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Abstract

Although synthetic training data has been shown to be beneficial for tasks such as human pose estimation, its use for
RGB human action recognition is relatively unexplored. Our goal in this work is to answer the question whether synthetic

humans can improve the performance of human action recognition, with a particular focus on generalization to unseen
viewpoints. We make use of the recent advances in monocular 3D human body reconstruction from real action sequences to
automatically render synthetic training videos for the action labels. We make the following contributions: (1) we investigate
the extent of variations and augmentations that are beneficial to improving performance at new viewpoints. We consider
changes in body shape and clothing for individuals, as well as more action relevant augmentations such as non-uniform
frame sampling, and interpolating between the motion of individuals performing the same action; (2) We introduce a new
data generation methodology, SURREACT, that allows training of spatio-temporal CNNs for action classification; (3) We
substantially improve the state-of-the-art action recognition performance on the NTU RGB+D and UESTC standard human
action multi-view benchmarks; Finally, (4) we extend the augmentation approach to in-the-wild videos from a subset of the
Kinetics dataset to investigate the case when only one-shot training data is available, and demonstrate improvements in this
case as well.

Keywords Synthetic humans · Action recognition

1 Introduction

Learning human action representations from RGB video
data has been widely studied. Recent advances on con-
volutional neural networks (CNNs) (LeCun et al. 1989)
have shown excellent performance (Carreira and Zisser-
man 2017; Feichtenhofer et al. 2019, 2016; Hara et al.
2018; Lin et al. 2019; Varol et al. 2018; Wang et al.
2016) on benchmark datasets, such as UCF101 (Soomro
et al. 2012). However, the success of CNNs rely heavily
on the availability of large-scale training data, which is
not always the case. To address the lack of training data,
several works explore the use of complementary synthetic
data for a range of tasks in computer vision such as opti-
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cal flow estimation, segmentation, human body and hand
pose estimation (Dosovitskiy et al. 2015; Shotton et al. 2011;
Su et al. 2015; Varol et al. 2017; Zimmermann and Brox
2017). In this work, we raise the question how to synthe-

size videos for action recognition in the case of limited real
data, such as only one viewpoint, or one-shot available at
training.

Imagine a surveillance or ambient assisted living sys-
tem, where a dataset is already collected for a set of actions
from a certain camera. Placing a new camera in the envi-
ronment from a new viewpoint would require re-annotating
data because the appearance of an action is drastically dif-
ferent when performed from different viewpoints (Junejo
et al. 2011; Liu et al. 2011; Zheng et al. 2016). In fact, we
observe that state-of-the-art action recognition networks fail
drastically when trained and tested on distinct viewpoints.
Specifically, we train the model of Hara et al. (2018) on
videos from a benchmark dataset NTU RGB+D (Shahroudy
et al. 2016) where people are facing the camera. When
we test this network on other front-view (0◦) videos, we
obtain ∼80% accuray. When we test with side-view (90◦)
videos, the performance drops to ∼40% (see Sect. 4). This
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motivates us to study action recognition from novel view-
points.

Existing methods addressing cross-view action recogni-
tion do not work in challenging setups (e.g. same subjects
and similar viewpoints in training and test splits (Shahroudy
et al. 2016)). We introduce and study a more challenging
protocol with only one viewpoint at training. Recent meth-
ods assuming multi-view training data (Li et al. 2018a, b;
Wang et al. 2018) also become inapplicable.

A naive way to achieve generalization is to collect data
from all views, for all possible conditions, but this is impracti-
cal due to combinatorial explosion (Yuille et al. 2018. Instead,
we augment the existing real data synthetically to increase the
diversity in terms of viewpoints, appearance, and motions.
Synthetic humans are relatively easy to render for tasks
such as pose estimation, because arbitrary motion capture
(MoCap) resource can be used (Shotton et al. 2011; Varol
et al. 2017). However, action classification requires certain
motion patterns and semantics. It is challenging to gener-
ate synthetic data with action labels (De Souza et al. 2017).
Typical MoCap datasets (CMU Mocap Database), targeted
for pose diversity, are not suitable for action recognition due
to lack of clean action annotations. Even if one collects a
MoCap dataset, it is still limited to pre-defined set of cate-
gories.

In this work, we propose a new, efficient and scalable
approach for generating synthetic videos with action labels

from the target set of categories. We employ a 3D human
motion estimation method, such as HMMR (Kanazawa et al.
2019) and VIBE (Kocabas et al. 2020), that automatically
extracts the 3D human dynamics from a single-view RGB
video. The resulting sequence of SMPL body (Loper et al.
2015) pose parameters are then combined with other ran-
domized generation components (e.g. viewpoint, clothing)
to render diverse complementary training data with action
annotations. Figure 1 presents an overview of our pipeline.
We demonstrate the advantages of such data when train-
ing spatio-temporal CNN models for (1) action recognition
from unseen viewpoints and (2) training with one-shot real
data. We boost performance on unseen viewpoints from 53.6
to 69.0% on NTU, and from 49.4 to 66.4% on UESTC
dataset by augmenting limited real training data with our
proposed SURREACT dataset. Furthermore, we present an
in-depth analysis about the importance of action relevant
augmentations such as diversity of motions and view-
points, as well as our non-uniform frame sampling strategy
which substantially improves the action recognition perfor-
mance. Our code and data will be available at the project
page1.

1 https://www.di.ens.fr/willow/research/surreact/.

2 RelatedWork

Human action recognition is a well-established research field.
For a broad review of the literature on action recognition, see
the recent survey of Kong et al. Kong and Fu (2018). Here, we
focus on relevant works on synthetic data, cross-view action
recognition, and briefly on 3D human shape estimation.
Synthetic Humans. Simulating human motion dates back to
1980s. Badler et al. (1993) provide an extensive overview of
early approaches. More recently, synthetic images of people
have been used to train visual models for 2D/3D body pose
and shape estimation (Chen et al. 2016; Ghezelghieh et al.
2016; Liu et al. 2019a; Pishchulin et al. 2012; Shotton et al.
2011; Varol et al. 2018), part segmentation (Shotton et al.
2011; Varol et al. 2017), depth estimation (Varol et al. 2017),
multi-person pose estimation (Hoffmann et al. 2019), pedes-
trian detection (Marin et al. 2010; Pishchulin et al. 2012),
person re-identification (Qian et al. 2018), hand pose esti-
mation (Hasson et al. 2019; Zimmermann and Brox 2017),
and face recognition (Kortylewski et al. 2018; Masi et al.
2019). Synthetic datasets built for these tasks, such as the
recent SURREAL dataset (Varol et al. 2017), however, do
not provide action labels.

Among previous works that focus on synthetic human
data, very few tackle action recognition (De Souza et al.
2017; Liu et al. 2019b; Rahmani and Mian 2016). Syn-
thetic 2D human pose sequences (Lv and Nevatia 2007) and
synthetic point trajectories (Rahmani and Mian 2015; Rah-
mani et al. 2018; Jingtian et al. 2018) have been used for
view-invariant action recognition. However, RGB-based syn-
thetic training for action recognition is relatively new, with
(De Souza et al. 2017) being one of the first attempts. De
Souza et al. (2017) manually define 35 action classes and
jointly estimate real categories and synthetic categories in
a multi-task setting. However, their categories are not eas-
ily scalable and do not necessarily relate to the target set
of classes. Unlike (De Souza et al. 2017), we automati-
cally extract motion sequences from real data, making the
method flexible for new categories. Recently, (Puig et al.
2018) has generated the VirtualHome dataset, a simulation
environment with programmatically defined synthetic activi-
ties using crowd-sourcing. Different than our work, the focus
of Puig et al. (2018) is not generalization to real data.

Most relevant to ours, (Liu et al. 2019b) generates syn-
thetic training images to achieve better performance on
unseen viewpoints. The work of Liu et al. (Liu et al. 2019b)
is an extension of Rahmani and Mian (2016) by using RGB-
D as input instead of depth only. Both works formulate a
frame-based pose classification problem on their synthetic
data, which they then use as features for action recogni-
tion. These features are not necessarily discriminative for
the target action categories. Different than this direction, we
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explicitly assign an action label to synthetic videos and define
the supervision directly on action classification.
Cross-View Action Recognition. Due to the difficulty of
building multi-view action recognition datasets, the standard
benchmarks have been recorded in controlled environments.
RGB-D datasets such as IXMAS (Weinland et al. 2007),
UWA3D II (Rahmani et al. 2016) and N-UCLA (Wang et al.
2014) were state of the art until the availability of the large-
scale NTU RGB+D dataset (Shahroudy et al. 2016). The size
of NTU allows training deep neural networks unlike previous
datasets. Very recently, Ji et al. (Ji et al. 2018) collected the
first large-scale dataset, UESTC, that has a 360◦ coverage
around the performer, although still in a lab setting.

Since multi-view action datasets are typically captured
with depth sensing devices, such as Kinect, they also pro-
vide an accurate estimate of the 3D skeleton. Skeleton-based
cross-view action recognition therefore received a lot of
attention in the past decade (Ke et al. 2017; Liu et al. 2016,
2017a, b; Zhang et al. 2017). Variants of LSTMs (Hochre-
iter and Schmidhuber 1997) have been widely used (Liu
et al. 2016, 2017a; Shahroudy et al. 2016). Recently, spatio-
temporal skeletons were represented as images (Ke et al.
2017) or higher dimensional objects (Liu et al. 2017b)where
standard CNN architectures were applied.

RGB-based cross-view action recognition is in com-
parison less studied. Transforming RGB features to be
view-invariant is not as trivial as transforming 3D skele-
tons. Early work on transferring appearance features from the
source view to the target view explored the use of maximum
margin clustering to build a joint codebook for temporally
synchronous videos Farhadi and Tabrizi 2008. Following this
approach, several other works focused on building global
codebooks to extract view-invariant representations (Kong
et al. 2017; Liu et al. 2019c; Rahmani et al. 2018; Zheng
and Jiang 2013; Zheng et al. 2016). Recently, end-to-end
approaches used human pose information as guidance for
action recognition (Baradel et al. 2017; Liu and Yuan 2018;
Luvizon et al. 2018; Zolfaghari et al. 2017). Li et al. (2018a)
formulated an adversarial view-classifier to achieve view-
invariance. Wang et al. (Wang et al. 2018) proposed to
fuse view-specific features from a multi-branch CNN. Such
approaches cannot handle single-view training (Li et al.
2018a; Wang et al. 2018). Our method differs from these
works by compensating for the lack of view diversity with
synthetic videos. We augment the real data automatically at
training time, and our model does not involve any extra cost
at test time unlike (Wang et al. 2018). Moreover, we do not
assume real multi-view videos at training.
3D Human Shape Estimation. Recovering the full human
body mesh from a single image has been explored as a model-
fitting problem (Bogo et al. 2016; Lassner et al. 2017), as
regressing model parameters with CNNs (Kanazawa et al.
2018; Omran et al. 2018; Pavlakos et al. 2018; Tung et al.

2017), and as regressing non-parametric representations
such as graphs or volumes (Kolotouros et al. 2019; Varol
et al. 2018). Recently, CNN-based parameter regression
approaches have been extended to video (Kanazawa et al.
2019; Liu et al. 2019a; Kocabas et al. 2020). HMMR (Kanazawa
et al. 2019) builds on the single-image-based HMR (Kanazawa
et al. 2018) to learn the human dynamics by using 1D tempo-
ral convolutions. More recently, VIBE (Kocabas et al. 2020)
adopts a recurrent model based on frame-level pose estimates
provided by SPIN (Kolotouros et al. 2019). VIBE also incor-
porates an adversarial loss that penalizes the estimated pose
sequence if it is not a ‘realistic’ motion, i.e., indistinguish-
able from the real AMASS (Mahmood et al. 2019) MoCap
sequences. In this work, we recover 3D body parameters
from real videos using HMMR (Kanazawa et al. 2019) and
VIBE (Kocabas et al. 2020). Both methods employ the SMPL
body model (Loper et al. 2015). We provide a comparison
between the two methods for our purpose of action recog-
nition, which can serve as a proxy task to evaluate motion
estimation.

3 Synthetic Humans with Action Labels

Our goal is to improve the performance of action recognition
using synthetic data in cases where the real data is limited,
e.g. domain mismatch between training/test such as view-
points or low-data regime. In the following, we describe
the three stages of: (1) obtaining 3D temporal models for
human actions from real training sequences (at a particular
viewpoint) (Sect. 3.1); (2) using these 3D temporal mod-
els to generate training sequences for new (and the original)
viewpoints using a rendering pipeline with augmentation
(Sect. 3.2); and (3) training a spatio-temporal CNN with both
real and synthetic data (Sect. 3.3).

3.1 3D HumanMotion Estimation

In order to generate a synthetic video with graphics tech-
niques, we need to have a sequence of articulated 3D
human body models. We employ the parametric body model
SMPL (Loper et al. 2015), which is a statistical model,
learned over thousands of 3D scans. SMPL generates the
mesh of a person given the disentangled pose and shape
parameters. The pose parameters (R72) control the kinematic
deformations due to skeletal posture, while the shape param-
eters (R10) control identity-specific deformations such as the
person height.

We hypothesize that a human action can be captured by the
sequence of pose parameters, and that the shape parameters
are largely irrelevant (note, this may not necessarily be true
for human-object interaction categories). Given reliable 3D
pose sequences from action recognition video datasets, we
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can transfer the associated action labels to synthetic videos.
We use the recent method of Kanazawa et al. (Kanazawa et al.
2019), namely human mesh and motion recovery (HMMR),
unless stated otherwise. HMMR extends the single-image
reconstruction method HMR (Kanazawa et al. 2018) to video
with a multi-frame CNN that takes into account a temporal
neighborhood around a video frame. HMMR learns a tem-
poral representation for human dynamics by incorporating
large-scale 2D pseudo-ground truth poses for in-the-wild
videos. It uses PoseFlow (Zhang et al. 2018)and Alpha-
Pose (Fang et al. 2017) for multi-person 2D pose estimation
and tracking as a pre-processing step. Each person crop is
then given as input to the CNN for estimating the pose and
shape, as well as the weak-perspective camera parameters.
We refer the reader to (Kanazawa et al. 2019)for more details.
We choose this method for the robustness on in-the-wild
videos, ability to capture multiple people, and the smoothness
of the recovered motion, which are important for our general-
ization from synthetic videos to real. Figure 1 presents the 3D
pose animated synthetically for sample video frames. We also
experiment with the more recent motion estimation method,
VIBE (Kocabas et al. 2020), and show that improvements
in motion estimation proportionally affect the action recog-
nition performance in our pipeline. Note that we only use
the pose parameters from HMMR or VIBE, and randomly
change the shape parameters, camera parameters, and other
factors. Next, we present the augmentations in our synthetic
data generation.

3.2 SURREACT Dataset Components

In this section, we give details on our synthetic dataset, SUR-
REACT (Synthetic hUmans foR REal ACTions).

We follow (Varol et al. 2017) and render 3D SMPL
sequences with randomized cloth textures, lighting, and body
shapes. We animate the body model with our automatically
extracted pose dynamics as described in the previous sec-
tion. We explore various motion augmentation techniques to
increase intra-class diversity in our training videos. We incor-
porate multi-person videos which are especially important
for two-people interaction categories. We also systematically
sample from 8 viewpoints around a circle to perform con-
trolled experiments. Different augmentations are illustrated
in Fig. 2 for a sample synthetic frame. Visualizations from
SURREACT are further provided in Fig. 3.

Each generated video has automatic ground truth for 3D
joint locations, part segmentation, optical flow, and SMPL
body (Loper et al. 2015) parameters, as well as an action label,
which we use for training a video-based 3D CNN for action
classification. We use other ground truth modalities as input
to action recognition as oracle experiments (see Table 14).We
further use the optical flow ground truth to train a flow esti-

synthetic training (multi-view)

motion, camera, cloth, body shape, light

?

?

sit down

cheer up

3D human

augment

training

Fig. 1 Synthetic humans for actions: We estimate 3D shape from real
videos and automatically render synthetic videos with action labels.
We explore various augmentations for motions, viewpoints, and appear-
ance. Training temporal CNNs with this data significantly improves the
action recognition from unseen viewpoints

Fig. 2 Augmentations: We illustrate different augmentations of the
SURREACT dataset for the hand waving action. We modify the joint
angles with additive noise on the pose parameters for motion augmenta-
tion. We systematically change the camera position to create viewpoint

diversity. We sample from a large set of body shape parameters, back-

grounds, and clothing to randomize appearances

mator and use the segmentation to randomly augment the
background pixels in some experiments.

Our new SURREACT dataset differs from the SURREAL
dataset (Varol et al. 2017) mainly by providing action labels,
exploring motion augmentation, and by using automati-
cally extracted motion sequences instead of MoCap record-
ings (CMU Mocap Database). Moreover, Varol et al. (Varol
et al. 2017) do not exploit the temporal aspect of their dataset,
but only train CNNs with single-image input. We further
employ multi-person videos and a systematic viewpoint dis-
tribution.
Motion Augmentation. Automatic extraction of 3D sequences
from 2D videos poses an additional challenge in our dataset
compared to clean high-quality MoCap sequences. To reduce
the jitter, we temporally smooth the estimated SMPL pose
parameters by weighted linear averaging. SMPL poses are
represented as axis-angle rotations between joints. We con-
vert them into quaternions when we apply linear operations,
then normalize each quaternion to have a unit norm, before
converting back to axis-angles. Even with this processing,
the motions may remain noisy, which is inevitable given that
monocular 3D motion estimation is a difficult task on its own.
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Fig. 3 SURREACT: We visualize samples from SURREACT for the
actions from the NTU (left) and the UESTC (right) datasets. The
motions are estimated using HMMR. Each real video frame is accom-
panied with three synthetic augmentations. On the left, we show the

variations in clothes, body shapes, backgrounds, camera height/distance
from the original 0◦ viewpoint. On the right, we show the variations in
viewpoints for 0◦, 45◦, and 90◦ views. The complete list of actions can
be found as a video at the project page (SURREACT project page)

Our findings interestingly suggest that the synthetic human
videos are still beneficial when the motions are noisy.

To increase motion diversity, we further perturb the pose
parameters with various augmentations. Specifically, we use
a video-level additive noise on the quaternions for each
body joint to slightly change the poses, as an intra-individual
augmentation. We also experiment with an inter-individual
augmentation by interpolating between motion sequences of
the same action class. Given a pair of sequences from two
individuals, we first align them with dynamic time warp-
ing (Sakoe and Chiba 1978), then we linearly interpolate the
quaternions of the time-aligned sequences to generate a new

sequence, which we refer as interpolation. A visual explana-
tion of the process can be found in We show significant gains
by increasing motion diversity.
Multi-person. We use the 2D pose information from (Fang
et al. 2017; Zhang et al. 2018) to count the number of people
in the real video. In the case of a single-person, we cen-
ter the person on the image and do not add 3D translation
to the body, i.e., the person is centered independently for
each frame. While such constant global positioning of the
body loses information for some actions such as walking

and jumping, we find that the translation estimate adds more
noise to consider this information and potentially increases
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the domain gap with the real where no such noise exists (see
Appendix A). If there is more than one person, we insert
additional body model(s) for rendering. We translate each
person in the xy image plane. Note that we do not translate
the person in full xyz space. We observe that the z compo-
nent of the translation estimation is not reliable due to the
depth ambiguity therefore the people are always centered at
z = 0. More explanations about the reason for omitting the
z component can be found in Appendix A.We temporally
smooth the translations to reduce the noise. We subtract the
mean of translations across the video and across the people
to roughly center all people to the frame. We therefore keep
the relative distances between people, which is important for
actions such as walking towards each other.
Viewpoints. We systematically render each motion sequence
8 times by randomizing all other generation parameters at
each view. In particular, we place the camera to be rotated at
{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,315◦} azimuth angles
with respect to the origin, denoted as (0◦:45◦:360◦) in our
experiments. The distance of the camera from the origin and
the height of the camera from the ground are randomly sam-
pled from a predefined range: [4, 6] meters for the distance,
[−1, 3] meters for the height. This can be adjusted according
to the target test setting.
Backgrounds. Since we have access to the target real dataset
where we run pose estimation methods, we can extract
background pixels directly from the training set of this
dataset. We crop from regions without the person to obtain
static backgrounds for the NTU and UESTC datasets. We
experimentally show the benefits of using the target dataset
backgrounds in the Appendix (see Table 15).For Kinetics
experiments, we render human bodies on top of uncon-
strained videos from non-overlapping action classes and
show benefits over static backgrounds. Note that these back-
ground videos might also include human pixels.

3.3 Training 3D CNNs with Non-Uniform Frames

Following the success of 3D CNNs for video recogni-
tion (Carreira and Zisserman 2017; Hara et al. 2018; Tran
et al. 2015), we employ a spatio-temporal convolutional
architecture that operates on multi-frame video inputs.
Unless otherwise specified, our network architecture is 3D
ResNet-50 (Hara et al. 2018) and its weights are randomly
initialized (see Appendix B.4 for pretraining experiments).

To study the generalization capability of synthetic data
across different input modalities, we train one CNN for RGB
and another for optical flow as in Simonyan and Zisser-
man (2014). We average the scores with equal weights when
reporting the fusion.

We subsample fixed-sized inputs from videos to have a
16×256×256 spatio-temporal resolution, in terms of number
of frames, width, and height, respectively. In case of optical

uniform sampling non-uniform sampling

time

Fig. 4 Frame sampling: We illustrate our non-uniform frame sampling
strategy in our 3D CNN training. Compared to the commonly adopted
consecutive setting which uniformly samples with a fixed frame rate,
non-uniform sampling has random skips in time, allowing speed aug-
mentations and long-term context

flow input, we map the RGB input to 15 × 64 × 64 dimen-
sional flow estimates. To estimate flow, we train a two-stack
hourglass architecture (Newell et al. 2016) with our synthetic
data for flow estimation on 2 consecutive frames. We refer the
reader to Figure 10 for the qualitative results of our optical
flow estimation.
Non-Uniform Frame Sampling. We adopt a different frame
sampling strategy than most works (Carreira and Zisserman
2017; Feichtenhofer et al. 2019; Hara et al. 2018) in the con-
text of 3D CNNs. Instead of uniformly sampling (at a fixed
frame rate) a video clip with consecutive frames, we ran-
domly sample frames across time by keeping their temporal
order, which we refer as non-uniform sampling. Although
recent works explore multiple temporal resolutions, e.g. by
regularly sampling at two different frame rates (Feichten-
hofer et al. 2019), or randomly selecting a frame rate (Zhu
and Newsam 2018), the sampled frames are equidistant from
each other. TSN (Wang et al. 2016) and ECO (Zolfaghari
et al. 2018) employ a hybrid strategy by regularly sampling
temporal segments and randomly sampling a frame from
each segment, which is a more restricted special case of our
strategy. Moreover, TSN uses a 2D CNN without temporal
modelling. Zolfaghari et al. (2018) also has 2D convolutional
features on each frame, which are stacked as input to a 3D
CNN only at the end of the network. None of these works
provide controlled experiments to quantify the effect of their
sampling strategy. The concurrent work of Chen et al. (2020)
presents an experimental analysis comparing the dense con-
secutive sampling with the hybrid sampling of TSN.

Figure 4 compares the consecutive sampling with our
non-uniform sampling. In our experiments, we report results
for both and show improvements for the latter. Our videos
are temporally trimmed around the action, therefore, each
video is short, i.e. spans several seconds. During train-
ing we randomly sample 16 video frames as a fixed-sized
input to 3D CNN. Thus, the convolutional kernels become
speed-invariant to some degree. This can be seen as a data
augmentation technique, as well as a way to capture long-
term cues.
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Fig. 5 Datasets: We show sample video frames from the multi-view datasets used in our experiments. NTU and UESTC datasets have 3 and 8
viewpoints, respectively. NTU views correspond to 0◦, 45◦, and 90◦ from left to right. UESTC covers 360◦ around the performer

At test time, we sample several 16-frame clips and average
the softmax scores. If we test the uniform case, we sam-
ple non-overlapping consecutive clips with sliding window.
For the non-uniform case, we randomly sample as many
non-uniform clips as the number of sliding windows for the
uniform case. In other words, the number of sampled clips
is proportional to the video length. More precisely, let T be
the number of frames in the entire test video, F be the num-
ber of input frames per clip, and S be the stride parameter.
We sample N clips where N = ⌈(T − F)/S)⌉ + 1. In our
case F = 16, S = 16. We apply sliding window for the
uniform case. For the non-uniform case, we sample N clips,
where each clip is an ordered random (without replacement)
16-frame subset from T . We observe that it is important to
train and test with the same sampling scheme, and keeping
the temporal order is important. More details can be found
in Appendix B.5.
Synth+Real. Since each real video is augmented multiple
times (e.g. 8 times for 8 views), we have more synthetic data
than real. When we add synthetic data to training, we balance
the real and synthetic datasets such that at each epoch we
randomly subsample from the synthetic videos to have equal
number for both real and synthetic.

We minimize the cross-entropy loss using RMSprop (Tiele-
man and Hinton 2012) with mini-batches of size 10 and an
initial learning rate of 10−3 with a fixed schedule. Color aug-
mentation is used for the RGB stream. Other implementation
details are given in Appendix A.

4 Experiments

In this section, we start by presenting the action recognition
datasets used in our experiments (Sect. 4.1). Next, we present
extensive ablations for action recognition from unseen view-
points (Sect. 4.2). Then, we compare our results to the state
of the art for completeness (Sect. 4.3). Finally, we illustrate
our approach on in-the-wild videos (Sect. 4.4).

4.1 Datasets and Evaluation Protocols

We briefly present the datasets used in this work, as well as
the evaluation protocols employed.

NTU RGB+D Dataset (NTU). This dataset (Shahroudy et al.
2016) captures 60 actions with 3 synchronous cameras (see
Fig. 5). The large scale (56K videos) of the dataset allows
training deep neural networks. Each sequence has 84 frames
on average. The standard protocols (Shahroudy et al. 2016)
report accuracy for cross-view and cross-subject splits. The
cross-view (CV) split considers 0◦ and 90 views as training
and 45◦ view as test, and the same subjects appear both in
training and test. For the cross-subject (CS) setting, 20 sub-
jects are used for training, the remaining 20 for test, and all 3
views are seen at both training and test. We report on the stan-
dard protocols to be able to compare to the state of the art (see
Table 8). However, we introduce a new protocol to make the
task more challenging. From the cross-subject training split
that has all 3 views, we take only 0◦ viewpoint for training,
and we test on the 0◦, 45◦, 90◦ views of the cross-subject test
split. We call this protocol cross-view-subject (CVS). Our
focus is mainly to improve for the unseen and distinct view
of 90◦.
UESTC RGB-D Varying-view 3D Action Dataset (UESTC).

UESTC is a recent dataset (Ji et al. 2018) that systemati-
cally collects 8 equally separated viewpoints that cover 360◦

around a person (see Fig. 5). In total, the dataset has 118
subjects, 40 actions categories, and 26500 videos of more
than 200 frames each. This dataset allows studying actions
from unusual views such as behind the person. We use the
official protocol Cross View I (CV-I), suitable for our task,
which trains with 1 viewpoint and tests with all other 7 for
each view. The final performance is evaluated as the aver-
age across all tests. For completeness, we also report the
Cross View II (CV-II) protocol that concentrates on multi-
view training, i.e., training with even viewpoints (FV, V2,
V4, V6) and testing with odd viewpoints (V1, V3, V5, V7),
and vice versa.
One-shot Kinetics-15 Dataset (Kinetics-15). Since we wish
to formulate a one-shot scenario from in-the-wild Kinetics
(Kay et al. 2017) videos, we need a pre-trained model to serve
as feature extractor. We use a model pre-trained on Mini-
Kinetics-200 (Xie et al. 2017), a subset of Kinetics-400. We
define the novel classes from the remaining 200 categories
which can be described by body motions. This procedure
resulted in a 15-class subset of Kinetics-400: bending back,

clapping, climbing a rope, exercising arm, hugging, jogging,

jumpstyle dancing, krumping, push up, shaking hands, skip-
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Table 1 Training jointly on synthetic and real data substantially boosts
the performance compared to only real training on NTU CVS proto-
col, especially on unseen views (45◦, 90◦) (e.g., 69.0% vs 53.6%). The
improvement can be seen for both RGB and Flow streams, as well
as the fusion. We note the marginal improvements with the addition
of flow unlike in other tasks where flow has been used to reduce the

synthetic-real domain gap (Doersch and Zisserman 2019). We render
two different versions of the synthetic dataset using HMMR and VIBE
motion estimation methods, and observe improvements with VIBE.
Moreover, training on synthetic videos alone is able to obtain 63.0%
accuracy

RGB Flow RGB + Flow

Training data 0◦ 45◦ 90◦ 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

Real(0◦) 86.9 74.5 53.6 82.8 70.6 49.7 88.8 78.2 57.3

SynthHMMR(0◦:45◦:360◦) 54.0 49.5 42.7 51.7 46.9 38.6 60.6 55.5 47.8

SynthHMMR(0◦:45◦:360◦) + Real(0◦) 89.1 82.0 67.1 85.9 76.4 58.9 90.5 83.3 68.0

SynthVIBE (0◦:45◦:360◦) 58.1 52.8 45.3 54.1 47.2 37.9 63.0 57.6 48.3

SynthVIBE (0◦:45◦:360◦) + Real(0◦) 89.7 82.0 69.0 85.9 77.7 61.8 90.6 83.4 71.1

Table 2 Real baselines: Training and testing with our cross-view-
subject (CVS) protocol of the NTU dataset using only real RGB videos.
Rows and columns correspond to training and testing sets, respectively.
Training and testing on the same viewpoint shows the best performance
as can be seen by the diagonals of the first three rows. This shows the

domain gap present between 0◦, 45◦, 90◦ viewpoints. If we add more
viewpoints to the training (last two rows) we account for the domain
gap. Non-uniform frame sampling (right) consistently outperforms the
uniform frame sampling (left)

Test views
uniform non-uniform

0◦ 45◦ 90◦ 0◦ 45◦ 90◦

Train views 0◦
83.9 67.9 42.9 86.9 74.5 53.6

45◦ 72.1 81.6 66.8 78.1 85.2 75.7

90◦ 41.7 63.4 81.4 52.3 71.2 85.4

0◦ + 45◦ 86.0 85.3 69.9 89.7 88.9 79.3

0◦ + 45◦ + 90◦
86.8 86.9 84.1 89.4 89.4 87.8

Fig. 6 Inputting raw motion parameters performs significantly worse
for the 90◦ unseen viewpoint compared to synthetic renderings on the
NTU CVS protocol. We compare various input representations with
increasing view-independence (joint coordinates, SMPL pose parame-
ters, SMPL pose parameters without the global rotation). Experiments
are carried out with SMPL model recovered with RGB-based methods

HMMR (Kanazawa et al. 2019) and VIBE (Kocabas et al. 2020), and
depth-based Kinect joints. A 2D ResNet architecture is used for motion
parameter inputs similar to Ke et al. (2017). We also present an archi-
tecture study in Table 3. Note that significant gains are further possible
when mixing the synthetic renderings with real videos. See text for
interpretation

ping rope, stretching arm, swinging legs, sweeping floor,

wrestling. Note that many of the categories such as waiting

in line, dining, holding snake cannot be recognized solely
by their body motions, but additional contextual cues are
needed. From the 15 actions, we randomly sample 1 train-
ing video per class (see Fig. 8 for example videos with their
synthetic augmentations). The training set therefore consists
of 15 videos. For testing, we report accuracy on all 725 val-

idation videos from these 15 classes. The limitation of this
protocol is that it is sensitive to the choice of the 15 train-
ing videos, e.g., if 3D motion estimation fails on one video,
the model will not benefit from additional synthetic data of
one class. Future work can consider multiple possible train-
ing sets (e.g., sampling videos where 3D pose estimation is
confident) and report average performance.
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4.2 Ablation Study

We first compare real-only (Real), synthetic-only (Synth),
and mixed synthetic and real (Synth+Real) training. Next,
we explore the effect of the motion estimation quality and
inputting raw motion parameters as opposed to synthetic
renderings. Then, we experiment with the different synthetic
data generation parameters to analyze the effects of viewpoint
and motion diversity. In all cases, we evaluate our models on
real test videos.
Real Baselines. We start with our cross-view-subject protocol
on NTU by training only with real data. Table 2 summarizes
the results of training the model on a single-view and testing
on all views. We observe a clear domain gap between dif-
ferent viewpoints, which can be naturally reduced by adding
more views in training. However, in the case when a single
view is available, this would not be possible. If we train only
with 0◦, the performance is high (83.9%) when tested on 0◦,
but significantly drops (42.9%) when tested on 90◦. In the
remaining of our experiments on NTU, we assume that only
the frontal viewpoint (0◦) is available.
Non-Uniform Frame Sampling. We note the consistent
improvement of non-uniform frame sampling over the uni-
form consecutive sampling in all settings in Table 2. Addi-
tional experiments about video frame sampling, such as the
optical flow stream, can be found in Appendix B.5. We use
our non-uniform sampling strategy for both RGB and flow
streams in the remainder of experiments unless specified oth-
erwise.
Synth+Real Training. Next, we report the improvements
obtained by synthetically increasing view diversity. We train
the 60 action classes from NTU by combining the real 0◦

training data and the synthetic data augmented from real with
8 viewpoints, i.e. 0◦:45◦:360◦. Table 1 compares the results
of Real, Synth, and Synth+Real trainings for RGB and Flow
streams, as well as their combination. The performance of the
flow stream is generally lower than that of the RGB stream,
possibly due to the fine-grained categories which cannot be
distinguished with coarse motion fields.

It is interesting to note that training only with synthetic
data (Synth) reaches 63.0% accuracy on real 0◦ test data
which indicates a certain level of generalization capability
from synthetic to real. Combining real and synthetic training
videos (Real+Synth), the performance of the RGB stream
increases from 53.6% to 69.0% compared to only real train-
ing (Real), on the challenging unseen 90◦ viewpoint. Note
that the additional synthetic videos can be obtained ‘for free’,
i.e. without extra annotation cost. We also confirm that even
the noisy motion estimates are sufficient to obtain signifi-
cant improvements, suggesting that the discriminative action
information is still present in our synthetic data.

The advantage of having a controllable data generation
procedure is to be able to analyze what components of the

synthetic data are important. In the following, we exam-
ine a few of these aspects, such as quality of the motion
estimation, input representation, amount of data, view diver-
sity, and motion diversity. Additional results can be found in
Appendix B.
Quality of the Motion Estimation: HMMR vs VIBE. 3D
motion estimation from monocular videos has only recently
demonstrated convincing performance on unconstrained
videos, opening up the possibility to investigate our prob-
lem of action recognition with synthetic videos. One natural
question is whether the progress in 3D motion estimation
methods will improve the synthetic data. To this end, we
compare two sets of synthetic data, keeping all the factors the
same except the motion source: SynthHMMR extracted with
HMMR (Kanazawa et al. 2019), SynthVIBE extracted with
VIBE (Kocabas et al. 2020). Table 1 presents the results. We
observe consistent improvements with more accurate pose
estimation from VIBE over HMMR, suggesting that our pro-
posed pipeline has great potential to further improve with the
progress in 3D recovery.
Raw Motion Parameters as Input. Another question is
whether the motion estimation output, i.e., body pose param-
eters, can be directly used as input to an action recognition
model instead of going through synthetic renderings. We
implement a simple 2D CNN architecture similar to Ke et al.
(2017) that inputs 16-frame pose sequence in the form of 3D
joint coordinates (24 joints for SMPL, 25 joints for Kinect)
or 3D joint rotations (24 axis-angle parent-relative rotations
for SMPL, or 23 without the global rotation). In particular,
we use a ResNet-18 architecture (He et al. 2015). We exper-
iment with both HMMR and VIBE to use SMPL parameters
as input, as well as Kinect joints provided by the NTU dataset
for comparison. Figure 6 reports the results of various pose
representations against the performance of synthetic render-
ings for three test views. We make several observations: (1)
Removing viewpoint-dependent factors, e.g., pose parame-
ters over joints, degrades performance on seen viewpoint, but
consistently improves on unseen viewpoints; (2) Synthetic
video renderings from all viewpoints significantly improve
over raw motion parameters for the challenging unseen view-
point; (3) VIBE outperforms HMMR; (4) Both RGB-based
motion estimation methods are competitive with the depth-
based Kinect joints.

We note the significant boost with renderings (45.3%) over
pose parameters (29.0%) for the 90◦ test view despite the
same source of motion information for both. There are three
main differences which can be potential reasons. First, the
architectures 3D ResNet and 2D ResNet have different capac-
ities. Second, motion estimation from non-frontal viewpoints
can be challenging, negatively affecting the performance of
pose-based methods, but not affecting 3D ResNet (because
pose estimation is not a required step). Third, the render-
ings have the advantage that standard data augmentation
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Table 3 Architecture comparison: We explore the influence of archi-
tectural improvements for pose-based action recognition models: 2D
ResNet with temporal convolutions versus ST-GCN with graph convolu-
tions on the SMPL pose parameters obtained by VIBE. While ST-GCN
improves over 2D ResNet, the performance of the synthetic-only train-
ing with renderings remain superior for the unseen 90◦ viewpoint

Arch. Input 0◦ 45◦ 90◦

2D ResNet Pose 69.9 48.3 23.1

2D ResNet Pose no global 70.4 55.2 29.0

ST-GCN Pose 74.8 59.8 31.4

ST-GCN Pose no global 75.6 60.9 36.2

3D ResNet Synth 58.1 52.8 45.3

techniques on image pixels can be applied, unlike the pose
parameters which are not augmented. More importantly, the
renderings have the advantage that they can be mixed with
the real videos, which showed to substantially improve the
performance in Table 1.

To explore the architectural capacity question, we study
the pose-based action recognition model further and exper-
iment with the recent ST-GCN model (Yan et al. 2018) that
makes use of graph convolutions. For this experiment, we
use VIBE pose estimates and compare ST-GCN with the
2D ResNet architecture in Table 3. Although we observe
improvements with using ST-GCN (29.0% vs 36.2%), the
synthetic renderings provide significantly better generaliza-
tion to the unseen 90◦ view (45.3%).
Amount of Data. In the NTU CVS training split, we have
about 220 sequences per action. We take subsets with {10,
30, 60, 100} sequences per action, and train the three sce-
narios: Real, Synth, Synth+Real, for each subset. Figure 7
plots the performance versus the amount of data for these
scenarios, for both RGB and Flow streams. We observe the
consistent improvement of complementary synthetic train-

Table 4 Viewpoint diversity: The effect of the views in the synthetic
training on the NTU CVS split. We train only with synthetic videos
obtained from real data of 60 sequences per action. We take a subset of
views from the synthetic data: 0◦, ±45◦, ±90◦. Even when synthetic, the
performance is better when the viewpoints match between training and
test. The best performance is obtained with all 8 viewpoints combined

0◦ 45◦ 90◦

Synth(0◦) 38.3 27.1 17.9

Synth(45◦, 315◦) 35.9 34.2 26.8

Synth(90◦, 270◦) 13.9 18.3 23.2

Synth(0◦:45◦:360◦) 48.3 44.3 38.8

ing, especially for unseen viewpoints. We also see that it is
more effective to use synthetic data at a given number of
sequences per action. For example, on the 90◦ viewpoint,
increasing the number of sequences from 100 to 220 in the
real data results only in 4.6% improvement (49.0% vs 53.6%,
Real), while one can synthetically augment the existing 100
sequences per action and obtain 64.7% (Synth+Real) accu-
racy without spending extra annotation effort.
View Diversity. We wish to confirm that the improvements
presented so far are mainly due to the viewpoint variation
in synthetic data. The “Synth(v=0◦) + Real” plot in Fig. 7
indicates that only the 0◦ viewpoint from synthetic data is
used. In this case, we observe that the improvement is not
consistent. Therefore, it is important to augment viewpoints
to obtain improvements. Moreover, we experiment with hav-
ing only ±45◦ or ±90◦ views in the synthetic-only training
for 60 sequences per action. In Table 4, we observe that the
test performance is higher when the synthetic training view
matches the real test view. However, having all 8 viewpoints
at training benefits all test views.
Motion Diversity. Next, we investigate the question whether
motions can be diversified and whether this is beneficial for
synthetic training. There are very few attempts towards this

Fig. 7 Amount of data: The number of real sequences per action for:
Real, Synth, Synth+Real training on NTU CVS split. Generalization to
unseen viewpoints is significantly improved with the addition of syn-
thetic data (green) compared to training only with real (pink). Real

training contains the 0◦ view. We experiment with all 8 views (green)
or only the 0◦ view (yellow) in the additional synthetic data. See text
for interpretation
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Table 5 Motion diversity: We study the effect of motion diversity in the
synthetic training on a subset of the NTU CVS split. The results indicate
that clothing, body shape diversity is not as important as motion diversity
(second and last rows). We can significantly improve the performance by
motion augmentations, especially with a video-level additive noise on
the joint rotations (second and sixth rows). Here, each dataset is rendered
with all 8 views and the training is only performed on synthetic data.
At each rendering, we randomly sample clothing, body shape, lighting
etc

#Seq./ Motion Test views
action #Render augm. 0◦ 45◦ 90◦

10 1 – 31.1 28.4 25.2

10 6 – 33.1 31.6 26.2

10 6 Interp. 35.7 31.5 26.9

10 6 Add. noise [frame] 25.0 24.2 21.4

10 6 Add. noise [every 25f] 32.5 31.3 28.0

10 6 Add. noise [video] 37.9 35.9 31.5

60 1 – 48.3 44.3 38.8

direction (De Souza et al. 2017) since synthetic data has
been mainly used for static images. Recently, (Liu et al.
2019a) introduced interpolation between distinct poses to
create new poses in synthetic data for training 3D pose esti-
mation; however, its contribution over existing poses was
not experimentally validated. In our case, we need to pre-
serve the action information, therefore, we cannot generate
unconstrained motions. Generating realistic motions is a
challenging research problem on its own and is out of the
scope of this paper. Here, we experiment with motion aug-
mentation to increase diversity.

As explained in Sect. 3.1, we generate new motion
sequences by (1) interpolating between motion pairs of the
same class, or by (2) additive noise on the pose parameters.
Table 5 presents the results of this analysis when we train
only with synthetic data and test on the NTU CVS protocol.
We compare to the baseline where 10 motion sequences per
action are rendered once per viewpoint (the first row). We

render the same sequences without motion augmentation 6
times (the second row) and obtain marginal improvement. On
the other hand, having 60 real motion sequences per action
significantly improves (last row) and is our upper bound for
the motion augmentation experiments. That means that the
clothing, body shape, lighting, i.e. appearance diversity is
not as important as motion diversity. We see that generating
new sequences with interpolations improves over the base-
line. Moreover, perturbing the joint rotations across the video
with additive noise is simple and effective, with performance
increase of about 5% (26.2% vs 31.5%) over rendering 6
times without motion augmentation. To justify the video-
level noise (i.e., one value to add to all frames), in Table 5,
we also experiment with frame-level noise and a hybrid ver-
sion where we independently sample a noise at every 25
frames, which are interpolated for the frames in between.
These renderings qualitatively remain very noisy, reducing
the performance in return.

4.3 Comparison with the State of the Art

In the following, we employ the standard protocols for
UESTC and NTU datasets, and compare our performance
with other works. Tables 6 and 7 compare our results to the
state-of-the-art methods reported by Ji et al. (2018) on the
recently released UESTC dataset, on CV-I and CV-II pro-
tocols. To augment the UESTC dataset, we use the VIBE
motion estimation method. We outperform the RGB-based
methods JOULE (Hu et al. 2017) and 3D ResNeXt-101 (Hara
et al. 2018) by a large margin even though we use a less deep
3D ResNet-50 architecture. We note that we have trained the
ResNeXt-101 architecture (Hara et al. 2018) with our imple-
mentation and obtained better results than our ResNet-50
architecture (45.2% vs 36.1% on CV-I, 82.5% vs 76.1% on
CV-II). This contradicts the results reported in Ji et al. (2018).
We note that a first improvement can be attributed to our
non-uniform frame sampling strategy. Therefore, we report

Table 6 UESTC dataset Cross
View I protocol: Training on 1
viewpoint and testing on all the
others. The plots on the right
show individual performances
for the RGB networks. The rows
and columns of the matrices
correspond to training and
testing views, respectively. We
obtain significant improvements
over the state of the art, due to
our non-uniform frame
sampling and synthetic training

Method Modality Accuracy (%)
VS-CNN (Ji et al. 2018) Skeleton 29.0
JOULE (Hu et al. 2017) by (Ji et al. 2018) RGB 31.0
ResNeXt-101 (Hara et al. 2018) by (Ji et al. 2018) RGB 32.0
ResNeXt-101 (Hara et al. 2018) (ours) RGB 45.2

RGB Real [uniform] RGB 36.1

RGB Real RGB 49.4

Synth + Real RGB 66.4

Flow Real RGB 63.5

Synth + Real RGB 73.1

RGB + Flow Real RGB 63.2

Synth + Real RGB 76.1
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Table 8 State of the art
comparison: We report on the
standard protocols of NTU for
completeness. We improve
previous RGB-based methods
(bottom) due to non-uniform
sampling and synthetic training.
Additional cues extracted from
RGB modality are denoted in
parenthesis. We perform on par
with skeleton-based methods
(top) without using the Kinect
sensor

Method Modality CS CV

Shahroudy et al. (2016) Part-LSTM Skeleton 62.9 70.3

Liu et al. (2016) ST-LSTM Skeleton 69.2 77.7

Liu et al. (2017a) GCA-LSTM Skeleton 74.4 82.8

Ke et al. (2017) MTLN Skeleton 79.6 84.8

Liu et al. (2017b) View-invariant Skeleton 80.0 87.2

Baradel et al. (2017) Hands attention RGB+Skeleton 84.8 90.6

Liu and Yuan (2018) Pose evolution RGB+Depth 91.7 95.3

Si et al. (2019) Attention LSTM Skeleton 89.2 95.0

Shi et al. (2019b) 2s-AGCN Skeleton 88.5 95.1

Shi et al. (2019a) DGNN Skeleton 89.9 96.1

Baradel et al. (2017) Hands attention RGB (Pose) 75.6 80.5

Liu and Yuan (2018) Pose evolution RGB (Pose) 78.8 84.2

Zolfaghari et al. (2017) Multi-stream RGB (Pose+Flow) 80.8 –

Luvizon et al. (2018) Multi-task RGB (Pose) 85.5 –

Baradel et al. (2018) Glimpse clouds RGB (Pose) 86.6 93.2

Wang et al. (2018) DA-Net RGB (Flow) 88.1 92.0

Luo et al. (2018) Graph distillation RGB (Pose+Flow+Depth) 89.5 –

Real RGB [uniform] RGB 86.3 90.8

Real RGB RGB 89.0 93.1

Real Flow RGB (Flow) 84.4 90.9

Real RGB+Flow RGB (Flow) 90.0 94.3

Synth+Real RGB RGB 89.6 94.1

Synth+Real Flow RGB (Flow) 85.6 91.4

Synth+Real RGB+Flow RGB (Flow) 90.7 95.0

our uniform real baseline as well. A significant performance
boost is later obtained by having a mixture of synthetic and
real training data. Using only RGB input, we obtain 17.0%
improvement on the challenging CV-I protocol over real data
(66.4 vs 49.4). Using both RGB and flow, we obtain 44.1%
improvement over the state of the art (76.1 vs 32.0). We
also report on the even/odd test splits of the CV-II protocol
that have access to multi-view training data. The synthetic
data again shows benefits over the real baselines. Compared
to NTU, which contains object interactions that we do not
simulate, the UESTC dataset focuses more on the anatomic
movements, such as body exercises. We believe that these
results convincingly demonstrate the generalization capabil-
ity of our efficient synthetic data generation method to real
body motion videos.

In Table 8, we compare our results to the state-of-the-
art methods on standard NTU splits. The synthetic videos
are generated using the HMMR motion estimation method.
Our results on both splits achieve state-of-the-art perfor-
mance only with the RGB modality. In comparison, (Baradel
et al. 2018; Luvizon et al. 2018; Zolfaghari et al. 2017)
use pose information during training. Luo et al. (2018) uses

other modalities from Kinect such as depth and skeleton
during training. Similar to us, (Wang et al. 2018) uses a
two-stream approach. Our non-uniform sampling boosts the
performance. We have moderate gains with the synthetic data
for both RGB and flow streams, as the real training set is
already large and similar to the test set.

4.4 One-Shot Training

We test the limits of our approach on unconstrained videos
of the Kinetics-15 dataset. These videos are challenging
for several reasons. First, the 3D human motion estima-
tion fails often due to complex conditions such as motion
blur, low-resolution, occlusion, crowded scenes, and fast
motion. Second, there exist cues about the action context
that are difficult to simulate, such as object interactions, bias
towards certain clothing or environments for certain actions.
Assuming that body motions alone, even when noisy, pro-
vide discriminative information for actions, we augment the
15 training videos of one-shot Kinetics-15 subset syntheti-
cally using HMMR (see Fig. 8) by rendering at 5 viewpoints
(0◦, 30◦, 45◦, 315◦, 330◦).
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Fig. 8 Sample video frames from the one-shot Kinetics-15 dataset. We
provide side-by-side illustrations for real frames and their synthetically
augmented versions from the original viewpoint. Note that we render

the synthetic body on a static background for computational efficiency,
but augment it during training with random real videos by using the
segmentation mask

Table 9 One-shot Kinetics-15: Real training data consists of 1 train-
ing sample per category, i.e., 15 videos. Random chance and nearest
neighbor rows present baseline performances for this setup. We aug-
ment each training video with 5 different viewpoints by synthetically
rendering SMPL sequences extracted from real data (i.e., 75 videos),
blended on random backgrounds from the Mini-Kinetics training videos
and obtain 6.5% improvement over training only with real data. For the
last 4 rows, we train only the last linear layer of the ResNeXt-101 3D
CNN model pre-trained on Mini-Kinetics 200 classes

Synth Accuracy (%)
Method background RGB Flow RGB+Flow

Chance – 6.7 6.7 6.7

Real (Nearest n.) – 8.6 13.1 13.9

Synth Mini-Kinetics 9.4 10.3 11.6

Real – 26.2 20.6 28.4

Synth + Real LSUN 26.3 21.1 29.2

Synth + Real Mini-Kinetics 32.7 22.3 34.6

We use a pre-trained feature extractor model and only train
a linear layer from the features to the 15 classes. We observe
over-fitting with higher-capacity models due to limited one-
shot training data. We experiment with two pre-trained
models, obtained from Crasto et al. (2019): RGB and flow.
The models follow the 3D ResNeXt-101 architecture from
Hara et al. (2018) and are pre-trained on Mini-Kinetics-200
categories with 16 × 112 × 112 resolution with consecutive
frame sampling.

In Table 9 (top), we first provide simple baselines: nearest
neighbor with pre-trained features is slightly above random
chance (8.6% vs 6.7% for RGB). Table 9 (bottom) shows
training linear layers. Using only synthetic data obtains poor
performance (9.4%). Training only with real data on the other
hand obtains 26.2%, which is our baseline performance. We
obtain ∼6% improvement by adding synthetic data. We also
experiment with static background images from the LSUN

dataset (Yu et al. 2015) and note the importance of realistic
noisy backgrounds for generalization to in-the-wild videos.

5 Conclusions

We presented an effective methodology for automatically
augmenting action recognition datasets with synthetic videos.
We explored the importance of different variations in the
synthetic data, such as viewpoints and motions. Our anal-
ysis emphasizes the question on how to diversify motions
within an action category. We obtain significant improve-
ments for action recognition from unseen viewpoints and
one-shot training. However, our approach is limited by the
performance of the 3D pose estimation, which can fail in
cluttered scenes. Possible future directions include action-
conditioned generative models for motion sequences and
simulation of contextual cues for action recognition.
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APPENDIX

This appendix provides detailed explanations for several
components of our approach (Sect. A). We also report
complementary results for synthetic training, and our non-
uniform frame sampling strategy (Sect. B).

A Additional Details

SURREACT Rendering. We build on the implementation of
Varol et al. (2017) and use the Blender software. We add
support for multi-person images, for using estimated motion
inputs, for systematic viewpoint rendering, and different
sources for background images. We use the cloth textures
released by Varol et al. (2017), i.e., 361/90 female, 382/96
male textures for training/test splits, respectively. The reso-
lution of the video frames is similarly 320x240 pixels. For
background images, we used 21567/8790 train/test images
extracted from NTU videos, and 23034/23038 train/test
images extracted from UESTC videos, by sampling a region
outside of the person bounding boxes. The rendering code
takes approximately 6 seconds per frame, for saving RGB,
body-part segmentation and optical flow data. We parallelize
the rendering over hundreds of CPUs to accelerate the data
generation.
Motion Sequence Interpolation. As explained in Sect. 3.2
of the main paper, we explore creating new sequences by
interpolating pairs of motions from the same action category.
Here, we visually illustrate this process. Figure 9 shows two
sequences of sitting down that are first aligned with dynamic
time warping, and then linearly interpolated. We only experi-
ment with equal weights when interpolating (i.e. 0.5), but one
can sample different weights when increasing the number of
sequences further.
3D Translation in SURREACT. In Sect. 3.2 of the main
paper, we explained that we translate the people in the xy

image plane only when there are multiple people in the
scene. HMMR (Kanazawa et al. 2019) estimates the weak-
perspective camera scale, jointly with the body pose and
shape. We note that obtaining 3D translation of the person in
the camera coordinates is an ambiguous problem. It requires
the size of the person to be known. This becomes more chal-
lenging in the case of multi-person videos.

HMMR relies on 2D pose estimation to locate the bound-
ing box of the person which then becomes the input to
a CNN. The CNN outputs a scale estimation sb together
with the [xb, yb] normalized image coordinates of the per-
son center with respect to the bounding box. We first convert
these values to be with respect to the original uncropped
image: s and [x, y]. We can recover an approximate value
for the z coordinate of the person center, by assuming a fixed
focal length F = 500. The translation in z then becomes:

Fig. 9 Motion interpolation procedure for the sitting action. Two tem-
porally aligned sequences s1 and s2 from different individuals are
interpolated to create s1+2, from two viewpoints. Note the new arm
and leg angles that contribute to motion diversity

Table 10 Training on different versions of the synthetic data generated
from 10 sequences per action from the NTU CVS protocol. We train
only on synthetic and test on the real test set. Multi-person videos in the
synthetic training improves performance, especially in the interaction
categories (see Fig. 14). The noisy translation estimates degrades gen-
eralization, therefore, we use only xy translation and only in the case
of multi-person. See text for further details

#People Translation 0◦ 45◦ 90◦

Single xyz 18.3 17.8 15.0

Multi xyz 21.0 21.2 17.3

Multi xy 26.8 26.0 21.9

Multi xy (when multi-person) 28.5 27.2 23.0

z = F/(0.5 ∗ W ∗ s), where W is the image resolution and
s is the estimated camera scale. The translation of the per-
son center then becomes [x, y, z]. In practice, the z values
are very noisy whereas [x, y] values are more reliable. We
therefore assume that the person is always centered at z = 0
and apply the translation only in the xy plane.

We observe that due to the noisy 2D person detections the
estimated translation is noisy even in the xy image plane,
leading to less generalization performance on real data when
we train only with synthetic data. We validate this empiri-
cally in Table 10. We render multiple versions of the synthetic
dataset with 10 motion sequences per action, each rendered
from 8 viewpoints. We train only with this synthetic data and
evaluate on the real NTU CVS protocol. Including multiple
people improves performance (first and second rows), mainly
because 11 out of 60 action categories in NTU are two-person
interactions. Figure 14 also shows the confusion matrix of
training only with single-person, resulting in the confusion
of the interaction categories. Dropping the z component from
the translation further improves (second and third rows). We
also experiment with no translation if there is a single person,
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Fig. 10 Qualitative results for our optical flow estimation network trained on SURREACT, tested on the NTU dataset

Fig. 11 Qualitative results for our optical flow estimation network trained and tested on SURREACT, together with the ground truth

and xy translation only for the multi-person case (fourth row),
which has the best generalization performance. This is unin-
tuitive since some actions such as jumping are not realistic
when the vertical translation is not simulated. This indicates
that the translation estimations from the real data need further
improvement to be incorporated in the synthetic data. Our 3D
CNN is otherwise sensitive to the temporal jitter induced by
the noisy translations of the people.
Flow Estimation. We train our own optical flow estimation
CNN, which we use to compute the flow in an online fashion,
during action classification training. In other words, we do
not require pre-processing the videos for training. To do so,
we use a light-weight stacked hourglass architecture (Newell
et al. 2016) with two stacks. The input and output have 256×

256 and 64 × 64 spatial resolution, respectively. The input
consists of 2 consecutive RGB frames of a video, the output
is the downsampled optical flow ground truth. We train with
mean squared error between the estimated and ground truth
flow values. We obtain the ground truth from our synthetic
SURREACT dataset. Qualitative results of our optical flow
estimates can be seen in Figs. 10 and 11 on real and synthetic
images, respectively. When we compute the flow on-the-fly

for action recognition, we loop over the 16-frame RGB input
to compute the flow between every 2 frames and obtain 15-
frame flow field as input to the action classification network.
Training Details. We give additional details to Sect. 3.3 of the
main paper on the action classification training. We train our
networks for 50 epochs with an initial learning rate of 10−3

which is decreased twice with a factor of 10−1 at epochs
40 and 45, respectively. For NTU, UESTC, and (SURRE-
ACT project page) datasets, we spatially crop video frames
around the person bounding box with random augmentations
in scale and the center of the bounding box. For the Kinetics

dataset, we crop randomly with a bias towards the center.
We scale the RGB values between [0, 1] and jitter the color
channels with a multiplicative coefficient randomly gener-
ated between [0.8, 1.2] for each channel. We subtract 0.5
and clip the values between [−0.5, 0.5] before inputting to
the CNN.
NTU CVS Protocol. We provide Table 11 with the num-
ber of videos used for each NTU protocol, summarizing the
difference of our new CVS protocol from the official cross-
view (CV) and cross-subject (CS) splits. The CVS protocol
addresses two problems with the official splits: (1) while CV
uses same subjects across splits and CS uses same views
across splits, CVS uses different subjects and different views
between train and test; (2) our cross-view setup of train(0),
test(90) is much more challenging than train(0+90), test(45)
due to viewpoints being more distinct, especially a problem
with CV where the same subjects are used in train and test.

B Additional Analyses

We analyze further the synthetic-only training (Sect. B.1) and
synthetic+real training (Sect. B.2). We define a synthetic test
set and report the results of the models in the main paper also
on this test set. We present additional ablations. We report
the confusion matrix on the synthetic test set, as well as
on the real test set, which allows us to gain insights about
which action categories can be represented better syntheti-
cally. Finally, we explore the proposed non-uniform sampling
more in Sect. B.5.
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Table 11 Statistics of NTU
splits: The above table
summarizes the partition of the
dataset into views and subjects.
The below table provides the
number of videos we use for
each NTU protocol. *The
difference between these
numbers is because we filter out
some videos for which there
exist no synchronized camera, to
keep the number of test videos
same for each test view.
Similarly we use synchronized
cameras in training, therefore
slightly lower number of
training videos in CV (37344
instead of 37644=18889+18755)
and CS (39675 instead of
40089) but the test sets reflect
the official list of videos

0◦ 45◦ 90◦ Total

Train subjects 13386 13415 13288 40089

Test subjects 5503 5517 5467 16487

Total 18889 18932 18755 56576

0◦ 45◦ 90◦ Total

CS Train 13225 13225 13225 39675 Diff. sub., same view

Test 5503 5517 5467 16487*

CV Train 18672 – 18672 37344 Same sub., diff. view

Test – 18932 – 18932 (easy: 0+90 train, 45 test)

CVS Train 13225 – – 13225 Diff. sub., diff. view

Test 5447 5447 5447 16341* (challenging: 0 train, 90 test)

Table 12 The performance of
the view-augmented models
from Table 4 of the main paper
on the synthetic test set. We
train only with synthetic videos
obtained from 60 sequences per
action. We confirm that the
viewpoints should match also
for the synthetic test set. We
report the viewpoint breakdown,
as well as the average

Synth test views
0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 275◦ 315◦ Avg

0 81.7 41.7 10.0 43.3 40.0 30.0 10.0 50.0 38.3

45-315 58.3 65.0 36.7 53.3 43.3 48.3 50.0 66.7 52.7

90-270 15.0 35.0 61.7 23.3 13.3 35.0 56.7 33.3 34.2

All 8 78.3 73.3 61.7 68.3 73.3 75.0 65.0 71.7 70.8

B.1 Synthetic-Only Training

Here, we define a synthetic test set based on the NTU actions,
and perform additional ablations on our synthetic data such
as different input modalities beyond RGB and flow, effect
of backgrounds, effect of further camera augmentations, and
confusion matrix analysis.
Synthetic Test Set. Similar to SURREAL (Varol et al. 2017),
we separate the assets such as cloth textures, body shapes,
backgrounds into train and test splits, which allows us to
validate our experiments also on a synthetic test set. Here,
we use one sequence per action from the real 0◦ test set to
generate a small synthetic test set, i.e. 60 motion sequences in
total, rendered for the 8 viewpoints, using the test set assets.

We report the performance of our models from Tables 4
and 5 of the main paper on this set. Table 12 confirms that
the viewpoints should match between training and test for
best results. Augmenting with all 8 views benefits the overall
results. Table 13 presents the gains obtained by motion aug-
mentations on the synthetic test set. Both interpolations and
the additive noise improves over applying no augmentation.
Different Input Types. The advantage of having a synthetic
dataset is to be able to perform experiments with different
modalities. Specifically, we have ground-truth optical flow,

Table 13 The performance of the motion-augmented models from
Table 5 of the main paper on the synthetic test set. We train only with
synthetic videos obtained from 60 sequences per action. Both augmen-
tation approaches improve over the baseline

#Sequences Motion Synth
per action #Renders augmentation All

10 1 – 55.4

10 6 – 55.0

10 6 Interpolation 58.8

10 6 Additive noise 57.7

60 1 – 70.8

body-part segmentation for each video. We compare training
with these input modalities as opposed to RGB, or the esti-
mated flow in Table 14. We evaluate on the real NTU CSV
test set when applicable, and on the synthetic test set. We see
that even when ground truth, the optical flow performs worse
than RGB, indicating difficulty of distinguishing fine-grained
actions only with flow fields. Body-part segmentation on the
other hand, outperforms other modalities due to providing
precise locations for each body part and an abstraction which
reduces the gap between the training and test splits. In other
words, body-part segmentation is independent of clothing,
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Table 14 Different input types when training only with synthetic data
and testing on the synthetic test set, as well as the real NTU CVS test set
when applicable. The data is generated from 60 sequences per action.
The results indicate that body part segmentation can be an informative
representation for action classification. Optical flow, even when ground
truth (GT) is used, is less informative for fine-grained action classes in
NTU

Real Synth

Input type 0◦ 45◦ 90◦ All

Flow (Pred) 38.3 34.6 29.3 58.4

Flow (GT) – – – 61.2

RGB 48.3 44.3 38.8 70.8

Body-part segm (GT) – – – 71.7

Table 15 Effect of synthetic data backgrounds for synthetic-only train-
ing. Results are reported both on the real NTU CVS set and the synthetic
test set. The synthetic training is generated from 60 sequences per action.
Matching the target background statistics improves generalization to
real. See text for details

Real Synth

Backgrounds 0◦ 45◦ 90◦ All

Random LSUN 39.1 37.3 32.5 70.8

Random NTU 42.7 39.8 34.3 67.9

Fixed NTU 48.3 44.3 38.8 70.8

Table 16 Training on different versions of the synthetic data generated
from 10 sequences per action from the NTU CVS protocol. We ablate
the importance of augmentations of the camera height and distance.
We train only on synthetic and test on the real test set. We observe
improvements with randomized camera positions besides the azimuth
rotation

Camera height & distance 0◦ 45◦ 90◦

Fixed 28.5 27.2 23.0

Random 31.3 28.1 24.3

lighting, background effects, but only contains motion and
body shape information. This result highlights that we can
improve action recognition by improving body part segmen-
tation as in Zolfaghari et al. (2017).
Effect of Backgrounds. As explained in Sect. 3.2 of the
main paper, we use 2D background images from the tar-
get action recognition domain in our synthetic dataset. We
perform an experiment whether this helps on the NTU
CVS setup. The NTU dataset is recorded in a lab envi-
ronment, therefore has specific background statistics. We
train models by replacing the background pixels of our
synthetic videos randomly by LSUN (Varol et al. 2017;
Yu et al. 2015) images or the original NTU images out-
side the person bounding boxes. Table 15 summarizes the
results. Using random NTU backgrounds outperform using
random LSUN backgrounds. However, we note that the

process of using the segmentation mask creates some unre-
alistic artifacts around the person, which might contribute
to the performance degradation. We therefore use the fixed
backgrounds from the original renderings in the rest of the
experiments.
Effect of Camera Height/Distance Augmentations. As stated
in Sect. 3.2 of the main paper, we randomize the height and
the distance of the camera to increase the viewpoint diversity
within a certain azimuth rotation. We evaluate the importance
of this with a controlled experiment in Table 16. We render
two versions of the synthetic training set with 10 sequences
per action from 8 viewpoints. The first one has a fixed dis-
tance and height at 5 meters and 1 meter, respectively. In
the second one, we randomly sample from [4, 6] meters for
the distance, and [−1, 3] meters for the height. We see that
the generalization to real NTU CVS dataset is improved
with increased randomness in the synthetic training. Visu-
als corresponding to the pre-defined range can be found in
Fig. 12.
Confusion Matrices. We analyze two confusion matrices in
Fig. 13: training only on the synthetic data and (1) testing on
the synthetic test set; and (2) testing on the real NTU CVS
0◦ view test set. The confused classes are highlighted on the
figure. The confusions on both test sets suggest that the fine-
grained action classes require more precise body motions,
such as {clapping, rub two hands together}, and {reading,
writing}. Other confusions include object interaction cate-
gories (e.g. {put on a hat, brushing hair} and {typing on

a keyboard, writing}), which can be explained by the fact
that synthetic data does not simulate objects. These confu-
sions are mostly resolved when training with both real and
synthetic data.

B.2 Synthetic+Real Training

Amount of Additional Synthetic Data. In Fig. 7 of the main
paper, we plotted the performance against the amount of
action sequences in the training set for both synthetic and
real datasets. Here, we also report Synth+Real training per-
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Fig. 12 We illustrate the limits for the camera height and distance
parameters in SURREACT. We randomly sample between [-1, 3] and
[4, 6] meters for the height and distance, respectively
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Fig. 13 The confusion matrices for training only with the final synthetic data with all the 220 sequences per action. Both on the synthetic test
set (left) and the real 0◦ view test (right), the confusions are often between classes that are characterized by fine-grained body movements and
object-interaction classes

formance when the Real data is fixed and uses all the
action sequences available (i.e., 220 sequences per action),
and the Synth data is gradually increased. Table 17 sum-
marizes the results. Increasing the amount of synthetic
data improves the performance. The improvement can be
observed already at the challenging 90◦ view with as lit-
tle synthetic data as 10 sequences per action (57.2% vs
53.6%). Using all the motions shows the most benefit as
expected.
Synth+Real Training Strategies. In all our experiments, we
combine the training sets of synthetic and real data to train
jointly for both datasets, which we referred as Synth+Real.
Here, we investigate whether a different strategy, such as
using synthetic data as pre-training (as in Varol et al. (Varol
et al. 2017)), would be more effective. In Table 18, we present
several variations of training strategies. We conclude that our
Synth+Real, is simple yet effective, while marginal gains
can be obtained by continuing with fine-tuning only on Real
data.

B.3 Performance Breakdown for Object-Related
Actions

While the NTU dataset is mainly targeted for skeleton-based
action recognition, many actions involve object interactions.
In Table 19, we analyze the performance breakdown into
action categories with and without objects. We notice that
the object-related actions have lower performance than body-

Table 17 Amount of synthetic data addition: We experiment with
Synth+Real RGB training while changing the number of sequences per
action in the synthetic data and using all the real data. We conclude that
using all available motion sequences improves the performance over
taking a subset, confirming the importance of motion diversity. Results
are reported on the NTU CVS protocol

0◦ 45◦ 90◦

Real(220) 86.9 74.5 53.6

Synth(10) + Real(220) 85.5 74.7 57.2

Synth(30) + Real(220) 85.2 77.4 61.8

Synth(60) + Real(220) 87.6 78.7 62.2

Synth(100) + Real(220) 87.7 78.8 63.7

Synth(220) + Real(220) 89.1 82.0 67.1

only counterparts even when trained with Real data. The gap
is higher when only synthetic training is used since we sim-
ulate only humans, without objects.

B.4 Pretraining on Kinetics

Throughout the paper, the networks for NTU training are ran-
domly initialized (i.e., scratch). Here, we investigate whether
there is any gain from Kinetics (Kay et al. 2017) pretraining.
Table 20 summarizes the results. We refer to the table caption
for the interpretation.
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Table 18 Training strategies with Synthetic+Real: The bottom part of
this table presents additional results for different training strategies on
the NTU CVS protocol and the synthetic test set. The arrow A→B
denotes training first on A and then fine-tuning on B dataset. S and
R stand for Synthetic and Real, respectively. Pre-training only on one
dataset is suboptimal (last three rows). Our choice of training by mixing
S+R from scratch is simple yet effective. Marginal gains can be obtained
by continuing training only on Real data (S+R→R)

Real Synth
Training 0◦ 45◦ 90◦ All

S 54.0 49.5 42.7 70.4

R 86.9 74.5 53.6 18.1

S+R 89.1 82.0 67.1 71.0

S+R→R 89.9 81.9 67.5 73.1

S→R 84.1 77.5 66.2 65.6

S→S+R 81.6 75.1 63.6 73.3

R→S+R 84.3 75.1 59.9 56.7

Table 19 Object-related vs human-body actions: We report the perfor-
mance breakdown into 28 object-related and 32 human-body actions for
the NTU CVS protocol. In all three setups, Real, Synth, and Synth+Real,
human-body action categories have higher performance than object-
related categories

0◦ 45◦ 90◦

Real All actions 86.9 74.5 53.6

Human-body 88.3 75.8 58.3

Object-related 85.2 73.0 48.1

Synth All actions 58.1 52.8 45.3

Human-body 62.9 60.5 55.9

Object-related 52.4 43.9 33.0

Synth+Real All actions 89.7 82.0 69.0

Human-body 90.3 83.2 71.2

Object-related 89.1 80.5 66.3

B.5 Non-Uniform Frame Sampling

In this section, we explore the proposed frame sampling strat-
egy further.

First, we confirm that the benefits of non-uniform sam-
pling applies also to the flow stream. Since flow is estimated
online during training, we can compute flow between any two
frames. Note that the flow estimation method is learned on
2 consecutive frames, therefore it produces noisy estimates
for large displacements. However, even with this noise, in
Table 21, we demonstrate advantages of non-uniform sam-
pling over consecutive for the flow stream.

Next, we present our experiments about the testing modes
as mentioned in Sect. 3.3 of the main paper. Table 22 suggests
that the training and testing modes should be the same for
both uniform and non-uniform samplings. The convolutional
filters adapt to certain training statistics, which should be
preserved at test time.

Table 21 Frame sampling for the flow stream: Training and testing on
the real NTU CVS split. We confirm that the non-uniform sampling is
beneficial also for the flow stream even though the flow estimates can
be noisy between non-uniform frames

0◦ 45◦ 90◦

Flow [uniform] 80.6 68.3 44.7

Flow [non-uniform] 82.8 70.6 49.7

Table 22 Train/test modes: Training and testing on the real NTU CVS
split. The frame sampling mode should be the same at training and test
times

Test mode
Uniform Non-uniform
0◦ 45◦ 90◦ 0◦ 45◦ 90◦

Train uniform 83.9 67.9 42.9 27.5 20.6 13.8

Train non-uniform 32.1 21.1 12.4 86.9 74.5 53.6

Table 20 Effect of pretraining: We measure the effect of pretraining
with Kinetics (Kay et al. 2017) over random initialization (real setting
on the NTU CVS split). Interestingly, we do not observe improvements
when the RMSProp optimizer is used, whereas SGD can improve the

baselines from 53.6% to 55.4%. We note that this is still marginal com-
pared to the boost we gain from synthetic data (69.0% in Table 1).
Training only a linear layer on frozen features as opposed to end-to-end
(e2e) finetuning is also suboptimal

Uniform Non-uniform
Optimizer Pretraining 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

RMSProp Kinetics [linear] 42.5 33.3 27.2 48.1 37.7 31.1

Kinetics [e2e] 81.9 66.9 43.8 85.6 72.2 51.3

Scratch 83.9 67.9 42.9 86.9 74.5 53.6

SGD Kinetics [linear] 39.8 31.7 26.2 45.4 35.1 28.8

Kinetics [e2e] 89.4 69.8 40.5 91.9 78.9 55.4

Scratch 81.9 65.8 41.4 85.3 72.8 52.5

123



2284 International Journal of Computer Vision (2021) 129:2264–2287

Fig. 14 We render a version of the synthetic data with 10 sequences per
action, where we only insert a single person per video. When trained
with this data, the two-person interaction categories (last 11 classes)
are mostly misclassified on the real NTU CVS 0◦ view test data The
confusions suggest that it is important to model multi-person cases in
the synthetic data

Table 23 Frame order: Training and testing on the real NTU CVS split.
Preserving the order of frames in non-uniform sampling is important.
The confusion matrix in Fig. 15 shows that the mistakes are often among
‘symmetric’ action classes such as sitting up and standing up. Order-
aware models fail drastically when tested non-ordered, as expected

Test mode
Ordered Non-ordered
0◦ 45◦ 90◦ 0◦ 45◦ 90◦

Train ordered 86.9 74.5 53.6 16.4 13.1 8.1

Train non-ordered 67.2 50.2 32.8 72.7 57.8 37.2

We then investigate the importance of the frame order
when we randomly sample non-uniformly. We preserve the
temporal order in all our experiments, except in Table 23,
where we experiment with a shuffled order. In this case,
we observe a significant performance drop which can be
explained by the confusion matrix in Fig. 15. The action
classes such as wearing and taking off are heavily con-
fused when the order is not preserved. This experiment
allows detecting action categories that are temporally sym-

Fig. 15 We present the confusion matrix for the non-ordered training
explained in Table 23. The classes that require the temporal order to
be distinguished are confused as expected. The training and test is per-
formed on the real NTU CVS 0◦ view split

Table 24 Frame sampling alternatives: Training and testing on the real
NTU CVS split. We explore alternative random sampling schemes
besides uniform baseline (1) and the random non-uniform (5). (2)
applies a random frame rate similar to Zhu and Newsam (2018). How-
ever, (3) with a fixed frame rate of maximum temporal skip outperforms
the random fps, suggesting the importance of long-term span. (4) the
hybrid approach similar to Wang et al. (2016); Zolfaghari et al. (2018)
increases the data augmentation while ensuring long-term context. (5)
our fully random sampling maximizes the data augmentation. The
approaches (3)(4)(5) perform similarly outperforming (1)(2)

0◦ 45◦ 90◦

1. Uniform, random shift, original fps 83.9 67.9 42.9

2. Uniform, random shift, random fps 84.1 69.9 48.9

3. Uniform, random shift, with smallest fps 85.6 74.0 54.0

4. Hybrid (random within uniform segments) 85.3 73.9 54.3

5. Non-uniform random 86.9 74.5 53.6

metric (Price and Damen 2019). We also observe that the
ordered model fails when tested in non-ordered mode, which
indicates that the convolutional kernels become highly order-
aware.

Finally, we experiment with other frame sampling alter-
natives in Table 24. See the table caption for interpretation
of the results.
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