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Abstract 

Various characteristics of cancers exhibit tissue-specificity, including lifetime 

cancer risk, onset age and cancer driver genes. Previously, the large variation in cancer 

risk across human tissues was found to strongly correlate with the number of stem cell 

divisions and abnormal DNA methylation levels occurring in them. Here we study the 

role of another potentially important factor, synthetic lethality, in cancer risk. Analyzing 

transcriptomics data in the GTEx compendium we quantify the extent of co-inactivation 

of cancer synthetic lethal (cSL) gene pairs in normal tissues and find that normal tissues 

with more down-regulated cSL gene pairs have lower and delayed cancer risk. We also 

show that the tissue-specificity of numerous tumor suppressor genes is strongly 

associated with the expression of their cSL partner genes in the corresponding normal 

tissues. Overall, our findings uncover the role of synthetic lethality as a novel important 

factor involved in tumorigenesis. 
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Introduction 

Cancers of different human tissues have markedly different molecular, phenotypic and 

epidemiological characteristics, known as the tissue-specificity in cancer. Various 

aspects of this intriguing phenomenon include a considerable variation in lifetime cancer 

risk, cancer onset age and the genes driving the cancer across tissue types. The 

variation in lifetime cancer risk is known to span several orders of magnitude (1,2). Such 

variation cannot be fully explained by the difference in exposure to carcinogens or 

hereditary factors, and has been shown to strongly correlate with differences in the 

number of lifetime stem cell divisions (NSCD) estimated across tissues (2,3). As 

claimed by Tomasetti and Vogelstein, 2015 (2), these findings are consistent with the 

notion that tissue stem cell divisions can propagate mutations caused either by 

environmental carcinogens or random replication error (4). Additionally, the importance 

of epigenetic factors in carcinogenesis has long been recognized (5), and Klutstein et al. 

have recently reported that the levels of abnormal CpG island DNA methylation (LADM) 

across tissues is highly correlated with their cancer risk (6). Although both global (e.g. 

smoking and obesity) and various cancer type-specific (e.g. HCV infection for liver 

cancer) risk factors are well-known (7), no factors other than NSCD and LADM have 

been reported to date to explain the across-tissue variance in lifetime cancer risk. 

Besides lifetime cancer risk, cancer onset age, as measured by the median age 

at diagnosis, also varies among adult cancers (1). Although most cancers typically 

manifest later in life (over 40 years old (1,8)), some such as testicular cancer often have 

earlier onset (1). Many tumor suppressor genes and oncogenes are also tissue specific 

(9–11). For example, mutations in the tumor suppressor gene BRCA1 are 

predominantly known to drive the development of breast and ovarian cancer, but rarely 

other cancer types (12). In general, factors explaining the overall tissue-specificity in 

cancer could be tissue-intrinsic (10,13), and their elucidation can further advance our 

understanding of the forces driving carcinogenesis. 

Synthetic lethality/sickness (SL) is a well-known type of genetic interaction, 

conceptualized as cell death or reduced cell viability that occurs under the combined 

inactivation of two genes, but not under the inactivation of either gene alone. The 
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phenomenon of SL interactions was first recorded in Drosophila (14) and then in 

Saccharomyces cerevisiae (15). In recent years, much effort has been made to identify 

SL interactions specifically in cancer, since targeting these cancer SLs (cSLs) has been 

recognized as a highly valuable approach for cancer treatment (16–19). The effect of 

cSL on cancer cell viability has led us to investigate whether it plays an additional role 

even before tumors manifest, i.e. during carcinogenesis. In this study we quantify the 

level of cSL gene pair co-inactivation in normal (non-cancerous) human tissue as a 

measure of resistance to cancer development (termed cSL load, explained in detail 

below). We show that cSL load can explain a considerable level of the variation in 

cancer risk and cancer onset age across human tissues, as well as the tissue-specificity 

of some tumor suppressor genes. Taken together, our findings support the importance 

of synthetic lethality in impeding tumorigenesis across human tissues. 

Results 

Computing cSL load in normal human tissues 

To study the potential effects of cancer synthetic lethality (cSL) in normal, non-

cancerous tissues, we define a measure called cSL load, which quantifies the level of 

cSL gene pair co-inactivation based on gene expression of normal human tissues from 

the GTEx dataset (20). Specifically, we used a recently published reference set of 

genome-wide cSLs that are common to many cancer types, identified from both in vitro 

and TCGA cancer patient data (21) via the ISLE method (22,23) (Table S1a). For each 

GTEx normal tissue sample, we computed the cSL load as the fraction of cSL gene 

pairs (among all the genome-wide cSLs) that have both genes lowly expressed in that 

sample (Methods; illustrated in Fig. 1). We further defined tissue cSL load (TCL) as the 

median cSL load value across all samples of each tissue type in GTEx (Methods, Table 

S2a). We then proceed to test our hypothesis that TCL can be a measure of the level of 

resistance to cancer development intrinsic to each human tissue (outlined in Fig. 1). 
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Figure 1. An illustration of the computation of cancer synthetic lethality (cSL) load for 

each sample and each tissue type (i.e. tissue cSL load, TCL), as well as an outline of 

this study where we attempted to explain the tissue-specific lifetime cancer risk, cancer 

onset age, and tumor suppressor genes using TCL. See main text and Methods for 

details.  

Tissue cSL load in normal tissues is inversely correlated with their lifetime cancer risk 

Synthetic lethality is widely known to be context-specific across species, tissue 

types, and cellular conditions (24). In theory, a cancer-specific cSL gene pair can be co-

inactivated in the normal tissue without reducing normal cell fitness, while conferring 

resistance to the emergence of malignantly transformed cells due to the lethal effect 

specifically on the cancer cells. Different normal tissues can have varied TCLs 

(representing the levels of cSL gene pair co-inactivations) as a result of their specific 

gene expression profiles, and we hypothesized that normal tissues with higher TCLs 

should have lower cancer risk, as transforming cancerous cells in these tissues will face 

higher cSL-mediated vulnerability and lethality. To test this hypothesis, we obtained 

data on the tissue-specific lifetime cancer risk in humans (Methods) and correlated that 
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with the TCL values computed for the different tissue types. We find a strong negative 

correlation between the TCL (computed from older-aged GTEx samples, age ≥ 50 

years) and lifetime cancer risk across normal tissues (Spearman’s ρ = -0.664, P = 

1.59e-4, Fig. 2a, Table S2a). This correlation is robust, as comparable results are 

obtained when this analysis is carried out in various ways (e.g. different cutoffs for low 

expression of genes, different cSL network sizes, different cancer type-normal tissue 

mappings, etc., Fig. S1, Supp. Note). Notably, the cSL load varies with age due to age-

related gene expression changes, and the correlation with lifetime cancer risk is not 

found when the TCL is computed on samples from the young population (20 ≤ age < 50 

years, Spearman’s ρ = -0.0251, P = 0.901, Fig. S2a); this is consistent with the 

observation that lifetime cancer risk is mostly contributed by cancers occurring in older 

populations (1). Importantly, we still see a marked negative correlation between TCL 

and lifetime cancer risk when analyzing samples from all age groups together 

(Spearman’s ρ = -0.49, P = 0.01, Fig. S2b). Repeating these analyses using different 

control gene-pairs, including (i) random gene pairs; (ii) shuffled cSL gene pairs; and (iii) 

degree-preserving randomized cSL network (same size as the actual cSL network, 

Supp. Note) results in significantly weaker correlations (empirical P < 0.001, Fig. S3a-c, 

Supp. Note), confirming that the associations found with cancer risk results from a cSL-

specific effect. 

While the randomized cSL networks used in the control tests described above 

provide significantly weaker correlations with cancer risk than those observed with 

cSLs, many of these correlations are still significant by themselves (Fig. S3b,c). This 

suggests that there may be a possible association between the expression of single 

genes in the cSL network (cSL genes) and cancer risk. To investigate this, we 

computed the tissue cSL single-gene load (SGL, the fraction of lowly expressed cSL 

genes) for each tissue (Methods). Indeed, we do find a significant negative correlation 

between tissue SGL levels and cancer risk (Spearman’s ρ = -0.49, P = 0.01, Fig. S3d, 

Supp. Note). This correlation vanishes when we use random sets of single genes (Fig. 

S3f). However, after controlling for the single-gene effect, the partial correlation between 

tissue cSL load and cancer risk is still highly significant (Spearman’s rho = -0.69, P = 
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6.10e-5, Fig. S3g), pointing to the dominant role of the SL genetic interaction effect 

(Supp. Note). 

Tissue cSL load predicts lifetime cancer risk across tissues in addition to the number of 

tissue stem cell divisions and abnormal DNA methylation levels   

We next compared the predictive power of TCL to those obtained with the 

previously reported measures of NSCD (2,3) and LADM (6), using the set of GTEx 

tissue types investigated here (Methods). We first confirmed the strong correlations of 

NSCD and LADM with tissue lifetime cancer risk in our specific dataset (Spearman’s ρ = 

0.72 and 0.74, P = 2.6e-5 and 1.3e-4, respectively, Fig. S4). These correlations are 

stronger than the one we reported above between TCL and cancer risk. However, 

adding TCL to either NSCD or LADM in linear regression models leads to enhanced 

predictive models of cancer risk compared to those obtained with NSCD or LADM alone 

(log-likelihood ratio = 2.18 and 2.39, P = 0.037 and 0.029, respectively). Furthermore, 

adding TCL to each of these factors increases their prediction accuracy under cross-

validation (Spearman’s ρ’s from 0.67 and 0.69 with NSCD and LADM alone to 0.71 and 

0.77, respectively, Fig. 2b,c). LADM and NSCD are significantly correlated (Spearman’s 

ρ = 0.66, P = 0.02), while the TCL correlates only in a borderline significant manner with 

either NSCD (Spearman’s ρ = -0.57, P = 0.06) or LADM (Spearman’s ρ = -0.52, P = 

0.08). Taken together, these observations support the hypothesis that TCL is 

associated with tissue cancer risk, with a partially independent role from either NSCD or 

LADM. 

cSL pairs that are more specific to cancer are more predictive of cancer risk in normal 

tissues 

We have shown results that support the role of TCL in impeding cancer 

development, and we reason that such an effect is dependent on the notion that many 

of the cSLs are specific to cancer while having weaker or no lethal effects in normal 

tissues. Indeed, we tested and found that the co-inactivation of cSL gene pairs is under 

much weaker negative selection in GTEx normal tissues vs matched TCGA cancers 

(Wilcoxon rank-sum test P = 2.93e-6, Fig. S5a, also shown using cross-validation, 
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Supp. Note). Moreover, we hypothesize that those cSLs with the highest specificity to 

cancer (i.e. with strongest SL effect in cancer and no or weakest effect on normal cells) 

should have the strongest effect on cancer development. To test this, we identified the 

subset of such cSLs (termed “highly specific cSLs” or “hcSLs”) as well as those with the 

lowest specificity to cancer (termed “lowly specific cSLs” or “lcSLs”; Methods), and re-

computed the TCLs of all normal GTEx tissues using these two cSL subsets, 

respectively. Indeed, the TCLs computed from the hcSLs correlate much stronger with 

cancer lifetime risk than those computed from the lcSLs (Spearman’s ρ = -0.593 vs -

0.319, Fig. 2d), testifying that these cSLs with high functional specificity to cancer are 

truly relevant to carcinogenesis. These hcSLs are enriched for cell cycle, DNA damage 

response and immune-related genes (FDR < 0.05, Table S5, Methods), which are 

known to play key roles in tumorigenesis. 
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Figure 2. (a) Scatter plot showing the Spearman’s correlations between lifetime cancer 

risk and tissue cSL load (TCL) computed for the older population (age ≥ 50 years). 

(Ranked values are used as lifetime cancer risk spans several orders of magnitude.) (b) 

Lifetime cancer risks across tissues were predicted using linear models (under cross-

validation) containing different sets of explanatory variables: (1) TCL only; (2) the 

number of stem cell divisions (NCSD) only; and (3) TCL and NSCD (27 data points). 

The prediction accuracy is measured by the Spearman’s ρ (rho), shown by the bar 

plots. The result of a likelihood ratio test between model (2) and model (3) is also 

displayed. (c) A similar bar plot as in (b) comparing the predictive models for cancer risk 

involving the variables: (1) TCL only; (2) the level of abnormal DNA methylation (LADM) 

only; and (2) TCL and LADM combined (21 data points only due to the smaller set of 

LADM data). A model containing all the three variables does not increase the prediction 

power (Spearman’s ρ = 0.77 under cross-validation) and is not shown. (d) Bar plot 

showing the correlations between lifetime cancer risk with TCLs computed (age ≥ 50 

years) using subsets of cSLs — highly specific cSLs (hcSLs), lowly specific cSLs 

(lcSLs), and all cSLs. Spearman’s ρ and p-values are shown. The hcSLs and lcSLs are 

identified using data of matched TCGA cancer types and GTEx normal tissues 

(Methods), which corresponds to only a subset of tissue types. To facilitate comparison, 

here the correlation for all cSLs was also computed for the same subset of tissues, and 

therefore the resulting correlation coefficient is different from that in (a).   

Higher tissue cSL load in the younger population is associated with delayed cancer 

onset 

We have thus established that TCL in the older population is inversely correlated 

with lifetime cancer risk across tissues. We next hypothesized that higher cSL load in a 

given normal tissue in the young population may delay cancer onset, which typically 

occurs later (age > 40 years (1)). To test this, we use the median age at cancer 

diagnosis (1) of a certain tissue as its cancer onset age (Table S3, Methods). We find 

that the TCL values (for age ≤ 40 years) are indeed markedly correlated with cancer 

onset age (Spearman’s ρ = 0.502, P = 0.011, Fig. 3a). This result is again robust to 

variations in our methods to compute TCL and cancer onset age (Fig. S6, Table S3, 
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Supp. Note). We note that the cancer onset age is not significantly correlated with 

lifetime cancer risk (Spearman’s ρ = 0.279, P = 0.28). 

Similar to our earlier analysis, we see that the TCLs computed from the hcSLs 

correlate much stronger with onset age than those from the lcSLs or all cSLs 

(Spearman’s ρ = 0.603 vs -0.157, Fig. 3b, Fig. S7a), and also stronger than those 

obtained from control tests performed as before (empirical P < 0.001, Fig. S7b-d). As 

with the case of cancer risk, the observed correlation is dominated by the SL genetic 

interaction effects rather than the single gene effects (Fig. S7e-g, Supp. Note). 

 

Figure 3. (a) Scatter plot showing the Spearman’s correlations between cancer onset 

age and TCL (age ≤ 40 years). (b) Bar plot showing the correlations between cancer 

onset age with TCLs computed (age ≤ 40 years) using subsets of cSLs — highly 

specific cSLs (hcSL), lowly specific cSL (lcSL), and all cSLs. Spearman’s ρ and p-

values are shown. As in Fig. 2d, this analysis was done for a subset of GTEx normal 

tissues for which we had matched TCGA cancer types in order to identify the hcSLs and 

lcSLs (Methods), therefore the correlation result for all cSLs is also different from that in 

(a).  

The activity state of cSL partners of some tumor suppressor genes predicts the specific 

tissues in which they are known to drive cancer 
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Further investigating the role of cSLs in cancer development, we turned to ask 

whether cSL may also contribute to the tissue/cancer-type specificity of tumor 

suppressor genes (TSGs) (10,25). Specifically, we reasoned that loss-of-function 

mutations of a TSG during carcinogenesis will be less frequent in tissues where its cSL 

partner genes are lowly expressed, due to the synthetic lethal effect of such co-

inactivation on the emerging cancer cells. To study this hypothesis, we obtained a list of 

TSGs together with the tissues in which their loss is annotated to have a tumor-driving 

function from the COSMIC database (11) (Table S6a). We further identified the cSL 

partner genes of each such TSG using ISLE (22) (Methods, Table S6b). In total, there 

are 23 TSGs for which we were able to identify more than one cSL partner gene. 

Consistent with our hypothesis, we find that in the majority of the cases, the cSL partner 

genes of TSGs have higher expression levels in the tissues where the TSGs are known 

drivers compared to the tissues where they are not established drivers (binomial test for 

the direction of the effect P = 0.023, Fig. 4a). We identified 10 TSGs whose individual 

effects are significant (FDR < 0.05) as well as cSL-specific (as shown by the random 

control test), and all these 10 cases exhibit the expected direction of effect (labelled in 

Fig. 4a, Table S6c; two example TSGs, FAS and BRCA1, are shown in Fig. 4b, details 

in Fig. S8, Methods). Reassuringly, these findings disappear under randomized control 

tests involving random partner genes of the TSGs and shuffled TSG-tissue type 

mappings (Supp. Note), further consolidating the role of cancer-specific cSLs of normal 

tissues in cancer risk and development. 
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Figure 4. (a) For each tissue-specific tumor suppressor (TSG) gene Gi, the expression

levels of its cSL partner genes in the tissue type(s) where gene Gi is a TSG were

compared to those where gene Gi is not an established TSG, using GTEx normal tissue

expression data. The volcano plot summarizes the result of comparison with linear

models. Positive linear model coefficients (X-axis) mean that the expression levels of

the cSL partner genes are on average higher in the tissue(s) where gene Gi is a TSG.

Many cases have near-zero P values and are represented by points (half-dots) on the

top border line of the plot. Overall there is a dominant effect of the cSL partner genes of

TSGs having higher expression levels in the tissues where the TSGs are known drivers

(binomial test P = 0.023). All TSGs with FDR < 0.05 that also passed the random

control tests are labeled. (b) Examples of two well-known TSGs, FAS and BRCA1, are

given. The heatmaps display the normalized expression levels of their cSL partner

genes (rows) in tissues of where these two genes are known to be TSGs (according to

the annotation from the COSMIC database (11)) and in tissues where they are not

established TSGs (columns), respectively. High and low expressions are represented

by red and blue, respectively. For clarity, one typical tissue type where the TSG is a

known driver (e.g. testis for FAS) and three other tissue types where the TSG is not an

established driver (and the least frequently mutated) are shown. 

Discussion 
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In this work we show that the cSL load in normal tissues is a strong predictor of 

tissue-specific lifetime cancer risk, and is much stronger than the pertaining predictive 

power observed on the individual gene level. Consistently, we find that higher cSL load 

in the normal tissues from young people is associated with later onset of the cancers of 

that tissue. As far as we know, no other factor has been previously reported to be 

predictive of cancer onset age across tissues. Finally, we show that the activity status of 

cSL partners of tumor suppressor genes can explain their tissue-specific inactivation.  

We have shown that the effect of cSL on the cancer risk (and cancer 

development in general) in normal tissues can be attributed to the fact that many of the 

cSLs are specific to cancer and have weak or no functional lethal effect in the normal 

tissues (Figs. 2d, 3b, Fig. S5), therefore normal tissues can bear relatively high cSL 

loads without being detrimentally affected -- quite to the contrary, they become more 

resistant to cancer due to the latent effect of these cSLs on potentially emerging cancer 

cells. Importantly, we emphasize that while we quantified the cSL loads using the 

normal tissue data from GTEx, the set of cSLs we used were derived exclusively in 

cancer from completely independent cancer datasets (and without using any information 

regarding lifetime cancer risk, onset, or tumor suppressor tissue specificity), so there is 

no circularity involved. The cSL load in normal tissues was computed to reflect the 

summed effects of individual cSL gene pairs. The underlying assumption is that the low 

expression of each cSL gene pair is synthetic sick (i.e. reducing cell fitness to some 

extent), and that the effects from different cSL gene pairs are additive, consistent with 

the ISLE method of cSL identification (22). Indeed, many experimental screenings of SL 

interactions also rely on techniques such as RNA interference that inhibits gene 

expression rather than completely knocks out a gene (26), and it is evident that most of 

the resulting SL gene pairs have milder than lethal effects. The additive cancer-specific 

lethal effect of such cSL gene pairs, however, can form a negative force impeding 

cancer development from normal tissues. 

Obviously, as we are studying the across-tissue association between cSL load 

and cancer risk, it is essential to focus on cSLs that are common to many cancer types 

(i.e. pan-cancer). Therefore, we focused on cSLs identified computationally by ISLE via 
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the analysis of the pan-cancer TCGA patient data (22). In contrast, most experimentally 

identified cSLs are obtained in specific cancer cell lines and are thus less likely to be 

pan-cancer (and possibly, less clinically relevant (22)). However, for completeness, we 

also compiled a set of experimentally identified cSLs from published studies (22,27) 

(Supp. Note, Table S1b). The corresponding TCL values computed using this set of 

cSLs  correlates significantly with lifetime cancer risk, but not with cancer onset age; the 

correlation with cancer risk is also markedly weaker than that obtained from ISLE-

derived cSLs (Spearman’s ρ = -0.433, P = 0.024, Fig. S9a, control tests and detailed 

analysis explained in Supp. Note). These experimentally identified cSLs can explain 

some cases of tissue-specific TSGs including BRCA1 and BRCA2 (Fig. S9e), but do not 

result in overall significant accountability for a large proportion of TSGs present in the 

analysis (like in Fig. 4a). This corroborates the importance of pan-cancer cSLs and their 

relevance to cancer risk.  

Interestingly, tissue cSL load is not likely a corollary of the number of tissue stem 

cell divisions (NSCD) and DNA methylation (LADM; the latter was thought to be closely 

related to NSCD (6)), as cSL load is computed by analyzing bulk tissues, where stem 

cells occupy only a minor proportion. We have shown that TCL significantly adds to 

either NSCD or LADM in predicting lifetime cancer risk (Figs. 2b,c), which also suggests 

that cSL load is an independent factor of cancer risk acting via unique mechanisms. 

Furthermore, NSCD is measured as the product of the rate of tissue stem cell division 

and the number of stem cells residing in a tissue (2), and we confirmed that TCL is 

correlated with lifetime cancer risk independent of both of these components (partial 

Spearman’s rho -0.510 and -0.567, P = 0.007 and 0.002, respectively, Fig. S10a,b). We 

additionally tested that proliferation indices computed for the bulk normal tissues do not 

correlate with lifetime cancer risk across tissues (Spearman’s ρ = 0.062, P = 0.77, Fig. 

S10c, Supp. Note). Further, we verified that our observed correlations are not 

confounded by the number of samples from each cancer or tissue type (Fig. S11). 

Taken together, our findings demonstrate the contribution of synthetic lethality to 

cancer risk, onset time, and context-specificity of tumor suppressors across human 

tissues. Beyond the effect on cancer after it has developed, our work highlights the role 
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of cancer synthetic lethality during the entire course of carcinogenesis. While synthetic 

lethality has been attracting tremendous attention as a way to identify cancer 

vulnerabilities and target them, this is the first time that its role in mediating cancer 

development is uncovered. 

Methods 

Cancer SL (cSL) interaction networks 

The cSL gene pairs computationally identified by the ISLE (identification of 

clinically relevant synthetic lethality) pipeline was obtained from (22). We used the cSL 

network identified with FDR < 0.2 for the main text results, containing 21534 cSL gene 

pairs, which is a reasonable size representing only about 1 cSL partner per gene on 

average. This also allows us to capture the effects of many weak genetic interactions. 

Nevertheless, we also used the cSL network with FDR < 0.1 (only 2326 cSLs) to 

demonstrate the robustness of the results to this parameter (Supp. Note). Each gene 

pair is assigned a significance score (the “SL-pair score” defined in Lee et al. 2018 

(22)), that a higher score indicates that there is stronger evidence that the gene pair is 

SL in cancer. Out of these, we used 20171 cSL gene pairs whose genes are present in 

the GTEx data (Table S1a). The experimentally identified cSL gene pairs were collected 

from 18 studies (references in Supp. Note. Obtained from the Supplementary Data 1 of 

Lee et al. 2018 except for those from Horlbeck et al. 2018 (27)). Horlbeck et al. provided 

a gene interaction (GI) score for each gene pair in two leukemia cell lines. Gene pairs 

with GI scores < -1 in either cell line were selected as cSLs. A total of 27975 

experimentally identified cSLs were obtained, out of which 27538 have both their genes 

present in the GTEx data (Table S1b). 

GTEx and TCGA data 

The V6 release of Genotype-Tissue Expression (GTEx) (20) RNA-seq data 

(gene-level RPKM values) were obtained from the GTEx Portal 

(https://gtexportal.org/home/). The associated sample phenotypic data were 

downloaded from dbGaP (28) (accession number phs000424.vN.pN). For comparing 

the level of negative selection to co-inactivation of cSL gene pairs between normal and 

cancer tissues, the RNA-seq data of the Cancer Genome Atlas (TCGA) and GTEx as 
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RSEM values that have been processed together with a consistent pipeline that helps to 

remove batch effects were downloaded from UCSC Xena (29). The expression data for 

each tissue type (normal or cancer) was normalized separately (inverse normal 

transformation across samples and genes) before being used for the downstream 

analyses. We mapped the GTEx tissue types to the corresponding TCGA cancer types 

(Table S2b), resulting in one-on-many mappings, e.g. the normal lung tissue was 

mapped to both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 

(LUSC). 

Cancer risk data and onset age 

 Lifetime cancer risk denotes the chance a person has of being diagnosed with 

cancer during his or her lifetime. Lifetime cancer risk data (Table S2a) are from 

Tomasetti and Vogelstein, 2015 (2), which are based on the US statistics from the 

SEER database (1). We derived the cancer onset age based on the age-specific cancer 

incidence data from the SEER database with the standard formula (30). Specifically, for 

each cancer type, SEER provides the incidence rates for 5-year age intervals from birth 

to 85+ years old. The cumulative incidence (CI) for a specific age range S is computed 

from the corresponding age-specific incidence rates (IRi, i ∈ S) as CI = 5∑
���

���, and 

the corresponding risk is computed as risk = 1 - exp(-CI). The onset age for each cancer 

type (Table S3) was computed as the age when the CI from birth is 50% of the lifetime 

CI (i.e. birth to 85+ years old). Usually, the onset age defined as such is between two 

ages where the actual CI data is available, so the exact onset age was obtained by 

linear interpolation. Alternative parameters were used to define onset age (Supp. Note) 

in order to show the robustness of the correlation between tissue cSL load and cancer 

onset age based on different definitions. 

Computing cSL load 

For each sample, we computed the number of cancer-derived SL gene pairs that 

have both genes lowly expressed, and divided it by the total number of cSLs available 

to get the cSL load per sample. In the ISLE method described by (22), low expression 

was defined as having expression levels below the 33 percentile in each tissue. Thus 

the ISLE-derived cSL gene pairs were shown to exhibit synthetic sickness effect when 
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both genes in the gene pair are expressed at levels below the 33 percentile in each 

tissue, even though this appears to be a very tolerant cutoff (22). We therefore adopted 

the same criterion for low expression for the main results, although we also explored 

other low expression cutoffs to demonstrate the robustness of the results (Supp. Note). 

Computing tissue cSL load and correlation with lifetime cancer risk 

Tissue cSL load (TCL) of each tissue type is the median value of the cSL loads 

of all the samples (or a subpopulation of samples) in that tissue, with cSL load of a 

sample computed as above. For example, TCL for the older population (age ≥ 50 years) 

is the median cSL load for the samples of age ≥ 50 years in each tissue type. For 

analyzing the correlation between the TCLs computed from GTEx normal tissues and 

cancer risk, we mapped the GTEx tissue types to the corresponding cancer types for 

which lifetime risk data are available from Tomasetti and Vogelstein, 2015 (2), resulting 

in 16 GTEx types mapped to 27 cancer types (Table S2a). Gallbladder non papillary 

adenocarcinoma, and Osteosarcoma of arms, head, legs and pelvis are not mapped to 

GTEx tissues and excluded from our analysis. 

Computing cSL single-gene load 

To investigate the effect on the single gene level, we computed the cSL single-

gene load in a paralleling way to the computation of the cSL load. Among all the unique 

genes constituting the cSL network (i.e. cSL genes), we computed the fraction of lowly 

expressed cSL genes for each sample as the cSL single-gene load, where low 

expression was defined in the same way as the computation of cSL load as elaborated 

above. Similarly, tissue cSL single-gene load is the median value of the cSL single-gene 

loads of all the samples in a tissue. 

Predicting tissue lifetime cancer risk with linear models 

The lifetime cancer risks across tissue types were predicted with linear models 

containing three different sets of explanatory variables: (i) the number of total stem cell 

divisions (NSCD) alone, (ii) tissue cSL load alone, and (iii) NSCD together with tissue 

cSL load. Log-likelihood ratio (LLR) test was used to determine whether model (iii) (the 

full model) is significantly better than model (i) (the null model) in predicting lifetime 

cancer risks. The three models were also used to predict the lifetime cancer risks with a 
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leave-one-out cross-validation procedure, and the prediction performances were 

measured by Spearman correlation coefficient. A similar analysis was performed to 

predict lifetime cancer risks across tissue types with three linear models involving the 

level of abnormal DNA methylation levels of the tissues (6): (i) the number of levels of 

abnormal DNA methylation (LADM) alone, (ii) tissue cSL load alone, and (iii) LADM 

together with tissue cSL load.  

Identifying and analyzing highly specific and lowly specific cSLs (hcSLs and lcSLs) 

For each pair of GTEx normal-TCGA cancer of the same tissue type (Table S2b), 

we computed the fraction of samples where a cSL gene pair i has both genes lowly 

expressed (defined above) among the normal samples (fni) and cancer samples (fci), 

and computed a specific score as rsi = fni - fci. We selected the hcSLs as those whose 

specific scores are greater than the 75% percentile of all scores, and lcSLs as those 

with a score below the 25% percentile (Table S4a,b). We compared SL significance 

scores between the hcSLs and lcSLs in each tissue using a Wilcoxon rank-sum test. 

For each type of the GTEx normal tissues used in this analysis (i.e. those that can be 

mapped to TCGA cancer types), we also computed the tissue cSL load as above but 

using the hcSLs, lcSLs, or all cSLs, respectively, and analyzed their correlation with 

lifetime cancer risk or cancer onset age across the tissues. 

Pathway enrichment of the hcSLs 

We designed an empirical enrichment test as below to account for the fact that 

each cSL consists of two genes. For the hcSLs in each tissue type and each given 

pathway from the Reactome database (31), we computed the odds ratio (OR) for the 

overlap between the genes in hcSLs and the genes within the pathway based on the 

Fisher’s exact test procedure, with the “background” being all the genes in the ISLE-

inferred cSLs. A greater than 1 OR indicates that the hcSLs are positively enriched for 

the genes of the pathway. To determine the significance of the enrichment, we 

repeatedly and randomly sampled the same number of cSLs as that of the hcSLs, 

computed the ORs similarly, and computed the empirical P value as the fraction of 

cases where the OR from the random cSLs is greater than that from the hcSLs. We 

corrected for multiple testing across pathways with the Benjamini-Hochberg method. 
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Analyzing the tissue-specificity of tumor suppressor genes 

We obtained the list of TSGs and their associated tissue types from the COSMIC 

database (11) (https://cancer.sanger.ac.uk/cosmic/download, the “Cancer Gene 

Census” data. Table S6a). For each TSG, their cSL partner genes were identified using 

the ISLE pipeline (22) with an FDR cutoff of 0.1 (Table S6b). Here the FDR cutoff is 

more stringent than that used for the pan-cancer genome-wide cSL network (FDR < 0.2 

for the main results) since here FDR correction was performed for each TSG, 

corresponding to a much lower number of multiple hypotheses. As a result, the FDR 

correction has more power and a relatively more stringent cutoff can give rise to a more 

reasonable number of cSL partner genes per TSG. We focused our analysis on 23 

TSGs for which more than one cSL partner genes were identified (no cSL partner was 

identified for most of the other TSGs). The expression levels of the cSL partner genes 

were then compared between tissue type(s) where the TSG is a known driver and the 

rest of the tissues where the TSG is not an established driver with linear models. 

Specifically, the expression levels of the cSL partners were modeled with two 

explanatory variables: (i) driver status of the TSG in the tissue (binary) and (ii) cSL 

partner gene (categorical, indicating each of the cSL partner genes of a TSG). The 

coefficient and P value associated with variable (i) were used to analyze the general 

trend of differential expression among the cSL partner genes. Positive coefficients of 

variable (i) means that the expression levels of the cSL partner genes are on average 

higher in the tissue(s) where the TSG is a known driver compared to those in the 

tissues where the TSG is not an established cancer driver. 

Data/Code availability 

The R code and the relevant data are available at 

https://hpc.nih.gov/~chengk6/SL_cancer_risk.zip. 
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