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Abstract

In this work we present a framework for the recognition of natural scene text.
Our framework does not require any human-labelled data, and performs word
recognition on the whole image holistically, departing from the character based
recognition systems of the past. The deep neural network models at the centre of
this framework are trained solely on data produced by a synthetic text generation
engine – synthetic data that is highly realistic and sufficient to replace real data,
giving us infinite amounts of training data. This excess of data exposes new possi-
bilities for word recognition models, and here we consider three models, each one
“reading” words in a different way: via 90k-way dictionary encoding, character
sequence encoding, and bag-of-N-grams encoding. In the scenarios of language
based and completely unconstrained text recognition we greatly improve upon
state-of-the-art performance on standard datasets, using our fast, simple machin-
ery and requiring zero data-acquisition costs.

1 Introduction
Text recognition in natural images, scene text recognition, is a challenging but wildly useful task.
Text is one of the basic tools for preserving and communicating information, and a large part of the
modern world is designed to be interpreted through the use of labels and other textual cues. This
makes scene text recognition imperative for many areas in information retrieval, in addition to being
crucial for human-machine interaction.

While the recognition of text within scanned documents is well studied and there are many document
OCR systems that perform very well, these methods do not translate to the highly variable domain
of scene text recognition. When applied to natural scene images, traditional OCR techniques fail as
they are tuned to the largely black-and-white, line-based environment of printed documents, while
text occurring in natural scene images suffers from inconsistent lighting conditions, variable fonts,
orientations, background noise, and imaging distortions.

To effectively recognise scene text, there are generally two stages: word detection and word recog-
nition. The detection stage generates a large set of word bounding box candidates, and is tuned for
speed and high recall. Previous work uses sliding window methods [26] or region grouping meth-
ods [5, 6, 19] very successfully for this. Subsequently, these candidate detections are recognised,
and this recognition process allows for filtering of false positive word detections. Recognition is
therefore a far more challenging problem and it is the focus of this paper.

While most approaches recognize individual characters by pooling evidence locally, Goodfellow et
al. [8] do so from the image of the whole character string using a convolutional neural network
(CNN) [14]. They apply this to street numbers and synthetic CAPTCHA recognition obtaining
excellent results. Inspired by this approach, we move further in the direction of holistic word classi-
fication for scene text, and make two important contributions. Firstly, we propose a state-of-the-art
CNN text recogniser that also pools evidence from images of entire words. Crucially, however, we
regress all the characters simultaneously, formulating this as a classification problem in a large lex-
icon of 90k possible words (Sect. 3.1). In order to do so, we show how CNNs can be efficiently
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Figure 1: (a) The text generation process after font rendering, creating and coloring the image-
layers, applying projective distortions, and after image blending. (b) Some randomly sampled data
created by the synthetic text engine.

trained to recognise a very large number of words using incremental training. While our lexicon is
restricted, it is so large that this hardly constitutes a practical limitation. Secondly, we show that this
state-of-the-art recogniser can be trained purely from synthetic data. This result is highly non-trivial
as, differently from CAPTCHA, the classifier is then applied to real images. While synthetic data
was used previously for OCR, it is remarkable that this can be done for scene text, which is signifi-
cantly less constrained. This allows our framework to be seamlessly extended to larger vocabularies
and other languages without any human-labelling cost. In addition to these two key contributions,
we study two alternative models – a character sequence encoding model with a modified formulation
to that of [8] (Sect. 3.2), and a novel bag-of-N-grams encoding model which predicts the unordered
set of N-grams contained in the word image (Sect. 3.3).

A discussion of related work follows immediately and our data generation system described after
in Sect. 2. Our deep learning word recognition architectures are presented in Sect. 3, evaluated
in Sect. 4, and conclusions are drawn in Sect. 5.

Related work. Traditional text recognition methods are based on sequential character classification
by either sliding windows [11, 26, 27] or connected components [18, 19], after which a word pre-
diction is made by grouping character classifier predictions in a left-to-right manner. The sliding
window classifiers include random ferns [22] in Wang et al. [26], and CNNs in [11, 27]. Both [26]
and [27] use a small fixed lexicon as a language model to constrain word recognition.

More recent works such as [2, 3, 20] make use of over-segmentation methods, guided by a supervised
classifier, to generate candidate proposals which are subsequently classified as characters or false
positives. For example, PhotoOCR [3] uses binarization and a sliding window classifier to generate
candidate character regions, with words recognised through a beam search driven by classifier scores
followed by a re-ranking using a dictionary of 100k words. [11] uses the convolutional nature of
CNNs to generate response maps for characters and bigrams which are integrated to score lexicon
words.

In contrast to these approaches based on character classification, the work by [7, 17, 21, 24] instead
uses the notion of holistic word recognition. [17, 21] still rely on explicit character classifiers, but
construct a graph to infer the word, pooling together the full word evidence. Rodriguez et al. [24]
use aggregated Fisher Vectors [23] and a Structured SVM framework to create a joint word-image
and text embedding. [7] use whole word-image features to recognize words by comparing to simple
black-and-white font-renderings of lexicon words.

Goodfellow et al. [8] had great success using a CNN with multiple position-sensitive character clas-
sifier outputs (closely related to the character sequence model in Sect. 3.2) to perform street number
recognition. This model was extended to CAPTCHA sequences (up to 8 characters long) where they
demonstrated impressive performance using synthetic training data for a synthetic problem (where
the generative model is known), but we show that synthetic training data can be used for a real-world
data problem (where the generative model is unknown).

2 Synthetic Data Engine
This section describes our scene text rendering algorithm. As our CNN models take whole word
images as input instead of individual character images, it is essential to have access to a training
dataset of cropped word images that covers the whole language or at least a target lexicon. While
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there are some publicly available datasets from ICDAR [13, 15, 16, 25], the Street View Text (SVT)
dataset [26] and others, the number of full word image samples is only in the thousands, and the vo-
cabulary is very limited. These limitations have been mitigated before by mining for data or having
access to large proprietary datasets [3, 11], but neither of these approaches are wholly accessible or
scalable.

Here we follow the success of some synthetic character datasets [4, 27] and create a synthetic word
data generator, capable of emulating the distribution of scene text images. This is a reasonable
goal, considering that much of the text found in natural scenes is computer-generated and only the
physical rendering process (e.g. printing, painting) and the imaging process (e.g. camera, viewpoint,
illumination, clutter) are not controlled by a computer algorithm.

Fig. 1 illustrates the generative process and some resulting synthetic data samples. These samples
are composed of three separate image-layers – a background image-layer, foreground image-layer,
and optional border/shadow image-layer – which are in the form of an image with an alpha channel.
The synthetic data generation process is as follows:

1. Font rendering – a font is randomly selected from a catalogue of over 1400 fonts downloaded
from Google Fonts. The kerning, weight, underline, and other properties are varied randomly
from arbitrarily defined distributions. The word is rendered on to the foreground image-layer’s
alpha channel with either a horizontal bottom text line or following a random curve.

2. Border/shadow rendering – an inset border, outset border or shadow with a random width may
be rendered from the foreground.

3. Base coloring – each of the three image-layers are filled with a different uniform color sampled
from clusters over natural images. The clusters are formed by k-means clustering the three color
components of each image of the training datasets of [16] into three clusters.

4. Projective distortion – the foreground and border/shadow image-layers are distorted with a ran-
dom, full-projective transformation, simulating the 3D world.

5. Natural data blending – each of the image-layers are blended with a randomly-sampled crop of
an image from the training datasets of ICDAR 2003 and SVT. The amount of blend and alpha
blend mode (e.g. normal, add, multiply, burn, max, etc.) is dictated by a random process, and this
creates an eclectic range of textures and compositions. The three image-layers are also blended
together in a random manner, to give a single output image.

6. Noise – Gaussian noise, blur, and JPEG compression artefacts are introduced to the image.

The word samples are generated with a fixed height of 32 pixels, but with a variable width. Since
the input to our CNNs is a fixed-size image, the generated word images are rescaled so that the
width equals 100 pixels. Although this does not preserve the aspect ratio, the horizontal frequency
distortion of image features most likely provides the word-length cues. We also experimented with
different padding regimes to preserve the aspect ratio, but found that the results are not quite as good
as with resizing.

The synthetic data is used in place of real-world data, and the labels are generated from a corpus or
dictionary as desired. By creating training datasets much larger than what has been used before, we
are able to use data-hungry deep learning algorithms to train richer, whole-word-based models.

3 Models
In this section we describe three models for visual recognition of scene text words. All use the
same framework of generating synthetic text data (Sect. 2) to train deep convolutional networks on
whole-word image samples, but with different objectives, which correspond to different methods of
reading. Sect. 3.1 describes a model performing pure word classification to a large dictionary, ex-
plicitly modelling the entire known language. Sect. 3.2 describes a model that encodes the character
at each position in the word, making no language assumptions to naively predict the sequence of
characters in an image. Sect. 3.3 describes a model that encodes a word as a bag-of-N-grams, giving
a compositional model of words as not only a collection of characters, but of 2-grams, 3-grams, and
more generally, N-grams.

3.1 Encoding Words

This section describes our first model for word recognition, where words w are constrained to be
selected in a pre-defined dictionary W . We formulate this as multi-class classification problem,
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Figure 2: A schematics of the CNNs used showing the dimensions of the featuremaps at each stage
for (a) dictionary encoding, (b) character sequence encoding, and (c) bag-of-N-gram encoding. The
same five-layer, base CNN architecture is used for all three models.

with one class per word. While the dictionaryW of a natural language may seem too large for this
approach to be feasible, in practice an advanced English vocabulary, including different word forms,
contains only around 90k words, which is large but manageable.

In detail, we propose to use a CNN classifier where each word w ∈ W in the lexicon corresponds
to an output neuron. We use a CNN with four convolutional layers and two fully connected layers.
Rectified linear units are used throughout after each weight layer except for the last one. In forward
order, the convolutional layers have 64, 128, 256, and 512 square filters with an edge size of 5,
5, 3, and 3. Convolutions are performed with stride 1 and there is input feature map padding to
preserve spatial dimensionality. 2× 2 max-pooling follows the first, second and third convolutional
layers. The fully connected layer has 4096 units, and feeds data to the final fully connected layer
which performs classification, so has the same number of units as the size of the dictionary we
wish to recognize. The predicted word recognition result w∗ out of the set of all dictionary words
W in a language L for a given input image x is given by w∗ = arg maxw∈W P (w|x,L). Since
P (w|x,L) = P (w|x)P (w|L)P (x)

P (x|L)P (w) and with the assumptions that x is independent of L and that prior
to any knowledge of our language all words are equally probable, our scoring function reduces to
w∗ = arg maxw∈W P (w|x)P (w|L). The per-word output probability P (w|x) is modelled by the
softmax scaling of the final fully connected layer, and the language based word prior P (w|L) can
be modelled by a lexicon or frequency counts. A schematic of the network is shown in Fig. 2 (a).

Training. We train the network by back-propagating the standard multinomial logistic regression
loss with dropout [10], which improves generalization. Optimization uses stochastic gradient de-
scent (SGD), dynamically lowering the learning rate as training progresses. With uniform sampling
of classes in training data, we found the SGD batch size must be at least a fifth of the total number
of classes in order for the network to train.

For very large numbers of classes (i.e. over 5k classes), the SGD batch size required to train effec-
tively becomes large, slowing down training a lot. Therefore, for large dictionaries, we perform in-
cremental training to avoid requiring a prohibitively large batch size. This involves initially training
the network with 5k classes until partial convergence, after which an extra 5k classes are added. The
original weights are copied for the original 5k classes, with the new classification layer weights be-
ing randomly initialized. The network is then allowed to continue training, with the extra randomly
initialized weights and classes causing a spike in training error, which is quickly trained away. This
process of allowing partial convergence on a subset of the classes, before adding in more classes, is
repeated until the full number of desired classes is reached. In practice for this network, the CNN
trained well with initial increments of 5k classes, and after 20k classes is reached the number of
classes added at each increment is increased to 10k.

3.2 Encoding Sequences of Characters

This section describes a different model for word recognition. Rather than having a single large dic-
tionary classifier as in Sect. 3.1, this model uses a single CNN with multiple independent classifiers,
each one predicting the character at each position in the word. This character sequence encoding
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model is a complete departure from the dictionary-constrained model, as this allows entirely uncon-
strained recognition of words.

A word w of lengthN is modelled as a sequence of characters such that w = (c1, c2, . . . , cN ) where
each ci ∈ C = {1, 2, . . . , 36} represents a character at position i in the word, from the set of 10
digits and 26 letters. Each ci can be predicted with a single classifier, one for each character in
the word. However, since words have variable length N which is unknown at test time, we fix the
number of characters to 23, the maximum length of a word in the training set, and introduce a null
character class. Therefore a word is represented by a string w = (C ∪ {φ})23. Then for a given
image x, each character is predicted as c∗i = arg maxci∈C∪{φ} P (ci|Φ(x)). P (ci|Φ(x)) is given by
the i-th classifier acting on a single set of shared CNN features Φ(x).

The base CNN has the same structure as the first five layers of Sect. 3.1: four convolutional layers
followed by a fully connected layer, giving Φ(x). The output of the fully connected layer is then fed
to 23 separate fully connected layers with 37 neurons each, one for each character class. These fully
connected layers are independently softmax normalized and can be interpreted as the probabilities
P (ci|Φ(x)) of the width-resized input image x. Fig. 2 (b) illustrates this model. The model is
trained as in Sect. 3.1 on purely synthetic data by SGD with dropout regularisation, back-propagating
gradients from each 23 softmax classifier to the base net.

Discussion. This sequential character encoding model is similar to the model used by Goodfellow et
al. in [8]. Although the model of [8] is not applied to scene text (only street numbers and CAPTCHA
puzzles), it uses a separate character classifier for each letter in the word, able to recognise numbers
up to 5 digits long and CAPTCHAs up to 8 characters long. However, rather than incorporating a no-
character class in each character positions’s classifier, a further length classifier is trained to output
the predicted length of the word. This requires a final post-processing stage to find the optimal
word prediction given the character classifier outputs and the length classifier output. We achieve
a similar effect but without requiring any post processing – the word can be read directly from the
CNN output, stripping the no-character class predictions.

3.3 Encoding Bags of N-grams

This section describes our last word recognition model, which exploits compositionality to represent
words. In contrast to the sequential character encoding of Sect. 3.2, words can be seen as a compo-
sition of an unordered set of character N-grams, a bag-of-N-grams. In the following, if s ∈ CN and
w ∈ CM are two strings, the symbol s ⊂ w indicates that s is a substring of w. An N -gram of word
w is a substring s ⊂ w of length |w| = N . We will denote with GN (w) = {s : s ⊂ w ∧ |s| ≤ N}
the set of all grams of word w of length up to N and with GN = ∪w∈WGN (w) the set of all such
grams in the language. For example, G3(spires) = {s, p, i, r, e, s, sp, pi, ir, re, es, spi, pir, ire, res}.
This method of encoding variable length sequences is similar to Wickelphone phoneme-encoding
methods [28].

Even for small values of N , GN (w) encodes each word w ∈ W nearly uniquely. For example,
with N = 4, this map has only 7 collisions out of a dictionary of 90k words. The encoding GN (w)
can be represented as a |GN |-dimensional binary vector of gram occurrences. This vector is very
sparse, as on average |GN (w)| ≈ 22 whereas |GN | = 10k. Given w, we predict this vector using
the same base CNN as in Sect. 3.1 and Sect. 3.2, but now have a final fully connected layer with
|GN | neurons to represent the encoding vector. The scores from the fully connected layer can be
interpreted as probabilities of an N-gram being present in the image by applying the logistic function
to each neuron. The CNN is therefore learning to recognise the presence of each N-gram somewhere
within the input image.

Training. With a logistic function, the training problem becomes that of |GN | separate binary
classification tasks, and so we back-propagate the logistic regression loss with respect to each N-
gram class independently. To jointly train a whole range of N-grams, some of which occur very
frequently and some barely at all, we have to scale the gradients for each N-gram class by the inverse
frequency of their appearance in the training word corpus. We also experimented with hinge loss
and simple regression to train but found frequency weighted binary logistic regression was superior.
As with the other models, we use dropout and SGD.
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4 Evaluation
This section evaluates our three text recognition models. Sect. 4.1 describes the benchmark
data, Sect. 4.2 the implementation details, and Sect. 4.3 the results of our methods, that improve
on the state of the art.

4.1 Datasets

A number of standard datasets are used for the evaluation of our systems – ICDAR 2003, ICDAR
2013, Street View Text, and IIIT5k. ICDAR 2003 [16] is a scene text recognition dataset, with
the test set containing 251 full scene images and 860 groundtruth cropped images of the words
contained with the full images. We follow the standard evaluation protocol by [2, 26, 27] and
perform recognition on only the words containing only alphanumeric characters and at least three
characters. The test set of 860 cropped word images is referred to as IC03. The lexicon of all test
words is IC03-Full, and the per-image 50 word lexicons defined by [26] and used in [2, 26, 27] are
referred to as IC03-50. There is also the lexicon of all groundtruth test words – IC03-Full which
contains 563 words. ICDAR 2013 [13] test dataset contains 1015 groundtruth cropped word images
from scene text. Much of the data is inherited from the ICDAR 2003 datasets. We refer to the 1015
groundtruth cropped words as IC13. Street View Text [26] is a more challenging scene text dataset
than the ICDAR datasets. It contains 250 full scene test images downloaded from Google Street
View. The test set of 647 groundtruth cropped word images is referred to as SVT. The lexicon of all
test words is SVT-Full (4282 words), and the smaller per-image 50 word lexicons defined by [26]
and used in [2, 3, 26, 27] are referred to as SVT-50. IIIT 5k-word [17] test dataset contains 3000
cropped word images of scene text downloaded from Google image search. Each image has an
associated 50 word lexicon (IIIT5k-50) and 1k word lexicon (IIIT5k-1k).

For training, validation and large-lexicon testing we generate datasets using the synthetic text engine
from Sect. 2. 4 million word samples are generated for the IC03-Full and SVT-Full lexicons each,
referred to as Synth-IC03 and Synth-SVT respectively. In addition, we use the dictionary from
Hunspell, a popular open source spell checking system, combined with the ICDAR and SVT test
words as a 50k word lexicon. The 50k Hunspell dictionary can also be expanded to include different
word endings and combinations to give a 90k lexicon. We generate 9 million images for the 50k
word lexicon and 9 million images for the 90k word lexicon. The 9 million image synthetic dataset
covering 90k words, Synth, is available for download at http://www.robots.ox.ac.uk/˜vgg/
data/text/.

4.2 Implementation Details

We perform experiments on all three encoding models described in Sect. 3. We will refer to the
three models as DICT, CHAR, and NGRAM for the dictionary encoding model, character sequence
encoding model, and N-gram encoding model respectively. The input images to the CNNs are
greyscale and resized to 32 × 100 without aspect ratio preservation. The only preprocessing, per-
formed on each sample individually, is the sample mean subtraction and standard deviation normal-
ization (after resizing), as this was found to slightly improve performance. Learning uses a custom
version of Caffe [12].

All CNN training is performed solely on the Synth training datasets, with model validation per-
formed on a 10% held out portion. The number of character classifiers in the CHAR character
sequence encoding models is set to 23 (the length of the largest word in our 90k dictionary). In
the NGRAM models, the number of N-grams in the N-gram classification dictionary is set to 10k.
The N-grams themselves are selected as the N-grams with at least 10 appearances in the 90k word
corpus – this equates to 36 1-grams (the characters), 522 2-grams, 3965 3-grams, and 5477 4-grams,
totalling 10k.

In addition to the CNN model defined in Sect. 3, we also define larger CNN, referred to as DICT+2,
CHAR+2, and NGRAM+2. The larger CNN has an extra 3× 3 convolutional layer with 512 filters
before the final pooling layer, and an extra 4096 unit fully connected layer after the original 4096
unit fully connected layer. Both extra layers use rectified linear non-linearities. Therefore, the total
structure for the DICT+2 model is conv-pool-conv-pool-conv-conv-pool-conv-fc-fc-fc, where conv
is a convolutional layer, pool is a max-pooling layer and fc is a fully connected layer. We train
these larger models to investigate the effect of additional model capacity, as the lack of over-fitting
experienced on the basic models is suspected to indicate under-capacity of the models.
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Model Trained
Lexicon

Synth IC03-50 IC03 SVT-50 SVT IC13

DICT-IC03-Full IC03-Full 98.7 99.2 98.1 - - -
DICT-SVT-Full SVT-Full 98.7 - - 96.1 87.0 -
DICT-50k 50k 93.6 99.1 92.1 93.5 78.5 92.0
DICT-90k 90k 90.3 98.4 90.0 93.7 73.0 86.3
DICT+2-90k 90k 95.2 98.7 93.1 95.4 80.7 90.8
CHAR 90k 71.0 94.2 77.0 87.8 56.4 68.8
CHAR+2 90k 86.2 96.7 86.2 92.6 68.0 79.5
NGRAM-NN 90k 25.1 92.2 - 84.5 - -
NGRAM+2-NN 90k 27.9 94.2 - 86.6 - -

Table 1: Left: The word recognition accuracy for the different proposed models with different trained lexicons.
Where a lexicon is not specified for a dataset, the only language constraints are those imposed by the model
itself. The fixed lexicon CHAR model results (IC03-50 and SVT-50) are obtained by selecting the lexicon word
with the minimum edit distance to the predicted character sequence. Right: Some random example results from
the SVT and ICDAR 2013 dataset. D denotes DICT+2-90k with no lexicon, D-50 the DICT+2-90k model
constrained to the image’s 50 word lexicon, C denotes the CHAR+2 model with completely unconstrained
recognition, and C-50 gives the result of the closest edit distance 50-lexicon word.

4.3 Experiments

We evaluate each of our three models on challenging text recognition benchmarks. First, we measure
the accuracy on a large dataset, containing the images of words from the full lexicon (up to 90k words
depending on the model). Due to the lack of human-annotated natural image datasets of such scale,
we use the test split of our Synth dataset (Sect. 4.1). This allows us to assess how well our models
can discriminate between a large number of words. Second, we consider the standard benchmarks
IC03 [16], SVT [26], and IC13 [13], which contain natural scene images, but cover smaller word
lexicons. The evaluation on these datasets allows for a fair comparison against the state of the art.
The results are shown in Table 1 and Table 2.

Dictionary Encoding. For the DICT model, we train a model with only the words from the IC03-
Full lexicon (DICT-IC03-Full), a model with only the words from the SVT-Full lexicon (DICT-SVT-
Full), as well as models for the 50k and 90k lexicons – DICT-50k, DICT-90k, and DICT+2-90k.
When a small lexicon is provided, we set the language prior P (w|L) to be equal probability for
lexicon words, otherwise zero. In the absence of a small lexicon, P (w|L) is simply the frequency
of word w in a corpus (we use the opensubtitles.org English corpus) normalized according to the
power law.

The results in Table 1 show exceptional performance for the dictionary based models. When the
model is trained purely for a dataset’s corpus of words (DICT-IC03-Full and DICT-SVT-Full), the
50-lexicon recognition problem is largely solved for both ICDAR 2003 and SVT, achieving 99.2%
and 96.1% word recognition accuracy respectively, that is 7 mistakes out of 860 in the ICDAR 2003
test set, of which most are completely illegible. The Synth dataset performs very closely to that of
the ICDAR 2003 dataset, confirming that the synthetic data is close to the real world data.

Drastically increasing the size of the dictionary to 50k and 90k words gives very little degradation
in 50-lexicon accuracy. However without the 50-lexicon constraint, as expected the 50k and 90k
dictionary models perform significantly worse than when the dictionary is constrained to only the
groundtruth words – on SVT, the word classification from only the 4282 groundtruth word set yields
87% accuracy, whereas increasing the dictionary to 50k reduces the accuracy to 78.5%, and the
accuracy is further reduced to 73.0% with 90k word classes. Incorporating the extra layers in to
the network with DICT+2-90k increases the accuracy a lot, giving 80.7% on SVT for full 90k-way
classification, almost identical to a dictionary of 50k with the basic CNN architecture.

We also investigate the contribution that the various stages of the synthetic data generation engine
make to real-world recognition accuracy. Figure 3 (left) shows DICT-IC03-Full and DICT-SVT-Full
accuracy when trained identically but with different levels of sophistication of synthetic training
data. As more sophisticated training data is used, the recognition accuracy increases – the addition
of random image-layer colouring causing a significant increase in performance (+44% on IC03 and
+40% on SVT), as does the addition of natural image blending (+1% on IC03 and +6% on SVT).

Character Sequence Encoding. The CHAR models are trained for character sequence encoding.
The models are trained on image samples of words uniformly sampled from the 90k dictionary.

The output of the model are character predictions for a possible 23 characters of the test image’s
word. We take the predicted word as the MAP-optimal sequence of characters, stripping any no-
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Model IC03-50 IC03-Full IC03-50k SVT-50 SVT IC13 IIIT5k-50 IIIT5k-1k

Baseline ABBYY [26] 56.0 55.0 - 35.0 - - 24.3 -
Wang [26] 76.0 62.0 - 57.0 - - - -
Mishra [17] 81.8 67.8 - 73.2 - - - -
Novikova [21] 82.8 - - 72.9 - - 64.1 57.5
Wang & Wu [27] 90.0 84.0 - 70.0 - - - -
Goel [7] 89.7 - - 77.3 - - - -
PhotoOCR [3] - - - 90.4 78.0 87.6 - -
Alsharif [2] 93.1 88.6 85.1 74.3 - - - -
Almazan [1] - - - 89.2 - - 91.2 82.1
Yao [29] 88.5 80.3 - 75.9 - - 80.2 69.3
Jaderberg [11] 96.2 91.5 - 86.1 - - - -
Gordo [9] - - - 90.7 - - 93.3 86.6
DICT-IC03-Full 99.2 98.1 - - - - - -
DICT-SVT-Full - - - 96.1 87.0 - - -
DICT+2-90k 98.7 98.6 93.3 95.4 80.7 90.8 97.1 92.7
CHAR+2 96.7 94.0 89.5 92.6 68.0 79.5 95.5 85.4
NGRAM+2-SVM 96.5 94.0 - - - - - -

Table 2: Comparison to previous methods. The ICDAR 2013 results given are case-insensitive. Bolded results
outperform previous state-of-the-art methods. The baseline method is from a commercially available OCR
system.

character classifications. The constrained lexicon results for IC03-50, IC03-Full, and SVT-50, are
obtained by finding the lexicon word with the minimum edit distance to a raw predicted character
sequence. Given this is a completely unconstrained recognition, with no language model at all, the
results are surprisingly good. The 50-lexicon results are very competitive compared to the other
encoding methods. However, we can see the lack of language constraints cause the out-of-lexicon
results to be lacklustre, achieving an accuracy of only 79.5% with the CHAR+2 model on ICDAR
2013 as opposed to 90.8% with the DICT+2-90k model. As with the DICT models, increasing the
number of layers in the network increases the word recognition accuracy by between 6-8%.

Some example word recognition results with dictionary and character sequence encodings are shown
to the right of Table 1.

Bag-of-N-grams Encoding. The NGRAM model’s output is thresholded to result in a binary acti-
vation vector of the presence of any of 10k N-grams in a test word. Decoding the N-gram activations
into a word could take advantage of a statistical model of the language. Instead, we simply search
for the word in the lexicon with the nearest (in terms of the Euclidean distance) N-gram encod-
ing, denoted as NGRAM-NN and NGRAM+2-NN models. This extremely naive method still gives
competitive performance, illustrating the discriminative nature of N-grams for word recognition.
Instead, one could learn a linear SVM mapping from N-gram encoding to dictionary words, allow-
ing for scalable word recognition through an inverted index of these mappings. We experimented
briefly with this on the IC03-Full lexicon – training an SVM for each lexicon word from a training
set of Synth data, denoted as NGRAM+2-SVM – and achieve 97% accuracy on IC03-50 and 94%
accuracy on IC03-Full. Figure 3 (right) shows the N-gram recognition results for the NGRAM+2
model, thresholded at 0.99 probability.

Comparison & Discussion. Table 2 compares our models to previous work, showing that all three
models achieve state-of-the-art results in different lexicon scenarios. With tightly constrained lan-
guage models such as in DICT-IC03-Full and DICT-SVT-Full, we improve accuracy by +6%. How-
ever, even when the models are expanded to be mostly unconstrained, such as with DICT+2-90k,
CHAR+2 and NGRAM+2-SVM, our models still outperform previous methods. Considering a
complete absence of a language model, the no-lexicon recognition results for the CHAR+2 model
on SVT and IC13 are competitive with the system of [3], and as soon as a language model is in-
troduced in the form of a lexicon for SVT-50, the simple CHAR+2 model gives +2.2% accuracy
over [3]. Performance could be further improved by techniques such as model averaging and test-
sample augmentation, albeit at a significantly increased computational cost. Our largest model, the
DICT+2-90k model comprised of over 490 million parameters, can process a word in 2.2ms on a
single commodity GPU.

Our models set a new benchmark for scene text recognition. In a real-world system, the large
DICT+2-90k model should be used for the majority of recognition scenarios unless completely un-
constrained recognition is required where the CHAR+2 model can be used. However, when looking
at the average edit distance of erroneous recognitions, the CHAR+2 model greatly outperforms the
DICT+2-90k model, with an average error edit distance of 1.9 compared to 2.5 on IC13, suggesting
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Figure 3: Left: The recognition accuracies of the DICT-IC03-Full and DICT-SVT-Full models evaluated on
IC03 and SVT respectfully. The models (a-f) are trained on purely synthetic data with increasing levels of
sophistication of the synthetic data. (a) Black text rendered on a white background with a single font, Droid
Sans. (b) Incorporating all of Google fonts. (c) Adding background, foreground, and border colouring. (d)
Adding perspective distortions. (e) Adding noise, blur and elastic distortions. (f) Adding natural image blending
– this gives an additional 6.2% accuracy on SVT. Right: The N-gram recognition results with probability over
0.99 from the NGRAM+2 model on random test images from SVT and ICDAR 2013.

the CHAR+2 model may be more suitable for a retrieval style application in conjunction with a
fuzzy search.

5 Conclusion
In this paper we introduced a new framework for scalable, state-of-the-art word recognition – syn-
thetic data generation followed by whole word input CNNs. We considered three models within this
framework, each with a different method for recognising text, and demonstrated the vastly superior
performance of these systems on standard datasets. In addition, we introduced a new synthetic word
dataset, orders of magnitude larger than any released before.
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