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Abstract:We extend the inference procedure for the synthetic control method in two ways. First, we propose
parametric weights for the p-value that includes the equal weights benchmark of Abadie et al. [1]. By chang-
ing the value of this parameter, we can analyze the sensitivity of the test’s result to deviations from the equal
weights benchmark. Second, we modify the RMSPE statistic to test any sharp null hypothesis, including, as a
specific case, the null hypothesis of no effect whatsoever analyzed by Abadie et al. [1]. Based on this last exten-
sion, we invert the test statistic to estimate confidence sets that quickly show the point-estimates’ precision,
and the test’s significance and robustness. We also extend these two tools to other test statistics and to prob-
lems with multiple outcome variables or multiple treated units. Furthermore, in a Monte Carlo experiment,
we find that the RMSPE statistic has good properties with respect to size, power and robustness. Finally, we
illustrate the usefulness of our proposed tools by reanalyzing the economic impact of ETA’s terrorism in the
Basque Country, studied first by Abadie and Gardeazabal [2] and Abadie et al. [3].
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1 Introduction
The Synthetic Control Method (SCM) was proposed by Abadie and Gardeazabal [2], Abadie et al. [4] and [1]
to address counterfactual questions involving only one treated unit and a few control units. Intuitively, this
method constructs a weighted average of control units that is as similar as possible to the treated unit re-
garding the pre-treatment outcome variable and covariates. For this reason, this weighted average of control
units is known as the synthetic control. Since the empirical literature applying SCM is vast,1 developing and
expanding this tool’s theoretical foundation is an important task. The relevance of this goal is stressed by
Athey and Imbens [44], who describe the SCM as arguably the most important innovation in the policy eval-
uation literature in the last fifteen years.

The inferenceprocedure for small samples using the synthetic control estimatorwasdevelopedbyAbadie
et al. [4] and [1]. Using, as a benchmark, placebo tests similar to Fisher’s Exact Hypothesis Testing Procedure
described by Fisher [45], Imbens and Rubin [46] and Rosenbaum [47], they compare an observed test statistic
to its empirical distribution in order to verify whether there is enough evidence to reject the null hypothesis
of no effect whatsoever. We extend this inference procedure in two ways.

First, we stress that the benchmark for hypothesis testing proposed by Abadie et al. [1] computes the
p-value of the test by weighting all units equally. According to Abadie et al. [1, p. 499],

1 This tool was applied to an extremely diverse set of topics, including, for instance, issues related to terrorism, civil wars and
political risk [2, 5–8], natural resources and disasters [9–15], international finance [16, 17], education and research policy [18–20],
health policy [21, 22], economic and trade liberalization [23–25], political reforms [26–29], labor [30, 31], taxation [32, 33], crime
[34–36], social connections [37], and local development [38–43].
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this alternative model of inference is based on the premise that our confidence that a particular synthetic control estimate
reflects the impact of the intervention under scrutiny would be severely undermined if we obtained estimated effects of
similar or even greater magnitudes in cases where the intervention did not take place.

We propose a way to boost our confidence that a “particular synthetic control estimate reflects the impact of
the intervention under scrutiny” by applying a sensitivity analysismechanism similar to the one proposed by
Rosenbaum [47] and Cattaneo et al. [48]. Intuitively, we impose parametric weights that allows the empirical
researcher to compute p-values for weights that continuously differ from the equal weights benchmark of
Abadie et al. [1]. As we change the value of the parameter that affects the decision based on the hypothesis
test, we can gauge the sensitivity of the decision made to the equal weights benchmark. We also highlight
that the results of this sensitivity analysis mechanism can easily be displayed in a graph that quickly shows
the robustness of the decision based on the test.

Second, Abadie et al. [4] and [1] only test the null hypothesis of no effect whatsoever, which is the most
common null hypothesis of interest in the empirical literature, albeit restrictive. We extend their inference
procedure to test any kind of sharp null hypothesis. This possibility is relevant in order to approximate the
intervention effect function by simpler functions that can be used to predict its future behavior. Most im-
portantly, being able to test more flexible null hypotheses is fundamental to compare the costs and benefits
of a policy. For example, one can interpret the intervention effect as the policy’s benefit and test whether
it is different from its costs. It also enables the empirical researcher to test theories related to the analyzed
phenomenon, particularly the ones that predict some specific kind of intervention effect.

Based on this extension of the current existing inference procedure, we propose a method to compute
confidence sets by inverting a test statistic. We modify the method described by Imbens and Rubin [46] and
Rosenbaum [47] to calculate confidence intervals based on Fisher’s Exact Hypothesis Testing Procedure and
apply it to the benchmark inference procedure of the SCM proposed by Abadie et al. [1]. To the best of our
knowledge, this is the first work to propose confidence sets for the intervention effect function using SCM
when its typical setup is prevailing. That is, when we observe aggregate level data for only one treated unit
and few control units (i. e., small finite samples) in a context whose cross-section dimension may be larger
than its time dimension. Using the benchmark inference procedure, our confidence sets allow the researcher
to quickly and visually show, not only the significance of the estimated intervention effect in a given point
in time, but also the precision of the point estimates. This plot summarizes a large amount of information
that is important to measure the strength of qualitative conclusions achieved after an econometric analysis.
Furthermore, these confidence set plots can easily be combined with the aforementioned sensitivity analysis
mechanism to quickly display the robustness of the empirical findings.

We then extend the inference method developed by Abadie et al. [4] and [1] to use many different test
statistics beyond the already traditional Ratio of the Mean Squared Prediction Errors (RMSPE) test statistic,
discussed in those papers. We run a Monte Carlo experiment and present results on size, power and robust-
ness of five test statistics applied to the SCM.We choose these test statistics based on our review of the empir-
ical literature that applies the method. More specifically, we compare test statistics that use the SCM to test
statistics typically used in othermethods (e. g. difference inmeans and a permuted differences-in-differences
test that are commonly used in the evaluation literature) and to the asymptotic inference procedure for the
difference-in-differences estimator proposed by Conley and Taber [49]. We find that the inference procedure
based on the original test statistic proposedbyAbadie et al. [1],RMSPE, performsmuchbetter than alternative
test statistics in terms of size, power, and robustness.

We also show how to apply our new tools to contexts that differ from the ones analyzed by Abadie and
Gardeazabal [2], Abadie et al. [4] and [1] in important dimensions. A researcher that wants to test null hy-
potheses about a pooled effect among few treated units, as studied by Cavallo et al. [10], can apply our sen-
sitivity analysis mechanism, test any sharp null hypothesis and compute our confidence sets too. Moreover, a
researcher who wants to simultaneously test null hypotheses for different outcome variables can apply our
sensitivity analysis mechanism and test any sharp null hypothesis. This last extension, that expands the mul-
tiple hypotheses framework described by Anderson [50] to the SCM, is important, for example, to evaluate
political reforms [26, 23, 27, 16, 17] that generally affect multiple outcomes variables, such as income levels
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and investment rates. Moreover, we can also interpret each post-intervention time period as a different out-
come variable, allowing us to investigate the timing of an intervention effect, a relevant possibility when the
empirical researcher aims to uncover short and long term effects.

At the end, we apply the inference procedure proposed by Abadie et al. [4] and [1], its associated sensi-
tivity analysis, its extension to other sharp null hypotheses, its associated confidence sets and its extension
to the case of simultaneous hypothesis testing to reevaluate the economic impact of ETA’s terrorism on the
Basque Country estimated by Abadie and Gardeazabal [2] and Abadie et al. [3]. With this empirical exercise,
we illustrate how our sensitivity analysis mechanism and our proposed confidence sets summarize a large
amount of information in simple graphs. Furthermore, we show how testing more flexible null hypotheses
and analyzingmultiple outcomes can enrich a empirical analysis by finding suggestive evidence of a negative
economic impact in the middle run that attenuates in the long run.

Literature review
Regarding the inference of the Synthetic Control Method, other authors have surelymade important previous
contributions. Abadie et al. [4]2 are the first authors to propose a inference procedure that consists in esti-
mating p-values through permutation tests and Abadie et al. [1] suggest a different test statistic for the same
procedure. Ando and Sävje [52] propose two new test statistics that have adequate size andmore power when
applied to the above mentioned hypothesis test than the ones proposed by Abadie et al. [4] and [1].

Bauhoff [21], Calderon [31] and Severnini [43] propose a way to apply SCM to many treated and control
units that is similar to a matching estimator for panel data. Following a similar approach, Wong [53] extends
the synthetic control estimator to a cross-sectional setting where individual-level data is available and de-
rives its asymptotic distribution when the number of observed individuals goes to infinity. Wong [53] also
explores the synthetic control estimator when panel data (or repeated cross-sections) are available in two
levels: an aggregate level (regions), where treatment is assigned, and an individual level, where outcomes
are observed. In this framework, he derives, under some assumptions (i. e., exact matching with population
weights) beyond those typically considered in the synthetic control literature, the asymptotic distribution of
the synthetic control estimator when the number of individuals in each region goes to infinity. Finally, Ace-
moglu et al. [37], Cavallo et al. [10] and Dube and Zipperer [54] develop different ways to apply SCM when
there are more than one treated unit and propose tests that are similar to the ones proposed by Abadie et al.
[4] and [1].

Gobillon and Magnac [39], also working in a context with more than one treated unit, propose a way to
compute bootstrap confidence intervals for thepolicy effect function. Their procedure requires a largenumber
of treated and control regions in order to be valid and focuses exclusively on the time average of the post-
intervention effect. Our approach differs from theirs in two ways: it is valid in small samples and allows the
construction of confidence sets for the post-intervention effect as a function of time. Consequently, while their
inference procedure allows testing a constant (over time) policy effect only, our extension of the inference
procedure developed by Abadie et al. [4] and [1] allows the empirical researcher to test any function of time
as the intervention effect.

Moreover, Carvalho et al. [55] propose the Artificial Counterfactual Estimator (ArCo), that is similar in
purpose to SCM, and derive its asymptotic distribution when the time dimension is large (long panel data
sets). However, many of the problems to which the SCM is applied present a cross-section dimension larger
than their time dimension, making it impossible to apply Carvalho et al. [55]’s method.3

2 They also discuss the asymptotic unbiasedness of their method. Kaul et al. [51] deepen this topic by arguing that using all pre-
intervention outcomes as economic predictors might provoke bias by forcing the synthetic control estimator to ignore all other
predictor covariates.
3 Wong [53] and Hahn and Shi [56] also conduct an asymptotic analysis when the pre-intervention period goes to infinity. Ferman
and Pinto [57, 58] and Ferman et al. [59] discuss asymptotic biases, size distortions and specification-search possibilities within
the SCM framework.
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Our approach is similar to the way Conley and Taber [49] estimate confidence intervals for the difference-
in-differences estimator in the sense that we also construct confidence sets by inverting a test statistic.
However, we differ from them in many aspects. Firstly, while they make a contribution to the difference-in-
differences framework, our contribution is inserted in the Synthetic Control literature. Secondly, they assume
a functional form for the potential outcomes — imposing that the treatment effect is constant in time — and
an arbitrarily large number of control units, while we assume a fixed and (possibly) small number of control
units and make no assumptions concerning the potential outcome functional form — i. e., treatment effects
can vary in time.

Finally, the sensitivity analysis literature in a context of observational studies is vast. For example, Rosen-
baum et al. [60–62, 47, 63], and [64] made important contributions to this field, particularly with respect to
matching estimators. Cattaneo et al. [48] exemplify one way to apply similar tools to a regression disconti-
nuity design. We contribute to this literature by applying a standard sensitivity analysis mechanism to the
benchmark inference procedure of the SCM proposed by Abadie et al. [1].

This paper is divided as follows. Section 2 presents the SCM as proposed by Abadie and Gardeazabal
[2], Abadie et al. [4] and [1]. Section 3 proposes a sensitivity analysis mechanism for the benchmark p-value
formula of Abadie et al. [1] by parametrically reweighing the observed units. In Section 4, we extend the in-
ference procedure to test any sharp null hypothesis and propose a way to construct confidence sets for the
policy effect function. In Section 5, we run a Monte Carlo experiment to analyze the size, the power and the
robustness of different tests statistics. We then extend the sensitivity analysis mechanism and the confidence
sets to the cases when we observe multiple treated units or multiple outcomes in Section 6. We revisit, using
the methods here developed, the empirical application about the Basque Country [2, 3] in Section 7. Finally,
section 8 concludes.

2 Synthetic control method
This section is organized in two subsections. The first one presents the Synthetic Control Method, while the
second one explains the benchmark for its inference procedure based on permutation tests. The ideas and
notation that are used in the next two subsections are mostly based on [4] and [1]. We present these two
topics in a way that will help us explain our sensitivity analysis mechanism, our extension to test any sharp
null hypothesis using any test statistic and our confidence sets.

2.1 SCM: Policy effect and estimation
Suppose that we observe data for (J + 1) ∈ ℕ regions during T ∈ ℕ time periods.4 Additionally, assume that
there is an intervention (policy) that affects only region 1 from period T0 + 1 to period T uninterruptedly,5
where T0 ∈ (1,T)∩ℕ. Let the scalar YN

j,t be the potential outcome that would be observed for region j in period
t if there were no intervention for j ∈ {1, ..., J + 1} and t ∈ {1, ...,T}. Let the scalar Y I

j,t be the potential outcome

4 We use the expression “region” and “region that faced an intervention” instead of more generic terms such as “unit” and
“treatedunit” because the former are typically used in SCMapplications. Although, in this section,we assume that only one region
faces an intervention, we extend this framework to include the case when multiple units face the same or a similar intervention
in subsection 6.2.
5 Two famous examples of interventions that affect uninterruptedly a region are Proposition 99— an Tobacco Control Legislation
in California — and the German Reunification, that were studied by Abadie et al. [4] and [1], respectively. If the intervention is
interrupted (e. g.: ETA’s Terrorism in the Basque Country studied by Abadie and Gardeazabal [2]), we just have to interpret our
treatment differently. Instead of defining the treatment as “region 1 faces an intervention”, we define treatment as “region 1 have
been exposed to an event that potentially has long term consequences”. For example, instead of defining our treatment as “the
Basque Country faces constant bombings perpetrated by ETA”, we define our treatment as “the Basque Country suffered some
bombings perpetrated by ETA”.
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that would be observed for region j in period t if region j faced the intervention at period t. Define

αj,t := Y I
j,t − Y

N
j,t (1)

as the intervention (policy) effect (sometimes simply called the gap) for region j in period t and Dj,t as a
dummy variable that assumes value 1 if region j faces the intervention in period t and value 0 otherwise.With
this notation, we have that the observed outcome for unit j in period t is given by Yj,t := YN

j,t + αj,tDj,t . Since
only the first region faces the intervention from period T0 + 1 to T, we have that Dj,t := 1 if j = 1 and t > T0,
and Dj,t := 0 otherwise.

We aim to estimate (α1,T0+1, ..., α1,T ). Since Y
I
1,t is observable for t > T0, equation (1) guarantees that we

only need to estimate YN
1,t to accomplish this goal.

Let Yj := [Yj,1...Yj,T0]� be the vector of observed outcomes for region j ∈ {1, ..., J + 1} in the pre-intervention
period andXj a (K × 1)-vector of predictors of Yj.6 Let Y0 = [Y2...YJ+1] be a (T0 × J)-matrix andX0 = [X2...XJ+1]
be a (K × J)-matrix.

Since we want to make region 1’s synthetic control as similar as possible to the actual region 1, the SCM
produces, for each t ∈ {1, ...,T}, ŶN

1,t := ∑J+1j=2 ŵjYj,t, which is an estimator of YN
1,t . The weights are given by

Ŵ = [ŵ2...ŵJ+1]� := Ŵ(V̂) ∈ ℝJ , which are the solution to a nested minimization problem:

Ŵ(V) := arg min
W∈W
(X1 − X0W)�V(X1 − X0W) (2)

whereW := {W = [w2...wJ+1]� ∈ ℝJ : wj ≥ 0 for each j ∈ {2, ..., J + 1} and ∑J+1j=2 wj = 1} and V is a diagonal posi-
tive semidefinite matrix of dimension (K × K) whose trace equals one. Moreover,

V̂ := argmin
V∈V
(Y1 − Y0Ŵ(V))�(Y1 − Y0Ŵ(V)) (3)

where V is the set of diagonal positive semidefinite matrix of dimension (K × K) whose trace equals one.
Intuitively, Ŵ is a weighting vector that measures the relative importance of each region in the synthetic

control of region 1 and V̂measures the relative importance of each one of the K predictors. Consequently, this
technique makes the synthetic control of region 1 as similar as possible to the actual region 1 considering the
K predictors and the pre-intervention values of the outcome variable when we choose the Euclidean metric
(or a reweighed version of it) to evaluate the distance between the observed variables for region 1 and the
values predicted by the SCM.7

Finally, we define the synthetic control estimator of α1,t (or the estimated gap) as α̂1,t := Y1,t − ŶN
1,t for each

t ∈ {1, ...,T}.

2.2 Hypothesis testing
Abadie et al. [4] and [1] develop a benchmark for a small sample inference procedure for the SCM that is
similar to Fisher’s Exact Hypothesis Test described by Fisher [45], Imbens and Rubin [46] and Rosenbaum

6 Some lines of matrix Xj can be linear combinations of the variables in Yj.
7 Abadie and Gardeazabal [2], Abadie et al. [4] and [1] propose two other ways to choose V̂. The first and most simple one is to
use subjective and previous knowledge about the relative importance of each predictor. Since one of the advantages of SCM is to
make the choice of comparison groups in comparative case studies more objective, this method of choosing V is discouraged by
those authors. Another choice method for V̂ is to divide the pre-intervention period in two sub-periods: one training period and
one validation period. While data from the training period are used to solve problem (2), data for the validation period are used
to solve problem (3). Intuitively, this technique of cross-validation chooses matrix Ŵ(V̂) to minimize the out-of-sample prediction
errors, an advantage when compared to themethod described in themain text. However, the cost of this improvement is the need
for a longer pre-intervention period. Moreover, the Stata command made available by those authors also allows the researcher to
use a regression-based method in order to compute matrix V̂. It basically regress matrix Y1 on X1 and imposes vk = |βk |/(∑Kk�=1 |βk� |),
where vk is the k-th diagonal element of matrix V and βk is the k-th coefficient of the regression of Y1 on X1. The choice method
that we have chosen to present in the main text is the most used one in the empirical literature.
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[47]. Abadie et al. [4] permute regions to the treatment and estimate, for each j ∈ {2, ..., J + 1} and t ∈ {1, ...,T},
α̂j,t as described in subsection 2.1. Then, they compare the entire vector α̂1 = [α̂1,T0+1...α̂1,T]� with the empirical
distribution of α̂j = [α̂j,T0+1...α̂j,T]� estimated through the permutation procedure. If the vector of estimated
effects for region 1 is very different (i. e., large in absolute values), they reject the null hypothesis of no effect
whatsoever.

Abadie et al. [1] highlight that !!!!α̂1,t !!!! can be abnormally large when compared to the empirical distribution
of !!!!α̂j,t !!!! for some t ∈ {T0 + 1, ...,T}, but not for other time periods. In this case, it is not clear at all whether
one should reject the null hypothesis of no effect or not. In order to solve this problem and to account for
imperfect fit in the pre-intervention period, they recommend to use the empirical distribution of a summary
statistic:

RMSPEj :=
∑Tt=T0+1 (Yj,t − Ŷ

N
j,t)

2/(T − T0)
∑T0t=1 (Yj,t − ŶN

j,t)
2/T0
, (4)

Moreover, they propose to calculate a p-value

p :=
∑J+1j=1 I [RMSPEj ≥ RMSPE1]

J + 1 , (5)

where I[A] is the indicator function of event A, and reject the null hypothesis of no effect whatsoever if p is
less than some pre-specified significance level,8 such as the traditional value of γ = 0.1. We stress that the
null hypothesis of no effect whatsoever is also known as the exact null hypothesis9 [45] and is given by

H0 : Y I
j,t = Y

N
j,t for each region j ∈ {1, ..., J + 1} and time period t ∈ {1, ...,T} . (6)

Note that rejecting the null hypothesis implies that there is some region with a non-zero effect for some time
period.

3 Sensitivity analysis
The benchmark rejection rule based on the p-value formula (5) weights all units equally. Although natural,
such a choice of weights is restrictive and the test result may depend heavily on it. An obvious extension of
this benchmark imposes no restriction on the units’ weights, while keeping the assumption that only one
region faces the intervention.10 In this case, we compute the p-value as

p :=
J+1∑
j=1

πj × I [RMSPEj ≥ RMSPE1] , (7)

where πj denotes the weight for region j ∈ {1, ..., J + 1}, and reject the exact null hypothesis (6) if p is less than
some pre-specified significance level, such as the traditional value of γ = 0.1.

While the benchmark p-value formula (5) is an important, but restrictive, starting point, the general p-
value formula (7) provides no guidance on the choice of weights, {πj}j∈{1,...,J+1}, for the hypothesis test and,
consequently, it is of no use to evaluate the robustness of the test result to the benchmark choice of equal
weights. To analyze the sensitivity of the test result to the benchmark formula, one could start distorting the
weights in the direction of changing the decision of the testing procedure by using continuous parametric

8 Yates [65] stresses that γ should be chosen carefully and always clearly reported since the discreteness of data (the number of
regions is always a finite, usually small, natural number) may preclude the choice of the usual significance levels of 10% or 5%.
9 Observe that the exact null hypothesis (6) is stronger than assuming that the typical (mean or median) effect across regions is
zero.
10 The case when more than one unit receives the treatment is explained in subsection 6.2.
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weights. This is exactly what is done in [47] and [48]. They consider a sensitivity analysis that allows the
empirical researcher to measure the robustness of his or her conclusions (i. e., the test’s result regarding the
rejection of the exact null hypothesis) to the choice of weights of the p-value formula (5), by distorting as
little as possible the uniform distribution of weights. We present this sensitivity analysis step-by-step in the
framework of the SCM:
1. Estimate the test statistics RMSPE1, RMSPE2,...,RMSPEJ+1 for all possible placebo treatment assignments

j ∈ {1, ..., J + 1}, where RMSPE1 := RMSPEobs is the observed test statistic.
2. Rename them as RMSPE(1), RMSPE(2),...,RMSPE(J+1) such that RMSPE(1) > RMSPE(2) > ... > RMSPE(J+1).
3. Define j ∈ Ω := {(1), ..., (J + 1)} such that RMSPEj = RMSPEobs. If there are more than one j� ∈ Ω that

presents this property, take the largest one.
4. Define the weight of each placebo treatment assignment (j) ∈ Ω as

π(j) (ϕ,υ) =
exp (ϕυ(j))
∑j�∈Ω exp (ϕυj�) , (8)

where ϕ ∈ ℝ+ is the sensitivity parameter, υj� ∈ {0, 1} for each j� ∈ Ω, and υ := (υ1, ..., υJ+1). Note that,
when ϕ = 0, all placebo treatment assignments have the same weight. Consequently, the benchmark
p-value formula (5) imposes that ϕ = 0. Moreover, the sensitivity parameter ϕ ∈ ℝ+ has a very intuitive
interpretation: a region j1 ∈ Ω with υj1 = 1 has a weight Φ := exp (ϕ) − 1 times larger than a region j2 ∈ Ω
with υj2 = 0.

5. Using the weights given by equation (8), the permutation test’s p-value is now given by

p (ϕ,υ) := ∑
(j)∈Ω

exp (ϕυ(j))
∑j�∈Ω exp (ϕυj�) × I [RMSPE(j) ≥ RMSPEj] . (9)

Observe that, given a sensitivity parameter ϕ ∈ ℝ+ and a vector υ, we reject the exact null hypothesis if
p (ϕ,υ) is less than somepre-specified significance level, such as the traditional value of γ = 0.1. Note also
that, when ϕ = 0, the p-value described in equation (9) simplifies to the benchmark p-value formula (5).

6. If the exact null hypothesis is rejected, we want to measure the robustness of this conclusion to changes
in the parameter ϕ ∈ ℝ+. The worst case scenario11 is given by

{ υ(j) = 1 if (j) ≤ j
υ(j) = 0 if (j) > j.

where (j) ∈ Ω. Define ϕ ∈ ℝ+ such that

p (ϕ,υ) = ∑
(j)∈Ω

exp (ϕυ(j))
∑j�∈Ω exp (ϕυj�) × I [RMSPE(j) ≥ RMSPEj] = γ,

where γ is a pre-specified significance level. If ϕ ∈ ℝ+ is close to zero, the permutation test’s result is
not robust to small deviations from the benchmark p-value formula (5), i. e., ϕ = 0. Observe that, here,
the weights of units at least as extreme as the treated unit are equally increased by equally reducing the
weight of other units.

7. If the exact null hypothesis is not rejected, we want to measure the robustness of this conclusion to
changes in the parameter ϕ ∈ ℝ+. The best case scenario12 is given by

{ υ(j) = 0 if (j) ≤ j
υ(j) = 1 if (j) > j.

11 In this case, we pick values for υj� in order to make as hard as possible the rejection of the exact null hypothesis given a value
for ϕ ∈ ℝ+.
12 In this case, we pick values for υj� in order to make as easy as possible the rejection of the exact null hypothesis given a value
for ϕ ∈ ℝ+.
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where (j) ∈ Ω. Define ϕ ∈ ℝ+ such that

p (ϕ,υ) = ∑
(j)∈Ω

exp (ϕυ(j))
∑j�∈Ω exp (ϕυj�) × I [RMSPE(j) ≥ RMSPEj] = γ,

where γ is a pre-specified significance level. If ϕ ∈ ℝ+ is close to zero, the permutation test’s result is
not robust to small deviations from the benchmark p-value formula (5), i. e., ϕ = 0. Observe that, here,
the weights of units at least as extreme as the treated unit are equally reduced by equally increasing the
weight of other units.

8. Based on the permutation test’s result, we can fix the vector υ = (υ1, ..., υJ+1) and evaluate the impact of
ϕ ∈ ℝ+ in the p-value given by equation (9) by plotting a graph with ϕ in the horizontal axis and p (ϕ,υ)
in the vertical axis. If p (ϕ,υ) changes too quickly whenwe changeϕ, the permutation test is too sensitive
to the choice of weights.

Consequently, large sensitivity parameter values — ϕ ∈ ℝ+ and ϕ ∈ ℝ+ — boost “our confidence that a
particular synthetic control estimate reflects the impact of the intervention under scrutiny” in the same way
that the benchmark inference procedure proposed by Abadie et al. [1, p. 499] does, since large sensitivity
parameter values implies that the test result is robust to the choice of weights in the p-value formula (5). We
discuss the meaning of large sensitivity parameter values in subsection 5.2 and illustrate the importance of
this sensitivity analysis mechanism in our empirical application (section 7).

4 Sharp null hypotheses and confidence sets
4.1 Testing sharp null hypotheses
A researchermay be interested in testing not only the exact null hypothesis, but also amore general treatment
effect function. We extend the inference procedure proposed by Abadie et al. [4] and [1] and the sensitivity
analysis mechanism developed in section 3 to test any sharp null hypothesis. Now, instead of testing the exact
null hypothesis given by equation (6), we want to test:

H f
0 : Y

I
j,t = Y

N
j,t + fj(t) for each region j ∈ {1, ..., J + 1} and time period t ∈ {1, ...,T} , (10)

where fj : {1, ...,T}→ ℝ is a function of time that is specific to each region j and describes the treatment effect
for each region, and f := {fj}j∈{1,...,J+1}.

Observe that a sharp null hypothesis, such as the one described by equation (10), allows us to know all
potential outcomes for each region regardless of its treatment assignment. Note also that the exact null hy-
pothesis (equation (6)) is a particular case of the sharp null hypothesis (10).

Although the sharp null hypothesis (10) is theoretically interesting due to its generality, we almost never
have a meaningful null hypothesis that is precise enough to specify individual intervention effects for each
observed region. For this reason, we can assume a simpler sharp null hypothesis13:

H f
0 : Y

I
j,t = Y

N
j,t + f (t) for each region j ∈ {1, ..., J + 1} and time period t ∈ {1, ...,T} , (11)

where f : {1, ...,T}→ ℝ.
Now, for a given intervention effect function f : {1, ...,T} → ℝ, the test statistic RMSPE given by equation

(4) becomes

RMSPEfj :=
∑Tt=T0+1 (Yj,t − Ŷ

N
j,t − f (t))

2/(T − T0)
∑T0t=1 (Yj,t − ŶN

j,t − f (t))
2/T0
, (12)

13 We stress that the exact null hypothesis is still a particular case of the simpler sharp null hypothesis (11).
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for all j ∈ {1, ..., J + 1}, while the p-value given by equation (9) becomes

pf (ϕ,υ) :=
J+1∑
j=1

exp (ϕυj)
∑J+1j�=1 exp (ϕυj�)

× I [RMSPEfj ≥ RMSPEf1 ] . (13)

For a given value of the sensitivity parameter ϕ ∈ ℝ+ and a given vector υ = (υ1, ..., υJ+1), we reject the sharp
null hypothesis (11) if pf (ϕ,υ) is less than some pre-specified significance level, such as the traditional value
of γ = 0.1. Note that, now, rejecting the null hypothesis implies that there is some region whose intervention
effect is different from f (t) for some time period t ∈ {1, ...,T}.

We highlight three interesting choices for the sensitivity parameterϕ ∈ ℝ+ and the vectorυ = (υ1, ..., υJ+1).
The first one simply assumesϕ = 0 and υ = (1, ..., 1), extending the benchmark inference procedure proposed
by Abadie et al. [4] and [1] to test any sharp null hypothesis (equation (11)) instead of only the exact null hy-
pothesis (equation (6)). The other two choices are related to the sensitivity parameter for the average worst
case scenario ϕ ∈ ℝ+ if the sharp null hypothesis (equation (11)) is rejected and for the best case scenario
ϕ ∈ ℝ+ if it is not rejected. In order to apply the sensitivity analysis mechanism proposed in section 3 to any
sharp null hypothesis we follow the same steps described above, but using the test statistic and the p-value
described in equations (12) and (13).

Regarding the choice of function f , there are many interesting options for a empirical researcher. For ex-
ample, after estimating the intervention effect function (α̂1,1, ..., α̂1,T0+1, ..., α̂1,T ), the researcher may want to fit
a linear, a quadratic or a exponential function to the estimated points associated with the post-intervention
period. He or she can then test whether this fitted function is rejected or not according to our inference proce-
dure. This possibility is useful in order to predict, in a very simple way, the future behavior of the intervention
effect function.

Another and possibly the most interesting option for function f is related to cost-benefit analysis. If the
intervention cost and its benefit are in the same unit of measurement, function f can be the intervention cost
as a function of time and decision rule (13) allows the researcher to test whether the intervention effect is
different than its costs.14

Moreover, function f can be chosen in order to test a theory that predicts a specific form for the interven-
tion effect. For example, imagine that a researcher is interested in analyzing the economic impact of natural
disasters [9–12]. Theory predicts three different possible intervention effects in this case: (i) GDP initially in-
creases due to the aid effect and, then, decreases back to its potential level; (ii) GDP initially decreases due to
the destruction effect and, then, increases back to its potential level; and (iii) GDP decreases permanently due
to a reduction in its potential level. The researcher can choose a inverted U-shaped function fi, a U-shaped
function fii and a decreasing function fiii and apply decision rule (13) to each one of those three sharp null
hypotheses in order to test which theoretical prediction is not rejected by the data.

4.2 Confidence sets
As described in subsection 4.1, we can, for a given value of the sensitivity parameter ϕ ∈ ℝ+, a given vector
υ = (υ1, ..., υJ+1) and a given significance level γ ∈ (0, 1), test many different types of sharp null hypotheses.
Consequently, as explained by Imbens and Rubin [46] and Rosenbaum [47], we can invert the test statistic to
estimate confidence sets for the treatment effect function. More clearly, using the equal weights benchmark
p-value formula (5) or parametric deviations from it (equation (9)), we can construct a (1 − γ)-confidence set
in the space ℝ{1,...,T} as

CS(1−γ) (ϕ,υ) := {f ∈ ℝ{1,...,T} : pf (ϕ,υ) > γ} , (14)

14 In the empirical example (section 7), we show how to implement a one-sided test that can be used to test whether the inter-
vention effect is greater than its costs.
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where pf (ϕ,υ) is given by equation (13). Note that it is easy to interpret CS(1−γ) (ϕ,υ): it contains all inter-
vention effect functions whose associated sharp null hypotheses are not rejected by the inference procedure
described in subsection 4.1.

However, although theoretically possible to define such a general confidence set, null hypothesis (11)
might be too general for practical reasons since the spaceℝ{1,...,T} is too large to be informative and estimating
such a confidence set would be computationally infeasible. For these reasons, we believe that it is worth
focusing in two simple subsets of CS(1−γ) (ϕ,υ).

Firstly, we propose to assume the following null hypothesis:

Hc
0 : Y

I
j,t = Y

N
j,t + c × I(t ≥ T0 + 1) (15)

for each region j ∈ {1, ..., J + 1} and time period t ∈ {1, ...,T}, where c ∈ ℝ. Intuitively, we assume that there is a
constant (in space and in time) intervention effect. Note that we can apply the inference procedure described
in subsection 4.1 to any c ∈ ℝ, estimating the empirical distribution of RMSPEc. Using the weights given by
equation (8), we can then construct a (1 − γ)-confidence interval for the constant intervention effect as

CI(1−γ) (ϕ,υ) := {f ∈ ℝ{1,...,T} : f (t) = c and pc (ϕ) > γ} ⊆ CS(1−γ) (ϕ,υ) (16)

where c ∈ ℝ and γ ∈ (0, 1) ⊂ ℝ. It is easy to interpret CI(1−γ) (ϕ,υ): it contains all constant in time interven-
tion effects whose associated sharp null hypotheses are not rejected by the inference procedure described in
subsection 4.1.

Secondly, we can easily modify equations (15) and (16) to a linear in time intervention effect (with inter-
cept equal to zero). Assume

H c̃
0 : Y

I
j,t = Y

N
j,t + c̃ × (t − T0) × I(t ≥ T0 + 1) (17)

for each region j ∈ {1, ..., J + 1} and time period t ∈ {1, ...,T}, where c̃ ∈ ℝ. Intuitively, we assume that there
is a constant in space, but linear in time intervention effect (with intercept equal to zero). Note that we can
apply the inference procedure described in subsection 4.1 to any c̃ ∈ ℝ, estimating the empirical distribution
of RMSPEc̃. Using the weights given by equation (8), we can then construct a (1 − γ)-confidence set for the
linear intervention effect as

C̃S(1−γ) (ϕ,υ) := { f ∈ ℝ{1,...,T} : f (t) = c̃ × (t − T0) × I(t ≥ T0 + 1)
and pc̃ (ϕ) > γ } ⊆ CS(1−γ) (ϕ,υ) (18)

where γ ∈ (0, 1) ⊂ ℝ. It is also easy to interpret C̃S(1−γ) (ϕ,υ): it contains all linear in time intervention ef-
fects (with intercept equal to zero) whose associated sharp null hypotheses are not rejected by the inference
procedure described in subsection 4.1.

We also note that extending our confidence intervals to two-parameter functions (e. g.: quadratic, ex-
ponential and logarithmic functions) is theoretically straightforward as equation (14) makes clear. However,
sincewe believe that computationally estimating such confidence sets would be time consuming for the prac-
titioner, we opted for restricting our main examples to one-parameter functions15 (equations (16) and (18)).

Moreover, we highlight that confidence sets (16) and (18) summarize a large amount of relevant informa-
tion since they not only show the statistical significance of the estimated intervention effect, but also provide
a measure of the precision of the point estimate, indicating the strength of qualitative conclusions. For ex-
ample, narrower confidence sets suggest stronger conclusions. Furthermore, by plotting confidence sets for
different values of the sensitivity parameter ϕ ∈ ℝ+, the empirical researcher can access how robust his or
her qualitative conclusions are to deviations from the equal weights benchmark p-value formula (5) by com-
paring the areas of confidence sets for different values of ϕ ∈ ℝ+. As before, we highlight three interesting

15 On our website https://goo.gl/RBYomh, we provide R and Stata codes to compute the confidence sets in equations (16) and
(18).

https://goo.gl/RBYomh
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choices for the sensitivity parameter ϕ ∈ ℝ+ and the vector υ = (υ1, ..., υJ+1). The first one simply assumes
ϕ = 0 and υ = (1, ..., 1), i. e., it weights all observed units equally as proposed by Abadie et al. [1] as a bench-
mark. The other two choices are related to the sensitivity parameter for the worst case scenario ϕ ∈ ℝ+ if the
exact null hypothesis (equation (6)) is rejected and for the best case scenario ϕ ∈ ℝ+ if it is not rejected. Our
empirical application (section 7) exemplifies the communication efficacy of those graphical devices.

Finally, we note that our confidence sets are uniform in the sense that they combine information about all
time periods in order to describe which intervention effect functions are not rejected by the data. If the empir-
ical researcher is interested in only computing point-wise confidence intervals for each period intervention
effect, he or she can apply the inference procedure of the SCM and our confidence sets separately for each
post-intervention time period t� ∈ {T0 + 1, ...,T} using (α̂1,t�)2 as a test statistic. In subsection 6.1, we explain
why a point-wise confidence interval may not be adequate and propose an alternative inference procedure
for multiple outcome variables.

5 Other test statistics and a Monte Carlo experiment
Although we presented the inference procedure proposed by Abadie et al. [4] and [1], our sensitivity analysis
mechanism and our confidence sets using the RMSPE as a test statistic, all of them can use any test statis-
tic. Following Imbens and Rubin [46], we define a test statistic θf as a known positive real-valued function
θf (ι, τ,Y,X, f ) of:
1. the vector ι := [ι1...ιJ+1]� ∈ ℝJ+1 of treatment assignment, where ιj = 1 if region j faces the intervention at

some moment in time and zero otherwise;
2. τ := [τ1...τT ]� ∈ ℝT , where τt = 1 if t > T0 and zero otherwise;
3. the matrix

Y :=
[[[
[

Y I
1,1ι1τ1 + YN

1,1(1 − ι1τ1) ... Y I
1,T ι1τT + YN

1,T (1 − ι1τT )
. . .

Y I
J+1,1ιJ+1τ1 + YN

J+1,1(1 − ιJ+1τ1) ... Y I
J+1,T ιJ+1τT + YN

J+1,T (1 − ιJ+1τT )

]]]
]

of observed outcomes;
4. the matrix X := [X1 X0] of predictor variables;
5. the intervention effect function f : {1, ...,T}→ ℝ given by the sharp null hypothesis (11).

The observed test statistic is given by θf ,obs := θ(e1, τ,Y,X, f ) and, under the sharp null hypothesis (11), we
can estimate the entire empirical distribution of θf by permuting which region faces the intervention, i. e., by
estimating θf (ej, τ,Y,X, f ) for each j ∈ {1, ..., J + 1}, where ej is the j-th canonical vector of ℝJ+1. Using weights
(8) and fixing a value of the sensitivity parameter ϕ ∈ ℝ+ and a vector υ = (υ1, ..., υJ+1), we reject the sharp
null hypothesis (11) if

pθf (ϕ,υ) :=
J+1∑
j=1

exp (ϕυj)
∑J+1j�=1 exp (ϕυj�)

× I [θ(ej, τ,Y,X, f ) ≥ θf ,obs] ≤ γ, (19)

where γ is some pre-specified significance level.
Moreover, observe that RMSPE and any linear combination of the absolute estimated synthetic control

gaps are test statistics according to this definition. Consequently, the hypothesis tests proposed by Abadie
et al. [4] and [1] are inserted in this framework.

5.1 Monte Carlo experiment: Rejection rates
In this subsection, we analyze the size and the power of five different test statistics when they are applied to
the inference procedure described above imposing that ϕ = 0 and υ = (1, ..., 1), i. e., we use the benchmark
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weights proposed by Abadie et al. [1]. In order to do that, we assume seven different intervention effects,
simulate 3,000 data sets for each intervention effect through a Monte Carlo experiment and, for each data
set, we test, at the 10% significance level, the exact null hypothesis (equation (6)), following the mentioned
inference procedure assuming that ϕ = 0 and υ = (1, ..., 1) and using each test statistic.

Firstly, we describe our five test statistics. Then, we explain our data generating process and discuss the
results.

We analyze the following test statistics:
– θ1 := mean (!!!!!α̂j̃,t !!!!! |t ≥ T0 + 1) is one way to aggregate the information provided by placebo gaps graphs

that were introduced by Abadie et al. [4].
– θ2 := RMSPEj̃ is recommendedbyAbadie et al. [1] because it controls for the quality of thepre-intervention

fit.
– θ3 is the absolute value of the statistic of a t-test that compares the estimated average post-intervention

effect against zero. More precisely,

θ3 :=
!!!!!!!
αpost/(T − T0)
σ̂/√T − T0

!!!!!!!

where αpost :=
(∑Tt=T0+1 α̂j̃,t)
(T − T0)

and σ̂ :=
(∑Tt=T0+1 (α̂j̃,t − αpost)2)
(T − T0)

. This test statistic is used by Mideksa [13].

– θ4 :=
!!!!!!!!!!!mean (Yj̃,t |t ≥ T0 + 1) −

∑Tt=T0+1∑j ̸=̃j Yj,t
(T − T0) × J

!!!!!!!!!!! is a simple difference in means between the treated region

and the control regions for the realized outcome variable during the post-intervention period. This test
statistic is suggested by Imbens and Rubin [46].

– θ5 is the coefficient of the interaction term in a differences-in-differences model. More precisely, we esti-
mate the model

Yj,t = η1 × I [j = j̃] + η2 × I [j = j̃] × I [t ≥ T0 + 1] + Zj,t × ζ + ξj + μt + εj,t , (20)

where ξj and μt are, respectively, region and time fixed effects, and we make θ̂5 = |η̂2|.

Observe that, in this notation, j̃ is the region that is assumed to face the intervention in each permutation,
and mean(B|A) is the mean of variable B conditional on event A. We construct the empirical distribution
of each test statistic for each Monte Carlo repetition and test the null hypothesis at the 10% significance
level. In practice, we reject the null hypothesis if the observed test statistic is one of the two largest values
of the empirical distribution of the test statistic. For each Monte Carlo repetition and each test statistic, we
also compute the worst case scenarioϕ ∈ ℝ+ if the exact null hypothesis is rejected and the best case scenario
ϕ ∈ ℝ+ if it is not rejected.Wediscuss the results for the sensitivity analysis parameters in the next subsection.

Note that, although test statistic θ4 and θ5 do not use the synthetic control method, they are included
in our Monte Carlo Experiment for being commonly used in the literature about permutation tests. Since the
synthetic control estimator is a time-consuming and computer-demanding methodology, it is important to
analyze whether it outperforms much simpler methods that are commonly used in the evaluation literature
and that are also adequate given our data generating process. For this same reason, we also report rejection
rates for the differences-in-differences inference procedure proposed by Conley and Taber [49] (CT).16 How-
ever, we stress that Conley and Taber [49] propose an asymptotic inference procedure and that our Monte
Carlo Experiment has a small sample size, implying that the CT method is not the most suitable tool in this
context.

16 We estimate model (20) and test the null hypothesis H0 : η2 = 0 using the confidence intervals recommend by Conley and
Taber [49]. Since their inference procedure uses only the control regions in order to estimate the test statistic distribution, the true
nominal size of this test is 10.53%.
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The first step in the data generating process of our Monte Carlo experiment is to decide the values of
the parameters: J + 1 (number of regions), T (number of time periods), T0 (number of pre-intervention time
periods) and K (number of predictors). In our review of the empirical literature, we found that typical values
of these parameters are, approximately, T = 25, T0 = 15 and K = 10 (nine control variables and the pre-
intervention average of the outcome variable). We also set J + 1 = 20 (one treated region and nineteen control
regions). Our data generating process follows equation (5) of [4]:

YN
j,t+1 = δtYN

j,t + βt+1Zj,t+1 + uj,t+1
Zj,t+1 = κtYN

j,t + ρtZj,t + vj,t+1
(21)

for each j ∈ {1, ..., J + 1} and t ∈ {0, ...,T − 1}, where Zj,t+1 is a (K − 1)× 1-dimension vector of control variables.17
The scalar uj,t+1 and each element of the (K − 1) × 1-dimension vector vj,t+1 are independent random draws
from a standard normal distribution. The scalars δt and κt and each element of βt+1 and ρt are independent
random draws from a uniform distribution with lower bound equal to −1 and upper bound equal to +1. We
make Zj,0 = vj,0 and YN

j,0 = β0Zj,0 + uj,0. Finally, the potential outcome when region 1 faces the intervention in
period t ∈ {1, ...,T} is given by

Y I
1,t = Y

N
1,t + λ × sd(Y

N
1,τ̃|τ̃ ≤ T0) × (t − T0) × I [t ≥ T0 + 1] , (22)

where λ ∈ {0,0.05,0.1,0.25,0.5, 1.0, 2.0} is the intervention effect and sd(B|A) is the standard deviation of
variable B conditional on event A. Hence, our alternative hypothesis is that there is a linear intervention
effect only for region 1, implying that our Monte Carlo experiment investigates what are the most powerful
test statistics against this one-direction alternative hypothesis.18

Now that we have explained our data generating process with 21,000Monte Carlo repetitions, we discuss
our findings. Table 1 shows the results of ourMonteCarlo Experiment about the size andpower of the analyzed
tests when we assume ϕ = 0 and υ = (1, ..., 1). Each cell presents the rejection rate of the permutation test
described above that uses the test statistic in each row or the rejection rate of the test proposed by Conley
and Taber [49] when the true intervention effect is given by the value mentioned in the column’s heading.
Consequently, while column (1) presents tests’ sizes, the columns (2)–(7) present their power.

Table 1:Monte Carlo Experiment’s Rejection Rates.

Intervention Effect
(1) (2) (3) (4) (5) (6) (7)

Test Statistic λ= .0 λ= .05 λ= .1 λ= .25 λ= .5 λ= 1.0 λ= 2.0

θ̂1 0.10 0.19 0.22 0.36 0.43 0.63 0.68
θ̂2 0.10 0.32 0.36 0.49 0.53 0.72 0.77
θ̂3 0.10 0.63 0.69 0.80 0.87 0.94 0.95
θ̂4 0.10 0.20 0.24 0.36 0.44 0.60 0.65
θ̂5 0.10 0.18 0.24 0.36 0.42 0.63 0.70
CT 0.10 0.15 0.21 0.32 0.37 0.61 0.66
Source: Authors’ own elaboration. Notes: Each cell presents the rejection rate of the test associated to each row when the true
intervention effect is given by the value λ in the columns’ headings. Consequently, while column (1) presents tests’ sizes, the
columns (2)–(7) present their power. θ̂1–θ̂3 are associated to permutation tests that uses the Synthetic Control Estimator. θ̂4–θ̂5
are associated to permutation tests that are frequently used in the evaluation literature. CT is associated with the asymptotic
inference procedure proposed by Conley and Taber [49].

17 Xj is a vector that contains the pre-intervention averages of the control variables and of the outcome variable.
18 In a previous version of this text, that circulated under the title Synthetic Control Estimator: A Walkthrough with Confidence
Intervals, we used a constant in time intervention effect. The results of that smaller Monte Carlo experiment were similar to the
ones presented below and are available upon request.
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Analyzing column (1), we note that the five permutation tests of our Monte Carlo Experiment (θ1-θ5)
present the correct nominal size as expected by the decision rule of Fisher’s Exact Inference Procedure [45].
Moreover, the asymptotic inference procedure proposed by Conley and Taber [49] (CT) has a true size close
to the correct one (10.53%).

Analyzing the other columns, we note that the test statistic RMSPE, proposed by Abadie et al. [1] (θ2),
is uniformly more powerful than the simple test statistics (θ4, θ5) that are commonly used in the evaluation
literature. This result suggests that, in a context where we observe only one treated unit, we should use the
synthetic control estimator even if the treatment were randomly assigned as in our data generating process.
Wealso stress that thehypothesis test basedon the statisticRMSPE (θ2)outperforms the test proposedbyCon-
ley and Taber [49] (CT) in terms of power, suggesting that, in a contextwith few control regions, we should use
the synthetic control estimator instead of a differences-in-differences model that applies an asymptotic infer-
ence procedure. This last result can be explained by the fact that, while our sample size is small (J + 1 = 20),
the CT inference procedure is an asymptotic test based on the number of control regions going to infinity and,
therefore, inadequate for this data generating process.

We also underscore that themost powerful test statistic is the t-test (θ3). This result makes clear the gains
of power when the researcher chooses to use the synthetic control estimator instead of a simpler method,
such as the difference inmeans (θ4) or the permuted differences-in-differences test (θ5). As pointed out by an
anonymous referee,we stress that this gain of power is present even thoughour treatment effect also increases
the standard deviation of the potential outcome, i. e., it also increases the denominator of the observed test
statistic. We also note that the large power of the t-test have been previously observed in contexts that are dif-
ferent from ours: Lehmann [66] looks to a simple test ofmean differences, Ibragimov andMuller [67] analyzes
a two-sample test of mean differences where samples’ variances are different from each other, and Young [68]
focus on a linear regression coefficient. However, it is easy to think about contexts in which the simple t-test
(θ3)would beweak. As pointed out by an anonymous referee, if positive and negative treatment effects for dif-
ferent time periods cancel out in αpost, the simple t-test (θ3)will not be able to detect deviations with respect
to the null hypothesis of no effect whatsoever. This example illustrates two important points. First, when the
researcher believes that the treatment effect varies a lot over time, he or she should explicitly acknowledge
that and treat different time periods as different outcome variables, applying the multiple hypothesis testing
framework described in section 6.1. Second, as Eudey et al. [69] stress, the test statistic should be carefully
chosen in order to have power against the alternative hypothesis of interest.

Table 2: Rejection Rates Using Only Units with a Good Pre-intervention Fit.

Intervention Effect
(1) (2) (3) (4) (5) (6) (7)

Test Statistic λ= .0 λ= .05 λ= .1 λ= .25 λ= .5 λ= 1.0 λ= 2.0

θ̂1 0.13 0.38 0.43 0.56 0.59 0.76 0.81
θ̂2 0.06 0.26 0.31 0.44 0.47 0.65 0.71
θ̂3 0.06 0.57 0.62 0.76 0.82 0.9 0.92
Source: Authors’ own elaboration. Notes: Each cell presents the rejection rate of the test associated to each row when the true
intervention effect is given by the value λ in the columns’ headings. Consequently, while column (1) presents tests’ sizes, the
columns (2)–(7) present their power. θ̂1–θ̂3 are associated to permutation tests that uses the Synthetic Control Estimator. Good
pre-intervention fit is defined as a pre-intervention MSPE at most five times larger than the MSPE of the treated unit.

Finally, we note that the simple average of the absolute post-intervention treatment effect (θ1), despite
using the synthetic control method, is as powerful as the simple test statistics that are commonly used in the
evaluation literature (θ4, θ5). Following Abadie et al. [1], a possible explanation for the low power of (θ1) is
the fact that this test statistic ignores the quality of the pre-intervention fit. To analyze this possibility, table 2
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presents the rejection rates of the test statistics that uses the SCM (θ1 − θ3) when only units with a good pre-
intervention fit are used to compute the p-value (equation (5)).19 Here, we follow Abadie et al. [1] and define
units with a good pre-intervention fit as units whose mean squared prediction error (MSPE) is at most five
times larger than the MSPE of the treated unit.

We note that test statistic θ1 becomes, as expected, more powerful when we control for the quality of the
pre-intervention fit. However, the cost of this increase in power is a small over-rejection of the null hypothesis
when λ = 0. We also highlight that test statistics θ2 and θ3 are, now, slightly conservative, because, when we
exclude units with a poor pre-intervention fit, the null hypothesis is only rejected when the observed unit is
the most extreme, effectively reducing the level of the permutation test. Most importantly, since the RMSPE
test statistic (θ2) already controls for the pre-intervention fit, excluding units with a poor pre-intervention fit
reduces its power.

At this point, we avoidmaking any stronger suggestion about which test statistic the empirical researcher
should use, because, as Eudey et al. [69, p. 14] make clear, this choice is data dependent since the empirical
researcher’s goal is to match the test statistic to the research question or population object of interest.

5.2 Monte Carlo experiment: Sensitivity analysis
In this subsection, we analyze the behavior of the sensitivity analysis mechanism proposed in section 3 when
we generate datasets based on the data generating process described above. We focus on the average values
of the sensitivity parameter that change a hypothesis test’s result, i. e., the values of ϕ ∈ ℝ+ if the exact null
hypothesis is not rejected and ϕ ∈ ℝ+ if the exact null hypothesis is rejected. As before, we assume seven
different intervention effects, simulate 3,000 data sets for each intervention effect through a Monte Carlo
experiment and, for each data set, we test, at the 10% significance level, the exact null hypothesis (equation
(6)), following thementioned inference procedure assuming thatϕ = 0 and υ = (1, ..., 1) and using the five test
statistics described in subsection 5.1. Based on each test’s result, we compute either the worst case scenario
ϕ ∈ ℝ+ if the exact null hypothesis is rejected or the best case scenario ϕ ∈ ℝ+ if the exact null hypothesis is
not rejected.

Tables 3 shows the sensitivity parameter for the average worst case scenario ϕ ∈ ℝ+ if the exact null
hypothesis is rejected and for the best case scenarioϕ ∈ ℝ+ if it is not rejected.20 Each cell presents the average
value of the sensitivity parameter that changes the hypothesis’ test result associated to the scenario in the
panel and to the test statistic in each row when the true intervention effect is given by the value mentioned
in the column’s heading.

On the one hand, when the exact null hypothesis is true (column (1)) and we reject the null hypothesis
(Panel A), we want the sensitivity parameter ϕ ∈ ℝ+ to be small, because a less robust result would help us
avoid making a Type I error. On the other hand, when the exact null hypothesis is false (columns (2)–(7)) and
we reject the null hypothesis (Panel A), we want the sensitivity parameterϕ ∈ ℝ+ to be large, because a more
robust result would help us avoid making a Type II error. As table 3 shows, the sensitivity analysis parameter
ϕ ∈ ℝ+ for the three test statistics increases when the intervention effect λ ∈ ℝ+ increases, as desired.

Moreover, when the exact null hypothesis is true (column (1)) and we do not reject the null hypothesis
(Panel B), we want the sensitivity parameter ϕ ∈ ℝ+ to be large, because a more robust result would help
us avoid making a Type I error. Similarly, when the exact null hypothesis is false (columns (2)–(7)) and we
do not reject the null hypothesis (Panel B), we want the sensitivity parameter ϕ ∈ ℝ+ to be small, because
a more robust result would help to avoid making a Type II error. As table 3 shows, the sensitivity analysis
parameter ϕ ∈ ℝ+ for test statistics θ1 and θ2 decreases when the intervention effect λ ∈ ℝ+ increases, as
desired. However, even if θ3 is the most powerful test statistic in our Monte Carlo experiment, it does not
have good properties when applied to the sensitivity analysis mechanism.

19 To save space, we do not report the results for the test statistics θ4 and θ5. They are available upon request.
20 To save space, we do not report the results for the test statistics θ4 and θ5. They are available upon request.



16 | S. Firpo and V. Possebom, SCM: Inference, Sensitivity Analysis and Confidence Sets

Table 3: Sensitivity Analysis.

Intervention Effect
(1) (2) (3) (4) (5) (6) (7)

Test Statistics λ= .0 λ= .05 λ= .1 λ= .25 λ= .5 λ= 1.0 λ= 2.0

Panel A:Worst Case Scenario ϕ ∈ ℝ+ — H0 is rejected

θ̂1 0.38 0.40 0.34 0.48 0.52 0.57 0.62
θ̂2 0.38 0.60 0.62 0.66 0.66 0.70 0.70
θ̂3 0.38 0.68 0.68 0.71 0.72 0.74 0.75

Panel B: Best Case Scenario ϕ ∈ ℝ+ — H0 is not rejected

θ̂1 2.50 1.83 1.77 1.54 1.54 1.33 1.13
θ̂2 2.50 2.26 2.22 2.04 1.96 1.86 1.72
θ̂3 2.50 2.94 3.00 3.44 3.29 3.05 3.91
Source: Authors’ own elaboration. Notes: Each cell presents the value of the sensitivity parameter that changes the hypothesis’
test result associated to the scenario in the panel and to the test statistic in each row when the true intervention effect is given
by the value mentioned in the column’s heading. H0 is the exact null hypothesis given by equation (6). θ̂1–θ̂3 are associated to
permutation tests that uses the Synthetic Control Estimator.

Furthermore, when we compare the sensitivity parameters ϕ ∈ ℝ+ and ϕ ∈ ℝ+ across the different test
statistics, we find that θ̂2 is more robust than θ1 and θ3 for some values of the intervention effect parameter
λ ∈ ℝ+. As discussed in subsection 5.1, the best test statistic depends on the population object of interest.
However, test statistic θ2 — the traditional RMSPE statistic proposed by Abadie et al. [1] — performs, in our
specific data generating process, satisfactorily with respect to power and robustness to deviations from the
equal weights benchmark p-value formula (5).

To conclude, we stress that similarMonte Carlo experimentsmight help the empirical researcher to gauge
the robustness of his or her findings. For example, in section 7, we observe a dataset with J + 1 = 14, T0 =
15 and T = 43, and use a one-sided test statistic. We can implement a Monte Carlo experiment using the
data generating process of subsection 5.1 with the parameters just mentioned and with the test statistic of
section 7. For each Monte Carlo repetition that rejects the null hypothesis at the 2/14-significance level, we
save the sensitivity parameter for theworst case scenarioϕ. Averaging acrossMonte Carlo repetitions, we find
that the averageworst case scenarioϕ is 0.995. Since in our empirical exercise, we find a sensitivity parameter
ϕ = 0.495, we may conclude that the empirical results from section 7 are not very robust to deviations from
the equal weight benchmark p-value formula (5), a problem that is connected to the small sample size of the
exercise.

6 Extensions to the inference procedure
In this section, we discuss the inference procedure for SCM when we observe Multiple Outcomes or Multiple
Treated Units. By doing so, we also extend the sensitivity analysis mechanism to both cases and the confi-
dence sets to the second case.

6.1 Simultaneously testing hypotheses about multiple outcomes

Imbens and Rubin [46] states that the validity of the procedure described in subsection 4.1 depends on a prior
(i. e., before seeing the data) commitment to a test statistic. Moreover, Anderson [50] shows that simultane-
ously testing hypotheses about a large number of outcomes can be dangerous, leading to an increase in the
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number of false rejections.21 Consequently, applying the inference procedure described in subsection 4.1 to
simultaneously test hypotheses about multiple outcomes can bemisleading, because there is no clear way to
choose a test statistic when there aremany outcome variables and because our test’s true size may be smaller
than its nominal value in this context. After adapting the familywise error rate control methodology suggested
by Anderson [50] to our framework, we propose one way to test any sharp null hypothesis for a large number
of outcome variables, preserving the correct test level for each variable of interest.

First, we modify the framework described in subsection 4.1, assuming that there are M ∈ ℕ observed
outcome variables — Y1, ...,YM — with their associated potential outcomes. Now, our null hypothesis is also
more complex than the one described in equation (11):

H f
0 : Y

m,I
j,t = Y

m,N
j,t + fm(t) (23)

for each region j ∈ {1, ..., J + 1}, each timeperiod t ∈ {1, ...,T}andeachoutcomevariablem ∈ {1, ...,M},where fm :
{1, ...,T}→ ℝ is a function of time that is specific to each outcomem and f := {fm}m∈{1,...,M}. Note that we could
index each function fm by region j, but we opt not to do so because we almost never have a meaningful null
hypothesis that is precise enough to specify individual intervention effects. Observe also that it is important
to allow for different functions for each outcome variable because the outcome variables may have different
units of measurement.

Based on the benchmark inference procedure developed by Abadie et al. [4] and [1], we can, for each
m ∈ {1, ...,M}, calculate an observed test statistic, θobsfm = θ

m(e1, τ,Ym,X, fm), and their associated observed
p-value,

pobsθfm
:=

J+1∑
j=1

I [θm(ej, τ,Y,X, fm) ≥ θobsfm ]
J + 1

where we choose the order of the indexm to guarantee that pobsθf1
< pobsθf2
< ... < pobsθfM

.
Since this p-value is itself a test statistic, we can estimate, for each outcome m ∈ {1, ...,M}, its empirical

distribution by computing

pj̃θfm :=
J+1∑
j=1

I [θm(ej, τ,Y,X, fm) ≥ θm,̃j]
J + 1 ,

for each region j̃ ∈ {1, ..., J + 1}, where θm,̃j := θm (ẽj, τ,Ym,X, fm). Our next step is to calculate pj̃θfm ,∗ :=

min {pj̃θfm , pj̃θfm+1 , ..., pj̃θfM } for each m ∈ {1, ...,M} and each j̃ ∈ {1, ..., J + 1}. Then, we estimate, for a given value
of the sensitivity parameter ϕ ∈ ℝ+ and a given vector υ = (υ1, ..., υJ+1) and using the weights given by
equation (8),

pfwer∗θobsfm
(ϕ,υ) :=

J+1∑
j=1

exp (ϕυj)
∑J+1j�=1 exp (ϕυj�)

× I [pjθfm ,∗ ≤ pobsθfm
] (24)

for eachm ∈ {1, ...,M}. We enforce monotonicity one last time by computing

pfwerθobsfm
(ϕ,υ) := min {pfwer∗θobsfm

(ϕ,υ) , pfwer∗θobsfm+1
(ϕ,υ) , ..., pfwer∗θobsfM

(ϕ,υ)}
for eachm ∈ {1, ...,M}. Finally, for each outcome variablem ∈ {1, ...,M}, we reject the sharp null hypothesis (23)
if pfwerθobsfm
(ϕ,υ) ≤ γ, where γ is a pre-specified significance level.

21 List et al. [70] argues that false rejections can harm the economy since vast public and private resources can be misguided if
agents base decisions on false discoveries. They also point that multiple hypothesis testing is a especially pernicious influence
on false positives.
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It is important to observe that rejecting the null hypothesis for some outcome variable m ∈ {1, ...,M}
implies that there is some region whose intervention effect differs from fm(t) for some time period t ∈ {1, ...,T}
for that specific outcome variable.

We also note that, when we observe only one outcome variable of interest as in section 2, we can rein-
terpret it as a case with multiple outcome variables where each post-intervention time period is seem as a
different outcome variable. With this interpretation, the inference procedure described in subsection 4.1 is
still valid and is similar in flavor with the summary index test proposed by Anderson [50], because we sum-
marized the entire time information in a single test statistic. Since Anderson [50] argues that the summary
index test22 has more power than the familywise error rate control approach, we recommend that the empiri-
cal researcher uses the inference procedure described in subsection 4.1 if he or she is interested in knowing
whether there is an intervention effect or not, but is not interested in the timing of this effect. If the empirical
researcher is interested in the timing of this effect (as we are in section 7), he or she should interpret each
post-intervention time period as a different outcome variable and apply the inference procedure described in
this subsection.

As before, we highlight three interesting choices for the sensitivity parameter ϕ ∈ ℝ+ and the vector
υ = (υ1, ..., υJ+1). The first one simply assumes ϕ = 0 and υ = (1, ..., 1), extending the benchmark inference
procedure proposed by Abadie et al. [4] and [1] to test sharp null hypotheses aboutmultiple outcome variables
(equation (23)). The other two choices are related to the sensitivity parameter for the average worst case sce-
nario ϕ ∈ ℝ+ if the sharp null hypothesis (equation (11)) is rejected and for the best case scenario ϕ ∈ ℝ+ if it
is not rejected. We can easily apply the sensitivity analysis mechanism proposed in section 3 to any outcome
variablem ∈ {1, ...,M} using pfwerθobsfm

(ϕ,υ) to define either ϕm ∈ ℝ+ or ϕm ∈ ℝ+.

6.2 Hypothesis testing and confidence sets with multiple treated units
Cavallo et al. [10] extend the SCM developed by Abadie and Gardeazabal [2] and Abadie et al. [4] to the case
when we observe multiple treated units. We briefly extend their contribution to allow our sensitivity analysis
mechanism and to test any kind of sharp null hypothesis. By doing so, we can also estimate confidence sets
for the pooled intervention effect.

Assume that there are G ∈ ℕ similar interventions that we are interested in analyzing simultaneously.
For each intervention g ∈ {1, ...,G}, there are Jg + 1 observed regions and we denote the region that faces the
intervention as the first one, 1g . Following the procedure described in subsection 2.1, we define the synthetic
control estimator of α1g ,t as α̂1g ,t := Y1g ,t − ŶN

1g ,t for each t ∈ {1, ...,T} and each intervention g ∈ {1, ...,G}. The
estimated pooled intervention effect according to the SCM is given by α̂1,t := ∑Gg=1 α̂1g ,t/G for each t ∈ {1, ...,T}.

Differently from [10], we summarize the entire time information in a single test statistic in order to avoid
over-rejecting the null hypothesis as pointed out by Anderson [50].23 We also adapt their benchmark p-value
formula to consider deviations from equally weighted units by using parametric weights (equation (26)) that
are similar to the ones in equation (8).

Now, our sharp null hypothesis is given by:

H0 : Y I
jg ,t = Y

N
jg ,t + f (t) (25)

for each intervention g ∈ {1, ...,G}, each region jg ∈ {1, ..., Jg + 1} and time period t ∈ {1, ...,T}, where f :
{1, ...,T} → ℝ. Note that we could index the function f by intervention g and region jg , but we opt not to

22 The summary index test can also be adapted to our framework of multiple outcomes and be applied in place of the procedure
described in this subsection. In order to do that, the researcher must aggregate all the information contained in test statistics
θ1, ..., θM in a single index test statistic θ̃ and use θ̃ as the test statistic for the inference procedure described in subsection 4.1. In
this case, a rejection of the null hypothesis implies that there is some region whose intervention effect differs from fm(t) for some
time period t ∈ {1, ...,T} and some outcome variablem ∈ {1, ...,M}.
23 For more information about over-rejecting the null hypothesis, see the articles mentioned in subsection 6.1.
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do so because we almost never have a meaningful null hypothesis that is precise enough to specify individ-
ual intervention effects for each observed region. Moreover, since most empirical applications with multiple
treated units are concerned with interventions that are similar across regions, imposing that the treatment
effect does not vary across interventions is a reasonable assumption.

If the researcher wants to analyze each intervention g ∈ {1, ...,G} separately in order to investigate het-
erogeneous effects, he or she can apply our framework for multiple outcomes (see subsection 6.1) instead
of implementing the pooled analysis describe in this subsection. The more detailed analysis based on the
multiple outcomes framework has the cost of losing statistical power since the framework described in this
subsection is based on the summary index test while the procedure explained in subsection 6.1 is based on
the familywise error rate.24

Furthermore, we define a test statistic θpld,f for the pooled intervention effect as a known positive real-
valued function θpld((ιg , τg ,Yg ,Xg)Gg=1, f ) that summarizes the entire information of all interventions.

Now, to apply the inference procedure to the pooled intervention effect allowing for the sensitivity anal-
ysis mechanism described in section 3, we recommend the following steps:
1. Estimate the test statistics θf1 , θ

f
2,...,θ

f
Q for each possible placebo treatment assignment q ∈ {1, ...,Q}, where

θf1 = θ
obs
pld,f := θpld((e1g , τg ,Yg ,Xg)Gg=1, f ) is the observed test statistic and ejg is the jg-th vector of the canon-

ical base of ℝJ
g+1. A possible placebo treatment assignment simply permutes which region is assumed

to be treated in each intervention g ∈ {1, ...,G}, i. e., it uses different combinations of canonical vectors
(ej1 , ..., ejG ). Note that there are Q := ∏Gg=1 (Jg + 1) possible placebo pooled intervention effects.

2. Follow the mechanism described in section 3 where the word region and the indexes j associated to it are
now interpreted as placebo treatment assignments and indexes q. In particular, the p-value of equation
(9) is now given by

pθpld,f (ϕ,υ) := ∑
(q)∈{1,...,Q}

exp (ϕυ(q))∑q�∈{1,...,Q} exp (ϕυq�) × I [θ(q) ≥ θq] . (26)

We stress that rejecting null hypothesis (25) implies that there is some intervention with some region whose
intervention effect differs from f (t) for some time period t ∈ {1, ...,T}.

Finally, to extend the confidence sets of subsection 4.2 to the pooled intervention effect, simply follow
the definitions of the aforementioned subsection using the p-value given by equation (26).

7 Empirical application
In this section, we aim to illustrate that our extensions of the inference procedure proposed by Abadie et al.
[4] and [1] can cast new light on empirical studies that use SCM. In particularly, we can analyze the robustness
of empirical results to the equal weights benchmark p-value formula (5), test more flexible null hypotheses,
and summarize important information in simple and effective graphs. In order to achieve this goal, we use
economic data for Spanish regions made available by Abadie and Gardeazabal [2] and discussed by Abadie
et al. [3] too.

We start by evaluating the statistical significance of the economic impact of ETA’s terrorism. Since power
is a concern due to the small sample size, we implement, as suggested by an anonymous referee, a one-
sided test because only negative effects of terrorism on GDP are of interest. To do so, our test statistic,25

24 Anderson [50] offers a detailed discussion about the differences between inference procedures based on the summary index
test and on the familywise error rate.
25 This test statistic is an one-sided version of the t-test in section 5, which is powerful against alternative hypothesis that have
only one direction of impact such as the one in subsection 5.1 and the one that is of interest in the present empirical exercise. The
results for the two-sided test that uses the RMSPE test statistic are available upon request.
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θ = −
αpost/(T − T0)
σ̂/√T − T0

, can assume positive and negative values (differently from section 5) and we apply the in-
ference procedure described in subsection 2.2, an exercise similar to the one implemented by Abadie et al.
[3]. Then, we analyze the robustness of this result to the equal weights benchmark using the procedure ex-
plained in section 3. After that, we estimate the upper bound of one-sided Confidence Sets that contains all
constant in time intervention effects and all linear in time intervention effects (with intercept equal to zero)
whose associated sharp null hypotheses are not rejected by our inference procedure (see equations (16) and
(18)) when we use the test statistic θ.26 Furthermore, we test whether the intervention effect can be reason-
ably approximated by a quadratic function. Finally, we analyze the timing of the economic impact of ETA’s
terrorism using the procedure described in subsection 6.1.

The data set used by Abadie and Gardeazabal [2] is available for download using the software R. We
observe, as our outcome variable, annual real GDPper-capita in thousands of 1986USD from 1955 to 1997 and,
as covariates, biannual sector shares as a percentage of total production for agriculture, forestry and fishing,
energy and water, industry, construction and engineering, marketable services, and nonmarketable services
from 1961 to 1969; annual shares of the working age population that was illiterate, that completed at most
primary education and that completed at least secondary education from 1964 to 1969; the population density
in 1969; and annual gross total investment as a proportion of GDP from 1964 to 1969. All those variables are
observed at the regional level and there are seventeen regions, including the Basque Country (J + 1 = 17). For
historical details and descriptive statistics about this data set, see [2] and [3].

ETA’s terrorism acts gained strength and relevance during the 70s. For this reason, our post intervention
period goes from 1970 to 1997 (T0 = 1969). In order to estimate the synthetic control unit, we plug, in equation
(2), the averages of our covariates and the average of our outcome variable from 1960 to 1969. Moreover, we
use data from 1960 to 1969 in equation (3).

When we estimate the intervention effect for the Basque Country and the placebo effect for all the other
Spanish regions, it is visually unclear (subfigure 1(a)) whether the estimated intervention effect looks ab-
normally negative when compared to the estimated placebo effects. When we apply the inference procedure
proposed by Abadie et al. [1] (see subsection 2.2) using θ as a test statistic, we find p = 3/17, amarginal rejection
of the null hypothesis of no effect whatsoever given the small sample size.

Figure 1: Estimated Effects using the Synthetic Control Method. Note:While the gray lines show the estimated placebo effect for
each Spanish region, the black lines show the estimated impact of ETA’s terrorism on the Basque Country’s economy. A good
pre-intervention fit is defined as a pre-intervention MSPE at most five times greater than the Basque Country’s pre-intervention
MSPE.

26 Since only negative effects of ETA’s terrorism on the Basque economy are of interest, we only need to report the largest treat-
ment effect constant (c for equation (16) or c̃ for equation (18)) whose associated sharp null hypothesis is not rejected.
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Whenusing test statistics that do not control for the pre-intervention fit such as the test statistic θ, Abadie
et al. [4, 3] and our results in subsection 5.1 suggest that we should include only regions with a good pre-
intervention fit (i. e., regionswhose pre-interventionMSPE is atmost five times greater than the Basque Coun-
try’s pre-intervention MSPE) because placebo studies for those regions are not informative about the relative
rarity of the post-intervention effect for the Basque Country.27 By doing so, we exclude the regions of Madrid,
Extremadura and Balearic Islands when computing the p-value of the hypothesis test (i. e., our sample size
is now equal to 14) and find that p = 2/14, a reasonable value to reject the null hypothesis of no effect whatso-
ever given the small sample size.28 The remaining placebos effects are plotted in subfigure 1(b), that visually
suggest a negative impact of ETA’s terrorism on the Basque Country’s GDP.

Now, we evaluate the robustness of our findings to deviations from the equal weights benchmark using
the sensitivity analysismechanismproposed in section 3.Wemay conclude that, due to the small sample size
of the exercise, rejecting the null hypothesis of no effect whatsoever is not a very robust conclusion because
we must impose a sensitivity parameter of only ϕ = 0.495 in order to stop rejecting it at the 3/14-significance
level, implying the Basque Country has a weight only 64% times larger than the units with υj = 0. Moreover,
we note that the permutation test’s p-value increases fast as a function of the sensitivity parameter ϕ ∈ ℝ+
as subfigure 2(a) shows.29

We, now, estimate two one-sided 12/14-Confidence Sets.30 While subfigure 3(a) considers a Constant in
Time Intervention Effect following equation (16), subfigure 3(b) considers a Linear in Time Intervention Effect
whose intercept is equal to zero following equation (18). Both one-sided confidence sets are based on the test
statistic θ = −

αpost/(T − T0)
σ̂/√T − T0

and consider only units with a good pre-intervention fit.
The dashed lines are the upper bounds of the one-sided confidence sets based on the equal weights

benchmark given by equation (5). These upper bounds not only quickly show that we reject the null hypoth-

Figure 2: Sensitivity Analysis and Quadratic Intervention Effect. Note: In the left panel, the black line denotes the estimated p-
value for each value of the sensitivity parameter ϕ ∈ ℝ+ using only units with a good pre-intervention fit, while the horizontal
dotted lines denote the p-values of 3⁄14, 4⁄14 and 5⁄14. In the right panel, the black line show the estimated impact of ETA’s terror-
ism on the Basque Country’s economy, while the dashed line shows the quadratic function that best approximates this effect.

27 We thank an anonymous referee for stressing this point.
28 If we impose the usual significance level of 10%, we would only reject the null hypothesis when the observed test statistic is
the most extreme one, a criterion that seems to be too conservative for the problem at hand.
29 We highlight that, according to subsection 5.2, a sensitivity parameter ϕ smaller than 0.995 may be considered small.
30 Since we need at least 20 regions in order to estimate a 90%-Confidence Set, we use a confidence level that is close to 90%.
Intuitively, we only reject the null hypothesis that generates one of the two largest values of the empirical distribution of the test
statistic.
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esis of no effect whatsoever (because the upper bounds of the confidence sets are below the zero function),
but also show that the economic impact of ETA’s terrorism is far away from zero, suggesting economically
relevant negative effects.31

When we apply our sensitivity analysis mechanism to these one-sided confidence sets, we impose a pa-
rameter ϕ = 0.495 for the worst case scenario described in section 3 and find the upper bounds denoted by
the dotted lines. Observe that we need to impose a small sensitivity analysis parameter in order to include
not only the null hypothesis of no effect whatsoever, but also many positive treatment effect functions in the
linear confidence set (equation (18)) of subfigure (3)(b). Again, this exercise illustrates that, due to the small
sample size, the test result is not very robust to small deviations of the equal weight benchmark given by (5).

Moreover, note also that these conclusions are robust to the choice of functional form for the intervention
effect (constant or linear). Finally, observe that, due to their ability to summarize a large amount of informa-
tion, our preferred confidence sets (equations (16) and (18)) are useful to the empirical researcher even being
only subsets of the general confidence set (equation (14)), particularly because they can also be combined
with the sensitivity analysis mechanism proposed in section 3.

We also test whether the estimated intervention effect can be reasonably approximated by a quadratic
function. In order to do that, we fit a second order polynomial to the estimated intervention effect by applying
a ordinary least square estimator only in the post-intervention period. Figure 2(b) shows this fitted quadratic
function. Applying the inference procedure described in section 4.1 and using the test statistic θ = −

αpost/(T − T0)
σ̂/√T − T0

in a one-sided test that includes only units with a good pre-intervention fit, we do not reject the null hypoth-
esis that the true intervention effect follows this quadratic function because pquadratic = 6/14. In this case, we
must impose a sensitivity parameter of ϕ = 1.905 in order to reject it at the 10%-significance level, implying
that the unitswith υj = 1 have aweight that ismore than five times larger than theweight for the Basque Coun-
try. Consequently, not rejection this quadratic treatment effect function is a robust result, suggesting that the
economic impact of ETA’s terrorism on the Basque Country is initially negative, but attenuates toward zero in
the long run.

Figure 3: One-sided 12/14-Confidence Sets for the Intervention Effect. Note: The solid black lines show the estimated im-
pact of ETA’s terrorism on the Basque Country’s economy while the dashed lines show the upper-bounds of the one-sided
12/14-Confidence Sets for Constant in Time or Linear in Time (with intercept equal to zero) Intervention Effects that were con-
structed using the test statistic θ = −

αpost/(T − T0)
σ̂/√T − T0

and using the equal weights benchmark (equation (5)). The dotted lines are the
upper bounds of the one-sided 12/14-Confidence Sets that were constructed using the test statistic θ and imposing a sensitivity
parameter ϕ = 0.495 for the worst case scenario described in section 3.

31 Note that, if the estimated upper bounds were close to zero, we could informally argue that the analyzed intervention effect is
economically irrelevant.
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Differently fromwhatwe did in the last paragraphs,we can treat each year as a different outcome variable
and apply the inference procedure described in subsection 6.1. This interpretation allow us to analyze the
timing of the economic impact of ETA’s terrorism, which may be more significant for some time periods. We
use the negative of the value of the estimated intervention effect for each year of the post-intervention period
as a one-sided test statistic. Using the notation of subsection 6.1, we have that θobsfm = θ

m(e1, τ,Ym,X, fm) =
−α̂1,m, where m ∈ {1970, ..., 1997} is a year of the post-intervention period. Applying the procedure described
in subsection 6.1, we find p-values that are equal to 4/14 in the 80’s, equal to 6/14 in the late 70’s and early 90’s,
and greater than 10/14 in the other years. In order to apply the sensitivity analysis mechanism proposed in
subsection 6.1 for the case with Multiple Outcome Variables, we choose one vector υm for each outcomem ∈
{1, ...,M} based on the test statistic pjθfm ,∗ that is used to compute the p-value described in equation (24). We,
then, use the p-value pfwerθobsfm

(ϕ,υ) to determine one sensitivity parameter ϕm for each outcome m ∈ {1, ...,M}.
We find sensitivity parameters that are equal to 1.285 in the 80’s, equal to 1.905 in the late 70’s and early 90’s,
and greater than 3.115 in the other years. Unfortunately, the loss of power — due to the use of the familywise
error rate control approach instead of the summary index text as pointed by Anderson [50] — prevents any
strong conclusion. However, the familywise error rate control approach provides a straightforward numerical
interpretation of subfigure 1(b) by suggesting that not rejecting the null hypothesis of no effect whatsoever in
the 80’s is not an extremely robust result in line with a visually extreme (on the negative side) gap during
this decade. Moreover, it suggests that, even in the presence of possible negative impacts on the 80’s, the
Basque economy recovered in the late 90’s since, for these years, not rejecting the null hypothesis of no effect
whatsoever is a robust result. Therefore, the results using the multiple outcome framework are in line with
the results for the quadratic trend.

As a consequence of all our empirical exercises and keeping inmind the underpowered context due to the
small sample size, we conclude that ETA’s terrorists acts had negative and marginally significant, although
not robust nor permanent in the long run, impacts on the Basque economy, in line with the conclusion by
Abadie et al. [3, p. 15] that “there is a very low probability of obtaining a gap as large as the one obtained for
the Basque region”. We stress that we analyzed only the impact on GDP per-capita, ignoring possible other
macroeconomic and microeconomic costs and, most importantly, social and human costs incurred by the
Basque and Spanish peoples.

8 Conclusion
In this article, we contribute to the theoretical literature on SCM by extending the inference procedure pro-
posed by Abadie et al. [4] and [1] in two ways. First, we make the equal weights benchmark p-value proposed
byAbadie et al. [1]moreflexible byusingparametricweights that allow the researcher to implement a sensitiv-
ity analysis mechanism similar to the one suggested by Rosenbaum [47] and Cattaneo et al. [48]. By analyzing
the sensitivity analysis parameter that changes the test’s result, we can gauge the robustness of a conclusion
to continuous deviations from the equal weights benchmark.

Second,weextend the test proposedbyAbadie et al. [4] and [1] to test any sharpnull hypothesis, including,
as a particular case, the usual null hypothesis of no effect whatsoever studied by these authors. The possibility
to test any sharp null hypothesis is important to predict the future behavior of the intervention effect, to com-
pare the costs and the benefits of a policy, and to test theories that predict some specific kind of intervention
effect. Moreover, based on this extension and on procedures described by Imbens and Rubin [46] and Rosen-
baum [47], we invert the test statistic to estimate confidence sets. Basically, our confidence sets contain any
function of time — particularly, the constant and linear ones — whose associated sharp null hypothesis is not
rejected by the mentioned inference procedure. As a benchmark, they are useful to the applied researcher
because they represent a graphical device that summarizes a large amount of information, illustrating the
statistical significance of the intervention effect, the precision of a point-estimate and the robustness of a
test. Consequently, those tools not only allows the empirical researcher to be more flexible about his or her
null hypothesis, but also help him or her to convey a message in a more effective way.
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We also stress that these two tools can use not only the RMSPE test statistic proposed by Abadie et al.
[1], but any test statistic. For this reason, we analyze, using a Monte Carlo experiment, the size, power and
robustness of five different test statistics that are applied to hypothesis testing in the empirical literature
about the SCM. In this simulation, we find that test statistics designed for the SCM performmuch better than
its competitors when there is only one region that faces the intervention. In particular, the traditional RMSPE
statistic has good properties with respect to power and the sensitivity analysis mechanism.

Furthermore, we extend our new tools to contexts that differ from the ones analyzed by Abadie and
Gardeazabal [2], Abadie et al. [4] and [1] in important dimensions: testing a null hypothesis about a pooled
effect among few treated units and simultaneously testing null hypotheses for different outcome variables.
These extensions allows researchers to investigate more complex questions such as interventions that have
impact in more than one country or in more than one variable, such as policy reforms. In particularly, we can
also interpret each post-intervention time period as a different outcome variable, allowing us to analyze short
and long term effects.

Finally, in order to show the usefulness of our new tools, we reevaluate the economic impact of ETA’s
terrorism in the Basque Country, analyzed by Abadie and Gardeazabal [2] and Abadie et al. [3]. By testing
a quadratic treatment effect function and combining our sensitivity analysis mechanism and a multiple out-
comes framework, we find a negative andmarginally significant effect in the 80’s, that attenuates in long run,
since, in the late 90’s, not rejecting the null hypothesis of no effect whatsoever is a robust result. Furthermore,
this application clearly demonstrates the amount of information summarized by our proposed confidence
sets, whose graphs quickly show not only the significance of the estimated intervention effect, but also the
precision of this estimate and the robustness of the test’s conclusion. We stress that this knowledge is an
important measure of the strength of qualitative conclusions.
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