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Abstract. The organization of the actin cytoskeleton 

plays a critical role in cell physiology in motile and non- 

motile organisms. Nonetheless, the function of the actin 

based motor molecules, members of the myosin super- 

family, is not well understood. Deletion of MY03,  a 

yeast gene encoding a "classic" myosin I, has no detect- 

able phenotype. We used a synthetic lethality screen to 

uncover genes whose functions might overlap with 

those of M Y 0 3  and identified a second yeast myosin I 

gene, MY05.  M Y 0 5  shows 86 and 62% identity to 

M Y 0 3  across the motor and non-motor regions. Both 

genes contain an amino terminal motor domain, a neck 

region containing two IQ motifs, and a tail domain con- 

sisting of a positively charged region, a proline-rich re- 

gion containing sequences implicated in ATP-insensi- 

tive actin binding, and an SH3 domain. Although myo5 

deletion mutants have no detectable phenotype, yeast 

strains deleted for both M Y 0 3  and M Y 0 5  have severe 

defects in growth and actin cytoskeletal organization. 

Double deletion mutants also display phenotypes asso- 

ciated with actin disorganization including accumula- 

tion of intracellular membranes and vesicles, cell 

rounding, random bud site selection, sensitivity to high 

osmotic strength, and low pH as well as defects in chitin 

and cell wall deposition, invertase secretion, and fluid 

phase endocytosis. Indirect immunofluorescence stud- 

ies using epitope-tagged Myo5p indicate that Myo5p is 

localized at actin patches. These results indicate that 

M Y 0 3  and M Y 0 5  encode classical myosin I proteins 

with overlapping functions and suggest a role for 

Myo3p and Myo5p in organization of the actin cyto- 

skeleton of Saccharomyces cerevisiae. 

T 
HE myosin superfamily of molecular motors encom- 
passes at least eleven different classes of proteins 
(Cheney et al., 1993; Sellers and Goodson, 1995). 

While the conventional myosin (myosin II) has been stud- 
ied in great detail in both muscle and nonmuscle cells, 
comparatively little is known about most unconventional 
myosin proteins. Myosin I proteins were the first uncon- 
ventional myosins discovered (Pollard and Korn, 1973; 
Hammer et al., 1986). Members of the myosin I class have 
now been identified in phylogenetically diverse organisms 
(for review see Sellers and Goodson, 1995), suggesting 
that they are ubiquitous, ancient proteins with a central 
role in eukaryotic cell biology. 

Myosin I proteins can be divided into at least two sub- 
classes based on homologies in motor and tail domains 
(Hasson and Mooseker, 1995). "Classic" myosin I proteins 
have been found in fungi, ameboid cells, and metazoans 
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(for review, see Sellers and Goodson, 1995). These pro- 
teins possess tail domains containing a positively charged 
region implicated in membrane binding, a proline-rich re- 
gion, and an SH3 domain (for review, see Hammer, 1991). 
The proline-rich region contains sequences implicated in 
ATP-insensitive actin binding (Lynch et al., 1986; Dober- 
stein and Pollard, 1992; Jung and Hammer, 1994; Rosen- 
feld and Rener, 1994). Between the motor and tail do- 
mains is a "neck" region containing one or two "IQ" motifs, 
sequences expected to bind to calmodulin or calmodulin- 
related myosin light chains (Cheney and Mooseker, 1992). 
In contrast, the brush border myosin I's and related pro- 
teins have tails with only the putative membrane binding 
region and necks with 3-6 IQ motifs. Proteins clearly re- 
lated to the brush border myosins have been found only in 
metazoans, although similar proteins exist in ameboid cells 
(reviewed by Sellers and Goodson, 1995). 

The function of myosin I proteins is not well under- 
stood. One model proposes that myosin I proteins bind to 
both microfilaments and organelles and use the energy of 
ATP hydrolysis to drive organelle movement along actin 
tracks (Adams and Pollard, 1989). Alternatively, myosin I 
proteins could act to connect the plasma membrane to the 
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actin cytoskeleton and drive movements of the cytoskeleton 
against the membrane. A classic myosin-I-specific vari- 
ation of this model proposes that the second, ATP-insensi- 
tive, actin-binding site in the tail could be used to cross- 
link actin filaments and allow myosin-I to drive F-actin 
sliding on actin filaments, thus altering actin organization 
at the membrane interface. 

Experimental observations obtained thus far are consis- 
tent with all of these proposed functions. In Dictyostelium, 
myosin I proteins have been implicated in cell motility, pha- 
gocytosis, and pseudopod formation (Jung and Hammer, 
1990; Wessels et al., 1991; Jung et al., 1993; Titus et al., 
1993). Syringe loading of inhibitory antibodies indicates 
that one myosin I protein, Acanthamoeba IC, is essential 
for the function of the Acanthamoeba contractile vacuole 
(Doberstein et al., 1993). Finally, recent studies in As- 
pergillus nidulans indicate that the MyoA gene encodes an 
essential myosin I required for secretion and polarized 
growth (McGoldrick et al., 1995). 

Previous studies identified in Saccharomyces cerevisiae a 
gene that encodes a classic myosin I protein, MY03. Dele- 
tion of this gene had no discernible phenotypic effects under 
laboratory conditions, presumably for reasons of func- 
tional redundancy (Goodson and Spudich, 1995). How- 
ever, deletion of MY03 in combination with mutations of 
other known yeast myosin genes (MYO1, a myosin II, 
MY02, a myosin V, or MY04, a myosin V) has no detect- 
able effect (Goodson and Spudich, 1995; Haarer et al., 
1994; Lillie, S.L., and S.S. Brown, unpublished results). 
These findings indicate that the redundant protein is not 
one of the known yeast myosins. We used a genetic screen 
to identify mutations that create a requirement for MY03. 
This strategy, termed a synthetic lethality screen, has been 
useful for identification of genes that are involved in a 
common process (for example, see Bender and Pringle, 
1991). We present results of such a screen and demon- 
strate that it identifies a new yeast myosin I gene, MY05. 
We demonstrate that yeast strains deleted for both MY03 
and MY05 have a severe defect in growth, actin polariza- 
tion, and actin-dependent processes including secretion, 
endocytosis, and polarity establishment. We suggest that 
the primary defect in the mutants bearing classic myosin I 
deletions is abnormal polarization of the actin cytoskeleton. 

Materials and Methods 

Yeast And Bacterial Manipulations 

Yeast manipulations including cell culture, transformation, and tetrad 
analysis were carried out according to Guthrie and Fink (1991). Bacterial 

manipulations were carried out according to Sambrook et al. (1989). 

Synthetic Lethality Screen 

myo5 mutants were isolated using a synthetic lethal strategy based on se- 
lection against the URA3 gene. A yeast strain (HA10-1c) containing a de- 
letion of MY03 (Table I) was transformed with a centromere-based, 

pRS316-derived plasmid (P316SRMYO3) which contains the URA3 

marker and the full coding region of MY03 (Sikorski and Hieter, 1989). 
Transformants were mutagenized with ethylmethane sulfonate (EMS) 1 

until only ~25% of the cells were viable (Lawrence, 1991). Transformants 
were replica plated to uracil-free plates and to plates containing 5-fluoro- 

1. Abbreviations used in this paper: 5-FOA, 5-fluoroorotic acid; EMS, eth- 
ylmethane sulfonate; SH3, Src Homology 3. 

orotic acid (5-FOA). Since 5-FOA kills cells expressing the URA3 gene, 

this method distinguishes colonies that require the MYO3-containing 

plasmid from those that do not. From 10,000 mutagenized colonies 

screened, ~120 grew poorly on unbuffered 5-FOA containing media after 

incubation at 30°C. Three of these strains (Cl l ,  37, and D2) uniformly 
maintained the URA3 marker under nonselective conditions and were kept 
for further examination. 

Cloning and Sequence Analysis 

The MY05 gene was cloned by complementation of mutant 37 with a 

plasmid library. The library consisted of genomic yeast DNA partially di- 

gested with Sau3A and sub-cloned into a centromere-based, LEU2-con- 

taining shuttle vector derived from YCP50 (Christianson et al., 1992; 

American Type Culture Collection, Rockville, MD; ATCC No. 77162). Of 
~12,000 Leu+ transformants, 46 colonies were no longer dependent upon 

retention of p316SRMY03 (the MYO3-containing plasmid marked by 

URA3) as assayed by survival of these colonies at 30°C on solid, unbuff- 
ered minimal medium (SD) containing 5-FOA. Library plasmids were iso- 

lated from 40 of these colonies (Ward, 1990). 29 contained the MY03 

gene and 11 contained a different set of overlapping inserts which con- 
ferred 5-FOA resistance to synthetic lethal mutants. The DNA sequence 

of this insert was determined as described previously (Goodson and Spu- 
dich, 1995). Sequence analysis of the region which conferred FOA resis- 

tance revealed a new myosin I gene, MY05. Similar results were obtained 
by complementation of mutant C l l  with the same library. Sequences were 

analyzed with the GCG Package (Genetics Computer Group, Inc., Madi- 
son, WI). 

Disruption of MY05 

A strain of yeast missing all of the MY05 coding sequence (as well as 95 
bases of 5' noncoding sequence) was created by a "delta deletion" (Sikor- 

ski and Hieter, 1989). 3' and 5' noncoding sequence of the MY05 locus 
were inserted into the integrating plasmid pRS304 in a direct orientation 

to create the plasmid p304KO3 (see Fig. 1). p31MKO3 was linearized with 

SpeI to cut between the 3' and 5' inserts and transformed into the diploid 
yeast strains CRY3 and HA20. Southern blot analysis revealed that se- 
quences between the 5' and 3' inserts on one chromosome of the transfor- 

mant were replaced by the plasmid DNA. Haploid strains bearing the 
MY05 deletion were isolated by tetrad dissection. The Trp+ phenotype 

marking the deletion segregated 2:2 in both the CRY3 and HA20 trans- 
formants and was tightly linked to growth defects in the HA20 transfor- 

mants (data not shown). 

Construction of  Epitope-tagged Myo5p 

MyoSp was epitope tagged by insertion of three copies of the 11 amino 

acid epitope from human c-myc (Evan et al., 1985) at the extreme COOH 

terminus of the protein. To do so, the stop codon of MY05 was replaced 
with a BamHI site using PCR. The 3' end of the modified MY05 gene was 

then excised using BamHI and BstEII. This product was ligated to a 4.8-kb 

SpeI-BstEII fragment which consists of the remainder of the MY05 gene 
and 1.8 kb of its 5' noncoding region containing the MY05 promoter re- 
gion. The ligated products were digested with SpeI and BamHI, and sub- 
cloned into the KS Bluescript vector (Stratagene, La Jolla, CA). Three 

copies of the myc tag coding sequence were excised from the pKK-1 plas- 
mid with BamHI and inserted in frame at the BamHI site at the 3' end of 

the MY05 gene. An NheI linker (New England Biolabs Inc., Beverly, 

MA) containing a stop codon in all three reading frames was inserted im- 

mediately downstream from the myc tag. The entire construct was excised 
with SacI and XhoI and sub-cloned into the centromere-based yeast shut- 
tle vector, pRS-Y2, a derivative of pRS316 which contains the multiple 

cloning site of pYES2 (InVitrogen, San Diego, CA). This construct is re- 
ferred to as pRS-Y2-myc-MY05. A construct containing untagged MY05 

and 1.8 kb of its 5' noncoding region (pRS-Y2-MY05) was produced us- 
ing a similar approach. 

Light Microscopy 

Actin cytoskeletal structure and chitin deposition were visualized using 
rhodamine-phalloidin, a rabbit polyclonal antibody raised against yeast 
actin (Druhin et al., 1988), and Calcofluor (Sigma Chemical Co., St. Louis, 
MO) according to published procedures (Adams et al., 1991; Pringle et al. 
1991). Cell viability was determined using the FUN-1 cell stain (Molecular 
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Table I. Yeast Strains Used in This Study 

Strain Genotype Reference 

MSY106 MATa/MATet, his4-619/his4-619 Smith et al., 1995 

MSY202 MATa/MATa,  his4-619/his4-619, actl-3/actl-3 Smith et al., 1995 

CRY3 MATa/MATa,  canl-lOO/canl-lO0, ade2-1/ade2-1, Goodson and Spudich, 1995 

HA20 
his3-11/his3-11, leu2- 3,112/leu2-3,112, ura3-1/ura3-1 

MATa/MATa,  can l- l OO/can l- l O0, ade2-1/ade2-1, 

his3-11/his3-11, leu2- 3,112/leu2-3,112, trp l-1/trp l-1, 

ura3-1/ura3-1, myo3::HIS/myo3::HIS3 

MA Ta/MA Tc~, can l- l OO/can l- l O0, ade2-1/ade 2-1, 

his3-11,-15/his3-11,-15, leu2-3,-l12/leu2-3,-112, 

trpl-1/trpl-1, ura3-1/ura3-1, myo3::HIS3/myo3::HlS3 

MYO5/myo5: : TRP1 

MATct, canl-lO0, ade2-1, his3-ll, Ieu2-3,112, ura3-1, 

trp l-1 

MATa, canl-lO0, ade2-1, his3-11, leu2-3,112, ura3-1, 

trpl-1, myo3::HlS3 

MATct, canl-lO0, ade2-1, his3-11, leu2-3,112, ura3-1, 

trpl-1, myo5::TRP1 

MATer, canl-lO0/, ade2-1, his3-11, Ieu2-3,112, ura3-1, 

trpl-1, myo3:: HIS3 

MATer, canl-lO0/, ade2-1, his3-11, 1eu2-3,112, ura3-1, 

trpl-1, myo3:: HIS3, myo5::TRP1 

MATa, canl-lO0/, ade2-1, his3-11, leu2-3,112, ura3-1, 

trpl-1, myo3:: HIS3, myo5::TRP1 

MATa, canl-lO0/-, ade2-1, his3-11, 1eu2-3,112, ura3-1, 

trpl-1, myo3:: HIS3 

Goodson and Spudich, 1995 

HA31 this study 

HA10-1b this study 

HA10-1c this study 

HA51-1 a this study 

HA31-9a this study 

HA31-9b this study 

HA31-9c this study 

HA31-9d this study 

Probes, Eugene, OR) according to manufacturer 's instructions. Other 

methods (fixation, mounting, DAPI staining) were as described by Pringle 
et al. (1991). Photomicroscopy was performed on a Leitz Dialux micro- 

scope using a 100× (NA 1.4) objective (Rockleigh, NJ). Images were col- 
lected using a cooled CCD camera (model # Star-l; Photometrics, Tucson, 

AZ). Light output from the 100W Mercury Arc lamp was controlled using 
a shutter driver (model # Uniblitz D122; Vincent Associates, Rochester, 

NY) and attenuated using neutral density filters (Omega Optical Corpo- 
ration, Brattleboro, VT). Image enhancement and analysis were per- 
formed on a Macintosh Quadra 800 computer (Cupertino, CA) using the 

public domain program NIH Image 1.55. Images were stored on a mag- 
netic optical disk drive (Peripheral Land Inc., Fremont, CA). 

Confocal images of cells were obtained with a laser scanning confocal 
microscope (model # MRC 600; Bio-Rad Microscience, Cambridge, MA) 

on a Zeiss Axiovert inverted microscope (Oberkochen, Germany) using a 
63× (NA 1.4) Zeiss Plan-Apo infinity corrected objective. The illumina- 
tion sources were the 488- and 514-nm lines from a 25-mW argon laser. 

Rhodamine-phalloidin was visualized with a 514-nm bandpass excitation 

filter, a 540-nm dichroic mirror and a 550-nm-long pass emission filter. 
Light was attenuated using neutral density filters in the excitation path. 
Each field of cells was sectioned three dimensionally by recording images 

from a series of 0.36 I~m optical sections. Movement from one focal plane 

to the next was achieved using a stepper motor attached to the fine focus 
control of the microscope. Each optical section collected was the average 

of 15 scans at the confocal microscope's normal scan rate (1 frame/s). All 
images were processed and enhanced using the COMOS program (Bio- 

Rad Microscience, Cambridge, MA) and Adobe Photoshop 2.5 (Moun- 
tain View, CA). 

Electron Microscopy 

Preparation of samples for transmission electron microscopy was carried 

out according to Stevens (1977). Yeast were fixed by addition of glutaral- 
dehyde (Sigma Chemical Co.) to growth medium to a final concentration 

of 5%. After incubation for 3 h at room temperature, cells were concen- 

trated by centrifugation (10,000 g, 10 min, room temperature), and washed 
two times with 0.9% NaC1. Samples were resuspended in 4% KMnO4 in 

0.1 M Na-cacodylate, pH 7.4 (Electron Microscopy Sciences, Fort Wash- 
ington, PA), and incubated at 4°C for 1 h with gentle rotation. After two 
washes with 0.9% NaCl, samples were resuspended in 2% uranyl acetate 
(Electron Microscopy Sciences) and incubated for 1 h at room tempera- 

ture. Samples were washed three times, dehydrated in a graded series of 
ethanol solutions, infiltrated with propylene oxide for 10 min, and embed- 

ded in Epon-812 (Tousimis Research Co., Rockville, MD). Ultrathin sec- 
tions were stained for 5 min with 1% lead citrate before viewing with a 
JEOL 1200 transmission electron microscope. 

Invertase Secretion Assay 

Secreted invertase was assayed as described (Goldstein and Lampen, 

1975) in intact cells. Cells were grown to log phase in YEP media contain- 

ing 2% glucose. Cultures were washed with YEP supplemented with 
0.05% glucose, resuspended in this media, and incubated at 30°C with 

constant shaking. At the times indicated, cell densities were determined 

by OD600 measurements, and aliquots were removed from the culture. 
Cells were washed with ice cold 10 mM NAN3, resuspended in 10 mM 

NaN 3, and stored on ice until all aliquots had been collected. A portion of 

each aliquot containing equal numbers of cells was added to 100 mM so- 
dium acetate, pH 5.1, and 125 mM sucrose and incubated for 20 min at 
37°C. Reactions were terminated by addition of 2.5 volumes 200 mM 

K2HPO4 and stored on ice. An aliquot from each terminated reaction was 
diluted with 4 volumes 200 mM K2HPO4 and boiled for 5 min to destroy 

invertase activity. The quantity of glucose in each sample was determined 

by addition of Glucostat reagent (100 mM KPi, pH 7.0, 20 ~Lg/ml glucose 

oxidase, 2.5 p.g/ml peroxidase, and 15 p~g/ml O-diaisidine) and incubated 
at 37°C for 30 min. Color development was initiated by addition of one 

volume 6 M HC1 and measured using a spectrophotometer (model DU-50; 
Beckman Instruments, Fullerton, CA) at 540 nm. Levels of glucose re- 

leased were calculated by comparing absorption readings to a standard 
curve. Units of invertase activity are defined as micromoles of glucose re- 

leased/min/10 mg cell (dry weight), assuming that 10D600 equals 0.19 mg 
cells/ml. 

Lucifer Yellow Uptake Assay 

The uptake of Lucifer yellow CH was performed according to Riezman 

(1985) with slight modifications. Cells were grown to log phase in YEP + 

2% glucose and Lucifer yellow CH (Sigma Chemical Co.) was added to 4 
mg/ml. After 60 min incubation at 30°C with constant agitation, cells were 
washed three times with ice cold 50 mM succinate, pH 5.0, 100 mM NaCl, 

10 mM MgCl2, 20 mM NAN3. An aliquot of each sample was embedded in 
0.8% low melt agarose on a glass slide and placed under a cover slip. Opti- 
cal images were collected using the Leitz Dialux microscope as described 

above. Cells were scored as positive if the vacuole was clearly stained with 
Lucifer yellow. 
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Results 

Synthetic Lethality Screen Identifies a New Yeast 

Myosin Gene, MY05 

Yeast deleted for the classic myosin I gene MY03 have no 

discernible defects, suggesting that another protein(s) has 

overlapping function with Myo3p (Goodson and Spudich, 

1995). We conducted a synthetic lethality screen to iden- 

tify such proteins. This genetic screen is based on the prin- 

ciple that yeast bearing mutations of either of two genes 

with overlapping function will remain viable. However, yeast 

mutated at both genes should have a defect in a basic bio- 

logical function and are expected to die (Huffaker et al., 

1987). Yeast carrying a chromosomal deletion of MY03 

and a plasmid which contains a functional MY03 gene were 

mutagenized. Mutants which die if forced to lose the plas- 

mid-borne MY03 were then identified by replica plating 

mutagenized colonies onto solid media containing 5-FOA. 

5-FOA kills cells expressing the URA3 gene, a nutritional 

marker present on the MYO3-containing plasmid. There- 

fore, cells that cannot lose the MYO3-containing plasmid 

will not grow on 5-FOA. 

Three mutant strains (Cl l ,  37, and D2) which were 

dependent on the MY03 plasmid were produced using 

this synthetic lethal screen. Dependence of these strains on 

MY03 was demonstrated in three ways. First, the mutants 

were transformed with a second plasmid (p314SRMY03) 

containing the MY03 gene and a different selectable 

marker (TRP1). These strains were now able to grow on 

5-FOA. In addition, plasmid loss assays indicate that these 

transformants could lose either MYO3-bearing plasmid, 

but not both. Second, mutants containing the MY03 gene 

under control of the galactose promoter displayed a galac- 

tose dependence for growth. Finally, a mutant form of 

p314SRMY03 containing a MY03 gene with a frame shift 

in the tail of MY03 (Fig. 1) will not support growth of the 

mutant. Backcrossing of the synthetic lethal mutants to the 

parent strain indicated that the mutations were recessive. 

Complementation tests indicated that all three synthetic 

lethal strains were in the same complementation group. 

A new yeast myosin gene, MY05, was cloned by com- 

plementation of the synthetic lethal phenotype. In comple- 

mentary studies, this gene was also identified by PCR us- 

ing degenerate, myosin I-specific oligonucleotides. The 

sequence of Myo5p (Fig. 2) shows that MY05 encodes a 

classic myosin I protein, like MY03. It is 76.6% identical 

to MY03 over the whole protein, 87 and 62% identical in 

the head and tail, respectively. All of the motor and tail 

domains expected from a classic myosin I and identified in 

the tail of MY03 are also found in MY05, including a ba- 

sic (putative membrane-binding) region, an SH3 domain 

(Src Homology 3; see Hammer, 1991 for review), and a hy- 

per-proline-rich region 10 amino acids before the SH3 do- 

main (Goodson and Spudich, 1995). The region 100 amino 

acids amino terminal to the SH3 domain contains a higher 

proline content than that of the corresponding region in 

MY03 (25 vs 17% proline, respectively). In this respect, 

MY05 is more similar to other classical myosin I proteins 

than MY03. Like MY03, MY05 contains two IQ motifs, 

which are putative light chain binding sites (Cheney and 

Mooseker, 1992). The stretch of acidic residues followed 

Figure 1. Plasmid construction and deletion of 
the MY05 gene. (a) MY03 expression plasmid 
p316SRMY03; (b) map of chromosomal locus of 
MY05; (c) deletion plasmid p304KO3; (d) sche- 
matic illustrating replacement of MY05 se- 
quences with plasmid DNA; and (e) a mutant 
form of p314SRMY03 containing a MY03 gene 
with a frame shift in the tail of MY03 
(p314SRMYO3FS). Restriction sites marked by 
"*" were introduced into MY05 by PCR sub- 
cloning and do not exist in the genomic version. 
The ClaI site in p304KO3 was placed at the stop 
codon. Nonmyosin regions of the plasmid are not 
drawn to scale. [], MYO5 5' noncoding; II, MYO5 
coding region; [], MYO5 3' noncoding; 
= lkb. 
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Table II. Deletion of MY03 and MY05 Results in Slow Growth 

Strain Doubling time SEM 

h 

H A 1 0 - 1 b  (wt) 1.41 0.07 

H A 3 1 - 9 a  (myo3A) 1.34 0.05 

HA51-1  a (myo5A) 1.40 0.11 

H A 3 1 - 9 c  (myo3A,myo5A) 4.45 0.29 

HA31-9c-pRS-Y2-MY05 1.34 0.09 

H A 3 1 - 9 c - p R S - Y 2 - m y c - M Y O 5  1.35 0.09 

Cultures of wild-type cells, mutants beating single or double mutations in MY03 and 
MY05, and a rayo3zl, myoSzl mutant transformed with MY05 or myc-tagged MY05 on 
a centromeric plasmid (pRS-Y2) were grown to early log phase in rich medium (YPD) 
at 30°C. Aliquots were removed periodically from all cultures and the cells were soni- 
cated briefly to disrupt cell clumps. Cell densities were determined by OD6co measure- 
ments and apparent doubling times were calculated. 

Figure 2. Derived amino acid sequence of Myo5p. This sequence 
is based on the DNA sequence of the MY05 gene. The MY05 
DNA sequence shows 99% identity to sequence SC9718.08 ob- 
tained by the yeast genome sequencing project. The ATP binding 
site (underlined); IQ motifs (11); and SH3 motif (D). 

by a tryptophan which is found at the end of both MY03 
and Aspergillus nidulans MYOA (McGoldrick et al., 1995) 
is also found in MY05. The functional significance of this 
sequence is not known. Sequence analysis of complement- 
ing genomic yeast DNA in regions adjacent to the MY05 
gene indicate that this gene is located adjacent to ILV2, a 
gene required for amino acid biosynthesis previously 
mapped to chromosome XIII by classic genetic techniques 
(Falco and Dumas, 1985; Falco et al., 1985). 

Mutants Bearing Deletions in M Y 0 3  and M Y 0 5  
Display Slow Growth 

MY05  mutants obtained from the synthetic lethal screen 
were found after backcrossing to be viable under standard 
growth conditions (YPAD, pH 5.5, 30°C), but display se- 
vere growth defects. Therefore, the role of myosin I pro- 
teins in yeast cell function was studied in mutant yeast 
strains bearing deletions in one or both of the myosin I 
genes. Deletion of one myosin I gene has no significant ef- 
fect on growth rates: myo3A and myo5za single mutants 
display doubling times equivalent to isogenic wild-type 
cells (Table II; Goodson and Spudich, 1995). In contrast, 
cells bearing deletions in MY03 and MY05  show greatly 
lengthened doubling times (Table II). Approximately 10% 
of the cells in an exponentially growing myo3&rnyo5za 
mutant culture are inviable, as determined using the fun- 
gal viability dye Fun-1. However, mathematical modeling 

of cell doubling indicates that this loss of cell viability con- 
tributes to but is not solely responsible for low growth 
rates (data not shown). 

Double mutants are sensitive to cold (15°C) and ele- 
vated (37°C) temperature (Fig. 3). Double mutants did not 
accumulate at a particular point in the cell cycle after shift 
to cold (data not shown). During exponential growth at 
30°C, they displayed a similar proportion of unbudded, 
small, medium, and large budded cells as the wild-type pa- 
rental strain. Double mutants were defective for growth 
on solid rich media with high osmotic strength (0.75 M 
NaC1) or low pH (3.5). Tetrad analysis revealed that sensi- 
tivity to cold, elevated temperature, high osmotic strength, 
and low pH showed 2:2 segregation and segregated with 
deletion of both MY03 and MY05 (Fig. 3). Transforma- 
tion of myo3A,myo5A mutants with a centromeric plasmid 
bearing MY05  under its own promoter restores the wild- 
type growth rates at 30°C (Table II), as well as growth at 
low and high temperatures, low pH, and high osmotic 
strength (data not shown). Thus, the low growth rate, sen- 
sitivity to cold, acidic pH, and high osmolarity observed in 
the myo3A, myo5za double mutants are due to the loss of 
both type I myosins. 

To evaluate the localization of Myo5p in yeast (see be- 
low), we constructed epitope-tagged Myo5p by insertion 
of three copies of the myc tag (Evan et al., 1985) at the ex- 
treme COOH terminus of the protein, myc-tagged Myo5p 
was expressed in the myo3&myo5A mutant using a low 
copy plasmid under control of the endogenous MY05 pro- 
moter, myc-tagged Myo5p restored normal growth rates in 
the myosin I double deletion mutant (Table II). This ob- 
servation indicates that myc-tagged Myo5p is functional in 
living yeast. 

Actin Patches and Cables Are Depolarized in the 
Double Mutant, myo3 A, myo5 A 

The actin cytoskeleton of exponentially growing cultures 
of a wild-type haploid strain, a myo5A single mutant, and a 
myo3A, myo5A double deletion strain were visualized us- 
ing rhodamine-phalloidin. The wild-type isogenic strain 
(HA10-1b) exhibits a typical polarized arrangement of ac- 
tin patches (Fig. 4 B). 95% of wild-type cells with small- 
and medium-sized buds have actin patches exclusively in 
the buds. These actin patches appear to be invaginations in 
the plasma membrane which are invested with F-actin 
(Mulholland et al., 1994) and are thought to be involved in 
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Figure 3. Growth characteristics of the 
myo3A, rnyo5A mutant. HA31, a diploid bearing 
deletion of both chromosomal copies of MY03 
and of one chromosomal copy of MY05, was 
sporulated. Haploid cells were isolated by tetrad 
dissection and were grown at 30°C on rich media 
(YPD). These cells were replica plated onto vari- 
ous media and grown at the temperatures shown. 
SC-trp was used to select for cells bearing disrup- 
tion of MY05 and insertion of a TRP1 marker. 
Sensitivity to cold, elevated temperatures and 
high osmotic strength were evaluated by growth 
on YPD at 14°C, 37°C and YPD supplemented 
with 0.75 M KC1 at 30°C. A representative tetrad 
is shown. 

late steps of secretion and/or early steps of endocytosis 
(Novick et al., 1981; Ktibler and Riezman, 1993). Asym- 
metric arrangement of actin patches is lost in the double 
deletion strain (Fig. 4 D). The patches of cortical actin are 
distributed randomly over the surface of both mother and 
bud: polarization of actin patches exclusively in buds oc- 
curs in only 8% of the rnyo3A, myo5A mutants studied. 
This finding suggests that yeast myosin I proteins are re- 
quired for polarized arrangement of actin patches. Consis- 
tent with this observation, proper cortical actin polariza- 
tion can be fully restored by replacing MY05 on a low 
copy (centromere) plasmid under the control of its own 
promoter (Fig. 4 F). 

Actin cables are the other major component of the yeast 
actin cytoskeleton. These cables are bundles of filamen- 
tous actin that are believed to function as tracks for polar- 
ized transport of organelles and vesicles from the mother 
cell to the bud (Novick and Botstein, 1985). In wild-type 
cells and in rnyo5A single mutants, actin cables are ar- 

ranged in radial arrays that extend throughout the mother 
cell and converge at the bud neck (Fig. 4 B). The presence 
of brightly stained cortical actin patches in the mother cell 
of rnyo3A, myo5A mutants precluded resolution of actin 
cables by conventional fluorescence microscopy. How- 
ever, these structures are readily detectable by confocal 
microscopy (Fig. 5). Some actin cables are observed to ex- 
tend along the mother bud axis in the double mutant, as in 
the wild-type cell. However, many cables appear to be dis- 
organized in the myo3A, myo5A double mutant: these ca- 

bles are observed to extend across the mother cell rather 
than toward the bud neck. Our findings indicate that dele- 
tion of yeast myosin I genes results in loss of actin cable 
and patch polarization without qualitatively affecting the 
total staining intensity of these cytoskeletal elements. 

Mitochondrial and Nuclear DNA Inheritance Occurs in 
the Double Mutant, myo3 A, myoS A 

Previous studies indicate that mutations in the actin-encod- 
ing ACT1 gene result in defects in nuclear migration dur- 
ing cell division, aggregation of mitochondria, as well as 
defects in mitochondrial motility and inheritance (Novick 
and Botstein, 1985; Drubin et al., 1993; Lazzarino et al., 
1994; Simon et al., 1995). The arrangement of nuclear and 

mitochondrial DNA in wild-type cells and in the 
myo3A, myo5A mutant was examined using the fluorescent 
DNA binding dye DAPI. In wild-type cells, DAPI  staining 
reveals threads of mitochondria in both the mother cell 
and bud and accumulation of mitochondria in the bud tip 
(Fig. 4 A). Nuclear staining is quite prominent. In some 
cases, nuclei were observed to extend from a mother cell 
to the bud and were therefore fixed during transport of 
nuclei into a bud (Fig. 4 A). 

In myo3A, myo5A mutant cells, mitochondria show low 
levels of aggregation but extended tubular mitochondrial 
structures are clearly visible (Fig. 4 C). Transformation of 
the myo3A, myo5A mutant strain with a centromeric plas- 

mid containing MY05 fully rescues the wild-type mito- 
chondrial phenotype (Fig. 4 E). Thus, deletion of both of 
these yeast myosin I genes causes some defects in mito- 
chondrial spatial arrangement. However, transport of mi- 
tochondria into buds is not significantly affected in the 
double mutant. In mutant and wild-type strains, mitochon- 
drial tubules were observed traversing the bud neck and 
accumulating at the bud tip. In addition, mitochondrial 
DNA was observed to be transferred to buds in greater 

than 90% of cells bearing small- to medium-sized buds. 
Nuclear inheritance also appears to be normal in myo3A, 
myo5A, mutants: fewer than 3% of cells examined display 
multinucleation (data not shown). 

The myo3 A, myo5 A Mutant Displays Defects in Chitin 
Deposition and Cell Shape 

Shortly before bud emergence, a ring of chitin is formed in 
the yeast cell wall. The bud then emerges within the con- 

fines of this chitin ring. After cell-cell separation, a chitin- 
containing ring is left on the surface of mother cells. Thus, 
chitin localization is an indicator of the polarity of bud site 
selection: haploid cells typically show an axial budding pat- 
tern and produce buds to previous bud sites. In contrast, 
diploid cells display a bipolar budding pattern and pro- 
duce buds either adjacent to or at the pole opposite from 
previous bud sites (Roberts et al., 1983). Since polarization 
of actin cables and patches is disrupted in myo3A, myo5A 
double mutants, it was of interest to determine whether 
the polarized bud site selection and chitin deposition might 
also be affected. 
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Figure 4. Actin, mitochondrial, and nuclear structure in wild-type cells, myo3A, myo5A double mutants and in double deletion mutants 
rescued with MY05 gene. Wild-type HA10-1b (A and B), myo3zl, myo5za double deletion strain (HA31-9c; C and D), and myo3A, 
myo5A mutants rescued with MY05 on a low copy plasmid (E and F) were grown to mid-log phase at 30°C, fixed with paraformalde- 
hyde, converted to spheroplasts, and stained with DAPI (A, C, and E) and rhodamine phalloidin (B, D, and 17). DAPI staining reveals 
threads of mitochondria are inherited in all three strains (A, C, and E), but only the double mutant strain shows aggregation of mito- 

chondria (C). Wild-type parental strain and MY05 rescued myo3A, myo5A double mutants show cortical actin patches polarized to the 
bud and actin cables prevalent in mother cells (B and F). Actin patches are randomly distributed over the surface of mother and bud in 
a large majority of myo3A, myo5A double mutant cells (D). b, bud; m, mitochondria; n, nucleus. Bar, 2 ixm. 
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Figure 5. The rnyo3A, myo5A mutant displays defects in organiza- 
tion of yeast actin cables. Mid-log phase wild-type yeast (HA10- 
lb; A) and a myo3A, myo5A double mutant (HA31-9c; B) were 
stained with rhodamine-phalloidin as for Fig. 4. Actin cable struc- 
ture was examined by confocal microscopy. The direction of the 
arrows illustrates the orientation of actin cables. Bar, 2 ~m. 

In wild-type cells, chitin rings are resolved as brightly 
stained rings using Calcofluor white (Fig. 6 A). These rings 

are normally restricted to one pole of the cell in haploid 
yeast. HA10-1b, a wild-type strain isogenic with myosin I 
single and double mutants, does not display the highly se- 
lective budding pattern expected of haploid yeast: bud site 
selection occurs both adjacent and distal to previous bud 
sites (Goodson and Spudich, 1995). The bud site selection 
pattern of haploid, myosin I single mutants is indistin- 

guishable from that of HA10-1b (Fig. 6, B and C). 72% of 
cells have chitin rings that are restricted to the poles of the 
long axis of a mother cell. 

The Calcofluor white staining pattern of the myo3A, 
rnyo5A double mutant is markedly different from that seen 
in wild-type or either single mutant (Fig. 6 D). Approxi- 
mately 40% of budded cells display diffuse chitin deposi- 
tion over the surface of the mother cell. Bright Calcofluor- 
stained patches, which are never detected in wild-type 
cells or in myo3A and myo5A single mutants, are present 
on 64% of double mutant cells. Chitin rings, which are dis- 
tinct from chitin patches, are also detected in myo3A, 
myo5A mutants. However, only 23% of the double mu- 
tants contained chitin rings at polar regions of the cell. 
Thus, these mutants display defects in bud site selection 
during polarized cell growth and division. Finally, the di- 
ameter of bud scars is variable in myo3A, myo5A mutants 
with many of the scars being enlarged with respect to wild- 
type cells (data not shown). 

Defects in size and shape of myo3A, myo5A mutants are 
also revealed by Calcofluor white stain. In wild-type yeast, 

early stages of bud growth are polarized and directed to 
the bud tip. Thereafter, growth is directed over the entire 
bud surface (Farkas et al., 1974). This pattern of bud 
growth produces oval shaped cells (Fig. 6 A). The length to 
width ratio of wild-type HA10-1b haploid yeast is 1.137 ___ 
0.109 (n = 179). Enlarged cells (>7 ~m) are rare in wild- 
type cultures, accounting for <7% of the population dur- 

ing mid-log growth. Single mutations in either MY03 or 
MY05 lead to slightly rounder cells with a length to width 
ratio of 1.085 __+ 0.087 (n = 144) and 1.065 ___ 0.101 (n = 
158), respectively, but there is no apparent accumulation 
of enlarged cells (Fig. 6, B and C). In contrast, >80% of 
double mutant cells are spherical or nearly spherical (Fig. 
6 D), and a small but significant minority of cells (15%) 

are enlarged in comparison to wild-type cells (>7 ~m in 
length). 

Electron Microscopy Reveals Asymmetrically 
Thickened Cell Walls and IntraceUular Membrane 
Accumulation in the myo3A, myoS A Mutant 

The ultrastructure of myo3A mutant cells and myo5A mu- 
tant cells is similar to that of wild-type yeast cells (Fig. 7, 
A-C). A single large vacuole occupies a considerable por- 
tion of the cytoplasm, and a nucleus, mitochondria, and tu- 
bules of endoplasmic reticulum can be distinguished in 
most cells. When a mother-daughter pair is sectioned such 
that both cells and their bud neck are visible, all identifi- 
able organelle structures are detected in transit through 
the bud neck into the daughter cell. Cell walls are resolved 
as an electron translucent inner portion 100-300-nm-thick 

surrounded by an electron dense shell of mannoproteins 
(reviewed in Klis, 1994). 

The ultrastructure of vacuoles, mitochondria, ER, and 

nucleus is not significantly affected by deletion of MY03 
and MY05. However, 65% of budded myo3A, myo5A mu- 
tant cells accumulate multilamellar structures (Figs. 7 D 
and 8 B, arrow). These multilamellar organelles are ~200-  
500 nm in diameter and are often enriched in the bud. 
These structures resemble the "Berkeley Bodies" which 
have been previously described in late secretory mutants 
(Novick et al., 1981). Similar structures are not seen in 
wild-type cells or either single type I myosin mutant. 
Smaller vesicles (50-80-nm diam) also appear to accumu- 
late in rnyo3A,myo5A mutants. These smaller vesicles are 
much less abundant than the multilamellar structures (Fig. 
8 B, arrowhead). 

myo3A, myo5A also display thickened cell walls. The cell 
walls of HA10-1b, the wild-type cell, and of myo3A and 
myo5A single mutant cells are 210 __ 38, 202 _+ 34, and 212 __ 
48 nm thick, respectively, and never exceeded a thickness 
of 500 nm. In contrast, 34% of myo3A, myo5A cells exam- 
ined displayed cell walls which exceeded 500 nm; in some 
cells, wall thicknesses greater than i I~m were observed. A 
pattern of concentric rings can be seen in many of the cells 
with extremely thick cell walls, suggesting that they are built 
through repeated deposition of cell wall material. In addi- 
tion, virtually all cell wall thickening was detected in the 
mother cell: most buds display normal cell wall thickness. 

To address whether defects in cell wall deposition and 
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Figure 6. The myo3A, myo5A mutant displays defects in chitin deposition, cell size, and cell shape. Chitin in the cell walls of exponen- 
tially growing haploid wild-type (HA10-1b; A), myo3A mutant (HA31-9a; B), myo5A mutant (HA51-1a; C), and myo3A, myo5A mutant 
(HA31-9c; D) cultures was stained with Calcofluor white. Arrow (A) points to chitin rings which are localized at the poles of the mother 
cell in wild-type cells and single mutants, and randomly distributed in the myo3A, myo5A double mutant. Arrowheads (D) point to ab- 
normal chitin patches detected in the myo3A, myo5A double mutant. Bar, 2 ixm. 

membrane accumulation observed in the myo3A, myo5A 
double mutant are consequences of long term perturba- 

tion of the actin cytoskeleton, we studied a mutant bearing 

defects in the actin-encoding ACT1 gene. The tempera- 

ture sensitive act1-3 mutant used undergoes loss of actin 

cables at all conditions and temperature-dependent depo- 

larization of actin patches (Novick and Botstein, 1985). At 

permissive temperature (22°C), act1-3 cells display cell 

wall thickness similar to that of wild-type cells (Fig. 8 C). 

After short-term shift of the act1-3 cells to 37°C, we ob- 

serve modest cell wall thickening (Fig. 8 D). Moreover, we 

observe extensive cell wall thickening in act1-3 mutants 

propagated at semi-permissive temperatures (30°C) for 

multiple generations (data not shown). These observations 

are consistent with a previous report that cell wall thicken- 

ing occurs in actin mutants incubated at restrictive temper- 

atures for prolonged time periods (Gabriel and Kopeck~, 

1995). 

The actin mutant also displays abnormal intracellular 

membrane accumulation. At 22°C, actl-3 cells display some 

small vesicle accumulation (Fig. 8 C). After shift to restric- 

tive temperature (37°C) for 45 min, these mutants show 

accumulation of both small vesicles and multilamellar ves- 

icles (Fig. 8 D). The levels of accumulated membranes dif- 

fer in the actin mutant compared to the myosin I double 

deletion mutant. In the myo3A, myo5A double mutant 

multilamellar structures are abundant and small vesicles 

are rare. In contrast, small vesicles are abundant and mul- 

tilamellar structures are rare in act1-3 cells after short term 

shift to 37°C. However, upon propagation of the actin mu- 

tant at a semi-restrictive temperature (30°C), the amount 

of multilamellar structures and 50-80 nm vesicles in the 

actl-3 strain is similar to that in the myosin I double dele- 

tion mutant (data not shown). These findings suggest that 

defects in cell wall deposition and membrane accumula- 

tion observed in the myo3A, myo5A double mutant are 

consequences of long-term perturbation of actin cytoskel- 
etal organization. 

myo3 A, myo5 A Mutants Display Defects in Invertase 
Secretion and Fluid Phase Endocytosis 

Accumulation of intracellular membranes in the myo3A, 
myo5A double mutants suggests possible defects in mem- 

brane trafficking. Therefore, we examined the effect of myo- 

sin I gene deletion on invertase secretion and fluid phase en- 

docytosis of Lucifer yellow. Invertase is a highly glycoslyated, 

secretory protein which catalyzes cleavage of a-glycosidic 
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Figure 7. The myo3A, myo5A mutant displays cell wall thickening and intracellular accumulation of membranes. Wild-type (HA10-1b; 
A), myo3A mutant (HA31-9a; B), myo5A mutant (HA51-1a; C), and myo3A,myo5A mutant (HA31-9c; D) cells were grown to mid-log 
phase at 30°C. Cells were fixed with glutaraldehyde, stained with KMnO4, embedded, and sectioned. Arrows indicate large multilamellar 
vesicles; Arrowheads indicate small vesicles; n, nucleus; v, vacuole. Bar, 1 Ixm. 

linkages and is required for growth using many di- and 
trisaccharides as a carbon source. The myo3&myo5A dou- 
ble mutant displays low but detectable growth on medium 
containing the trisaccharide raffinose. While poor growth 
on raffinose is consistent with a defect in invertase secre- 
tion, this result is difficult to interpret because the double 
mutant also displays poor growth on galactose and glyc- 
erol (data not shown). However, defects in the rate of in- 

vertase secretion can also be shown biochemically (Fig. 9). 
Wild-type cells secrete invertase immediately after induc- 
tion of invertase expression and display a maximal level of 
external invertase within 90 min. In contrast, myo3A, myo5A 
mutants display a delay in the onset of invertase secretion 
after induction. Analysis of intracellular invertase re- 
vealed accumulation of partially processed glycosylation 
intermediates during this initial lag phase (data not shown). 
Thus, the double mutant is capable of responding to induc- 
tion, but displays defects in the invertase secretion path- 
way. Invertase secretion is detected within 60 min after in- 
duction of the myosin I double mutant and occurs at rates 
similar to that of isogenic wild-type strains up to 180 min 
after induction. The maximum level of invertase secretion 
in the mutant is 25% greater than that of the wild-type 
cell. It is possible that the thickened cell wall of the myosin 

double deletion mutant retains greater levels of secreted 
invertase. 

Lucifer yellow is a hydrophilic fluorescent dye which is 
excluded from cells by their plasma membrane. Yeast take 
up Lucifer yellow by fluid phase endocytosis and target 
the dye to their vacuole (Riezman, 1985). Mutations af- 
fecting actin or the actin binding protein Sac6p perturb 
this process (Ktibler and Riezman, 1993). Lucifer yellow 

uptake into the vacuole is observed in >90% of wild-type 
HA10-1b cells after 30 min of incubation. In contrast, Lu- 
cifer yellow uptake and accumulation in the vacuole was 
observed in only 10% of myo3A, myo5A mutants under the 
same experimental conditions (Fig. 10). After 120 min of 
incubation with Lucifer yellow, the percentage of double 
mutant cells with labeled vacuoles was unchanged. Thus, 
deletion of myosin I genes compromises fluid phase en- 
docytosis in yeast. 

Myo5p Co-localizes with Actin Patches 

To determine the subcellular localization of Myo5p, the 
wild-type MY05 gene was tagged with three copies of the 
myc epitope, and expressed in the myo3A, myo5A mutant. 
To insure that myc-tagged Myo5p was expressed at levels 
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Figure 8. Cell wall thickening and accumulation of vesicles and multilameilar membranes occur in act1-3 mutants. Wild-type cells 
(HA10-1b) and myo3A, myo5A double mutants (HA31-9c) were prepared for electron microscopy as for Fig. 7. Temperature sensitive 
actl-3 mutants were grown at permissive temperature (22°C) to mid-log phase. An aliquot of this culture was incubated at restrictive 
temperature (37°C) for 45 min, and cultures were fixed and prepared for electron microscopy as for Fig. 7. Representative images of 
HA10-1b wild-type (A), myo3A, myo5A double mutant (B), act1-3 conditional mutant at a growth permissive temperature (C), and act1-3 
mutant after short term shift to restrictive temperature (D) are shown. Arrows indicate large multilamellar vesicles. Arrowheads indi- 
cate small vesicles, n, nucleus; v, vacuole; w, cell wall. Bar, 1 lxm. 

similar to that of wild-type Myo5p, expression was carried 
out using a low copy, centromere-based plasmid under 
control of the endogenous M Y 0 5  upstream sequences. As 
described above, expression of the epitope-tagged Myo5p 
in the myo3A, myo5A mutant restores normal growth rates 
(Table II). Therefore, addition of the myc tag to the 
C O O H  terminus of Myo5p does not appear to have a del- 
eterious effect on Myo5p function. 

The expression and detection of the tagged protein was 
evaluated using Western blot analysis (Fig. 11 a) and indi- 

rect immunofluorescenee (Fig. 11 b). We find that the 
anti-myc monoclonal antibody 9El0 (Evan et al., 1985) 
recognizes a single band in whole cell extracts of myc- 
Myo5p-expressing cells (Fig. 11 A). The antibody does not 
recognize any protein in the myo3A, myo5A mutant or in a 
myo3A, myo5A mutant expressing untagged Myo5p. The 
electrophoretic mobility of the band detected in myc- 
Myo5p-expressing cells, 135 kD, is in good agreement 
with the size predicted from the DNA sequence of the 
M Y 0 5  gene. Double label indirect immunofluorescence 
experiments indicate that mye-tagged Myo5p localizes 
with actin patches (Fig. 11 B). Within the bud, myc-tagged 

Myo5p is detected in some, but not all, of the actin 
patches. In addition, we observe co-localization of myc- 
tagged Myo5p with actin patches that accumulate at the 
site of bud emergence, myc-tagged Myo5p was not de- 
tected in actin cables. 

D i s c u s s i o n  

Myosin I's are ubiquitous proteins expected to play an im- 
portant role in cytoskeletal function. In a previous study, 
the first yeast myosin I was identified (Goodson and Spu- 
dich, 1995). This classic myosin I protein is encoded by the 
M Y 0 3  gene. Deletion of this gene has no obvious effect. 

This raised the possibility that yeast contain other pro- 
tein(s) with redundant function(s). Our approach to study 
myosin I function was to use a synthetic lethality screen to 
identify yeast proteins which are functionally redundant 
with Myo3p. This screen revealed a new classic myosin ! 
gene, MY05 .  M Y 0 5  is 75.4% identical to MY03.  Both 
genes contain coding regions for motor and tail sub-domains 
typical of a classic myosin I including a basic (possible mem- 
brane-binding) region, an SH3 domain, and a proline-rich 
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Figure 9. Invertase secretion is defective in mutants bearing dele- 
tions of MY03 and MY05. Wild-type (HA10-1b) and myo3A, 
myo5A mutant (HA31-9c) cells were grown to mid-log phase at 

30°C and transferred to growth media containing 0.05% glucose 

to derepress the expression of invertase. Aliquots were taken at 
the indicated times and assayed for external invertase. 

region (for review see Hammer, 1991). Deletion of either 
MY03 or MY05 has no obvious phenotype. However, we 
show that a yeast strain bearing deletions of both MY03 
and MY05 displays severe growth defects, enlarged cell 
size, delocalized and disorganized chitin deposition, asym- 
metrically thickened cell walls, disruption in the normal 
polar distribution of actin, accumulation of abnormal 
membrane bound structures and growth defects under 
conditions of osmotic stress, low pH,  low temperature and 
elevated temperature. Our findings indicate that yeast 
MY03 and MY05 genes encode classic myosin I proteins 
with overlapping function. These results are the first ge- 
netic demonstration that myosin I proteins are required 
for normal cell function in yeast. 

The phenotype of the myosin I double deletion mutant 
is similar to that of yeast strains bearing mutations that 
perturb the actin cytoskeleton. For example, mutation of 
actin (ACT1) or the actin-binding proteins fimbrin (SAC6), 
capping protein (CAP1-2), profilin (PFY1), or myosin V 
(MY02) leads to most or all of the following phenotypes: 
partial or complete loss of actin cables, actin patch depo- 
larization, rounded cell shape, random bud site selection, 
vesicle and membrane accumulation, cell wall thickening, 
sensitivity to high osmotic strength, defects in chitin depo- 

sition, invertase secretion, endocytosis, and mitochondrial 
organization (Novick and Botstein, 1985; Haarer et al., 
1990; Rodriguez and Patterson 1990; Adams et al., 1991; 
Johnston et al., 1991; Amatruda et al., 1992; Chowdhury et 
al., 1992; Liu and Bretscher, 1992; Kiibler and Riezman, 
1993; Drubin et al., 1993; Lazzarino et al., 1994; Simon et 
al., 1995). One distinguishing feature of the myosin I dou- 
ble deletion mutant is that the depolarization of actin 
structures occurs without a significant reduction in the 
amount of either actin cables or patches. This, coupled 
with the observation that the phenotype of the myosin I 
double deletion mutant is similar to that of strains with 
mutations in actin or actin-binding proteins, supports a 
role for Myo3p and Myo5p in control of actin cable and 
patch polarization. At present, this myosin I double dele- 
tion mutant and cells bearing mutations in the SLA1, 

RVS161, or RVS167 genes are the only yeast mutants de- 
fective specifically in actin organization (Bauer et al., 1993; 
Holtzman et al., 1993; and Silvadon et al., 1995). However, 
since actin cables are difficult to detect in myo3A, myo5A 
mutants by epifluorescence microscopy, it is possible that 
other mutants thought to have a significant reduction in 
actin cables may instead have a similar loss of actin organi- 
zation. 

Since myosin I proteins have been implicated in control 
of membrane-actin interactions, it is possible that Myo3p 
and Myo5p serve as organelle motors for vesicle move- 
ment during endocytosis and secretion. This interpretation 
is consistent with the postulated function of classic myosin 
I proteins in Aspergillus (McGoldrick et al., 1995). How- 
ever, actin organization is altered upon deletion of yeast 
myosin I genes. In addition, actin is known to be necessary 
for secretion and endocytosis in yeast. Therefore, we favor 
the interpretation that the primary function of yeast myo- 
sin I proteins is control of actin organization, and we pro- 
pose that the observed defects in secretion, endocytosis, 
and osmotic sensitivity are secondary effects due to loss of 
actin organization. 

This interpretation is supported by the finding that 
Myo5p is present in actin patches. Indirect immunofluo- 
rescence and epitope-tagging were used to determine the 
localization of Myo5p. We find that the myc-tagged pro- 
tein is fully functional and observe co-localization of myc- 
tagged Myo5p with actin patches under conditions where 
the tagged protein was expressed at levels similar to wild- 
type Myo5p. Previous studies suggest that (a) actin patches 
are invaginations in the plasma membrane that are associ- 
ated with F-actin (Mullholland et al., 1994), and (b) actin 
nucleation and assembly occur at actin patches in the bud 
of small-budded cells. This nucleation activity requires the 
SLA1 and SLA2 gene products and may be regulated by 
Cdc42p, a Rho-like GTP binding protein (Li et al., 1995). 
Thus, the finding that Myo5p is localized at actin patches is 
consistent with a model whereby myosin I proteins are re- 
quired for polarization of the actin cytoskeleton. In princi- 

Figure 11. Localization of myc-tagged Myo5p at actin patches. (a) Whole cell extracts from the myo3zi, myo5zl mutant (lane 1), 
myo3A, myo5A mutant expressing untagged MY05 (lane 2), and myo3&myo5A mutant expressing myc-tagged MY05 (lane 3) were an- 
alyzed by Western blot analysis using a monoclonal anti-myc antibody. The antibody recognizes a band with the predicted molecular 
weight of myc-tagged Myo5p only in cells expressing epitope-tagged MY05. (b) Mid-log phase myo3A, rnyo5A mutants transformed 
with plasmid bearing MY05 (A and C) or myc-tagged MY05 (B and D) were fixed and converted to spheroplasts, as described above. 
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Figure 10. Uptake of Lucifer yellow is defective in the myo3~,myo5A mutants. Mid-log phase wild-type (HA10-1b; A and B) and 
myo3Zl, myo5A mutant (HA31-9c; C and D) cultures were incubated with Lucifer yellow (4 mg/ml) for 120 min at 30°C. (A and C) 
phase contrast images; (B and D) fluorescence images showing Lucifer yellow uptake into the vacuole; v, vacuole. Bar, 2 ~m. 

In this double label experiment, actin (A and B) and myc-tagged Myo5p (C and D) were visualized using a polyclonal antibody raised 
against yeast actin and a mouse anti-myc monoclonal antibody. Arrows indicate cortical actin patches which co-localize with myc-tagged 
Myo5p. Bar, 1 p~m. 
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ple, targeting of myosin I proteins to membrane-cytoskel- 

etal junctions may be controlled by SH3 and possible 

membrane binding subdomains found in the tail domain. 

In addition, translocation of F-actin along microfilament 

tracks, and/or ATP-sensitive actin cross-linking during ac- 
tin reorganization and polarization may be mediated by 

the ATP-insensitive and sensitive actin binding sites in the 

tail and motor domains. 
Although rnyo3A, myo5A double mutants share pheno- 

types with other mutants which perturb actin structure, the 

severity of specific phenotypes differs among mutants. For 

example, the temperature-sensitive act1-3 mutant displays 

severe defects in mitochondrial organization and motility, 

accumulation of high levels of 50-nm vesicles, and only lim- 

ited accumulation of multilamellar structures which resem- 

ble Berkeley bodies (Novick and Botstein, 1985; Drubin et 

al., 1993; Lazzarino et al., 1994; Simon et al., 1995). In con- 

trast, deletion of both yeast myosin I genes results in accu-  

mulation of high levels of multilamellar structures and only 

minor defects in mitochondrial organization and 50-nm 

vesicle accumulation. We observe that some of these dif- 

ferences are due to chronic versus acute actin disorgani- 
zation. However, it is also possible that the variation in 

phenotype severity reflects differential dependence of dif- 

ferent processes on actin cables and actin patches. As de- 

scribed above, deletion of MY03 and MY05 results in de- 
fects in polarization of actin cable and patch structures 

without significantly affecting the number of actin patches 
and cables. In contrast, act1-3 mutants show complete loss 

of actin cables under all conditions and depolarized actin 

patches only at restrictive temperature. Therefore, it is 

possible that mitochondria, which co-localize with actin 

cables (Drubin et al., 1993; Lazzarino et al., 1994), may be 

more severely compromised in mutants like act1-3 which 

do not contain these actin structures. In contrast, the rela- 
tively strong effect of the deletion of MY03 and MY05 on 

endocytosis may reflect a dependence of this process on 
the specific organization of cytoskeletal elements, possibly 

at a very local level. 

The conservation of classic myosin I proteins in evolu- 

tionarily divergent organisms (Goodson and Spudich, 1993; 
Cheney et al., 1993) suggests that they have a significant 

role in many eukaryotic cell types. It has long been postu- 

lated that myosin I proteins play a role in the generation of 

cell motility (for review, see Pollard et al., 1991; Spudich 

and Warrick, 1991). Results from analysis of Dictyostelium 
myosin I mutants support this idea (Titus et al., 1993). 

Here, we show that two classic myosin I proteins are im- 
portant for cell growth in an organism which does not 

move. Similar results were obtained recently in Aspergillus 
(McGoldrick et al., 1995). These results demonstrate that 

classic myosin I proteins are fundamentally important to 
the function of non-motile cells and suggest that they have 

a key role in cytoskeletal processes common to both mo- 
tile and non-motile cells. More specifically, we provide ev- 

idence that (a) MY03 and MY05 encode myosin I pro- 

teins with overlapping function, and (b) these classic 

myosin I proteins are necessary for control of actin polar- 

ity in yeast. Our results in yeast, together with recent re- 
sults in Dictyostelium (Novak et al., 1995), suggest that 

myosin I proteins play an important organizational role in 
the actin cytoskeleton in many eukaryotes. 
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