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The p21-activated kinases Ste20p and Cla4p carry out undefined functions that are essential for
viability during budding in Saccharomyces cerevisiae. To gain insight into the roles of Ste20p, we
have used a synthetic lethal mutant screen to identify additional genes that are required in the
absence of Cla4p. Altogether, we identified 65 genes, including genes with roles in cell polarity,
mitosis, and cell wall maintenance. Herein, we focus on a set that defines a function carried out
by Bni1p and several of its interacting proteins. We found that Bni1p and a group of proteins that
complex with Bni1p (Bud6p, Spa2p, and Pea2p) are essential in a cla4� mutant background. Bni1p,
Bud6p, Spa2, and Pea2p are members of a group of polarity determining proteins referred to as
the polarisome. Loss of polarisome proteins from a cla4� strain causes cells to form elongated
buds that have mislocalized septin rings. In contrast, other proteins that interact with or func-
tionally associate with Bni1p and have roles in nuclear migration and cytokinesis, including
Num1p and Hof1p, are not essential in the absence of Cla4p. Finally, we have found that Bni1p
is phosphorylated in vivo, and a substantial portion of this phosphorylation is dependent on
STE20. Together, these results suggest that one function of Ste20p may be to activate the
polarisome complex by phosphorylation of Bni1p.

INTRODUCTION

Yeast cells undergo polarized growth during budding and
other morphogenetic events in response to intracellular or
extracellular cues (Drubin and Nelson, 1996). Polarized cell
growth depends on assembly of a polarized actin cytoskel-
eton, which then directs transport of secretory vesicles con-
taining cell wall and plasma membrane components to the
site of growth (Novick and Botstein, 1985; Mulholland et al.,
1994; Ayscough et al., 1997; Pruyne et al., 1998). The p21
GTPase Cdc42p plays a critical role in the establishment of
subcellular polarity and the execution of subsequent apical
growth by regulating the actin cytoskeletion (Adams et al.,

1990; Johnson and Pringle, 1990; Ziman et al., 1993; Li et al.,
1995; Richman and Johnson, 2000). Cdc42p is also required
for septin ring function and for cytokinesis (Richman et al.,
1999; Toenjes et al., 1999). How Cdc42p orchestrates these
various activities is poorly understood, but some of its target
effectors have been identified. For example, Gic1p and Gic2p
can bind activated Cdc42p and are important for polariza-
tion of the actin cytoskeleton (Brown et al., 1997; Chen et al.,
1997). Two other identified effectors for Cdc42p are the
related p21-activated protein kinases, Cla4p and Ste20p,
both of which interact with activated Cdc42p and localize to
sites of polarized growth (Cvrckova et al., 1995; Peter et al.,
1996; Leberer et al., 1997; Holly and Blumer, 1999; Mosch et
al., 2001). Each kinase has unique roles in the cell. Ste20p
functions in pheromone response and haploid invasive
growth, whereas Cla4p promotes normal septin function
(Ramer and Davis, 1993; Roberts and Fink, 1994; Benton et
al., 1997; Tjandra et al., 1998; Gulli et al., 2000; Bose et al.,
2001). A cell lacking both kinases is inviable (Cvrckova et al.,
1995), demonstrating that Ste20p is essential in the absence
of Cla4p (and vice versa). One interpretation of this relation-
ship is that these two kinases share a function that is essen-
tial, though other interpretations are possible. Currently, the
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only proposed targets of Ste20p and Cla4p are the two
myosin I homologs Myo3p and Myo5p. Sites in Myo3p and
Myo5p are phosphorylated in vitro by Ste20p and are re-
quired for in vivo function (Wu et al., 1997). Myo3p and
Myo5p are required for actin patch assembly (Evangelista et
al., 2000; Geli et al., 2000; Lechler et al., 2000). However,
although an activated allele of Myo3p (MYO3S357D) can
rescue the polarity defects of myo3� myo5� mutants, this
mutant failed to compensate for the growth defects in ste20�
cla4� mutants, indicating that there are other targets of
Ste20p and Cla4p (Wu et al., 1997). To identify the target(s)
and function(s) regulated by Ste20p, we have carried out a
search for mutations that are synthetically lethal in a cla4�
mutant background with the expectation that the genes
identified would suggest the nature of the physiological
events that have been perturbed.

Herein, we present the results of two independent syn-
thetic lethal mutant screens. One screen was based on ran-
dom mutagenesis of the genome by using a red/white col-
ony sectoring assay (Kranz and Holm, 1990; Bender and
Pringle, 1991). The second screen used a yeast genome-wide
deletion set and evaluated the viability of cla4� paired with
4672 different viable deletion strains (Tong et al., 2001). From
the collection of genes defined by these screens, we chose a
subset for more detailed investigation. BNI1 is at the center
of this study and encodes a formin homology protein (Zah-
ner et al., 1996) that is required to assemble actin cables
(Evangelista et al., 2002; Sagot et al., 2002). These cables seem
to guide myosin motors that direct secretion, organelle and
mRNA inheritance, and mitotic spindle orientation, thereby
establishing cell polarity (Evangelista et al., 2002). Bni1p has
an intricate network of interactions involving a number of
different groups of proteins. One such group of proteins,
Bud6p, Spa2p, and Pea2p, complexes with Bni1p to form the
“polarisome,” which is involved in apical growth (Sheu et
al., 1998; Pruyne and Bretscher, 2000). We show that Bud6p,
Spa2p, and Pea2p are essential in a cla4� mutant (Evange-
lista et al., 1997; Fujiwara et al., 1998; Sheu et al., 2000).
Conversely, other proteins that interact with Bni1p, includ-
ing Hof1p and Num1p (involved in cytokinesis and nuclear
migration, respectively), are not essential in cells lacking
Cla4p (Kamei et al., 1998; Heil-Chapdelaine et al., 2000;
Vallen et al., 2000; Farkasovsky and Kuntzel, 2001). Finally,
we further show that Bni1p is a Ste20p-dependent phospho-
protein, suggesting that Bni1p’s function may be directly
regulated by Ste20p. Together, these results imply that
Ste20p may play an important role in activating the polari-
some.

MATERIALS AND METHODS

Growth Conditions, Plasmids, and Strains
Yeast and bacterial strains were propagated using standard meth-
ods (Sambrook et al., 1989; Rose et al., 1990). YEPD and SD media
were prepared as described previously (Rose et al., 1990). Yeast
transformations were performed using modifications of the LiOAc
method (Chen et al., 1992; Gietz et al., 1995). Bacterial transforma-
tions, DNA preparations, and plasmid constructions were per-
formed by standard methods (Sambrook et al., 1989). The plasmids
used in this study, YCpHIS3cla4-75, pY39tet1HA-BNI1 (p925), pcla4-
75-td, and pRS316ADE8CLA4 have been described elsewhere
(Cvrckova et al., 1995; Evangelista et al., 1997; Holly and Blumer,
1999; Mitchell and Sprague, 2001). To ensure that the version cla4-

75-td we were using was the same as the allele used in Holly and
Blumer (1999), we sequenced the pcla4-75-td and the cla4-75-td al-
leles rescued from our strains. We found that the cla4-75-td alleles
rescued from our strains were identical to that of the pcla4-75-td
from the Blumer laboratory. Strains that were used in this study are
listed in Table 1. Gene deletions were constructed by polymerase
chain reaction (PCR) (Baudin et al., 1993) by using either the pRS
(Sikorski and Hieter, 1989) or pFA6a (Longtine et al., 1998) plasmid
series as templates. In all cases, the entire coding region was re-
placed with the indicated marker, and successful replacement was
confirmed by PCR and phenotype when applicable. Single step gene
deletion plasmids for swe1::LEU2, spa2::URA3 (p210) and
pea2::URA3 (pNV44) were provided by I. Herskowitz and D. Lew
(Booher et al., 1993; Valtz and Herskowitz, 1996). We used
bni1::URA3 (p321), a single step gene deletion plasmid, to delete
BNI1 (Evangelista et al., 1997). 5-Fluoroorotic acid (5-FOA) (Biovec-
tra, Oxford, CT) was used to select for uracil auxotrophs. The
COOH-terminal deletion mutant bni1-CT�1 lacks the coding se-
quence for amino acids 1749–1953 of Bni1p (Lee et al., 1999). bni1-
CT�1 was created by amplification of the kanMX6 cassette from
pFA6a-kanMX6 together with sequences immediately flanking base
pairs 5247–5859 of BNI1 by using the forward primer 5�-ATAAAT-
GAATACAAAAAAGCTCAAGCGCAAAATCTAGCCTGAGGCG -
CGCCACTTCTAAA-3� and the reverse primer 5�-GTTTTGGTAT-
TACTGTTGTCATAATTTTTTGGTTTAATATTGAATTCGAGCTC-
GTTTAAAC-3� (the sequences flanking base pairs 5247–5859 of
BNI1 are underlined) (Longtine et al., 1998). The amplified fragment
was transformed into strains SY3357, SY3362, SY3380, and SY3764;
the transformants were plated on YEPD medium and incubated
overnight at 30°C. The lawn of cells was then replica-plated onto
YEPD containing 200 �g/ml G418/geneticin (Invitrogen, Carlsbad,
CA) to select stable G418-resistant transformants. The successful
creation of the deletion strain was confirmed by PCR, and the
protein function was verified in a bnr1� strain, in which Bni1p is
essential (our unpublished data) (Ozaki-Kuroda et al., 2001).

Synthetic Lethal Mutant Screens
Two independent methods were used to search for mutations that are
lethal in a cla4� background. Previously, we described the details of the
NCS screen by using the colony sectoring assay (Mitchell and Sprague,
2001). Synthetic genetic array analysis (SGA) was also used to identify
genes that were essential in a cla4� background as described in Tong et
al. (2001). Y2928 (MAT� cla4�::natR mfa1�::MFA1pr-HIS3 can1� ura3�
leu2� his3�1 lys2�) was created in two steps. First, CLA4 was deleted
from Y2454 by using PCR-based integration with primers (5�-TTTG-
GTGTAATAAATCGAACA GTGAAACTGAAACATAAAAGAAAT-
AGTGCAAAATGGAAACAGCTATG ACCATG-3� and 5�-AGAAAT-
ACATAAGATTGTAGTATGTATGATATGCTTATAGAAATAGTTGT-
GTGCTGTTGTAAAACGACGGCCAGT-3�), which annealed to URA3
and contained CLA4 sequences (underlined), to generate Y2851 (MAT�
cla4�::URA3 mfa1�::MFA1pr-HIS3 can1� ura3� leu2� his3�1 lys2�). Sec-
ond, cla4�::URA3 was switched to cla4�::natR by PCR-based integration
with primers (5�-AGTATTCTTAACCCAACTGCACAGAACAAA-
AACCTGCAGGAAACGAAGATAAATCATGACCACTCTTGACGA -
CACGG-3� and 5�-TTGAAGCTCTAATTTGTGAGTTTAGTATA-
CATGCATTTACTTATAATACAGTTTTCTAGGGGCAGGGCATGC-
TCAT-3�), which anneal to natMX4 DNA (Goldstein et al., 1999) and
contain URA3 sequences (underlined). We performed SGA on
cla4�::natR four times. A total of 100 potential positives were iden-
tified and 62 were confirmed by tetrad analysis.

Isolation of BNI1, BUD6, and Other NCS Genes
Wild-type NCS8 and NCS5 were identified as BNI1 and BUD6 by
complementation of ncs8-1 (SY3372) and ncs5-1 (SY3369) mutants,
respectively. For NCS8 isolation, 20,000 library transformants
yielded six complementing clones from a yeast genomic library
(ATCC no. 77162). An 8.6-kb region shared by all of them was

A.S. Goehring et al.
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Table 1. Yeast strains used in this study

Straina Genotype Source

SY3357 MATa leu2-�1 ura3-52 his3-�200 trp1-�63 ade8� ade2-101 mfa2-�1�FUS1-lacZ Mitchell and Sprague (2001)
SY3358 MAT� leu2-�1 ura3-52 his3-�200 lys2-801 trp1-�63 ade8� ade2-101 mfa2-�1�FUS1 lacZ Mitchell and Sprague (2001)
SY3362 SY3357 except cla4��TRP1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3364 SY3357 except cla4��TRP1 ncs1��LEU2 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3366 SY3357 except cla4��TRP1 ncs2-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3367 SY3357 except cla4��TRP1 ncs3-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3368 SY3357 except cla4��TRP1 ncs4-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3369 SY3357 except cla4��TRP1 ncs5-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3370 SY3357 except cla4��TRP1 ncs6-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3371 SY3357 except cla4��TRP1 ncs7-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3372 SY3357 except cla4��TRP1 ncs8-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3373 SY3357 except cla4��TRP1 ncs10-1 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3380 SY3357 except cla4��TRP1 (YCpHIS3cla4-75) Mitchell and Sprague (2001)
SY3403 SY3357 except cla4��TRP1 swe1�LEU2 ncs1��HIS3 (pRS316ADE8CLA4) Mitchell and Sprague (2001)
SY3756 SY3357 except cla4��TRP1 bni1��HIS3 (pRS316ADE8CLA4) This study
SY3757 SY3357 except cla4��TRP1 bud6��HIS3 (pRS316ADE8CLA4) This study
SY3758 SY3358 except cla4��TRP1 spa2�ura3 (pRS316ADE8CLA4) This study
SY3759 SY3357 except cla4��TRP1 pea2�ura3 (pRS316ADE8CLA4) This study
SY3760 SY3357 except cla4��TRP1 bni1�URA3 (YCpHIS3cla4-75) This study
SY3761 SY3357 except cla4��TRP1 bud6��URA3 (YCpHIS3cla4-75) This study
SY3762 SY3357 except cla4��TRP1 spa2�URA3 (YCpHIS3cla4-75) This study
SY3763 SY3357 except cla4��TRP1 pea2�URA3 (YCpHIS3cla4-75) This study
SY3764 SY3357 except cla4��TRP1 ste20��URA3 (YCpHIS3cla4-75) This study
SY3766 SY3357 except cla4��TRP1 swe1�LEU2 (pRS316ADE8CLA4) This study
SY3767 SY3357 except cla4��TRP1 ste20��TRP1 swe1�LEU2 (pRS316ADE8CLA4) This study
SY3768 SY3357 except cla4��TRP1 bni1�ura3 swe1�LEU2 (pRS316ADE8CLA4) This study
SY3769 SY3357 except cla4��TRP1 bud6��his3 swe1�LEU2 (pRS316ADE8CLA4) This study
SY3770 SY3358 except cla4��TRP1 spa2�ura3 swe1�LEU2 (pRS316ADE8CLA4) This study
SY3771 SY3357 except cla4��TRP1 pea2�ura3 swe1�LEU2 (pRS316ADE8CLA4) This study
SY3772 SY3357 except cla4��TRP1 swe1�LEU2 (YCpHIS3cla4-75) This study
SY3773 SY3357 except cla4��TRP1 ste20��URA3 swe1�LEU2 (YCpHIS3cla4-75) This study
SY3774 SY3357 except cla4��TRP1 bni1�ura3 swe1�LEU2 (YCpHIS3cla4-75) This study
SY3775 SY3357 except cla4��TRP1 bud6��ura3 swe1�LEU2 (YCpHIS3cla4-75) This study
SY3776 SY3357 except cla4��TRP1 spa2�ura3 swe1�LEU2 (YCpHIS3cla4-75) This study
SY3777 SY3357 except cla4��TRP1 pea2�ura3 swe1�LEU2 (YCpHIS3cla4-75) This study
SY3778 SY3358 except bni1�HIS3 This study
SY3779 SY3358 except bni1�HIS3 (pY39tet1HA-BNI1) This study
SY3780 SY3358 except ste20��TRP1 bni1�HIS3 (pY39tet1HA-BNI1) This study
SY3781 SY3357 except cla4��TRP1 ste20��TRP1 bni1�ura3 (YCpHIS3cla4-75) This study
SY3782 SY3357 except cla4��TRP1 ste20��kanMX6 bud6��ura3 (YCpHIS3cla4-75) This study
SY3783 SY3357 except cla4��TRP1 ste20��kanMX6 spa2�ura3 (YCpHIS3cla4-75) This study
SY3784 SY3357 except cla4��TRP1 ste20��kanMX6 pea2�ura3 (YCpHIS3cla4-75) This study
SY3785 SY3358 except bni1-CT�1�kanMX6 This study
SY3786 SY3357 except cla4��TRP1 bni1-CT�1�kanMX6 (pRS316ADE8CLA4) This study
SY3787 SY3357 except cla4��TRP1 ste20��TRP1 bni1-CT�1�kanMX6 (pRS316ADE8CLA4) This study
SY3788 SY3357 except cla4��TRP1 bni1-CT�1�kanMX6 (YCpHIS3cla4-75) This study
SY3789 SY3357 except cla4��TRP1 ste20��TRP1 bni1-CT�1�kanMX6 (YCpHIS3cla4-75) This study
SY3790 SY3357 except cla4��TRP1 URA3�cla4-75-td This study
SY3791 SY3357 except cla4��TRP1 bni1�HIS3 URA3�cla4-75-td This study
SY3792 SY3357 except cla4��TRP1 bud6��ura3 URA3�cla4-75-td This study
SY3793 SY3357 except cla4��TRP1 spa2�ura3 URA3�cla4-75-td This study
SY3794 SY3357 except cla4��TRP1 pea2�ura3 URA3�cla4-75-td This study
SY3795 SY3357 except cla4��TRP1 ste20��TRP1 URA3�cla4-75-td This study
DY759 cry1 ade2-101(am) his3-11 leu2-3,112 ura3-1 Weiss et al. (2000)
DY2060 DY759 except cla4��LEU2 ste20��KanMX URA3�cla4-75-td Weiss et al. (2000)
Y2454 MAT� mfa1��MFA1pr-HIS3 can1� ura3� leu2� his3�1 lys2� This study
Y2851 Y2454 except cla4��URA3 This study
Y2928 Y2851 except cla4��natR This study

a All are derivatives S288C except DY759 and DY2060 (W303 derivatives).
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sequenced and found to include BNI1. NCS8 was shown to be BNI1
by deletion and linkage analysis (see below). For BUD6, two clones
complementing ncs5-1 were found among 8000 library transfor-
mants. An 8-kb fragment shared by both complementing plasmids
was sequenced. Deletion and subcloning analysis identified BUD6
as the complementing gene. To isolate NCS2, strain SY3366, which
harbors an ncs2 mutation, was transformed with a high copy YEp13
based library (ATCC no. 37323), yielding six complementing clones
in 6000 transformants. A 2-kb fragment containing two overlapping
open reading frames (ORFs) shared by all complementing plasmids
was sequenced. Deletion analysis identified YNL119w/YNL120c as
the complementing ORF(s). For NCS3 isolation, 7000 library trans-
formants yielded six complementing clones from a high copy
YEp13-based library. A 3.6-kb fragment containing three ORFs
shared by all complementing plasmids was sequenced. Deletion
and subcloning analysis identified UBA4 as the complementing
gene. Because ncs4 mutants had a strong mating defect, it seemed
reasonable that members of this complementation group could con-
tain mutations in STE20. Indeed, we found that STE20 on a plasmid
complemented these mutants. In the case of NCS6, transformation
of SY3370 with yeast genomic library (ATCC no. 77162) yielded two
complementing clones from 9000 transformants. A 6.8-kb fragment
containing six ORFs shared by all complementing plasmids was
sequenced. Deletion and subcloning analysis identified YGL211w as
the ORF containing the complementing gene. In the case of NCS10,
16,000 transformants of a yeast genomic library yielded 16 comple-
menting clones. A 4.6-kb fragment containing three ORFs shared by
all complementing plasmids was sequenced. Deletion and subclon-
ing analysis identified ELP2 as the complementing gene.

Linkage analysis was performed to verify that the cloned genes
represented wild-type versions of the mutant alleles. A HIS3 marker
was introduced at the locus of interest in a diploid homozygous for
the cla4 mutation and heterozygous for the NCS gene of interest.
The strain carried plasmid-borne CLA4 so that segregation of the ncs
mutation in tetrads could be scored. After sporulation of the marked
strains, the Ncs� phenotype cosegregated with the HIS3 marker in
at least 22 tetrads.

Microscopy
Standard microscopic techniques were used, and cells were exam-
ined using an Axioplan 2 fluorescence microscope (Carl Zeiss,
Thornwood, NY) fitted with an Orca 100 digital camera
(Hamamatsu, Bridgewater, NJ). Methods for staining with rhoda-
mine-phalloidin (Molecular Probes, Eugene, OR) to visualize F-actin
was performed essentially as described previously (Pringle et al.,
1989). All assays were performed in triplicate. Indirect immunoflu-
orescence was performed to visualize the septins by using an
�-Cdc3p antibody (a generous gift from John Pringle) (Roberts et al.,
1991). Cells were grown in YEPD at 30°C to 0.7 OD600/ml before
fixation. Strains containing plasmids were grown first in selective
medium, transferred to YEPD, and then grown for 3–4 h at 37°C.
Cells were fixed by adding a final concentration of 3.7% formalde-
hyde to the culture medium for 1 h. The cells were pelleted by
centrifugation, resuspended in 4% paraformaldehyde (final concen-
tration) in 50 mM KPO4, pH 6.5, and incubated for 18 h at room
temperature. The fixed cells were then spheroplasted and perme-
abilized with 5% SDS for 5 min. Antibody incubations were carried
out for 1 h at 22°C. The secondary antibody used was Alexa (A594)-
conjugated goat anti-rabbit antibody (Molecular Probes).

Mating and Invasive Growth Assays
Quantitative mating assays were done using strain 227 as a tester
(Sprague, 1991). For invasive growth assays, cells were transformed
with YEplac181-FLO8 to allow the S288c background to manifest the
switch from the yeast form to the filamentous form (Gagiano et al.,
1999). YEplac181-FLO8 was a generous gift from Isak S. Pretorius
(Stellenbosch University, Stellenbosch, South Africa). The plate

washing assay was performed as previously described (Roberts and
Fink, 1994).

In Vivo Labeling
To label with 32Pi, cultures of yeast strains SY3778, SY3779, and
SY3780 were pregrown overnight in synthetic medium lacking
leucine. Cells were washed once with phosphate-depleted medium
(Rubin, 1975) and transferred into phosphate-depleted medium at
an OD600 of 0.2 and grown to an OD600 of 0.5. For labeling with 32Pi,
50 ml of culture was harvested, the pellet was suspended in 15 ml
of phosphate-depleted medium, and 1 mCi of 32PO4 (ICN Pharma-
ceuticals, Costa Mesa, CA) was added. After labeling for 45 min, 10
mM sodium azide was added to the cultures and cells were har-
vested. Cells were spheroplasted as described previously (Graham
et al., 1998). Frozen spheroplasts were resuspended in lysis buffer
(50 mM Tris, pH 8.0, 1% NP-40, 50 mM NaCl, 1 mM EDTA)
containing a mixture of protease inhibitors (1 mM phenylmethane-
sulfonyl fluoride, 1 �g/ml leupeptin, 1 �g/ml pepstatin A, 1 �g/ml
mg/ml aprotinin [all from Sigma-Aldrich, St. Louis, MO] and one
tablet of Roche Diagnostics protease inhibitor mixture Complete/25
ml) and phosphatase inhibitors (5 mM sodium pyrophosphate, 0.1
mM sodium metavanadate, 50 mMNaF; all from Sigma-Aldrich).
The spheroplasts were incubated in lysis buffer for 15 min at 4°C
and unlysed cells were removed by centrifugation at 13,000 � g for
2 min. A total of 0.5 ml of lysate was precleared with 50 �l of protein
A-Sepharose beads and bovine serum albumin (1 mg/ml). Bni1p
was immunoprecipitated from these extracts with 3 �l of rabbit
anti-hemagglutinin (HA) antiserum (a kind gift from T. Stevens,
Institute of Molecular Biology, University of Oregon) for 30 min at
4°C, after which 50 �l of protein A-Sepharose beads was added and
incubation continued for another 30 min at 4°C. These pellets were
then washed four times with lysis buffer, boiled in 1% SDS before
the addition of 9 volumes of lysis buffer, and the immunoprecipi-
tation was repeated. These pellets were washed four times in lysis
buffer, resuspended in 30 �l of sample buffer, and the entire sample
was run on a 6% SDS-PAGE gel, transferred to nitrocellulose, and
visualized on a Storm PhosphorImager. Immunoprecipitated Bni1p
was also detected by Western blot analysis with an anti-HA mono-
clonal antibody followed by a horseradish peroxidase-labeled anti-
mouse secondary antibody. Blots were developed with ECLplus
(Amersham Biosciences, Piscataway, NJ), visualized by chemilumi-
nescence, and quantified by chemifluorescence on a Storm Phospho-
rImager (Invitrogen, Sunnyvale, CA) with a wavelength of 450 nm.

RESULTS

Identification of BNI1 and BUD6 by Synthetic
Lethal Interactions with a cla4 Null Mutation
In an effort to identify activators and targets of Ste20p, we
screened for mutations that are lethal in combination with a
cla4 null mutation by using two independent methods. The
first method used a random mutagenesis of the genome and
identified synthetic lethal mutations via a red/white colony
sectoring assay (Table 2). Such a screen can be expected to
identify two classes of genes: 1) genes that encode upstream
activators and downstream effectors of STE20, and 2) genes
that share a function with CLA4 that is independent of
STE20. Previously, we described the isolation of NCS1
(Needs CLA4 to Survive), which falls into the second class
(Mitchell and Sprague, 2001). NCS1/RRD1 was unique
among NCS genes in that ncs1� mutants were not defective
for any known STE20 function. NCS1 is a phosphotyrosyl
phosphatase activator that may share a function with CLA4
required at the G2/M phase transition (Mitchell and
Sprague, 2001).
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The screen also yielded complementation groups that ex-
hibited some ste20� phenotypes; in many cases, a defect in
haploid invasive growth and in some cases a partial defect in
mating as well. As described in MATERIALS AND METH-
ODS, molecular cloning identified the genes corresponding
to these complementation groups (Table 2). In this study, we
chose to concentrate on NCS8/BNI1, both because it is re-
quired for efficient mating and because a second comple-
mentation group, NCS5/BUD6, encodes a protein known to
interact with Bni1p (Evangelista et al., 1997). Bni1p (Bud
neck involved protein) is a formin homology protein that
interacts with a large number of proteins and has many
functions attributed to it. These functions include roles in
bipolar bud site selection in diploids, cell polarity, cytokine-
sis, and spindle alignment during nuclear migration and
may all stem from its role in actin cable assembly (Zahner et
al., 1996; Lee et al., 1999; Miller et al., 1999; Sheu et al., 2000;
Vallen et al., 2000; Evangelista et al., 2002). We therefore
sought to establish which Bni1p functions were essential in
a cla4� background and whether Bni1p has a specific link to
Ste20p. To this end, we asked whether the loss of other
proteins that interact with Bni1p or function in the same
processes as Bni1p was lethal in a cla4� background. Some
of these new double mutants were constructed by transfor-
mation with the appropriate gene disruption followed by a
genetic cross. Other double mutants were created in the
second synthetic lethal screen, which used a systematic
method, known as SGA analysis, to construct double mu-
tants (Tong et al., 2001). This screen used a genome-wide
deletion set and evaluated the viability of cla4� paired with
deletion of 4672 open reading frames. The results of this
screen can be viewed in Figure 1 and in Supplementary
Table 1. The two approaches, random mutagenesis coupled
with subsequent directed double mutant construction and
the use of the genome-wide deletion set, were complemen-
tary. Each identified some unique genes and in cases where
the same gene was investigated, the two approaches gave
congruent results. The SGA analysis provides a global view
of the proteins that become essential in the absence of Cla4p.
Such proteins include ones involved in apical growth, bud
emergence, cytokinesis, mitosis, and cell wall maintenance.
However, although the SGA method enabled us to perform
a more complete synthetic lethal analysis, three of the nine

complementation groups identified in the random mutagen-
esis were not identified by the SGA method.

Polarisome Components Are Essential in a cla4�
Background
As noted above, loss of either BNI1 or BUD6 is lethal in a
cla4� strain. Each gene is involved in cell polarity establish-
ment and in bipolar budding (Zahner et al., 1996; Evangelista
et al., 1997; Sheu et al., 2000). Moreover, Bni1p and Bud6p
have been shown to interact by two-hybrid analysis (Evan-
gelista et al., 1997). We also found that loss of Spa2p, another
protein that interacts with Bni1p (Fujiwara et al., 1998), is
essential in a cla4� mutant background. These three pro-
teins, together with a fourth protein Pea2p, form a 12S
complex termed the polarisome that has been suggested to
promote polarized morphogenesis (Sheu et al., 1998; Pruyne
and Bretscher, 2000). We found that Pea2p is likewise essen-
tial in a cla4� strain.

To examine the terminal phenotype of cla4� mutants lack-
ing polarisome function, we used a plasmid-borne thermo-
sensitive allele of CLA4 (YCpHIS3cla4-75). A striking pheno-
type of ste20� cla4� YCpHIS3cla4-75 mutants is the
mislocalization of the septin ring (Cvrckova et al., 1995). We
therefore examined septin localization in bni1� cla4�
YCpHIS3cla4-75 and in other polarisome cla4� double mu-
tants. The septin phenotype of bni1� cla4� YCpHIS3cla4-75
mutants at the restrictive temperature resembled that of
ste20� cla4� YCpHIS3cla4-75 mutants. The septin ring was
formed at the proper time and location. However, as the bud
began to grow, the septin ring frequently localized at the tip
of the misshapened bud rather than remaining at the bud
neck (Figure 2). These results imply that new growth is on
the mother side of the neck rather than the bud side. Similar
phenotypes were observed with bud6� cla4� YCpHIS3cla4-
75, spa2� cla4� YCpHIS3cla4-75, and pea2� cla4�
YCpHIS3cla4-75 mutants (Figure 2). Other aspects of the
polarisome cla4 double mutants will be discussed below.

To corroborate the results observed using strains harbor-
ing YCpHIS3cla4–75, we also used strains expressing an
integrated cla4–75-ts degron construct (cla4–75-td). This ver-
sion of Cla4p is reported to be degraded rapidly following a
shift to the restrictive temperature (Holly and Blumer, 1999);

Table 2. NCS mutants

Complementation
group Gene or ORF Isolates

swe1�
Overcomes
synthetic
lethality Invasive growth Mating competency

NCS1 RRD1 1 Yes No defect WT
NCS2 YNL119w/YNL120c 6 Yes Defect WT
NCS3 UBA4 6 Yes Defect WT
NCS4 STE20 4 No Defect 1000 fold lower than wild type
NCS5 BUD6 2 No Defect N/D
NCS6 YGL211w 3 N/D Defect N/D
NCS7 N/D 2 Yes Defect WT
NCS8 BNI1 5 No Defect �3-fold lower than wild type
NCS10 ELP2 2 Yes Defect WT

N/D, not determined; WT, wild type.
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note, however, that wild-type Cla4p and Cla4–75p are also
degraded rapidly at 37°C (Figure 3B). The phenotype of
bni1� cla4� cla4–75-td mutants at the restrictive temperature
recapitulated that of cells carrying YCpHIS3cla4–75: the sep-
tin ring was mislocalized to the tip of the bud (Figure 3A).
Together, these results indicate that the polarisome is essen-
tial in the absence of Cla4p and further suggest that Ste20p
may activate the polarisome.

Bni1p Is Phosphorylated In Vivo and
Phosphorylation Is Partially Dependent on STE20
Because Bni1p and Ste20p colocalize to the bud tip in a
Cdc42p-dependent manner (Peter et al., 1996; Leberer et
al., 1997; Ozaki-Kuroda et al., 2001) and show similar
genetic interactions with CLA4, it seemed plausible that
Bni1p and Ste20p might physically interact and that this
interaction would be necessary for the essential activity
that Bni1p has in the absence Cla4p. To investigate this
possibility, we created two-hybrid constructs of full-
length, N-terminal, and C-terminal fusions of Ste20p and
Bni1p but were unable to detect an interaction. We also
failed to detect an interaction using coimmunoprecipita-
tion under a variety of assay conditions. Moreover, the

proper localization of Bni1p or Ste20p to the bud tip did
not require the presence of the other protein (our unpub-
lished data).

Although we were unable to detect a physical interaction
between Ste20p and Bni1p by using the methods described,
we considered the possibility that the interaction is transient.
In particular, because Ste20p is a protein kinase we asked
whether Bni1p is a Ste20p-dependent phosphoprotein. A
culture of cells expressing HA-tagged Bni1p was labeled
with 32Pi, Bni1p was immunoprecipitated from the labeled
extracts with the HA antibody, and radiolabeled proteins in
the immune complexes were visualized by a Phosphor-
Imager and subsequent immunoblot analysis. Bni1p is in-
deed a phosphoprotein (Figure 4). Moreover, in cells lacking
Ste20p, the amount of phosphorylated Bni1p was twofold
less than that found in wild-type cells, suggesting that a
substantial portion of Bni1p phosphorylation is dependent
on Ste20p in vivo (Figure 4).

Septin Ring Mislocalization Is Not the Cause of
Lethality in a bni1� cla4� Cells
Cells lacking CLA4 exhibit a bud morphology that suggests
a defect in the apical-to-isotrophic bud transition that occurs

Figure 1. Genetic interaction
network of the synthetic lethal in-
teractions identified by the SGA
analysis. The genes that are essen-
tial or required for normal growth
rate in a cla4� are represented as
nodes. Each node is color coordi-
nated according to the functional
classification of the gene accord-
ing to YPD (Hodges et al., 1999;
Costanzo et al., 2001). For genes
that have multiple roles assigned
to them, we chose the function
that we considered most probable
based on a review of published
abstracts for the gene of interest.
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in the G2 phase of the cell cycle. This phenotype is reminis-
cent of the phenotype conferred by misregulation of Cdc28p
kinase activity (Lew and Reed, 1995a,b; McMillan et al., 1998;

Richman et al., 1999). Indeed, we showed previously that
deletion of SWE1, which encodes a protein kinase thought to
be part of a morphogenetic checkpoint that negatively reg-

Figure 2. Morphological pheno-
types of bni1� cla4�, spa2� cla4�,
pea2� cla4�, and bud6� cla4� car-
rying YCpHIS3cla4-75. (A) Expo-
nential cultures of haploid strains
SY3380 (cla4�), SY3760 (bni1�
cla4�), SY3761 (bud6� cla4�),
SY3762 (spa2� cla4�), SY3763
(pea2� cla4�), and SY3764 (ste20�
cla4�) carrying YCpHIS3cla4-75
were grown at 25°C in YEPD,
shifted to 37°C for 4 h, fixed, and
stained for Cdc3p. (B) Quanita-
tion of Cdc3p mislocalization. For
each strain, 250 cells were
counted in three independent ex-
periments. (C) Immunoblot anal-
ysis by using anti-Cla4p antibod-
ies. Lysates of haploid strains
SY3357 (WT; lane 1), SY3380 (cla4�;
lane 2) SY3764 (ste20� cla4�; lane
3), SY3760 (bni1� cla4�; lane4), and
SY3761 (bud6� cla4�; lane 5) carry-
ing YCpHIS3cla4-75 were analyzed
by SDS-PAGE and immunoblot
analysis by using affinity purified
polyclonal anti-Cla4p antibodies
(provided by D. Kellogg, Depart-
ment of Molecular, Cellular, and
Developmental Biology, University
of California, Santa Cruz) and
monoclonal antibodies to Dpm1p
(to confirm equal protein loading).
The band corresponding to wild-
type Cla4p and Cla4-75p are indi-
cated. All strains expressed similar
amounts of Cla4-75p.
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ulates Clb1,2p-Cdc28p activity, restores normal bud mor-
phology in cla4� mutants (Longtine et al., 2000; Weiss et al.,
2000; Mitchell and Sprague, 2001). By bypassing this mor-
phogenetic checkpoint with swe1�, we were able to class the
NCS genes into two groups, an NCS1-related group and an
STE20-related group. Loss of SWE1 restores normal bud
morphology and overcomes the synthetic lethality of ncs1�
cla4� YCpHIS3cla4-75 cells. In the case of ste20� cla4�
YCpHIS3cla4-75 cells, however, loss of SWE1 restores the
localization of the septin ring to the mother bud junction but
does not restore viability (Mitchell and Sprague, 2001). To
test whether BNI1 is in the NCS1 group or the STE20 group,

we deleted SWE1 in bni1� cla4� YCpHIS3cla4-75 cells. The
loss of SWE1 from bni1� cla4� YCpHIS3cla4-75 yielded a
phenotype similar to that of swe1� ste20� cla4�
YCpHIS3cla4-75 cells (Figure 5), suggesting that septin ring
mislocalization is not the cause of lethality. Furthermore,
this result suggests that BNI1 may facilitate or orchestrate
some STE20 functions. Similar results were obtained when
SWE1 was deleted from pea2� cla4�, spa2� cla4�, and bud6�
cla4� cells carrying YCpHIS3cla4-75 (Figure 5). Moreover,
these polarisome genes constitute a group distinct from
other NCS genes based on their genetic interactions with
SWE1 (Table 2).

Figure 3. Morphological pheno-
types of bni1� cla4� cla4-75-td,
spa2� cla4� cla4-75-td, pea2� cla4�
cla4-75-td, and bud6� cla4� cla4-
75-td. (A) Exponential cultures of
haploid strains SY3790 (cla4� cla4-
75-td), SY3791 (bni1� cla4� cla4-
75-td), SY3792 (bud6� cla4� cla4-75-
td), SY3793 (spa2� cla4� cla4-75-td),
SY3794 (pea2� cla4� cla4-75-td), and
SY3795 (ste20� cla4� cla4-75-td)
were grown at 25°C in YEPD,
shifted to 37°C for 4 h, fixed, and
stained for Cdc3p. (B) Immunoblot
analysis using anti-Cla4p antibod-
ies. Lysates of haploid strains
SY3357 (WT; lane 1), SY3790 (cla4�
cla4-75-td; lane 2), SY3795 (ste20�
cla4� cla4-75-td; lane 3), DY759
(WT; lane4) and DY2060 (ste20�
cla4� cla4-75-td; lane 5), SY3380
(cla4� YCpHIS3cla4-75; lane 6), and
SY3764 (ste20� cla4� YCpHIS3cla4-
75; lane 7), were grown at 25°C in
YEPD, shifted to 37°C for 1 h, and
analyzed by SDS-PAGE and immu-
noblot analysis by using affinity
purified polyclonal anti-Cla4p anti-
bodies (provided by D. Kellogg)
and monoclonal antibodies to
Dpm1p (to confirm equal protein
loading). The position of wild-type
Cla4p, Cla4-75p, and Cla4-75p[td]
are indicated. In lanes 2, 3 and 5, a
degradation product of Cla4-
75p[td] is visible at 25°C. Lanes 6
and 7 are a darker exposure than
lanes 1–5. As previously reported,
at 37°C, there is residual Cla4-
75p[td] protein present (Holly and
Blumer, 1999; Weiss et al., 2000).
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Not All Proteins Involved in Bipolar Budding
Pattern Are Essential in cla4� Cells
Recent studies have shown that some mutants defective for
bipolar budding pattern selection also show a defect in
apical growth and that lengthening the apical growth phase
enhances the accuracy of bud site selection (Sheu et al., 2000).
Ste20p, Bni1p, Pea2p, Spa2p, and Bud6p have been impli-
cated in apical growth and also have roles in bipolar bud site
selection (Snyder, 1989; Valtz and Herskowitz, 1996; Zahner
et al., 1996; Evangelista et al., 1997; Sheu et al., 2000). To
ascertain whether there is a specific connection between
their roles in bipolar budding and the essential function they
have in the absence of Cla4p, we looked for genetic interac-
tions between CLA4 and other components of the bipolar
bud site machinery. Loss of BUD8 was not synthetically
lethal with cla4� (Figure 1 and Supplementary Table 1). In
addition, the SGA screen showed that the loss of other genes
that affect the budding pattern in diploids, such as BUD9,
BUD14, BUD16-32 was not synthetically lethal with cla4�.
These results suggest the roles of Bni1p, Spa2p, Pea2p, and
Bud6p in bipolar budding pattern are not essential in the
absence of Cla4p.

Roles of Bni1p in Spindle Alignment during Nuclear
Migration and Cytokinesis Are Not Essential in
cla4� Cells
In addition to its roles in bipolar budding pattern and apical
growth, Bni1p has a role in cytokinesis. Other proteins im-
portant for cytokinesis that function with Bni1p are Myo1p,
Hof1p, and Bnr1p, a formin homology protein related to
Bni1p (Bi et al., 2000). Based on synthetic lethal interactions,
BNI1 and MYO1 are believed to be in one functional path-
way, whereas HOF1 and BNR1 are in another. Loss of BNI1
is synthetically lethal with bnr1� and with hof1�. However,
none of these genes (except BNI1) is essential in a cla4�
background (our unpublished data). Based on these results,
the role of Bni1p in actomyosin contraction during cytoki-
nesis is not essential in the absence of Cla4p.

Bni1p has also been shown to play a role in positioning the
mitotic spindle during nuclear migration (Lee et al., 1999;
Miller et al., 1999). We investigated whether the genetic
interactions between BNI1 and CLA4 are related to the role
of BNI1 in nuclear migration by looking for genetic interac-
tions with KIP3. Kip3p is a kinesin-related protein hypoth-
esized to function with Bni1p to organize and position the
mitotic spindle. Loss of KIP3 was not synthetically lethal
with cla4� (our unpublished data). Furthermore, the loss of
NUM1, which encodes a protein that controls interaction of
bud-neck cytoskeleton with the nucleus in G2 and also in-
teracts with Bni1p, was not synthetically lethal with cla4�
(our unpublished data).

Bni1p Has Roles Distinct from Spa2p, Pea2p,
Bud6p, and Ste20p in cla4� Cells
To gain more insight into the role of Bni1p in cla4� cells, we
examined the terminal phenotype of bni1� cla4�
YCpHIS3cla4-75 mutants in more detail. With respect to the
septin ring localization, the terminal phenotype of bni1�
cla4� YCpHIS3cla4-75 cells was similar to ste20� cla4�
YCpHIS3cla4-75 cells, but with respect to other phenotypes,
the two phenotypes were distinct. bni1� cla4�
YCpHIS3cla4-75 cells have both wider bud necks and defects
in actin localization compared with ste20� cla4�
YCpHIS3cla4-75 at the restrictive temperature (Figure 6). In
particular, bni1� cla4� YCpHIS3cla4-75 mutants had no vis-
ible actin cables and only 6% of the cells had organized
patches of actin at the tip of the bud. In contrast, cla4� single
mutants had no observable defects in actin polarization and
only 38% of bni1� single mutant cells had defects in actin
polarization (Figure 6). Thus, it seems that Bni1p is more
critical for actin organization in the absence of Cla4p than in
wild-type cells, suggesting that Cla4p may also participate
in actin organization but that its role in this process is
functionally redundant with that of Bni1p.

As previously reported, actin polarization in ste20� cla4�
YCpHIS3cla4-75 cells was indistinguishable from that in
cla4� mutants, with actin cables traversing from mother to
bud and actin patches localized toward the bud tip
(Cvrckova et al., 1995). Likewise, spa2� cla4� and pea2� cla4�
mutants carrying the YCpHIS3cla4-75 construct did not
seem to have defects in actin organization compared with
wild-type cells or ste20� cla4� YCpHIS3cla4-75 mutants (Fig-
ure 6). bud6� cla4� YCpHIS3cla4-75 mutants had some no-
ticeable actin defects with fewer actin cables and polarized

Figure 4. Bni1p is a phosphoprotein. Cultures of SY3779 (bni1�)
and SY3780 (bni1� ste20�) carrying pY39tet1HA-BNI1 and SY3778
(bni1�) were incubated with 1 mCi of 32PO4. Rabbit anti-HA anti-
body was used for immunoprecipitation and an anti-HA monoclo-
nal antibody was used for immunoblot analysis. The relative
amount of phospho-Bni1p, normalized to total Bni1p, is indicated
below each lane.
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Figure 5. Loss of SWE1 in
bni1� cla4� restores septin
ring localization to the moth-
er-bud junction. (A) Strains
SY3766 (cla4� swe1�), SY3403
(ncs1� cla4� swe1�), SY3767
(ste20� cla4� swe1�), SY3768
(bni1� cla4� swe1�), SY3769
(bud6� cla4� swe1�), SY3770
(spa2� cla4� swe1�), and
SY3771 (pea2� cla4� swe1�)
carrying pRS316ADE8CLA4
were grown to midlog in
YEPD at 30°C. A serial dilu-
tion (1/10) was performed
starting with 10,000 cells.
Cells were spotted onto ei-
ther YEPD (left) or 5-FOA
(right) and grown 3 d at
30°C. (B) Exponential cul-
tures of haploid strains
SY3772 (cla4� swe1�), SY3773
(ste20� cla4� swe1�), SY3774
(bni1� cla4� swe1�), SY3775
(bud6� cla4� swe1�), SY3776
(spa2� cla4� swe1�), and
SY3777 (pea2� cla4� swe1�)
carrying YCpHIS3cla4-75
were grown at 25°C in YEPD,
shifted to 37°C for 4 h, fixed,
and stained for Cdc3p. (C)
Quantitation of Cdc3p mislo-
calization. For each strain 250
cells were counted in three
independent experiments.
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actin patches, yet the defects were not as severe as those of
bni1� cla4� YCpHIS3cla4-75 mutants (Figure 6). Thus, dele-
tion of polarisome genes in cla4� cells leads to two broad
phenotypic classes, one that includes spa2�, pea2�, and
bud6�, with a terminal phenotype resembling that associ-
ated with ste20�, and another class whose sole member is
bni1�, associated with a more severe terminal phenotype.

To further test for a functional relationship between
Ste20p and the polarisome components, we examined the
terminal phenotype of triple mutants containing spa2�,
pea2�, bud6�, or bni1� in combination with ste20� cla4�

YCpHIS3cla4-75. The terminal phenotypes of spa2�, pea2�,
and bud6� triple mutants were similar to that of the ste20�
cla4� YCpHIS3cla4-75 double mutant (Figure 7). Moreover,
no synthetic growth defects were observed in strains where
the polarisome genes were deleted in combination with
ste20�. In contrast, the terminal morphology of the bni1�
triple mutant was more severe than that associated with
either the bni1� cla4� YCpHIS3cla4-75 or the ste20� cla4�
YCpHIS3cla4-75 double mutants. The bni1� ste20� cla4�
YCpHIS3cla4-75 cells were large and unbudded with no
visible actin cables and mostly unpolarized patches of actin

Figure 6. bni1� cla4� mutants have a
severe actin polarization defect. (A)
Strains SY3380 (cla4�), SY3778 (bni1�),
SY3764 (ste20� cla4�), SY3760 (bni1�
cla4�), SY3761 (bud6� cla4�), SY3762
(spa2� cla4�), and SY3763 (pea2� cla4�)
carrying YCpHIS3cla4-75 were grown
at 25°C in YEPD, shifted to 37°C for 4 h,
fixed, and stained for F-actin (by using
rhodamine-phalloidin). (B) Quantita-
tion of actin polarization. For each
strain, 250 cells were counted in three
independent experiments.
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(Figure 7). In these unbudded cells, components of the sep-
tin ring still localized to the presumptive bud site, but in 2%
of cells, Cdc3p (a septin component) localized to more than
one site on the cell (Figure 7). In contrast, the actin defects in
ste20� bni1� mutants were no more severe than that of bni1�
single mutant cells (62 vs. 59% polarized actin, respectively).
Together, these results suggest that Ste20p functions within
a Spa2p/Pea2p/Bud6p pathway, but that is also participates
in Bni1p-independent functions.

Disruption of Bni1p-Bud6p Interaction Leads to
Synthetic Lethality with cla4�

The finding that Bni1p and other polarisome components
are essential in the absence of Cla4p, leads to the natural
inference the disruption of the interactions between these
proteins would lead to synthetic lethality with cla4�. To
explore this possibility, we examined the phenotype con-
ferred by a version of Bni1p that is lacking the Bud6p
binding region but still competent to carry out other Bni1p
functions. Amino acid residues 1749–1953 of Bni1p contain
the Bud6p binding domain (Evangelista et al., 1997). Accord-
ingly, we constructed an allele of BNI1 that encodes a ver-
sion of Bni1p truncated at the C terminus (bni1-CT�1) (Lee et
al., 1999). bni1-CT�1 retains some Bni1p functions as it is
able to complement the synthetically lethality of a bni1�
bnr1� (Ozaki-Kuroda et al., 2001). In contrast, bni1-CT�1 was
lethal in a cla4� background (Figure 7A). Moreover, the
terminal phenotype of bni1-CT� cla4� YCpHIS3cla4-75 was

similar to the ste20� cla4� YCpHIS3cla4-75 terminal pheno-
type but not the bni1� cla4� YCpHIS3cla4-75 phenotype
(Figure 8B). The bni1-CT� cla4� YCpHIS3cla4-75 cells have
polarized actin, whereas bni1� cla4� YCpHIS3cla4-75 cells
have no visible cables and unpolarized patches of actin. In
addition, the ste20� cla4� bni1-CT�1 YCpHIS3cla4-75 triple
mutant phenotype resembled the ste20� cla4�
YCpHIS3cla4-75 and the bni1-CT�1 cla4� YCpHIS3cla4-75
double mutant phenotypes (Figure 8B). The cells were elon-
gated, with mostly polarized actin, but the septin ring was
mislocalized. These results support the idea that the Bni1p C
terminus, which interacts with Bud6p, carries out one func-
tion that is essential in the absence of Cla4p, whereas the
remainder of Bni1p is critical for actin organization.

DISCUSSION

The related protein kinases Ste20p and Cla4p have unique
activities, an inference made from the distinct phenotypes of
strains lacking an individual kinase. However, a strain lack-
ing both kinases is inviable, implying that there is a physi-
ological connection between their activities. One possibility
is that Cla4p and Ste20p share an essential activity. A less
constrained interpretation is simply that Ste20p carries out a
function that is essential in cells lacking Cla4p cells (and vice
versa). In an effort to shed light on Ste20p function, we
carried out two independent screens for mutations that are
lethal in a cla4� mutant background. This effort identified a

Figure 7. Terminal phenotype of
bni1� ste20� cla4�.. Exponential cul-
tures of SY3781 (bni1� cla4� ste20�),
SY3782 (bud6� cla4� ste20�), SY3783
(spa2� cla4� ste20�), and SY3884
(pea2� cla4� ste20�) carrying
YCpHIS3cla4-75 were grown at 25°C
in YEPD, shifted to 37°C for 4 h,
fixed, and stained for F-actin (by us-
ing rhodamine-phalloidin) or for
Cdc3p. (B) Quantitation of actin po-
larization. For each strain, 250 cells
were counted in three independent
experiments.
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surprisingly large number of genes. Herein, we focus on a
group of genes whose products are known to interact. Each
of the proteins that form this group, Bni1p, Bud6p, Spa2p,
and Pea2p, has been implicated in several different facets
of cell biology. For example, Bni1p, a formin homology
protein, has been implicated in actin polarization, cytoki-
nesis, nuclear migration, and apical growth. Similarly,
Bud6p, Spa2p, and Pea2p are involved in budding pattern
determination and apical growth. The common denomi-
nator among the functions attributed to this set of pro-
teins is involvement in apical growth, and we therefore
suggest that proper regulation of this growth is the essen-
tial in the absence of Cla4p. We further suggest that the
connection between these proteins and the Ste20p/Cla4p

essential function is likely to be direct because Bni1p is a
Ste20p-dependent phosphoprotein.

Bni1p Has Roles Distinct from That of Spa2p,
Pea2p, Bud6p, or Ste20p in cla4� Cells
The lethality of bni1� cla4� strains may have more than one
cause. As summarized above, we think one aspect of Bni1p
function that is required in a cla4� mutant background is its
participation in apical growth. This interpretation is sup-
ported by the finding that deletion of the Bni1p C-terminal
200 amino acids, the region of Bni1p that interacts with
Bud6p, is lethal in a cla4� mutant background. Indeed, the
terminal phenotype of bni1-CT�1 cla4� YCpHIS3cla4-75 is

Figure 8. bni1-CT�1 cla4� mu-
tants have the same phenotype as
ste20� cla4�. (A) bni1-CT�1 is syn-
thetically lethal with cla4�. Strains
SY3362 (cla4�), SY3756 (bni1�
cla4�), SY3785 (bni1-CT�1), and
SY3786 (bni1-CT�1 cla4�) harbor-
ing pRS316ADE8CLA4 were
streaked on YEPD plates and incu-
bated at 30°C for 2 d. Plates were
then replica-plated to 5-FOA and
incubated at 30°C for 3 d. (B) Expo-
nential cultures of SY3785 (bni1-
CT�1), SY3788 (bni1-CT�1 cla4�)
and SY3789 (bni1-CT�1 ste20�
cla4�) carrying YCpHIS3cla4-75
were grown at 25°C in YEPD,
shifted to 37°C for 4 h, fixed, and
stained for F-actin (by using rhoda-
mine-phalloidin) or for Cdc3p. (C)
Quantitation of actin polarization.
For each strain 250 cells were
counted in three independent ex-
periments.
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similar to the bud6� cla4� YCpHIS3cla4-75 terminal pheno-
type. The C-terminal region is not only the Bud6p interac-
tion domain on Bni1p, but it is also believed to be an auto-
inhibitory domain. In the case of other formin homology
proteins, this autoinhibitory domain has been shown to
interact with the Cdc42p binding domain on the same mol-
ecule (Alberts, 2001). Perhaps binding of activated Cdc42p
releases the autoinhibitory domain and enables Bni1p to
interact with Bud6p and the 12S complex. It will be interest-
ing to determine whether the Ste20p-dependent phosphor-
ylation of Bni1p influences interaction of it with Bud6p or
other proteins.

Our results suggest that Bni1p has at least one other
function that is important in a cla4� mutant background.
This possibility emerges from the observation that bni1�
cla4� YCpHIS3cla4-75 double mutants have additional phe-
notypes beyond those seen for the ste20� cla4�, bni1-CT�1
cla4� YCpHIS3cla4-75, and bud6� cla4� YCpHIS3cla4-75 mu-
tant strains. What is this additional important function? In
addition to its role in apical growth, Bni1p also has roles in
bud site selection, nuclear migration, cytokinesis, and actin
polarization. Genetic tests, coupled with careful examina-
tion of the terminal phenotype of the bni1� cla4�
YCpHIS3cla4-75 double mutant, point to actin polarization
as the likely function. In particular, loss of Hof1p (required
for cytokinesis), or Num1p (required for nuclear migration)
is not lethal in the absence of Cla4p. However, diminution of
Cdc42p activity is lethal in a cla4� mutant background
(Cvrckova et al., 1995). Cdc42p interacts with Bni1p and is
required for polarization of the actin cytoskeleton. More-
over, bni1� cla4� YCpHIS3cla4-75 mutants contain very few
actin cables, whereas ste20� cla4�, bud6� cla4�, pea2� cla4�,
and spa2� cla4� mutants carrying YCpHIS3cla4-75 contain
abundant cables. Together, these results support the idea
that a Bni1p role in actin polarization is critical in the ab-
sence of Cla4p.

CLA4 Synthetic Lethal Universe
The two screens for mutations that are synthetically lethal in
a cla4� mutant background identified a large number of
genes. The number of genes is large in absolute terms, but it
is surprisingly large compared with the number of genes
identified in a complementary synthetically lethal screen.
Specifically, in a preliminary effort to identify mutations
synthetically lethal with the absence of STE20 by using the
colony-sectoring assay, only the CLA4 gene was identified
(Mitchell, Goehring, and Sprague, unpublished data). The
functions identified in the CLA4 synthetic screens reported
herein cover a wide spectrum of cell biological processes
and include bud emergence (BEM1, BEM2, BEM4), cytoki-
nesis (SHS1), nuclear migration (DYN2, NIP100, APC9,
SLK19), and cell wall maintenance (GIM5, BCK1, CHS3,
SKT5/CHS4, CHS5, CHS6, CHS7, FAB1, SLT2, SMI1). Not all
of the proteins, or even a majority of the proteins, involved
in a particular process were identified. This finding implies
that lethality does not result because an entire process has
become essential in the cla4� mutant background, but rather
implies that a particular activity or role of the protein has
become essential.

It is often difficult to identify the targets of signaling
proteins. Synthetic lethal screens for genes required in the
absence of specific signaling molecules may provide a gen-

eral means to identify potential downstream targets of the
signaling molecule. In this study, we screened for genes that,
like STE20, were synthetically lethal with CLA4 and identi-
fied the polarisome as a potential target of Ste20p. By exten-
sion of this logic, potential downstream targets of Cla4p may
be identified in synthetic lethal screens that use query mu-
tations in STE20 or any one of the other genes identified in
the CLA4 synthetic lethal universe. For example, because
BNI1 is synthetic lethal with CLA4, the set of �50 genes that
are synthetically lethal with BNI1 (Tong et al., 2001), which
includes genes involved in bud emergence, chitin synthase
III activity, and the dynein/dynactin spindle orientation
pathway, may be Cla4p targets. Candidate targets are then
identified by determining which single mutants exhibit phe-
notypes that resemble facets of the cla4� mutant phenotype.
Thus, global synthetic lethal networks should be useful for
large-scale mapping of functional relationships between sig-
naling molecules and their downstream targets.
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