadow zone is clearly seen 
in the ray synthetic seismograms. The Gaussian packets, however, give more realistic 
pictures. The amplitudes in this artificial shadow zone, of course, decrease, but the wavefield 
is smooth. 

Fig. 12 shows another model with the corner point at the interface. The interface behind 
the corner point is rising. The ray diagram shows two branches of rays with a short over- 
lapping region close to the epicentral distance of 95 km (x = 295 km). Fig. 13 again shows 
the ray synthetic seismograms (top) and the corresponding Gaussian packet seismograms 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
! O  
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D i s t a n c e  i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 10. A simple model with a corner in a plane interface used for computing synthetic seismograms 
of reflected PP-waves in Fig. 11. The source is situated at x = 200 km. As can be seen in the ray diagram, 
a small shadow zone due to the corner point is formed at x - 300 km. 
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Figure 11. Comparison of ray synthetic seismograms (top picture) and Gaussian packet synthetic (seismo- 
grams (bottom picture) of reflected PP-waves for the model shown in Fig. 10. The Gaussian packet 
approach yields a smooth wavefield even in the shadow region cause by the corner point in the interface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 12. A simple model with a corner point in a plane interface used for the computation of synthetic 
seismograms of reflected PP-waves in Fig. 13. The source is situated at x = 200 km. Two branches of the 
reflected wave overlap in an inextensive zone close to x - 295 km. 
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Figure 13. Comparison zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ray synthetic seismograms (top picture) and the Gaussian packet synthetic 
seismograms (bottom picture) of reflected PP-waves in the model shown in Fig. 12. The amplitude of the 
ray synthetic seismogram at x - 295 km is doubled due to the overlapping of two branches of reflected 
waves. The Gaussian packet approach smooths this increase caused by the corner point in the interface. 

(bottom). Due to the overlapping, the ray amplitudes are approximately doubled at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x = 295 km in the ray synthetic seismograms. The Gaussian packets give smooth synthetic 
seismograms, without any substantial increase of amplitudes close to x = 295 km. The 
amplitudes as a whole, of course, increase as the interface beyond the corner point rises. 

These two last models show that the approximation of the medium does not play such an 
important role in the evaluation of Gaussian packet seismograms as it plays in the case of ray 
synthetic seismograms. 
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