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1 INTRODUCTION

1.1 Progress and challenges in the new age of engineering immunity

The immune system plays a critical role in our health. No other component of human 

physiology plays a decisive role in as diverse an array of maladies, from deadly diseases 

with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, 

pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such 

as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of 

the immune system and learning how to modulate immunity to protect against or treat 

disease thus cannot be overstated. Fortunately, we are entering an exciting era where the 

science of immunology is defining pathways for the rational manipulation of the immune 

system at the cellular and molecular level, and this understanding is leading to dramatic 

advances in the clinic that are transforming the future of medicine.1,2 These initial advances 

are being made primarily through biologic drugs– recombinant proteins (especially 

antibodies) or patient-derived cell therapies– but exciting data from preclinical studies 

suggest that a marriage of approaches based in biotechnology with the materials science and 

chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer 

immune engineering strategies. This review will examine these nanoparticle-based strategies 

to immune modulation in detail, and discuss the promise and outstanding challenges facing 

the field of immune engineering from a chemical biology/materials engineering perspective.

1.1.1 Key cellular actors in the immune system—A brief summary of the cellular 

players in the immune response is worthwhile to preface the many immunomodulatory 

approaches described in this review. The immune system can be viewed at a high level as a 
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collection of mobile cells that include members that traffic throughout the body in search of 

invading pathogens as well as cells that reside as sentinels at portals of entry (i.e. the 

airways, skin, gastrointestinal tract, etc.).3 These cells belong to one of two major arms, the 

innate immune system and adaptive immune system. Innate immune cells such as 

neutrophils and macrophages are poised to rapidly respond to pathogen invasion, expressing 

receptors that recognize conserved molecular motifs characteristic of bacteria, viruses, and 

fungi, to quickly phagocytose (internalize) microbes and secrete reactive oxygen species or 

cytokines that provide an immediate response to invading pathogens. The adaptive immune 

system is comprised of T-cells and B-cells, including CD4+ helper T-cells that secrete 

cytokines to direct the functions of innate cells, killer cells, and B-cells; and CD8+ killer T-

cells that recognize and destroy infected or transformed cells. B-cells play a canonical role 

in vaccine responses by producing antibodies that bind to and neutralize the ability of 

microbes to invade host cells and/or promote their phagocytosis. The adaptive immune 

system is so named because of the clonal nature of T and B lymphocytes– each T-cell and 

B-cell expresses a unique T-cell receptor or B-cell receptor, respectively, which is generated 

in part by a process of stochastic DNA recombination, enabling the pool of lymphocytes the 

potential to recognize any microbial antigen they may encounter.4 When a T- or B-cell binds 

an antigen (essentially, any biological molecule from a microbe that is recognized by a T-

cell receptor (TCR) or B-cell receptor (BCR)), this triggers massive proliferation of the 

antigen-specific cell, generating a pool of effectors within ~7 days following exposure. 

These effector T-cells and B-cells play an important role in backing up innate immune 

defenses to clear the invading pathogen. Following pathogen clearance, the majority of these 

cells (~90%) undergo programmed cell death, leaving a small pool of differentiated memory 

cells that can remain for the lifetime of the individual, to provide rapid recall protection if 

the same microbe is ever encountered again.5 A final key group of immune cells are the 

antigen presenting cells (APCs), and particularly a critical APC known as the dendritic cell, 

which is responsible for activating naïve T-cells (and in some cases B-cells).6,7 Dendritic 

cells (DCs) are innate-like cells that reside in all peripheral tissues, and which act as 

sentinels, collecting antigens from the surrounding fluid and staying on constant alert for 

“danger signals”- molecular motifs signifying tissue damage or pathogen invasion. DCs and 

other immune cells express a host of receptors that specifically recognize danger signals to 

trigger their activation; the most studied among these receptors are the Toll-like receptors.8 

If activated by danger signals, DCs migrate from their home tissue through the lymphatic 

vessels to local draining lymph nodes, where they physically present antigen to T-cells and 

B-cells. For T-cell activation, this is through the loading of short (8–15 amino acids) peptide 

fragments of antigens into the cleft of major histocompatibility complex (MHC) molecules 

displayed on the DC surface. These peptides are surveyed by the TCRs of T-cells, and on 

finding a cognate peptide, T-cells become activated by the DC to proliferate and carry out 

their effector functions.

The vastly complex set of cellular interactions summarized above (greatly oversimplified) is 

the network of interest to those interested in immune engineering, and in this review we aim 

to summarize the myriad ways in which materials scientists, chemical engineers, 

bioengineers, chemists, and physicists (often in collaboration with immunologists) are using 

nanomaterials as powerful tools to probe or manipulate immune responses for therapeutic 
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ends. To set the stage for the rest of the review, we will briefly discuss two of the areas 

where synthetic nanoparticles have the prospect to play a significant role in the ongoing 

revolution of immunology in medicine– vaccines and active immunotherapy.

1.1.2 Designing new vaccines—Vaccines are pharmaceutical preparations of antigens– 

macromolecules derived from pathogens– which when administered to the body elicit an 

immune response and establish immunologic memory of the antigen, usually in the form of 

long-lived production of antibodies against the antigen.9 A strong case can be made that 

vaccines are the single most impactful medical technology to be developed in history– as 

vaccines have saved hundreds of millions of lives in the past century.10,11 The introduction 

of an effective new vaccine has been repeatedly shown to have an immediate, dramatic 

impact on the frequency of disease in a given population, as illustrated by the annual cases 

of polio and measles in the United States before and after the introduction of their respective 

vaccines (Fig. 1).12,13 Prophylactic vaccines (administered to healthy individuals to protect 

against future exposures) have successfully eradicated or greatly reduced the frequency of 

infectious diseases that, at the beginning of the 20th century, exacted a serious toll in deaths 

and morbidity, including diphtheria, tetanus, measles, polio, smallpox, mumps, rubella, and 

typhoid, to name a few. These successes make the value of an effective vaccine very clear. 

However, successful vaccines remain elusive for a number of important diseases, including 

HIV, tuberculosis, and malaria.10 These diseases share a number of features that are distinct 

from those for which existing vaccine strategies have been successful.14 Successful vaccines 

have been generated primarily for diseases that cause acute infections, and for which the 

natural immune response in a fraction of persons will be protective and establish life-long 

protective immunity, mediated in the vast majority of cases by neutralizing antibodies 

(produced by B-cells and their progeny, plasma cells). By contrast, diseases for which we do 

not yet have an effective vaccine often establish chronic infections, which the immune 

system of unvaccinated individuals is unable to eradicate, and which do not induce 

protective immune memory against re-exposure.15 Further, T-cells, in addition to B-cells, 

are thought to potentially be important in attacking these pathogens.16 This problem 

highlights the challenge facing modern vaccine design– we must develop vaccines that can 

achieve what the natural immune system cannot, potentially employing both arms of 

adaptive immunity.

A second major challenge for current vaccine efforts is the development of effective 

therapeutic vaccines that can treat established disease. Therapeutic vaccines could impact 

not only infectious diseases such as HIV and tuberculosis, but also non-infectious diseases 

such as cancer.17,18 In addition, the possibility of vaccines that shut off immune responses to 

target antigens instead of turning them on has been proposed, as a means to eliminate 

unwanted immune reactions in autoimmune disease and allergies.10 Therapeutic vaccines 

for cancer and autoimmune disease introduce the additional complexity that they aim to 

employ the immune system, which has evolved to deal with infectious disease, to instead 

treat non-infectious disorders.

1.1.3 Capitalizing on the promise of immunotherapy—Vaccines represent an 

intervention with long-established benefits to public health, based on inoculation of the 
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immune system with a target antigen in a way that induces immunological memory to 

protect against future exposures to the source pathogen. However, in the presence of existing 

disease, there are other routes to instructing the immune system to attack malfunctioning or 

tumorigenic cells, broadly termed immunotherapies. Immunotherapies have been pursued 

for a broad range of diseases, but arguably the greatest effort has been invested in the 

development of therapeutics that prime the immune system to attack cancer;2,19,20 for the 

purpose of setting the stage for later discussions in this review, we will focus on this specific 

case as an example of current treatment strategies in the clinic.

A diverse set of approaches has been taken to develop cancer immunotherapies, including 

the administration of therapeutic vaccines, recombinant cytokines, immunomodulatory 

antibodies, small molecule drugs, and adoptively transferred immune cells. Among these 

various approaches, two strategies have recently been proven to be capable of dramatic 

impacts in advanced cancer patients: treatment of patients with so-called checkpoint 

blockade antibodies, and adoptive transfer of chimeric antigen receptor T-cells. Checkpoint 

blockade refers to the use of antibodies that block negative regulatory receptors on T-cells, 

in effect “taking the brakes off” the immune system and allowing endogenous natural 

immune responses against tumors to be unveiled. Two different checkpoint blockade 

treatments targeting different receptors (CTLA-4 and PD-1) have recently been approved by 

the FDA, on the basis of striking clinical trial results in melanoma, renal cell carcinoma, and 

lung cancer (and several additional similar therapeutics seem likely to be approved soon on 

the basis of ongoing trials).5,11,21,22Anti-PD-1 antibodies in particular have shown striking 

tumor regression in a subset of patients, even against traditionally difficult-to-treat tumors 

like non-small cell lung cancer.22 While checkpoint blockade therapies energize the native 

immune response against cancer, adoptive transfer of chimeric antigen receptor (CAR) T-

cells represents true engineering of immune responses: Here, T-cells isolated from the blood 

of patients are genetically engineered to express synthetic receptors (CARs) based on a 

fusion of an antibody binding domain with T-cell signaling domains, replacing the natural 

TCR with a CAR that binds to surface-expressed proteins on target tumor cells. In clinical 

trials of leukemia, CAR therapy has resulted in remarkable tumor regressions, enabling 

complete tumor eradication in ~80% of treated patients.23 These advances provide crucial 

proof of principle that the immune system is capable of safely eliminating massive tumor 

burdens in patients that have no other option, and have signaled the beginning of an 

immunotherapy-led revolution in cancer treatment.

1.2 Guiding principles motivating synthetic nanomaterials in immune engineering

The purpose of this review is to highlight the many ways in which nanoparticle chemistry 

and engineering are being applied to tackle challenges in vaccine development and to build 

on recent successes in immunotherapy. With the exception of cell-based therapies being 

pursued in cancer immunotherapy, all of the immune engineering strategies currently in the 

clinic are based on traditional drug development approaches- antibodies, recombinant 

proteins, small molecule drugs. So what is the inspiration for novel engineered materials for 

this purpose? There are a number of over-arching themes that drive this work, which recur 

throughout this review. Some of these motivating concepts are common to other therapeutic 

areas where nanoparticles are of significant interest, such as cancer nanomedicine or nucleic 
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acid delivery,24 while others are unique to the distributed cellular network that makes up the 

immune system. First is the principle that immunomodulatory compounds must reach their 

target cell types to exert their effects, and nanoparticle carriers can greatly increase the 

localization of these drugs in target lymphoid tissues or within specific immune cells, and 

thereby dramatically increase their potency.25 With this enhanced tissue and/or cellular 

targeting, these engineered vaccines and immunotherapies can also exhibit greatly enhanced 

safety.14,26–28 While safety is almost always considered secondary to efficacy in animal 

models of immunotherapy, it is the primary driver in clinical prophylactic vaccine 

development. In addition, because many immunomodulatory drugs such as recombinant 

cytokines act on diverse immune cell types, many of these agents have failed as 

systemically-administered treatments even in oncology, due to the severe toxicity of “on-

target but off-tumor” side effects.29–31 Nanoparticle formulations offer the potential of 

making these powerful signaling agents effective for modulating the right target cells at the 

right location, and ablating the severe toxicity often associated with immunomodulators. 

Nanoparticle forms of antigens and immunomodulatory compounds can also change the 

function of these agents– by promoting multivalent receptor crosslinking, by altering 

intracellular processing, by promoting cytosolic delivery, or by physically co-localizing 

synergistic cues within the same intracellular compartment or cell surface site.1 Finally, 

nanomaterials can themselves have intrinsic immunomodulatory function, acting as 

adjuvants or immune potentiators. This last area is just beginning to be explored and offers 

the potential not only for new therapeutics but also may lead to new levels of understanding 

how the immune system defines “danger signals”. A broad range of synthetic nanomaterials 

are being studied as platforms to achieve these goals, and will be discussed throughout the 

review (a non-exhaustive summary of some of the most-studied materials is provided in 

Table 1). Promising preclinical data in these many different strategies for shaping immune 

responses via synthetic materials suggest that nanomaterials will have an important role to 

play in the future of vaccines and immunotherapy.

2 Nanoparticles regulating immunity at the single-cell level

Through years of research, many of the immunological mechanisms through which vaccines 

and immunotherapies interact with the innate and adaptive immune systems at the single cell 

level have been thoroughly characterized. In parallel several advances in chemistry and 

material science have made it possible to engineer synthetic materials to manipulate 

biological functions of cells32. There are three broad strategies that have been pursued to 

date in using nanoparticles to modulate immune responses at the single-cell level: In the first 

approach, nanoparticles are directly attached to or allowed to be internalized by immune 

cells ex vivo, thereby arming these cells for subsequent injection in vivo, where the 

nanoparticle cargo can release drugs that direct immune cell function or impart new 

functionalities to therapeutic cells. A second strategy is to exploit the “natural targeting” of 

nanoparticles to phagocytic cells in vivo, injecting free particles that are scavenged by 

monocytes, macrophages, dendritic cells, or neutrophils in the blood, spleen, liver, bone 

marrow, or other target tissue sites. Finally, so-called “active” targeting has been explored, 

whereby specific ligands or antibodies on the surface of nanoparticles are used to direct 

binding to specific cell targets in vivo. In this section, we discuss examples of these three 
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approaches and various promising nanoparticle-based strategies to target different innate 

immune and adaptive immune populations.

2.1 Targeting the innate immune system

2.1.1 Modulating macrophages and monocytes—Macrophages are a highly 

heterogeneous class of phagocytic cells distributed in all tissues throughout the body such as 

the lungs (alveolar macrophages), liver (Kupffer cells), spleen, and bone marrow. These 

cells differentiate from immature monocytes that are in the bone marrow and blood 

circulation. Macrophages can engulf pathogens and apoptotic cells, process and present 

antigens and release cytokines to initiate and regulate the adaptive immune response. 

Macrophages are amongst the first immune cells to be recruited to sites of tissue injury or 

infection33 and play a central role in mediating inflammation which can either be host 

protective in the short term, or over prolonged periods result in inflammatory pathologies 

like atherosclerosis, inflammatory bowel disease, chronic obstructive pulmonary disorder 

(COPD) and tumor growth and metastasis. As macrophages differentiate, they can acquire a 

spectrum of different phenotypes depending on the factors present in their 

microenvironment. The ends of this spectrum of phenotypes are defined by ‘M1’ or 

classically activated macrophages that mediate host defense against pathogens and anti-

tumor immunity, and ‘M2’ or alternatively activated macrophages that function during 

wound healing and promote tumor growth34. Both M1 and M2 macrophages actively 

endocytose and phagocytose material from their surroundings35. Due to their phagocytic 

nature, passive targeting of macrophages with synthetic nanoparticles is easily achieved.36 

As different subsets and phenotypes of macrophages were identified and macrophage 

receptor expression characterized, targeting strategies have also been developed through 

surface engineering of particles with ligands that can bind to specific macrophage receptors.

A first approach to dose phagocytic cells with nanoparticles carrying immunoregulatory 

drugs has been to “feed” macrophages or monocytes with particulate cargo ex vivo, followed 

by injection of the particle-laden cells to allow their homing to tissue sites in vivo. In this 

way, phagocytes can be used as delivery vehicles to transport therapeutics to various disease 

sites since monocytes and macrophages migrate to sites of inflammation.33 The anti-

retroviral (ARV) protease inhibitor idinavir (IDV) was delivered using this strategy with 

promising results in a humanized mouse model of HIV infection (Fig. 2)37 and HIV-induced 

encephalitis.38 To load bone marrow derived macrophages (BMDM) with IDV 

nanoparticles, they were incubated with IDV loaded in a phospholipid nanosuspension. 

Injection of these IDV-loaded BMDMs resulted in higher concentrations of IDV maintained 

in tissues and serum, and led to reduced HIV viral loads and improved CD4:CD8 T-cell 

ratios compared to systemic administration of the free drug.37 While results with 

nanoparticle-loaded macrophages for ARV drug delivery are promising, the clinical 

complexities of cell therapies make it likely that the first clinical testing of nanoparticulate 

ARVs will be done using injection of free nanoparticle forms of these drugs. Commercial 

formulations of polymer-stabilized solid drug nanoparticles of the ARV rilpivarine have 

recently been tested for biodistribution and pharmacokinetic behavior in rats and dogs and 

show lymphoid tissue deposition that suggests uptake by macrophages in vivo following i.v. 
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injection.39 These results set the stage for clinical testing of such formulations as candidate 

long-acting ARV treatments.

Macrophages and monocytes also home to hypoxic regions of tumors.40 Macrophages 

loaded with liposome-encapsulated chemotherapeutics resulted in increased drug delivery to 

tumors compared to systemic administration of liposomes.41 In a model of glioblastoma, 

intra-cranial injection of cyclodextrin-based NPs resulted in their accumulation at tumor 

sites through transport by tumor-associated macrophages (TAMs).42 While it is clear that 

macrophages can be used to enhance the delivery of NPs to tumors, further work is required 

to optimize the in vivo therapeutic efficacy of this strategy.

Passive targeting of macrophages involves injecting particles with optimal shape,43 size and 

surface charge44 systemically to access monocytes and macrophages in specific tissue 

compartments. For optimal phagocytosis, particles require a shape with high length 

normalized curvature43 and a negative surface charge,45 however this can differ with the 

material being used. Depending on the material composition of the nanoparticle and the kind 

of macrophage it interacts with, the size range for particles being phagocytosed can vary 

from 85 nm to 10 µm.46–48 Within this size range, smaller nanoparticles (100–300 nm) are 

internalized less efficiently than larger nanoparticles (2–3 µm).45

The surface charge of nanoparticles also influences their uptake by phagocytic cells. While 

phagocytic cells can take up both cationic and highly anionic particles44, cationic particles 

can cause cytotoxicity due to plasma membrane disruption, production of reactive oxygen 

species (ROS) and inflammatory responses.45,47,49 However, this generalization is not 

universal, since certain anionic nanoparticles can also cause cytotoxicity when internalized 

by macrophage cell lines.50 Ultimately, it is the combination of multiple physical parameters 

including size, surface charge, hydrophobicity and material composition that influence 

cellular uptake and cytotoxicity of nanoparticles.

Following intravenous injection, particulate matter is typically removed from systemic 

circulation by specialized macrophages of the spleen and liver (Kupffer cells) due to the 

open fenestrations of endothelial cells and sinusoids in the spleen and liver resulting in 

greater access of macrophages to circulating blood.51 For example, this strategy was 

recently used to deliver siRNA to silence the regulatory receptor programmed death ligand-1 

(PD-L1) expressed by Kupffer cells and sinusoidal endothelial cells in the liver.52 PD-L1 is 

a ligand for the inhibitory receptor Programmed death-1 (PD-1) expressed on activated T-

cells53 and NK-cells;54,55 binding of PD-1 on lymphocytes to Kupffer cell PD-L1 normally 

restrains T-cell activation/inflammation and maintains a tolerogenic environment in the 

liver.56 Dolina et al. observed that intravenously-injected lipidoid nanoparticles (LNPs) 

carrying PD-L1 siRNA were taken up primarily by Kupffer cells in the liver and 

accumulated around the cell nuclei. This resulted in downregulation of PD-L1 expression 

and increased activation of NK cell and T-cells in the liver that enabled treated animals to 

clear hepatic viral infections (Fig. 3).52 Macrophages in the spleen can also be targeted by 

systemic nanoparticle administration: intravenous administration of CCR2-siRNA 

encapsulated in LNPs resulted in maximal accumulation in the Ly6Chi monocyte 

populations of the spleen and bone marrow. CCR2 is a chemokine receptor for the MCP-1 
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chemokine and signaling through the CCR2/MCP-1 axis is required for the recruitment of 

inflammatory monocytes to the site of tissue damage. Targeting of monocytes with CCR2-

siRNA LNPs reduced the infiltration of inflammatory monocytes to the site of tissue injury 

in murine models of ischemia/reperfusion-induced myocardial infarction and reduced the 

size of atherosclerotic lesions in mice with established atherosclerosis. These LNPs also 

prolonged the survival of pancreatic islet grafts and reduced the size of lymphoma growth.57

Passive targeting of nanoparticles to phagocytic cells has also been used to reduce 

macrophage-mediated inflammation at sites of atherosclerotic plaques. Duivenvoorden et al. 

intravenously administered statin-loaded re-constituted high-density lipoprotein 

nanoparticles (S-rHDL NPs) and observed that they accumulated in the heart, aorta, spleen, 

liver and kidneys. More detailed analyses revealed that these S-rHDL NPs could accumulate 

in atherosclerotic lesions in an Apoe−/− mouse model of atherosclerosis. Vessel wall 

thickness and macrophage infiltration of plaques were decreased in groups that received S-

rHDL NPs compared to groups that received empty particles or unencapsulated statin. S-

rHDL NPs caused reduced viability and secretion of inflammatory cytokines from 

macrophages compared to empty rHDL particles in vitro. Statins have no effect on 

cholesterol levels in the Apoe−/− mouse model, and so their impact in these studies was 

ascribed to their anti-inflammatory effect on macrophages in atherosclerotic lesions.58

Active targeting through conjugation of ligands for cell-surface receptors can often increase 

the uptake of nanoparticles by phagocytic cells relative to non-targeted particles, and this 

has thus motivated exploration of this approach for delivery of immunoregulatory drugs to 

macrophages and monocytes. A number of receptors allow macrophage-specific targeting, 

including the Fc receptor, scavenger receptors and mannose receptors (MMR or CD206). 

Targeting the macrophage Fc receptor is achieved by coating nanoparticles with IgG, which 

accelerates uptake of particles and enhances their retention within macrophages.59 

Nanoparticles can also be targeted to the F4/80 receptor expressed on the macrophage 

surface. Laroui et al. designed anti-inflammatory therapeutic by encapsulating TNF-α 

siRNA in nanoparticles synthesized using poly(lactic acid)/PEG block co-polymers (PLA-

PEG NPs). PLA-PEG NPs were coated with anti-F4/80 antibody fragments and packaged 

into chitosan/alginate hydrogels. It is important to note that both empty and TNF-α siRNA 

encapsulated PLA-PEG NPs did not affect macrophage cell viability. Upon oral 

administration, these antibody-coated PLA-PEG NP-loaded hydrogels preferentially 

interacted with intestinal macrophages and attenuated the effects of dextran sodium sulphate 

mediated colitis.60

The macrophage mannose receptor (MMR) is expressed on mature macrophages and 

dendritic cells but not on monocytes in the blood circulation. Intratracheal delivery of 

mannosylated cationic liposomes has been used to specifically target alveolar 

macrophages.61 MMR expression is also increased on TAMs that are polarized toward the 

M2 phenotype.62 Locke et al. used mannosylated phospholipids to synthesize liposomes that 

encapsulated radionuclide64Cu to facilitate imaging of urethane-induced lung tumors. 

Fluorescently-labeled mannosylated liposomes (Man-Lipos) co-localized with lung tumors 

and had lower background signal than non-mannosylated liposomes demonstrating that 

Man-lipos can be used to specifically target TAMs and deliver cargoes to them (Fig. 4).63
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Single-walled carbon nanotubes (SWNTs) have also been used to target phagocytic cells 

trafficking to tumors. SWNTs coated with lipid-tailed poly(ethylene glycol) terminated by 

an integrin-targeting peptide RGD (arginine-glycine-aspartic acid) were shown to 

accumulate at tumor sites in mouse models of cancer.64 This was attributed to the 

preferential accumulation of SWNTs in tumors via the enhanced permeability retention 

(EPR) effect65 and the ability of the RGD peptide to bind to integrins expressed on tumor 

vasculature and on the surface of tumor cells.66 However, upon closer examination using 

intravital microscopy, Smith et al. showed that in addition to accumulating in the tumor due 

to EPR, 25% of intravenously injected SWNTs were taken up preferentially by Ly6Chi 

monocytes in the circulation, which were then recruited to the site of the tumor in response 

to inflammation. Conjugating RGD to SWNTs increased the recruitment of Ly6Chi 

monocytes into the tumor interstitium and resulted in increased accumulation of SWNTs at 

the tumor site.67 The mechanisms underlying preferential uptake of SWNTs by Ly6Chi 

monocytes are still unknown.

2.1.2 Neutrophils—Neutrophils are the “first responders” at sites of inflammation and 

play an important role in providing the initial defense against invading pathogens through 

phagocytosis of microbes and secretion of cytokines and reactive oxygen species.68 

However, prolonged neutrophil-mediated inflammation can lead to tissue damage and the 

pathogenesis of diseases such as arthritis, cancer and COPD.69 Targeting neutrophils in 

contexts where they mediate inflammation has been explored as a strategy to limit chronic 

inflammatory responses and minimize tissue damage. In many cases, completely inhibiting 

neutrophil entry into the site of tissue injury may also abrogate the beneficial aspect of the 

inflammatory response. Using nanomaterials to specifically control the delivery of agents 

that reduce neutrophil recruitment to different extents may be able to ameliorate an 

excessive inflammatory response without interfering with the beneficial role of 

inflammation. When neutrophils respond to inflammation-inducers like bacteria, they trans-

migrate through activated endothelial cells to reach the site of tissue injury or infection. 

Wang et al. synthesized denatured bovine serum albumin (BSA) nanoparticles that are 

specifically endocytosed by activated neutrophils that adhere to inflamed blood vessels. 

These nanoparticles were synthesized through a desolvation process using ethanol and 

stabilized through glutaraldehyde-induced cross-linking and could be loaded with drugs that 

modulate neutrophil function such as Syk inhibitors. Upon intravenous delivery, these 

particles reduced the accumulation of neutrophils adherent to activated lung endothelium in 

response to a systemic LPS injection.70 In a related strategy, polymer nanoparticles carrying 

the anti-inflammatory peptide Ac2-26 were targeted to sites of tissue injury by using 

collagen IV targeting peptides. Nanoparticles less than 100 nm in diameter were synthesized 

using biodegradable diblock poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) using the 

single-step nanoprecipitation self-assembly method. Encapsulation of Ac2-26 in these 

nanoparticles resulted in its increasing its half-life in circulation and preferentially targeting 

it to the site of tissue injury. Administering these particles intravenously resulted in a 30% 

reduction in neutrophil recruitment to the site of tissue injury in a hind-limb ischemia-

reperfusion injury murine model, which could help resolve the inflammatory response more 

quickly.71

Irvine et al. Page 9

Chem Rev. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 Targeting the Adaptive Immune System

The adaptive immune system comprises T-cells and B-cells. These cell types express a large 

diversity of clonal antigen receptors, permitting recognition of a wide repertoire of antigens 

expressed by foreign pathogens or cancer cells. Furthermore, cells of the adaptive immune 

system differentiate to become memory cells that ‘remember’ previous antigen exposures 

and launch a rapid immune response against previously encountered antigens. This property 

is known as immunologic memory, a hallmark of the adaptive immune system4.

2.2.1 T-cells—T-cells play a central role in the immune system’s ability to eliminate 

intracellular pathogens and tumors. Current cancer immunotherapies showing significant 

objective responses in the clinic such as treatment with checkpoint blockade antibodies or 

adoptive T-cell transfer are largely reliant on the ability of cytotoxic CD8+ T-cells to 

infiltrate tumors and destroy cancer cells, as are many other cancer immunotherapy 

strategies2. On the other hand, aberrant T-cell responses contribute to serious autoimmune 

diseases including Type 1 diabetes and multiple sclerosis.72 Thus, strategies to modulate the 

function of T-cells, either enhancing or suppressing their function, have been sought in a 

variety of disease settings. Depending on the therapeutic context, T-cells can be modified to 

carry cargo that either modify their own function or modulate the function of cells with 

which they interact.

Engineering T-cell function in cancer immunotherapy: Tumor-antigen specific T-cells 

that naturally arise in a patient (endogenous T-cells), expanded by a cancer vaccine, or 

artificially introduced by adoptive cell therapy can potentially attack and destroy cancer 

cells. However, strategies to expand these T-cells specifically in vivo or to block the 

immunosuppressive signals they face in the tumor microenvironment are of importance for 

maximizing the efficacy of immunotherapies. Nanoparticle delivery agents have been 

explored to address these issues and enhance the function of T-cell-based immunity in 

several ways.

One of the most promising clinical strategies for treating advanced melanoma and certain 

leukemias is via adoptive cell therapy (ACT).20,73 ACT involves transferring large numbers 

of autologous tumor-specific T-cells expanded ex vivo back into patients to mediate tumor 

regression. A key step in this treatment is the rapid expansion of antigen-specific T-cells in 

culture. Perica et al. designed artificial nano-APCs using dextran-coated iron oxide particles 

with surface coupled MHC-Ig dimers and anti-CD28 antibodies designed to allow magnetic 

field-based aggregation of particles bound to T-cell receptors (TCRs). Ex vivo stimulation of 

T-cells with these particles in the presence of a magnetic field enhanced TCR clustering, 

reduced the threshold of activation of T-cells and improved the efficacy of adoptive T-cell 

therapy (Fig. 5 A, B).74 A startup company, NexImmune, is working to develop this 

technology for adoptive T-cell therapy and other clinical applications.

A second approach to enhance ACT is to functionalize T-cells with nanoparticles that can 

influence their function in vivo. Following T-cell injection, patients receiving ACT are often 

treated with systemic adjuvant drugs like interleukin-2 (IL-2).75 In preclinical models a 

variety of supporting cytokines or immunomodulatory agents have been tested as systemic 
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supporting drugs that can promote continued expansion of the transferred T-cells in vivo, 

improve T-cell survival, enhance T-cell resistance to immunosuppression, or increase T-cell 

effector functions.76,77 However, cytokines like IL-2 and other immunomodulators often 

elicit severe toxicity when administered systemically, due to nonspecific lymphocyte 

activation in the circulation and pleiotropic effects on other cells.76,78 To better focus the 

influence of supporting drugs on the donor T-cells themselves, Stephan et al. engineered 

cytokine encapsulating multi-lamellar lipid nanoparticles and chemically conjugated them to 

T-cells ex vivo prior to adoptive transfer.79 Unexpectedly, linking nanoparticles to free thiols 

on T-cell surface proteins (Fig 5C) resulted in minimal particle internalization over several 

days in culture (Fig 5D). This enabled the nanocarriers to continuously release encapsulated 

cytokines for engineered autocrine stimulation of cell surface receptors. When T-cells were 

loaded with nanoparticle “backpacks” carrying stimulatory cytokines, this approach enabled 

80-fold increased T-cell expansion in vivo and significant enhancements in the efficacy of 

ACT, without toxicity (Fig. 5E).79 It was subsequently demonstrated that this cell surface 

conjugation strategy leads to coupling of particles to receptors known to be trafficked to the 

immune synapse formed at the contact between T-cells and tumor cells during tumor cell 

killing.80 Thus, as particle-decorated T-cells engaged tumor cells, the cell-bound 

nanoparticles were shown to be transported over the cell surface into the T-cell/tumor cell 

interface, enabling synapse-directed drug delivery.80

A third strategy is to use nanoparticles to deliver stimulatory or protective cues to T-cells 

directly in the tumor microenvironment. Kwong et al. designed immunostimulatory 

liposomes comprising PEGylated liposomes with surface-conjugated IL-2 and anti-CD137 

(a co-stimulatory receptor up-regulated on activated T-cells).81 These particles were 

designed to enable high doses of IL-2 and anti-CD137 to be injected into tumors and remain 

localized at the tumor site without systemic dissemination. This allowed local T-cell 

stimulation without systemic toxicity. Upon local intra-tumoral injection into established 

melanomas, this liposomal therapy resulted in improved ratios of tumor infiltrating CD8+ T-

cells to regulatory T-cells (T-regs), cured 70% of treated animals, and primed T-cells that 

traveled away from the injection site to suppress the growth of distal (untreated) tumors. 

Importantly, intratumoral injection of anti-CD137 and IL-2 anchored on liposomes allowed 

for non-toxic delivery of doses of anti-CD137 and IL-2 that would be lethal if administered 

systemically.26

Nanoparticles can also accumulate in tumors following systemic administration, due to the 

combination of leaky tumor vasculature and dysfunctional lymphatic clearance in many 

tumors (EPR effect).65 Park et al. designed a biodegradable hybrid core-shell delivery 

platform comprising nanoscale liposome-encapsulated polymer nanogels (nLgs). By 

incorporating a small molecule drug chelator (β-cyclodextrin) into the nanogel network, 

nLgs could encapsulate both a hydrophilic cytokine (IL-2) and a hydrophobic small 

molecule drug that inhibits the TGF-β receptor–I. TGF-β is one of the major negative 

regulatory signals produced in tumors,82 and these combination drug nLGs simultaneously 

provided cues to drive T-cell and NK-cell expansion while blocking a key 

immunosuppressive pathway. Systemic administration of these nLgs in melanoma tumor 

bearing mice resulted in curing 40% of the animals.82
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A final approach to target T-cells is to exploit the fact that lymphocytes continuously re-

circulate through the blood, and directly target these cells in the circulation. Zheng et al. 

synthesized PEGylated liposomes conjugated either to IL-2 or antibody fragments against an 

innocuous T-cell surface protein (Thy1) to target adoptively transferred T-cells in vivo.83 

When systemically administered, both IL-2 and anti-Thy1 targeted liposomes to adoptively 

transferred T-cells in vivo (Fig. 5F, G). The advantage of targeting a circulating cell type 

was evident in these data, as nearly 100% of the target cells were labeled following a single 

injection of liposomes. Notably, IL-2-liposomes were shown to stimulate greater ACT T-cell 

proliferation in vivo compared to equivalent soluble doses of the cytokine.83 An alternative 

to using antibodies or cytokines to target lymphocytes could be to use oligonucleotide 

aptamers.84 Recently, McNamara et al. reported the generation of aptamers that bind to the 

T-cell costimulatory receptor CD137 and are capable of binding to T-cells and delivering a 

stimulatory signal.85

Engineering T-cell function in autoimmunity: During αβ TCR rearrangement, throughout 

T-cell development, T-cells expressing TCRs that recognize self-proteins can be generated. 

Such autoreactive T-cells are not always completely eliminated before leaving the thymus, 

but are usually kept under control through multiple mechanisms of tolerance that act in the 

peripheral tissues.86 If these normal tolerance mechanisms fail, autoreactive T-cells can 

attack healthy tissues, giving rise to autoimmune diseases like multiple sclerosis, rheumatoid 

arthritis and type I diabetes.72 An ideal therapy for autoimmune disease would inhibit 

autoreactive immune cells without non-specifically diminishing the capacity of the immune 

system to respond to dangerous microbes. Nanoparticle therapeutics show promise for 

enabling such selective re-regulation of autoreactive T-cells.

Type I diabetes is caused by polyspecific CD8+ T-cells that recognize multiple epitopes 

expressed by pancreatic islet cells, and thus an antigen-specific therapeutic strategy would 

potentially require eliminating or tolerizing CD8+ T-cells with many different specificities. 

Tsai et al. discovered that stimulation of self-antigen specific CD8+ T-cells via iron oxide 

nanoparticles conjugated with autoantigen peptide-MHC complexes (pMHC-NPs) led to the 

expansion of a population of autoregulatory memory-like T-cells. These autoregulatory 

memory-like T-cells prevented the activation of autoreactive CD8+ T-cells through killing of 

APCs that present auto-antigens.87 The promotion of a suppressive/regulatory phenotype in 

these memory-like T-cells may be a result of TCR crosslinking by pMHC-NPs in the 

absence of the additional co-stimulatory signals T-cells would normally need to receive 

from dendritic cells for a productive activating immune response. Importantly, once 

expanded, pMHC-NP-induced autoregulatory T-cells could inhibit the activation of poly-

specific autoreactive CD8+ T-cell populations, thereby enabling establishment of normal 

glycemic levels in non-obese diabetic (NOD) mice.87

The identification of cell surface proteins uniquely expressed by autoreactive T-cells enables 

nanoparticle-based targeting strategies to directly modulate the function of these cells. For 

example, the Kv1.3 potassium channel, responsible for ion transport during T-cell 

activation,88 was identified as being expressed at elevated levels on autoreactive 

CD45RO+CCR7− T-effector memory cells (TEM) compared to non-autoreactive T-cells. 

Exploiting this finding, Hadju et al. designed liposomes encapsulating protamine sulfate 
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complexed with siRNA against the Kv1.3 channel, and targeted the liposomes via anti- 

CD45RO antibodies. These anti-CD45RO Kv1.3 siRNA-nanoparticles specifically bound to 

TEM cells in in vitro mixed cultures and resulted in reduced activation of TEM cells 

compared to anti-CD45RO scrambled-siRNA control nanoparticles. By specifically 

targeting Kv1.3 siRNA to TEM cells the influence of these NPs on other cell types 

expressing the Kv1.3 channel like neurons, adipose cells and macrophages is minimized. 

However, the efficacy of these targeted siRNA-carrying liposomes remains to be tested in 

vivo.89

Delivering cytotoxic drugs like doxorubicin specifically to autoreactive T-cells can result in 

their elimination. Fahmy et al. demonstrated this concept using PAMAM dendrimers 

encapsulating doxorubicin that were targeted to T-cells using antibodies or specific peptide-

MHC complexes.90 Similarly, delivering specific immunomodulators that influence the 

differentiation of T-cells can be used to manipulate T-cell development in vivo. CD4+ T-

cell-targeted PLGA particles encapsulating leukemia inhibitory factor (LIF) caused 

increased expression of FoxP3 and promoted CD4+ T-cell differentiation toward a 

regulatory lineage. These induced T-regs could induce peripheral tolerance and 

transplantation tolerance in vivo91.

Engineering T-cell function in infectious Disease: In HIV infection, CD4+ T-cells are a 

primary target of the virus. This has motivated a number of nanoparticle-based strategies to 

target therapeutic agents like anti-viral siRNA or antiretroviral drugs to CD4+ T-cells to 

block HIV replication. For example, lipid nanoparticles (LNPs) encapsulating anti-retroviral 

drug idinavir were targeted to CD4+ T-cells using peptides that recognize the CD4 co-

receptor. Pre-treatment of CD4+ T-cells with targeted LNPs resulted in reduced number of 

infected cells compared to non-targeted LNPs in vitro92. In another approach, highly 

branched carbosilane dendrimers were functionalized to deliver siRNA into CD4+ T-cells 

and macrophages (a second target of HIV infection).93 However, these delivery platforms 

need further testing in in vivo models of HIV infection. Promising in vivo data using 

dendrimers to deliver siRNA into astrocytes suggest that this platform could be used to treat 

HIV infections in vivo.94

2.2.2 B-cells—The vast majority of licensed vaccines protect through the induction of 

neutralizing antibody responses.9 Thus, the design of nanoparticles to enhance the 

engagement and activation of antigen-specific B-cells is of great relevance for vaccine 

development. Microbes are intrinsically biological particles (nanoparticles or 

microparticles), often displaying densely-arrayed repetitive copies of surface antigens 

involved in target cell binding; B-cells have evolved to recognize and respond to such 

structural features. Crosslinking of B-cell receptors by repetitively-arrayed antigen promotes 

signaling through the B-cell receptor: while binding of monovalent protein antigens can 

trigger partial signaling through BCRs,95 multimerized antigens trigger greater signaling, 

antigen internalization, and processing of antigen for presentation to CD4+ T-cells– a 

requirement for B-cells to receive T-cell help for antibody production.96,97 Generation of T-

dependent antigen-specific antibody responses has also been shown to require direct 

stimulation of Toll-like receptors (TLRs) in B cells.98,99 For T-independent antigens such as 

Irvine et al. Page 13

Chem Rev. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bacterial polysaccharides (which cannot be presented to T-cells), early studies estimated that 

~20 repetitive epitopes with uniform spacing of ~12 nm were required to maximally 

stimulate antibody responses in vivo.100,101 Antigens displayed in rigid, closely spaced 

arrays on particles (as naturally present on many viruses) also stimulate extremely potent 

humoral responses to T-cell-dependent antigens. This is exemplified by the response to 

virus-like particles (VLPs), where self-assembled protein nanoparticles based on the capsids 

of viruses (e.g. hepatitis B, papilloma viruses) or bacteriophages (e.g. Qβ, MS2, AP205) 

trigger long-lived, high-avidity antibody responses following, in some cases, only a single 

injection.102–104 Indeed, this biology has motivated the use of recombinant VLPs as the 

basis of the licensed hepatitis B and human papilloma virus vaccines,105–107 and for many 

other vaccines currently in clinical trials.108 Even for aluminum salts, which are still the 

most widely used particulate adjuvants for human vaccines in the United States,109 vaccine 

efficacy has been directly linked to the strength of antigen binding to these inorganic 

particles.110 For example, for a recombinant smallpox L1-protein subunit vaccine, binding 

of antigen to alum particles was required for optimal immune responses.111 Phosphate 

buffer treatment, which changed the surface charge of the aluminum particulates from 

positive to negative prior to vaccination, disrupted protein binding and reduced serum IgG 

titers, leading to increased morbidity and weight loss (an indirect measure of disease state) 

upon vaccinia virus challenge.

The immune response to native microbes and vaccines described above has motivated the 

study of synthetic nanoparticles that incorporate similar structural features in antigen display 

to promote humoral immunity. Engineered nanoparticles offer flexibility over the mode of 

particulate antigen display (e.g. encapsulated, non-covalently surface displayed, surface 

tethered).112–114 Antigen encapsulation has widely been used to load large amounts of 

antigen into particle cores and also acts as a means to shield protein payloads from proteases 

and other denaturants prior to immune cell targeting. While some techniques have been 

employed to improve antigen loading, this approach generally suffers from poor control over 

the degree of encapsulation and varies widely based on the particle platform and antigen 

properties (i.e. hydrophobicity, size, charge). Alternatively, surface display of protein and 

peptide antigens on nanoparticle surfaces mimicking viral and bacterial pathogens can 

potentially bind to and activate antigen-specific B cells more readily than encapsulated 

antigens, which by definition must be released to interact with B-cells (Fig 6). This has been 

demonstrated unequivocally by Friede et al. by showing that liposomes with surface bound 

peptide antigens elicited a much stronger B-cell response compared to liposomes with 

encapsulated peptide antigens at equivalent doses.115 Furthermore, covalently conjugated 

protein on the surface of calcium phosphate nanoparticles promoted BCR crosslinking in 

vitro and was 100-fold more efficient in activating antigen-specific B cells compared to 

soluble protein.116 While surface display requires an additional conjugation step post-

particle formulation, this allows for higher control over the degree of coupling based on the 

conjugation chemistry and antigen of interest, as well as the use of particles made using 

harsh solvents. For particle surface-displayed antigens, many physicochemical factors are 

expected to influence the ability of nanoparticles to engage B-cells. For example, Stefanick 

et al. described how peptide valency, peptide linker length, peptide hydrophilicity, 

poly(ethylene glycol) (PEG) coating density, and PEG linker length can dramatically alter 
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cellular uptake for peptide-functionalized liposomes binding to target cells, highlighting the 

importance of each these design elements on effective particle binding and uptake.117,118

Lipid-coated PLGA nanoparticles with only 10 ng of surface-displayed ovalbumin (OVA), a 

commonly used model protein antigen, elicited detectable serum IgG titers in vivo after a 

single immunization and further elicited 1000-fold higher titers compared to soluble OVA 

combined with adjuvant 1-week post-boost immunization.119 Nanoparticle surface-

displayed antigen can also result in increased germinal center formation and, as a 

consequence, higher affinity antibodies compared to soluble antigen immunization.120 More 

recently, gold nanoparticle-conjugated glycoprotein antigens have shown efficacy in non-

human primate studies against glanders.121 While vaccination did not result in a survival 

benefit upon bacterial challenge, those animals that were vaccinated and survived had 

significantly higher LPS-specific IgG titers compared to those who did not survive.

3 Overcoming tissue barriers for vaccines and immunotherapies with 

nanoparticles

A key aspect to the design of effective vaccines and immunotherapies is the ability to 

overcome relevant tissue barriers and efficiently deliver the therapeutic payload to a 

particular tissue destination. The tissue barriers most often encountered in vaccine/

immunotherapeutic design are mucosal and epithelial sites, and the frequently-targeted 

tissue sites for vaccines and immunotherapies are lymph nodes and tumors. In vaccination, it 

is often desirable to specifically initiate immune responses at the lymph nodes draining 

mucosal portals of entry of the target pathogen, because T-cells and B-cells activated in 

these lymph nodes are programmed to home back to the local mucosal tissue.122,123 For 

example, to promote protection from a respiratory pathogen such as influenza, pulmonary 

vaccination (intranasal or airway delivery of vaccines) is of interest, because this route of 

administration primes T-cells that home to the lung where they can become resident memory 

cells to protect the airway mucosa.124 The unique and effective ways in which nanoparticles 

have been utilized to overcome tissue barriers and/or to enhance tissue delivery will be 

reviewed in this section. As will be appreciated from this discussion, some of the effective 

roles for nanoparticles in these applications are generic properties relevant for delivery of 

any drug across these barriers, and other aspects relate specifically to the interaction of 

nanoparticles with the immune system.

3.1 Targeting therapeutics and vaccines to lymph nodes

Lymph nodes are the sites of lymphocyte priming by antigen presenting cells (APCs) and 

subsequent adaptive immune responses including T-cell differentiation, formation of 

germinal centers (where B cells undergo affinity maturation), and ultimately, the generation 

of long-term immunological memory. Therefore, it is cogent to hypothesize that direct 

delivery of immunotherapeutics/vaccines to lymph nodes may be more effective than distal 

administration to peripheral tissues. Indeed, extensive work by Johansen and colleagues has 

demonstrated the value of vaccine delivery to lymph nodes; for example, direct 

intralymphatic immunization substantially increased the ability of the Baccillus Calmette-

Guérin (BCG) tuberculosis vaccine to generate BCG-specific CD8+ and CD4+ T cell 
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responses and sustained protection against tuberculosis challenge, whereas subcutaneous 

immunization with a 100-fold higher dose did not.125 Synthetic nanoparticles can further 

modulate the response to intranodal injections, and offer an alternative means to achieve 

lymph node targeting of vaccines and immunotherapies.

3.1.1 Intranodal administration of nanoparticles—The most straightforward method 

to deliver vaccines to a lymph node is to directly inject intranodally. Ultrasound-guided 

intranodal administration of immunotherapies has been used in multiple phase 1 clinical 

trials.126–129 Although this can be performed with soluble therapeutics, use of 

nanoparticulate antigen is advantageous because nanoparticles reduce the rate of vaccine/

drug clearance from the lymphoid tissue and facilitate antigen uptake by antigen presenting 

cells.130 For example, Jewell et al. reported that intranodal injection of the TLR-3 agonists 

poly(inosinic:cytidylic acid) (polyIC) in particulate form substantially prolonged persistence 

of polyIC in lymph nodes when compared to soluble polyIC.131 In an immunization model, 

intranodal injection of ovalbumin-loaded particles induced much stronger humoral and 

cellular immune responses than intranodal injection of soluble ovalbumin.131 In another 

study, the intranodal injection of nanoparticulate ovalbumin and CpG substantially enhanced 

the IgG2A antibody response over intranodal injection of soluble vaccine.132 Thus, even on 

direct administration to lymphoid tissues, nanoparticle formulations can alter and enhance 

the response to vaccines.

3.1.2 Size-based LN targeting—Although intranodal injection may be useful for 

immunotherapeutic applications, it is impractical for widespread prophylactic vaccination 

settings. An alternative is to deliver materials to lymph nodes through lymphatic drainage of 

interstitial fluid from peripheral tissue injection sites. The fate of soluble materials following 

parenteral injection is highly dependent on physical size; the blood absorbs ~10-fold more 

fluid from tissues than lymph, so molecules small enough to enter blood vessels 

predominately clear to the blood. In general, materials larger than approximately 9 nm in 

diameter preferentially drain to lymphatics, whereas molecules/particles smaller than ~6 nm 

drain to the blood (Fig. 7).133 Conversely, very large solid particles (greater than ~50–100 

nm) tend to become trapped in the extracellular matrix and cannot freely drain to 

lymphatics, but can be phagocytosed and transported to lymph nodes by DCs present in the 

tissue or monocytes that emigrate from the blood.134 Thus, nanoparticles of appropriate size 

can be efficient synthetic vehicles to deliver vaccines or immuontherapeutics to lymph 

nodes.

The optimum size of particles for lymph node targeting have been examined in a number of 

studies. Hubbell, Swartz, and colleagues compared the ability of 20–100 nm PEGylated 

poly(propylene sulfide) nanoparticles to drain to lymph nodes and to stimulate immune 

responses. Larger particles with mean diameters of 100 nm were only 10% as efficient as the 

smallest particles at draining to lymph nodes and 20–45 nm diam. particles subsequently 

induced the strongest immune responses.135,136 While smaller particles achieve more 

efficient diffusion through peripheral tissue to reach lymphatics, Kourtis et al. also 

demonstrated in the same system that a portion of very small particles (30 nm diam.) are not 

necessarily trapped in the draining lymph nodes, and can be detected at substantial 
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concentrations in the peripheral blood within ~12 hr following intradermal injection.137 This 

finding suggests that at least for these phagocytosis-resistant PEGylated materials, very 

small particles can pass through the lymph nodes without capture, reaching the thoracic duct 

(and thereby enter the blood). Using model monodisperse polystyrene particles of different 

sizes, Fifis et al.138,139 and Manolova et al.134, reached similar conclusions, finding that 

particles less than 50 nm in diameter were most effective in lymph node trafficking and 

targeting lymph node-resident dendritic cells. While these studies seem to suggest that 

particles of ~200 nm diam. or larger can only reach lymph nodes through cell-mediated 

transport or through hydrodynamic/swelling effects caused by the injections themselves, a 

recent study by Gerner et al. showed that 200 nm nanoparticles applied passively to 

disrupted ear skin of mice were rapidly trafficked to lymph nodes through lymph, 

independent of cellular uptake.140 Thus, the precise size limits for lymphatic targeting of 

solid particles likely depend on both the tissue site and route of administration. Importantly, 

nanoparticle aspect ratio has also been identified as a key parameter in influencing lymph 

node draining of solid nanoparticles. Utilizing a unique mold-based particle fabrication 

process termed PRINT (i.e. particle replication in nonwetting templates), Mueller et al. 

identified anionic 80×180 nm cylindrical particles as having higher levels of lymph node 

drainage and subsequent APC uptake compared to other rod-like and spherical particles.141

Size limits for efficient lymphatic uptake are also altered when flexible particles are studied, 

rather than rigid solid particles. For example, liposomes with surface-displayed peptide 

antigens as large as 150 – 200 nm show substantial lymph node uptake following s.c. 

injection in mice, and induced 15–20-fold stronger antibody responses than smaller 65 nm 

vesicles.142 Increasing liposome size has been associated with decreasing drainage from 

peripheral injection sites but increased trapping in lymph nodes.143 This competing interplay 

between injection site drainage and lymph node retention suggests there exists an optimum 

nanoparticle size, which may vary with material composition and should be determined for 

each nanoparticle delivery system– these size ranges are a useful rule of thumb, but 

lymphatic uptake will be further influenced by the surface chemistry of the particle, antigen 

dose and type, and immunization route.144,145

For vaccines, lymph node targeting of adjuvant compounds is equally if not more important 

than lymphatic uptake of antigen, because potent adjuvants that distribute into the blood or 

pass through lymph nodes to reach the systemic circulation can induce unacceptable 

systemic inflammatory toxicity. Nanoparticle targeting of adjuvants to lymph nodes can thus 

increase both efficacy and safety. For example, a study of 3M-052, an adjuvant molecule 

that binds to Toll-like receptor 7/8, demonstrated that loading of this compound in 

liposomes promoted dose-sparing of the adjuvant and avoidance of systemic 

inflammation.146 Similarly, Ilyinskii et al. demonstrated that s.c. administration of the 

TLR7/8 agonist resiquimod in soluble form elicited pronounced systemic inflammatory 

cytokines and no local cytokine induction in draining lymph nodes, while the same 

compound delivered in PEGylated PLGA nanoparticles elicited strong localized cytokine 

induction in draining lymph nodes but no systemic inflammatory toxicity.147 Similarly, 

nanoparticle formulation is being explored as a method to enhance the lymph node drainage 

and retention of antiretroviral drugs, and lipid complexes were reported to efficiently deliver 

the antiretroviral drug indinavir to lymph nodes after subcutaneous injection.148,149
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3.1.3 Promoting vaccine/therapeutic capture in lymph nodes—On reaching 

lymph nodes through the lymphatics, nanoparticles are often either captured by 

macrophages or dendritic cells lining the subcapsular sinus or medullary sinuses of the 

lymph node.150–152 In some cases, nanoparticles have been shown to accumulate and persist 

in lymph nodes for extended periods, which may contribute to enhanced immune responses 

to particulate vaccines.153 Recently, several groups have expanded upon the size-based 

targeting strategy of nanoparticles to also incorporate specific ligands to promote vaccine 

particle capture by specific cell types in lymph nodes. Inclusion of mannose on the surface 

of PEGylated liposomes containing encapsulated antigen enhanced the binding to and 

uptake into APCs that express the mannose receptor. Subsequently, mannose nanoparticles 

generated stronger humoral immune responses than unlabeled nanoparticles.154 The cell 

surface receptors CD40, DEC-205 and CD11c expressed by dendritic cells have also been 

targeted for enhanced lymph node delivery. PLGA nanoparticles conjugated with antibodies 

against each of these molecules all exhibited enhanced dendritic cell uptake and T-cell 

stimulatory capacity in vitro in comparison to untargeted nanoparticles.155 In a subsequent 

study, the presence of anti-CD40 on nanoparticles (NP-CD40) improved dendritic cell 

uptake of antigen in draining lymph nodes after subcutaneous administration in mice and 

modestly improved both therapeutic and prophylactic treatment efficacies in a tumor model 

(Fig. 8).156 Larger doses of co-delivered TLR agonists – which were shown to be essential 

for DC maturation after nanoparticulate antigen uptake – will likely further enhance these 

immune responses. The composition of the nanoparticle itself can also influence particle 

uptake in lymphoid tissues. For example, cholesteryl pullulan nanogels were shown to be 

selectively engulfed by medullary macrophages in draining lymph nodes after subcutaneous 

injection.157 In comparison to soluble antigen formulated in Incomplete Freund’s Adjuvant, 

antigen encapsulated in these hydrogel nanoparticles substantially delayed tumor growth in a 

cancer therapeutic model.157

3.2 Nanoparticles to penetrate mucosal and epithelial barriers for vaccines and 

immunomodulation

Most current human vaccines are administered parenterally, resulting in strong systemic 

immune responses and weak to non-existent mucosal immune responses. Yet most 

pathogens infect through mucosal tissues,158,159 and the establishment of mucosa-homing T-

cells and B-cells through mucosal immunization can be a key component of vaccine 

efficacy.160–162 The inductive sites of the mucosal immune system consist of both mucosa-

associated lymphoid tissues (MALT) and mucosa-draining lymph nodes, and include the 

tonsils in the upper respiratory airway and Peyer’s patches in the intestines. Although the 

composition and structure of mucosal tissue varies depending on location (oral/intestinal 

tract, nasal/respiratory tract, genital tract), it can generally be classified as either type I or 

type II mucosal tissue. Gut-associated lymphoid tissue (GALT), nasal-associated lymphoid 

tissue, and uterine mucosal tissue of the female genital tract (FGT) are all type I mucosal 

tissue, while vaginal mucosal tissue is type II.163 Type I mucosae consists of simple 

columnar epithelium linked by tight gap junctions while type II mucosae is lined with 

multilayer stratified squamous epithelium.164 IgA in the main predominant immunoglobulin 

produced in type I mucosal tissues, but IgG is the primary immunoglobulin of type II 

mucosal tissues.
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For vaccines, local administration initiates immune responses concentrated at the mucosal 

site, but mucosal vaccine development is complicated by the same safety vs. efficacy 

considerations of parenteral vaccines. Furthermore, delivery of a vaccine to the inductive 

sites of the mucosal immune system (draining lymph nodes and MALT), requires mucus 

penetration, crossing the epithelial barrier, and eventual drainage to local lymph nodes. 

Nanoparticles are attractive mucosal vaccine/immunotherapy delivery vehicles due to the 

enhanced uptake by APCs of particulate antigen, the preferential draining of nanoparticles to 

lymphatics rather than to the blood stream (as discussed in the previous section), and lastly, 

depending on size and composition, the ability of nanoparticles to diffuse through mucus 

and cross mucosal barriers.

3.2.1 Airways and nasal mucosa—Intranasal administration is needle free and 

noninvasive, and allows access to the rich immunological environment of the respiratory 

mucosa. The epithelium of the airways and nasal mucosa contain Microfold cells (M-cells), 

which transcytose particulate matter across the epithelial layer to underlying lymphoid 

follicles of the MALT.165 The first studies to suggest a potent role for nanoparticles in 

pulmonary vaccines were published in the late 1990s. An early HIV vaccine study 

demonstrated that a gp160 DNA-based intranasal vaccine induced stronger serum and 

mucosal antibody titers than the equivalent intramuscular vaccine. Furthermore, co-

administration with cationic liposomes—to which the negatively charged DNA antigen will 

bind—adjuvanted both humoral and cell-mediated vaccine-specific immune activity.166 

Two years later, Klavinskis et al. reported that after intranasal administration of plasmid 

DNA-lipid nanocomplexes, DNA was distributed in the respiratory tract, draining lymph 

nodes and spleen. This nanoparticulate DNA vaccine induced serum and mucosal antibodies 

significantly superior to those produced by unformulated DNA.167

Several strategies have been pursued to further develop strategies for effective pulmonary 

vaccine/immunotherapy treatment using nanoparticles. An anatomic approach is to deliver 

nanoparticles to the deep lung, targeting the large population of dendritic cells lining the 

alveoli (air sacs of the lung), which actively extend processes into the alveolar lumen to 

survey for microbes.168 Using crosslink-stabilized lipid nanocapsules loaded with antigen 

and TLR agonist adjuvants, Li et al. demonstrated that nanocapsules (ICMVs) were captured 

much more efficiently than soluble vaccines by APCs in the lungs following pulmonary 

instillation (mimicking aerosol administration).169 This led to greatly increased and 

prolonged antigen presentation in lung-draining lymph nodes, and transformed an antigen/

adjuvant combination that was completely non-protective against a viral challenge as a 

soluble formulation to a 100% protective vaccine (Fig. 9). In another example, Vicente et al. 

developed lipid-chitosan hybrid nanoparticles consisting of an oily core loaded with 

imiquimod and surrounded by a phospholipid layer and a chitosan coating onto which a 

hepatitis B protein antigen was adsorbed. These nanoparticles were taken up by 

macrophages and generated long-lived antigen-specific antibody titers.170 Consistent with 

the idea that nanoparticle capture by APCs is particularly efficient in the deep respiratory 

tract, Sanders et al. demonstrated that antigen formulated with ISCOMATRIX nanoparticles 

(lipid vesicles consisting of phospholipid, cholesterol and saponin) induced much stronger 
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immune responses when delivered to the total respiratory tract rather than only the upper 

respiratory airways.171

A second strategy that has shown promise for enhancing vaccine uptake by immune cells at 

pulmonary mucosal surfaces has been to employ nanoparticles that are mucoadhesive, to 

increase the particles’ residence time at the epithelial surface. Using cationic cholesteryl 

pullulan nanogels (cCHPs) as vaccine carriers, Nochi et al. demonstrated increased retention 

in the nasal mucosa and uptake of antigen by mucosal dendritic cells (Fig. 10). This 

enhanced antigen delivery translated to significantly increased mucosal antibody responses 

and protection from Clostridium botulinum challenge.172

An orthogonal approach is to design nanoparticle carriers to efficiently diffuse through 

mucus and reach the underlying epithelium, where capture by APCs or transcytosis by 

epithelial cells could provide effective uptake of vaccines/immunomodulators. A dense 

surface coating of poly(ethylene glycol) on nanoparticles has been reported by the Hanes 

and Saltzman groups to enhance the mucus-penetrating abilities of nanoparticles.173,174 

Though not explicitly tested for mucus-penetration efficiency, vaccines prepared by the 

Hubbell and Swartz labs using PEGylated poly(propylene sulfide) nanoparticles (PPS-NPs) 

surface-conjugated with protein antigen/molecular adjuvants may gain at least some of their 

efficacy from fulfilling these design criteria for effective mucus penetration. Intranasal 

administration of 50 nm PPS-NPs resulted in the deposition of particles in the nasal tissue, 

enhanced CD8+ T-cell responses in the lung and spleen, and enhanced mucosal antibody 

production in comparison to soluble antigen.175 The co-conjugation of the danger signal 

flagellin to PPS-NPs also increased antibody titers to the vaccine antigen. Furthermore, 30 

nm PPS-NPs loaded with ovalbumin, mixed with CpG, and administered via pulmonary 

delivery induced significantly enhanced cytotoxic CD8+ T-cell responses, providing 

enhanced protection against an influenza virus challenge compared to soluble pulmonary 

vaccine.176 Interestingly, in contrast to results obtained for peripheral lymph node targeting 

following parenteral injection, a comparison of intranasal administration of large (200 nm) 

vs. small (30 nm) PPS-NPs conjugated to the model antigen ovalbumin revealed that 200 nm 

PPS-NPs more effectively delivered ovalbumin to MHC class I and MHC class II antigen 

presentation pathways of APCs, enhanced lung CD4+ T-cell responses, and increased 

systemic and mucosal antibody titers compared to 30 nm PPS-NPs.177 These results suggest 

that cell-mediated transport of particulate antigens to lymph nodes may be particularly 

important or more efficient for mucosal immune responses compared to direct lymph node 

targeting at these barrier sites.

In addition to mucus penetration, nanoparticles have also been designed to promote binding 

to epithelial cells and transport across the epithelial barrier to enhance pulmonary vaccine 

responses. Heparin-binding hemagglutinin adhesion (HBHA) protein is known to bind to 

heparin-sulfate-containing receptors on lung epithelial cells. Antigen-HBHA constructs 

adsorbed onto the surface of wax nanoparticles induced stronger humoral and cellular 

immune responses after intranasal administration than antigen-only nanoparticles or soluble 

antigen-HBHA protein fusions.178
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Nanoparticle vehicles have also been designed to more actively promote transit across the 

epithelial barrier at mucosal surfaces. Chitosan is a biocompatible cationic polysaccharide 

that is mucoadhesive and capable of reversibly opening epithelial tight gap junctions.179 

Following the demonstration of enhanced systemic uptake of insulin when intranasally 

administered in chitosan nanoparticles180, there has been considerable interest in the 

development of chitosan nanoparticles as pulmonary delivery vehicles for a wide range of 

applications. Intranasal administration of chitosan-DNA nanoparticles expressing the 

streptococcus pneumonia surface antigen A generated stronger mucosal and systemic 

antibody titers than naked DNA.181 Encapsulated influenza protein antigen in chitosan 

nanoparticles was shown to induce stronger mucosal and systemic anti-vaccine antibody 

titers than soluble antigen alone. Furthermore, chitosan nanoparticles conferred 100% 

protection against lethal intranasal influenza challenge.182 Bal et al. undertook a 

comprehensive study of the humoral effects of immunomodulators when co-encapsulated 

with antigen in chitosan nanoparticles in intranasal or intradermal vaccination models. As 

expected, nanoparticulate antigen induced stronger antibody responses regardless of 

immunization route, but the potency of immunomodulators—CpG, lipopolysaccharide, 

PAM3CSK4, muramyldipeptide, and cholera toxin subunit B—was dependent on the 

immunization route.183 These results likely reflect different APC populations residing in 

different tissues, and highlight the necessity of matching optimal immunomodulators to the 

immunization route in vaccine and immunotherapy development.

In addition to chitosan, PPS, and lipid nanoparticles, several other nanoparticle formulations 

are currently in development as pulmonary vaccine delivery systems. Silica particles taken 

up by APCs can activate an intracellular inflammatory signaling pathway known as the 

inflammasome.184,185 Exploiting this intrinsic adjuvant property of silica particles, 

intratracheal administration of soluble influenza protein antigen co-formulated with silica 

nanoparticles generated stronger mucosal antibody responses but weaker systemic antibody 

responses than intraperitoneal administration of influenza protein formulated in alum.186 In 

an interesting example of long-term antigen release, polyanhydride nanoparticles with 

encapsulated antigen were designed to release antigen over a 28 day period.187 When 

immunized via intranasal administration, mice receiving antigen-loaded nanoparticles 

produced sustained titers of high avidity antibodies and were protected against Yersinia 

pestis challenge.

A critical consideration for pulmonary vaccine administration is the potential for the 

induction of dangerous airway inflammation or fibrotic responses. By targeting phagocytic 

dendritic cells, nanoparticles may help to ensure that only danger sensor receptors on innate 

cells critical to induction of the desired immune response are stimulated and avoid triggering 

lung epithelial cells themselves. Importantly, a recent study comparing the surface 

hydrophobicity of nanoparticles and the resulting histopathology after intratracheal 

administration demonstrated that hydrophobic nanoparticles were not biocompatible while 

hydrophilic nanoparticles (coated with PEG or lecithin) were well tolerated in lung tissue.188 

Hydrophilic nanoparticles have also been shown to have increased plasma bioavailability 

after oral or intranasal administration, suggesting hydrophilicity is a key component for 

antigen transport across mucosal barriers.189,190

Irvine et al. Page 21

Chem Rev. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2.2 Gastrointestinal tract—The oral delivery route offers a multitude of advantages 

for vaccines and immunotherapy treatment: it dispenses with risks from needle use (or re-

use); is amenable to self-administration with high patience compliance; and for vaccines, 

leads to the induction of both systemic and mucosal immunity. However, oral 

immunomodulators must first survive exposure to the stomach pH, proteolytic enzymes and 

bile salts in the gastrointestinal (GI) tract, and then transit through mucus and the gut 

epithelium to reach the gut-associated lymphoid tissue (GALT). Nanoparticles offer 

opportunities to both protect vaccines/immunotherapeutics from degradation, and effectively 

transport particles across the intestinal lumen. With respect to degradation protection, 

encapsulation of antigen inside polymeric nanoparticles has been the predominant approach. 

Understanding the stability of any given antigen/nanoparticle system when exposed to 

gastric and intestinal fluid should be a key component in the design of a novel oral 

vaccine.191 As this chapter is centered upon the use of nanoparticles to overcome tissue 

barriers, the rest of this section will focus on methods currently in development to use 

nanoparticles as intestinal lumen transporters.

In 1997, Desai et al. first observed that 100 nm PLGA nanoparticles were taken up by 

intestinal tissues much more efficiently than soluble coumarin-6 dye or 500 nm – 5 µm 

particles.192 This size-dependent uptake suggested that nanoparticles may be efficacious 

delivery vehicles for materials that are not readily absorbed in the intestinal tract, and 

subsequent particulate delivery systems have primarily utilized nanoparticles in the 100 – 

500 nm diam. range. For example, oral administration of 470 nm mesoporous carbon 

nanoparticles (C1) loaded with antigen induced serum antibody responses nearly equivalent 

to intramuscular administration of antigen emulsified in Complete Freund’s Adjuvant, a 

gold-standard experimental adjuvant that is too toxic for human use (Fig. 11).193 On the 

other end of the size spectrum, chitosan-functionalized gold nanoparticles have also been 

investigated as potential oral vaccine delivery systems. Chitosan nanoparticles 20–40 nm in 

diam. with surface-adsorbed antigen generated stronger titers than soluble antigen following 

oral immunization, and the co-adsorption of saponin-containing adjuvants further enhanced 

humoral responses elicited by these particles.194,195

An important mechanism for particle uptake from the gut lumen into the GALT is proposed 

to be via microfold cells (M-cells), a specialized epithelial cell that overlies lymphoid tissue 

structures of the small intestine known as Peyer’s patches. M-cells efficiently internalize and 

transcytose particulate antigens across the gut epithelium into basolateral pockets where 

antigen presenting cells reside, thereby playing a key role in initiating adaptive immune 

responses in the gut.196 Targeting M-cells has been a major focus of oral vaccine 

development. Various lectins which bind specifically to M-cells have been investigated for 

use as M-cell targeted vaccines, and both lectin-coated PLGA particles and liposomes have 

been shown to enhance uptake of encapsulated antigen into M-cells and induce stronger 

humoral immune responses following oral delivery than unmodified particles.197,198 In an 

alternative approach, PLGA nanoparticles have been functionalized with RGD analogs in 

order to target β1 integrins on the apical surface of M-cells; this functionalization enhanced 

nanoparticle uptake and humoral immune responses after intraduodenal administration.199 

Slütter et al. demonstrated that N-trimethylated chitosan nanoparticles enhanced antigen 
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transport in an M-cell dependent manner and promoted dendritic cell activation in vitro, 

although this did not impact the humoral response in vivo after intraduodenal 

administration.200 One significant disadvantage of chitosan nanoparticles is that chitosan 

rapidly dissolves at pH 1.2 – 2.0 and thus chitosan NPs would be expected to dissolve in the 

stomach.201 One solution to this challenge reported by Jain et al. was to encapsulate antigen-

loaded chitosan nanoparticles within liposome- or niosome-microparticles to protect the NPs 

during transit through the stomach.202 In comparison to “naked” chitosan NPs, encapsulated 

particles efficiently retained antigen when exposed to simulated gastric fluid (pH 1.2) and 

induced significantly higher serum IgG titers after oral immunization. An alternative method 

to stabilize chitosan nanoparticles is to crosslink the chitosan polymers. Harde et al. 

developed a method to tandem crosslink chitosan nanoparticles using tripolyphosphate 

followed by glutaraldehyde.203 These crosslinked chitosan nanoparticles exhibited greater 

stability in acidic environments, enhanced uptake by antigen-presenting cells, greater 

intestinal permeation, and significantly stronger systemic and mucosal antibody responses 

than unmodified chitosan nanoparticles after oral administration.203

M-cells are particularly attractive targets for nanoparticle delivery because of their specific 

localization over gut lymphoid tissues, but this also means that these cells make up a 

relatively small portion of the total gut epithelium. Thus, other routes for receptor-specific 

uptake of have also been explored, targeting receptors expressed on normal gut epithelial 

cells: Thiamine – a member of the vitamin B family – is absorbed from the intestinal lumen 

in a specialized, carrier-dependent mechanism.204 Thiamine-coated poly(methyl vinyl ether-

co-maleic anhydride) nanoparticles have been shown to adhere to gut mucosa in a thiamine 

dependent manner and when administered orally, thiamine-coated nanoparticles induced 

substantially stronger humoral responses than plain nanoparticles.205

The co-delivery of TLR-4 or TLR-2 agonists may also be an effective method to enhance 

transport across the intestinal lumen. TLR-4 agonism has been reported to increase intestinal 

epithelial tight junction permeability206 and administration of lipopolysaccharide, a TLR-4 

ligand, enhanced intestinal adsorption of microparticles.207 In addition, TLR-2 agonism has 

shown to enhance the transcytosis of microparticles by M-cells in a dose-dependent 

manner207 as well as induce the migration of dendritic cells into the follicle-associated 

epithelium of the GALT.208 These observations suggest TLR-4 and TLR-2-based adjuvants 

may play a role in the intestinal fate of nanoparticulate vaccines and should be taken into 

account when designing future oral vaccines. Conventional wisdom has held that 

mucoadhesive nanoparticles will enhance the intestinal adsorption of nanoparticles, however 

recent studies are challenging this assumption. Maisel et al. demonstrated that PEGylation of 

polystyrene nanoparticles eliminated the mucoadhesiveness of polystyrene nanoparticles and 

enabled widespread nanoparticle penetration of the intestinal tract in both healthy and 

ulcerative colitis mouse models.173 PEGylation has also been demonstrated to enhance the 

intestinal tract permeation of solid lipid nanoparticles (SLNs), as shown in Fig. 12.209 

Whether or not this enhanced intestinal adsorption of antigen via hydrophilic, mucus 

penetrating particles enhances immune responses remains to be seen.

Efficient delivery to the lower gastrointestinal tract without pH-dependent or enzymatic 

degradation of antigen in the proximal gut still remains a critical hurdle in the development 
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of an oral vaccine. To target the large intestine, Zhu et al. coated PLGA nanoparticles with 

an anionic copolymer (Eudragit FS30D) that is soluble only at pH > 7.0, a pH only present 

in the terminal ileum.210 Particles were taken up in the large intestine and not the small 

intestine, and oral administration of antigen-loaded particles induced stronger mucosal 

immune responses than intra-colorectal administration of soluble antigen.210 This two-stage 

delivery approach demonstrates that pH-dependent release of nanoparticles within targeted 

regions of the GI tract may be an effective method to control the location of antigen delivery 

within the digestive system for future oral nanoparticulate vaccines.

3.2.3 Reproductive tract—The female genital tract (FGT) possesses several distinctive 

characteristics that require thoughtful design of FGT-targeted vaccines/immunotherapy. 

Importantly, the mucosal surface of the lower FGT tract (vagina) consists of a loosely-

connected multilayer squamous epithelium, while the mucosal surface of the upper FGT 

tract (uterus, cervix, and fallopian tubes) is a single layer of pseudo-squamous and simple 

columnar epithelia.211 These columnar epithelial cells of the upper FGT form tight junctions 

to maintain the integrity of the mucosal monolayer.212 The FGT lacks an equivalent of the 

M-cells present in the intestinal and nasal tracts. FGT epithelial cells act as both a physical 

barrier from the external environment and as innate immune sentinels; both uterine and 

vaginal epithelial cells express Toll-like receptors 1–9 and beta-defensins 1, 2, and 4.213 

Activation of TLRs on FGT epithelial cells induces the secretion of the chemoattractant 

CCL-2, which in turn recruits immune cells into the FGT and initiates an inflammatory 

response. Furthermore, FGT epithelial cells are non-professional APCs, capable of 

presenting antigen to CD4+ T-cells.214 Beneath the mucosal surface, the lamina propria of 

the FGT contains a cadre of immune cells including CD4+ and CD8+ T cells, B cells, plasma 

cells, DCs, macrophages, Langerhans cells (vagina), NK cells (uterus) and regulatory T-cells 

(uterus).215 Upon infection, Langerhans cells and DCs recognize pathogens, mature, and 

migrate to draining lymph nodes to prime naïve B and T cells.122 There are three significant 

barriers to effective vaginal delivery of immunotherapies: penetrating mucus, crossing the 

epithelial layer, and subsequently trafficking to the draining lymph node. As the suitability 

of nanoparticles to enable efficient lymph node delivery has already been discussed, this 

section will briefly discuss the development of mucus-penetrating particles and epithelial 

crossing particles for FGT-targeted therapies.

Mucus-penetrating particles possess hydrophilic surface-coatings that minimize interactions 

with mucus. The polymer PEG has alternatively been reported to be mucoadhesive or to be 

mucus-penetrating.216,217 To reconcile these observations, a study by Wang et. al. 

demonstrated that low molecular weight PEG at high surface-coating densities penetrates 

cervical-vaginal mucus (CVM) but high molecular weight PEG adheres to CVM in vitro.218 

Further in vivo studies compared conventional polystyrene nanoparticles (CPs) to CPs with a 

high density coating of low molecular weight PEG to be mucus-penentrating particles 

(MPPS) and revealed that MPPs were uniformly distributed across the murine vaginal 

epithelium while CPs were aggregated in vaginal mucus.219 Furthermore, MPPs were 

retained in the cervicovaginal tract whereas CPs were almost entirely flushed out in 6 hours, 

as shown in Fig. 13.219 Additional studies demonstrated that delivery of MPPs in hypotonic 

solution rather than isotonic solution further enhanced vaginal distribution and retention of 
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the particles.220 MPPs loaded with the chemotherapeutic drug paclitaxel was demonstrated 

to control orthotopic TC-1 cervical tumor growth better and prolong mouse survival 

compared to paclitaxel-loaded CPs or Taxol (the clinical formulation of paclitaxel). PLGA 

nanoparticles have also been shown to penetrate CVM when coated with PEG174 and to 

induce long-lived systemic and local humoral immune responses after intravaginal 

administration221; these results suggest that MPPs could be effective delivery vehicles for 

vaginal vaccines.

3.3 Nanoparticle delivery in the skin

Transcutaneous immunization – vaccination through the skin—is an attractive alternative to 

needle-based immunizations due to its simplicity and potential for pain-free administration. 

The epidermis is a rich immunological site containing large numbers of epidermal 

Langerhans cells (skin-resident dendritic cells) that capture antigen and then migrate to 

draining lymph nodes to initiate adaptive immune responses222. A study of amorphous silica 

nanoparticles demonstrated that uptake by Langerhans cells in the skin was positively 

correlated with nanoparticle size, with 200 nm diameter nanoparticles exhibiting the most 

efficient uptake.223 In keeping with this observation, elastic liposomes designed to be 

capable of permeating through skin induced stronger systemic and salivary antibody 

responses than soluble antigen224 or antigen-loaded chitosan nanoparticles when applied 

topically to the skin, and modestly enhanced anti-tumor immunity.225 Mittal et al. induced 

strong cellular and humoral immune responses when a cyclic dinucleotide adjuvant – cyclic-

di-AMP – was included with antigen-loaded chitosan-PLGA nanoparticles and administered 

transcutaneously.226

Permeation of the hydrophobic stratum corneum to reach the epidermis is a considerable 

barrier to effective transcutaneous immunization. Protein transduction domains (PTDs) are 

commonly used as a skin permeation enhancer for macromolecules. Kitaoka et al. 

demonstrated that inclusion of the PTD polyarginine (R6) in a solid-in-oil nanodispersion 

(S/O) antigen delivery system generated higher systemic antibody responses than 

polyarginine-free nanodispersions or soluble antigen and polyarginine (Fig. 14).227

4 Modulating antigen presenting cells and innate immunity

Antigen presenting cells play a crucial role in the response to vaccines and 

immunotherapies, whether the goal is to promote immunity or tolerance. Among APCs, 

dendritic cells are particularly important for the primary immune response because they 

govern the activation of CD4+ and CD8+ T-cells, which provide help for antibody responses 

and exert direct cytotoxic activity on infected/transformed cells, respectively (Fig. 15).6,228 

Adjuvants incorporated into vaccines are often designed to act specifically on DCs, as 

regulation of DC activation determines the outcome of vaccination. Thus, a final key 

application of synthetic nanoparticles in immune engineering is modulation of APC 

function. Nanoparticles can act on APCs in several distinct ways, by encapsulating or 

displaying danger signals that promote DC activation, by triggering particle-specific 

immune recognition and antigen processing, delivering danger signals, or via intrinsic 

immunomodulatory effects on APCs. By “programming” the activation state of DCs or other 
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APCs, nanoparticle formulations directly impact the induction of cellular and humoral 

immunity to vaccines and immunotherapies.

4.1 Nanoparticulate antigen delivery to DCs to promote T-cell immunity

4.1.1 Enhancing antigen presentation to CD4+ T-cells—CD4+ T-cells are also 

known as helper T-cells since they provide required signals to B-cells to promote class 

switching and affinity maturation of the antibody response, instruct dendritic cells to 

maximize the induction of memory cells during CD8+ T-cell activation, and provide 

cytokines to instruct macrophages and other innate immune cells to clear infections. 

Dendritic cells serve as a gatekeeper on all of these processes, as they present peptide 

antigens bound to class II MHC molecules on their surfaces that activate CD4+ T-cells to 

carry out all of these functions. A role for nanoparticle carriers in promoting antigen 

delivery to APCs for CD4+ T-cell priming was first shown in the early 1990s, when it was 

demonstrated that nanoparticles (liposomes) carrying antigen designed to be stable on 

internalization by APCs until they reached acidic intracellular lysosomal compartments 

could promote antigen processing and presentation to CD4+ T-cells.229 Since then it has 

been shown that particle size and composition influence the capacity of nanoparticles to 

promote antigen delivery to class II MHC loading pathways.230 For example, OVA 

conjugated to 200 nm particles resulted in increased class I and II MHC presentation, CD4+ 

T cell responses in the lungs, systemic and musical immunity and, importantly, a higher 

percentage of antigen-specific polyfunctional CD4+ T cells compared to OVA conjugated to 

30 nm particles.177 For liposomes, lipid bilayer composition has been shown to dictate 

dendritic cell interactions- cationic liposomes containing antigen are readily internalized, 

while anionic liposome internalization can be improved upon addition of DC targeting 

moieties such as mannosylated phosphotidylserine.231 Taking advantage of their propensity 

for internalization into various cell types and large surface area available for chemical 

modification, single-walled carbon nanotubes have recently been utilized as novel vaccine 

carriers.232 Mice immunized with 50–400 nm peptide-conjugated carbon nanotubes along 

with a water-in-oil emulsion adjuvant induced peptide-specific IgG responses that were not 

present following immunization with the peptide and adjuvant alone.232

Nanoparticles also enable compartmentalization of the epitopes targeted by B-cell and 

helper T-cell responses. Minimal B-cell epitopes (e.g., short peptides) are of interest for 

eliciting highly focused antibody responses against a chosen target antigen. However, these 

short peptides may not be recognized by T-cells, and thus separate peptide antigens (helper 

epitopes) may need to be co-delivered to APCs to prime helper T-cell responses to such 

vaccines. Traditionally such B cell antigens are conjugated to carrier proteins capable of 

eliciting strong T-cell responses, such as diphtheria toxoid233 or keyhole limpet hemocyanin 

(KLH),234 or more recently linked directly to small T-cell help peptides.235 However, 

several disadvantages exist with these methods, including competing antibody responses to 

the carrier protein itself, antibodies developed to the conjugation site or irrelevant antibodies 

towards improperly oriented antigens, and limited conjugation sites for antigen loading and 

multivalency.236 This problem can be solved by a strategy know as “instructural help”: 

antigens encapsulated within nanoparticles are inaccessible to B-cells until released, but 

upon release from particles following internalization by B-cells or dendritic cells are readily 
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processed for loading onto MHC molecules for presentation to T-cells. Thus, particles 

encapsulating helper T-cell antigens but surface-displaying B-cell epitopes can be used to 

foster a B-cell response that is focused on the desired B-cell antigen without competition 

from B-cells recognizing the helper epitope. This has been demonstrated in the case of lipid 

nanoparticle vaccines displaying surface-bound peptides derived from the gp41 envelope 

protein of HIV (as a B-cell target), but containing encapsulated T-helper epitope peptides 

(Fig. 16).142 Encapsulation of the helper epitopes permitted efficient T-cell help to be 

provided in the vaccine while limiting the antibody response raised against the encapsulated 

T-cell peptides; by contrast strong humoral responses were elicited against the surface-

displayed gp41 peptide.142

4.1.2 Particulate delivery for cross presentation of protein antigens—For most 

prophylactic vaccines success is measured by the ability to produce long-lasting antibody 

responses to block infection. However, for some viruses like HIV, intracellular pathogens, 

and cancer, CD8+ T-cell responses are required to act synergistically with humoral 

immunity to eliminate infected cells or destroy tumors. This presents a challenge as typically 

only live infections elicit strong CD8+ T-cell priming. Soluble antigens acquired by DCs 

from the extracellular environment are internalized into endolysosomal compartments, 

broken down into peptides, and loaded almost exclusively onto class II MHC molecules for 

presentation to CD4+ helper T-cells. By contrast, class I MHC molecules that present 

peptides to CD8+ killer T-cells are usually only loaded with antigens located in the cytosol 

of DCs.237 Because cytosolic localization of antigens only occurs in special situations (e.g., 

infection of the DC itself with a virus or intracellular pathogen), this requirement would 

appear to strongly limit the occurrence of CD8+ T-cell responses in most settings. However, 

antigen loading onto class I MHC can also happen in a second circumstance: when DCs or 

macrophages phagocytose particulate antigen.237,238 Phagocytosis of antigen associated 

with dying cells, microparticles, or nanoparticles triggers professional APCs to shuttle a 

fraction of the antigen to the cytosol or to deliver it to special vacuoles where class I MHC 

loading can occur.239 This process, called cross presentation, was first demonstrated for 

antigens conjugated to synthetic iron oxide or polymer beads,240–243 but has since been 

demonstrated to occur for diverse synthetic particles composed of materials ranging from 

gold to calcium phosphate to solid polymers to hydrogels to lipids, and occurs irrespective 

of whether antigen is encapsulated in the particle or surface-conjugated.244–248 Although the 

earliest studies suggested an optimal particle size of several hundred nanometers for 

triggering cross presentation, more recent work has provided evidence for enhanced cross 

presentation of protein antigens conjugated to nanoparticles as small as 7–11 nm mean 

diameter.249,250 Efficient cross presentation leading to in vivo CD8+ T-cell expansion 

comparable to live viral infections has been reported with stabilized lipid nanocapsules 

termed ICMVs (interbilayer-crosslinked multilamellar vesicles)169,251 and also with 

multilamellar lipid vesicles loaded with a strong T-cell-inducing adjuvant (poly(I:C)) and 

surface-absorbed antigen.252 The ICMV technology has been licensed to Vedantra 

Pharmaceuticals, which aims to translate this nanocapsule approach to human clinical 

trials.253
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Although early studies covalently conjugated proteins to solid particles, cross presentation 

can be optimized by engineering particle-antigen linkages to be labile in the endosomal 

pathway. For example, antigen coupled to pluronic-stabilized poly(propylene sulfide) 

nanoparticles via a reduction-sensitive disulfide linkage specifically allowed for the release 

of antigen within the reductive environment of the endosome in APCs after uptake leading 

to enhanced in vitro and in vivo CD8+ T cell stimulation compared to non-degradable 

linkers.254,255 In pulmonary vaccination, these nanoparticles efficiently promoted cross 

presentation resulting in a 10-fold enhanced effector CD8+ T-cell frequency in the lungs.176 

Stano et al. carried out a comparative study of vaccination with antigen conjugated to 30 nm 

solid poly(propylene sulfide) (PPS) nanoparticles vs. the same antigen encapsulated in 125 

nm PPS-based polymersomes (Fig. 17).256 While PPS NPs promoted robust CD8+ T-cell 

responses, polymersomes with encapsulated antigen induced enhanced frequencies of 

antigen-specific CD4+ T cells in the spleen, lymph nodes, and lungs, but were inefficient at 

promoting CD8+ T-cells in comparison to solid nanoparticles.256 pH-sensitive micelles 

carrying antigen and adjuvant have also been utilized to enhance cross presentation to CD8+ 

T-cells, improving both cellular and humoral responses.257,258

Nanoparticles have also been demonstrated to have potential as platforms for cross 

presentation of complex antigen mixtures in DCs, as exemplified by the entrapment of 

tumor lysate proteins, leading to enhanced tumor-specific CD8+ T-cell priming relative to 

soluble lysate mixtures.259 Novel strategies for displaying antigens on nanoparticles also 

have great potential for enabling more effective cross presentation to T-cells. For example, 

Fang et al. developed a method to coat biodegradable polymer nanoparticles with 

membranes derived from tumor cells.260 This approach promoted antigen uptake and cross 

presentation by dendritic cells to tumor antigen-specific T-cells, and is especially attractive 

because it in principle allows the entire repertoire of tumor cell surface antigens to be 

delivered to DCs. This approach can also be used to directly target tumor cells and 

vasculature for immunotherapies.261 Alternatively, the delivery of minimal peptides has 

been shown to help avoid tolerance and T-cell mediated anergy by minimizing peptide 

loading on unintended class I MHC expressing cells.139,262–264

The strategies discussed above all rely on an intrinsic pathway for delivery of antigen to 

class I MHC following uptake of particulate antigen, which seems to be largely independent 

of particle chemistry and only weakly sensitive to particle size. However, nanoparticles can 

also promote cross presentation more directly following internalization, via endosome/

phagosome disruption and direct delivery of antigen to the cytosol, where they can be 

processed by the normal MHC I loading pathways. For this approach, most if not all of the 

common strategies employed for cytosolic drug delivery have been applied to promote 

antigen cross presentation. For example, Hu et al. developed core-shell gel nanoparticles 

with a pH-responsive core and nontoxic hydrophilic shell capable of efficient cytosolic 

delivery of membrane impermeable molecules via endosomal disruption through the proton 

sponge effect (studied for many years in nucleic acid delivery materials).265 When loaded 

with OVA protein these particles were shown to promote priming of CD8+ T-cells at 100-

fold lower doses compared to soluble protein.266 Going a step further to promote efficient 

antigen release from particles in the cytosol, bioreducible alginate-poly(ethylene imine) 
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nanogels carrying protein antigen have been synthesized. These particles were designed to 

disrupt endosomes through the proton sponge effect of PEI, and subsequently dissolve in the 

reducing conditions of the cytosol.267 These nanogels more strongly promoted intracellular 

antigen degradation and cytosolic release, robustly enhancing antibody responses and 

increased tumor cell lysis in an in vitro CD8+ T-cell cytotoxicity assay compared to non-

reducible nanogels.267 Endosomolytic and pH-responsive micelles additionally have the 

capability to uniformly surface display antigen and incorporate adjuvant.257,258 These 

micelles demonstrated enhanced cross-presentation in vitro and in vivo as a function of 

micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen 

accumulation. Surface-engineered gold nanorods268 and acetylated dextran nanoparticles269 

have similarly been shown to osmotically rupture endosomes to deliver antigen to the 

cytosol. Intracellular targeting of the endoplasmic reticulum (ER) is another approach that 

has been shown to promote cross-presentation- following ER-endosome fusion nanoparticles 

are shuttled to the cytosol.270,271 Polymer-modified liposomes that destabilize at low pH 

have also been reported to mediate efficient cytosolic delivery of its cargo via endosome 

fusion and disruption.272,273 Additionally, one could imagine direct endosome destabilizing 

techniques to be applied to nanoparticle-mediated antigen delivery to the cytosol. For 

example, photochemical destabilization of endosomes for cytosolic delivery has been shown 

for antigens co-delivered with a photosensitizer that will cause a series of reactions to 

rupture endosomes upon light exposure to significantly enhance cross-presentation 

compared to soluble antigen alone.274

4.1.3 Modulating antigen presentation to invariant natural killer T-cells—While 

most cells of the adaptive immune system recognize foreign protein antigens, a subset of T-

cells known as invariant natural killer T (iNKT) cells have evolved to recognize lipid 

antigens presented by CD1d receptors expressed on APCs. A potent lipid antigen that 

stimulates iNKT cells is the glycolipid α-galactosylceramide (α-GalCer), and this molecule 

has been proposed as an adjuvant compound to trigger anti-viral and anti-tumor responses 

from iNKT cells. Analogous to “normal” T-cell activation, α-GalCer and other lipid ligands 

for iNKT cell receptors must be captured and presented to the iNKT cells on the non-

classical MHC molecule CD1d at the surface of APCs. Intravenous injection of α-GalCer 

leads to iNKT hypo-responsiveness, which is believed to be due in part to the non-selective 

nature of APCs that capture and present α-GalCer to iNKT cells following systemic 

administration. This can be prevented by targeting α-GalCer to specific subsets of APCs to 

activate iNKT cells in the right context. Fernandez et al. co-targeted α-GalCer and the 

model antigen ovalbumin to DCs by packaging them in PLGA nanoparticles with surface-

conjugated anti-DEC205. This strategy allowed for maximal stimulation of iNKT cells as 

shown by increased cytokine release, expansion of antigen-specific CD8+ T-cells, and 

increased anti-Ova IgG titers. Furthermore, targeting of α-GalCer to CD8+ DCs abrogated 

the hypo-responsiveness of iNKT cells upon re-stimulation.275 Another method to target α-

GalCer to DCs is to target the C-type lectin receptors (CLRs) expressed on the surface of 

DCs. CLRs recognize mannose receptors at the end of carbohydrate ligands and trigger 

phagocytosis. When α-GalCer is encapsulated in oligomannose-coated liposomes, these 

liposomes are preferentially taken up by dendritic cells resulting in enhanced iNKT 

activation and proliferation.276 Octaarginine or R8 is a cell-penetrating peptide, which when 
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attached to the surface of liposomes promotes uptake in dendritic cells by 

macropinocytocis.277 PEGylated R8-liposomes encapsulating α-GalCer were shown to elicit 

potent iNKT cell activation in vivo, resulting in prophylactic control of tumor cell 

growth.278

4.1.4 Targeting antigen to APCs and regulating kinetics of antigen release—A 

final function of nanoparticles in regulating T-cell responses is to regulate the availability of 

antigen in or around antigen presenting cells. Sustained exposure to antigen and, 

consequently, presentation on class I and II MHC complexes has been shown to promote 

prolonged CD4+ and CD8+ T cell activation and cytokine expression. Nanoparticles that 

encapsulate antigen for sustained release either in the extracellular environment or within 

DCs can promote T-cell responses. Shen et al. demonstrated enhanced and prolonged cross 

presentation of antigen loaded on PLGA nanoparticles in vitro relative to soluble antigen or 

antigen bound to latex beads.279 PLGA particles were able to facilitate endosomal escape of 

antigen into the cytosol and also served as an intracellular reservoir. In a more recent 

comparative study of PLGA nanoparticles and liposomes, Demento et al. demonstrated 

sustained release of antigen from PLGA nanoparticles resulted in enhanced recall of CD8+ 

T-cell responses following bacterial challenge, compared to fast-releasing liposomes (Fig. 

18).280 Furthermore, targeting moieties can be added to the surface of nanoparticles to 

directly engage cell-surface receptors on APCs and enhance uptake, effectively maximizing 

exposure to antigen.281 In addition, while sustained exposure to antigens in chronic 

inflammatory states, such as cancer, autoimmunity, and chronic inflammation, has been 

shown to induce tolerance and/or T cell exhaustion282,283, thus far there are no examples in 

the literature describing such undesirable effects from controlled antigen release by synthetic 

nanoparticles. This is likely due to several factors including (1) transient exposure to 

antigen, (2) antigen dose, and (3) the additional presence of a danger signal. In addition to 

the above examples, Hanlon et al. described how controlled released of tumor antigens from 

nanoparticles loaded onto dendritic cells can drive anti-tumor responses, while delivery of 

naked tumor lysate induced T cell profiles characteristic of tolerization and exhaustion.284

4.2 Nanoparticles as adjuvants

Complementary to their potential roles in presenting antigen to B-cells or delivering antigen 

to appropriate antigen processing pathways in antigen presenting cells, nanoparticles can 

also be designed to provide immunity- or tolerance-promoting secondary signals that are 

required to instruct the immune system as to the type of immune response to be mounted 

against the encountered antigen. In the former case, these immunity-promoting cues are 

often referred to as “danger signals”, as they are requisite cues that inform responding 

immune cells that a foreign antigen is dangerous (as opposed to being an innocuous 

environmental or food-derived antigen) and a protective immune response should be 

mounted.285 These are the cues needed for prophylactic or therapeutic vaccines. By contrast, 

counter-regulatory signals can be provided by nanoparticles that instruct the immune system 

to become tolerant to the encountered antigen. Such tolerizing signals could be used to block 

allergies, to counter xenoresponses to therapeutic proteins, or to treat autoimmune disease. 

Provision of these signals can be achieved in at least two ways: (i) nanoparticles can 

encapsulate compounds that stimulate the appropriate pro- or anti-immunity pathway, or (ii) 
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the nanoparticle itself, by virtue of its structure or composition, can itself stimulate these 

pathways. This section will discuss these two broad strategies for nanoparticle adjuvants.

4.2.1 Nanoparticle delivery of molecular adjuvants

Danger signals in the induction of the immune response: The danger signals that drive 

protective immunity in prophylactic or therapeutic vaccines are characterized as either (1) 

pathogen-associated molecular patterns (PAMPs; e.g. lipopolysaccharides or flagellin from 

bacteria, double-stranded RNA from viruses, or cell wall components from yeast and fungi) 

which are evolutionarily conserved molecular motifs unique to pathogens and absent from 

human tissue, or (2) so-called damage-associated molecular patterns (DAMPs; i.e. molecular 

signatures of tissue damage such as degraded heparan sulfate or uric acid released from 

dying cells).286,287 These compounds are recognized by pattern recognition receptors 

(PRRs) expressed by immune cells, especially antigen presenting cells, and instruct APCs to 

produce inflammatory cytokines and to up-regulate co-stimulatory receptors and antigen 

presentation machinery to produce productive T- and B-cell priming. The most well studied 

class of these receptors is the Toll-like receptors (TLRs). These natural components or 

synthetic compounds that act on their receptors are molecular adjuvants that can drive 

tailored immune responses through defined signaling pathways. Current evidence suggests 

that danger signaling is critical for an optimal immune response– adaptive immune 

responses to vaccines are dependent on danger signals.98,288–290 Even virus-like particles, 

despite their potent ability to engage B-cells as discussed above, are thought to rely on 

contaminating Toll-like receptor ligands for their immunogenicity.291

Enhancing molecular adjuvants through nanoparticle delivery: Nanoparticle delivery of 

molecular adjuvants can play several roles in vaccine design. The first is to enhance the 

potency and efficacy of adjuvants, through a number of distinct mechanisms. Nanoparticle 

delivery can concentrate adjuvants at a tissue level within lymphoid organs, forming 

intranodal depots and prolonging exposure in this important site of action (without 

necessarily eliciting toxic systemic exposure).131,146,153 This is especially relevant for 

small-molecule adjuvant compounds (e.g., imidazoquinolines that trigger TLRs 7 and 8), 

which are usually cleared rapidly to the bloodstream on injection. In the case of cytokines, 

which can also act as molecular adjuvants, it is essential to avoid systemic exposure. St. 

John et al. circumvented this issue by encapsulating various cytokines in synthetic mast-cell 

granule-like nanoparticles composed of chitosan and heparin that efficiently drained to 

lymph nodes and were able to effectively adjuvant vaccination with hemagglutinin.292 More 

recently, Hanson et al. showed a significant dose-sparing effect of cyclic dinucleotide small 

molecule adjuvants (agonists of cytosolic stimulator of IFN genes, STING) when loaded 

inside liposomal nanoparticles.293 Without compromising the humoral response towards the 

co-delivered antigen, systemic cytokine induction and toxicity was avoided.293 Such 

nanoparticle-mediated targeting of adjuvants to lymph nodes in vaccination increases both 

efficacy and safety, both by blocking systemic distribution of the adjuvant and by permitting 

significant dose-sparing (up to 250-fold).146,147,153,293,294 Targeted delivery of TLR ligands 

in nanoparticles to DCs has also been shown to strongly enhance adjuvanticity.295
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Particle encapsulation can also act to concentrate danger signals at the single cell level. As 

with antigens, nanoparticles’ natural tropism for phagocytic cells can concentrate adjuvants 

within receptor-bearing endosomal compartments or near the cell surface. Though the 

importance of local adjuvant concentration on danger signal receptor engagement and 

signaling has not yet been studied this is likely to play a role in the response to nanoparticle 

adjuvants. For example, co-encapsulation of TLR agonists and antigens in PLGA or calcium 

phosphate nanoparticles has been shown to enhance antigen uptake, APC activation, T-cell 

priming, and protection against infectious challenge in vivo.245,262,296,297 Co-encapsulation 

of antigen and adjuvant on nanoparticles also allows for co-localization of these compounds 

within the same endosomal/phagosomal compartments which has been shown to be a 

requirement for physically instructing dendritic cells to present the associated foreign 

antigen in vitro,298–300 although evidence exists for phagosome maturation in the absence of 

TLRs albeit at a slower constitutive rate.301,302 This was exemplified in the early 1990s by 

Friede et al. who compared TLR4 agonist, MPLA, delivery in the same or separate 

liposomes with peptide-antigen and found that MPLA delivered in the same nanoparticle 

resulted in significantly higher antigen-specific titers compared to delivery of MPLA in 

separate particles.115 Notably, several examples exist for which small nanoparticles at 

sufficient dosing can co-localize together in the same APC even if antigen and adjuvant are 

carried by separate particles, as illustrated by de Titta et al. for 30 nm poly(propylene 

sulfide) particles with surface-conjugated antigen mixed with particles functionalized with 

the TLR9 agonist CpG DNA.303

Nanoparticle delivery may also qualitatively change the biology of molecular adjuvants. For 

example, studies of adjuvants triggering the danger sensor TLR4 have suggested that TLR4 

signaling cannot provide a suitable danger signal for CD8+ T-cell responses.304 Early 

studies of TLR4 ligand (LPS) incorporation into empty liposomes also reported decreased 

LPS potency compared to soluble LPS in vitro.305 By contrast, TLR4 ligands co-

encapsulated with antigen in lipid nanoparticles have been shown to trigger robust cross 

presentation and CD8+ T-cell priming in vivo in mice.169 It is also known that combinations 

of danger signals can exhibit powerful synergy in activating APCs.306–308 Particle co-

encapsulation of combinations of danger signals provides the opportunity for maximizing 

this synergy. This has been dramatically illustrated with PLGA nanoparticles co-

encapsulating TLR4 and TLR7 small molecule adjuvants- co-delivery of these adjuvant 

compounds in PLGA resulted in a synergistic enhancement in comparison to either one of 

the TLR ligands delivered alone in separate particles (Fig. 19).309 Extremely long-lived 

germinal centers following vaccination were observed, resulting in high-titer and durable 

antibody responses. Importantly, these results have been recapitulated in non-human 

primates, setting the stage for clinical testing of this strategy for enhancing vaccines.309

Using nanoparticles to promote tolerance: In the absence of danger signals, the 

presentation of self-antigens on APCs can induce tolerance. One strategy to induce 

peripheral tolerance of auto-reactive T-cells is to intravenously inject fixed, self-antigen-

pulsed apoptotic splenocytes.310 This form of antigen delivery mimics the processing of 

self-antigens from dying host cells and results in the presentation of self-antigens on APCs 

in the absence of co-stimulatory signals. This therapy induces antigen specific tolerance of 
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T-cell clones and the generation of new regulatory T-cells.311 However, the requirement of 

manipulating live patient cells for this treatment makes this approach complex for clinical 

translation. Nanoparticle delivery of self-antigens to APCs has recently been investigated as 

an alternative strategy to promote tolerance.312 Hunter et al. employed biodegradable PLGA 

nanoparticles to systemically deliver antigens to APCs in the spleen. When PLGA particles 

conjugated with auto-antigenic peptides were administered intravenously, they prevented the 

onset of experimental autoimmune encephalitis (EAE), a model of human multiple sclerosis 

(MS) and further ameliorated the symptoms of established EAE.313 Another approach is to 

co-deliver auto-antigens together with immunoregulatory drugs that promote a tolerogenic 

response. PLGA nanoparticles delivering either peptide or protein antigens together with the 

Treg-promoting drug rapamycin inhibited CD4+ and CD8+ T-cell activation while 

increasing the number of regulatory T-cells.314 Selecta Biosciences, which is developing 

this platform, has successfully completed a phase I clinical trial of PLGA nanoparticle 

vaccines in a different indication315, demonstrating that these materials can be GMP 

manufactured for clinical translation of this strategy. Recently, nanogels carrying self-

antigens have shown superior tolerance induction compared to the delivery of soluble 

antigens or PLGA-loaded antigens, as a result of their increased internalization by 

DCs.316,317 Yeste et al. described a gold nanoparticle-based system that allowed for the co-

delivery of multiple factors to DCs that synergized to induce antigen-specific regulatory T-

cell activation leading to suppression of experimental autoimmune encephalomyelitis.318

The strategies just described all rely on targeting of antigens to APCs under conditions 

providing tolerogenic cues during antigen presentation to T-cells. Another approach is to 

directly deliver peptide-MHC ligands to T-cells via nanoparticles, in the absence of any 

other costimulatory signals. Tsai et al. demonstrated that peptide-MHC displaying 

nanoparticles could expand regulatory CD8+ T cells, a novel regulatory cell phenotype, and 

eventually restored normoglycemia in a humanized model of diabetes.319

Enhancing vaccine safety: Finally, the most critical issue with molecular adjuvants is 

safety. As noted above, a number of small-molecule danger signal compounds are 

problematic adjuvants for human use, due to their rapid dissemination into the systemic 

circulation on injection, leading to toxic systemic inflammation.146 Nanoparticle 

conjugation or encapsulation completely alters the fate of these compounds, promoting their 

targeting to lymphoid organs as discussed above, and blocking their trafficking into the 

systemic circulation. In addition, particle delivery may focus their action primarily on 

phagocytic cells (macrophages and dendritic cells) which may be beneficial for avoiding 

nonspecific polyclonal stimulation (e.g., of B-cells).

4.2.2 Intrinsic adjuvant properties of nanoparticles

Activating complement: The complement system – an ancient component of innate 

immunity – comprised of three distinct pathways (classical, lectin, and alternative), initiates 

a wealth of host responses including inflammatory responses which activate adaptive 

immunity and, thus, activation of complement may serve as an adjuvant strategy for 

vaccines and immunotherapeutics.320 While nanoparticles have been shown to be capable of 

activating complement, this is dependent on the surface chemistry of the particles.135,321–323 
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Reddy et al. reported that pluronic-stabilized poly(propylene sulfide) nanoparticles activated 

complement in a hydroxyl group-dependent manner and this activation induced the 

maturation of dendritic cells and enhanced cellular immunity when antigen was conjugated 

to the nanoparticles.135 Surface charge and carboxylation was later shown to further 

modulate complement activation.322 Alteration of the architecture of poly(ethylene oxide) 

chains on the surface of nanoparticles has also been shown to switch complement activation 

between classical and lectin pathways.323 The effects of this complement pathway switch on 

the adjuvant ability of nanoparticles remains to be elucidated.

Induction of autophagy: Recently it has begun to be recognized that nanoparticles may be 

capable of intrinsic adjuvant activity, deriving from their structure and/or composition, 

providing an entirely novel way for materials chemistry to be used to create new vaccines. 

One pathway for nanoparticle-mediated adjuvant action is induction of autophagy in antigen 

presenting cells. Autophagy is the process of “self-eating”– a process whereby cells engulf 

cytosolic contents into special membrane-bounded compartments known as 

autophagosomes, to degrade and recycle proteins during starvation or cellular stress. 

Autophagy is becoming recognized as an important player in diverse biological processes, 

including induction of the immune response.324 For example, Ravindran et al. recently 

demonstrated that virus-mediated signaling induced autophagy in dendritic cells, leading to 

enhanced CD4+ and CD8+ T-cell responses.325 This was the first study to demonstrate the 

link between the virus-induced integrated stress responses in DCs to the adaptive immune 

response. In parallel, studies of nanoparticle interactions with both tumor and normal cells 

have revealed that nanoparticle uptake can induce autophagy.326 Bringing these two 

observations together, Li et al. showed that alumina nanoparticles conjugated with antigen, 

which were shown to induce and, more importantly, require autophagy in dendritic cells to 

effectively cross present antigen to T cells, strongly promoted cellular and humoral immune 

responses in vivo.327

Activation of the inflammasome: A second pathway by which nanoparticles can directly 

provide danger signal effects is through activation of the inflammasome in APCs. 

Inflammasomes are cytosolic protein complexes that form in response to infection or stress, 

likely as a result of phagosomal/lysosomal rupture or destabilization, and further mediate 

inflammatory responses.328,329 Alum mediated adjuvancy has been correlated to activation 

of the NALP3 inflammasome in DCs,330,331 although some follow-up studies reported that 

the NALP3 inflammasome was not directly required for its adjuvant action.332,333 Similarly, 

other particulate vaccines have been demonstrated to activate the NALP3 inflammasome,334 

including PLGA335,336 and gold.337 Several groups have shown that the induction of 

immunity through activation of the inflammasome by solid particles is dependent on several 

particle characteristics including particle chemistry, size, and shape.337–339 Using a 

comprehensive library of aluminum-based nanoparticles, Sun et al. demonstrated that 

increased aspect ratio and surface hydroxyl content correlated with the extent of lysosome 

damage, inflammasome activation and IL-1β cytokine production.339 A study comparing 

various size and shape gold nanoparticles similarly revealed rod-like particles were the most 

effective inflammasome activators, although spherical and cubic particles significantly 

induced inflammatory cytokine production.337 Based on the collated evidence of diverse 
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particle types and chemistries triggering the inflammasome, it seems likely that the 

inflammasome may play a role in all nanoparticle-based vaccines.

Hydrophobicity as a danger signal: A third means for intrinsic adjuvant activity in 

nanomaterials is via hydrophobicity. Matzinger first proposed that the exposure of 

hydrophobic moieties, characteristic of unfolded proteins, microbes, and dying cells, could 

represent an important evolutionarily-conserved danger signal.340 Recently, evidence in 

support of this concept from synthetic nanoparticles has begun to emerge. Nanoparticles 

composed of amphiphilic poly(γ-glutamic acid) showed increased uptake and activation of 

DCs in vitro and cellular responses in vivo as a function of increased side-chain 

hydrophobicity.341 In agreement, increased surface hydrophobicity on gold nanoparticles 

has been shown to directly correlate to increased inflammatory cytokine expression levels 

both in vitro and in vivo.342 Petersen et al. demonstrated using amphiphilic polyanhydride 

nanoparticles that polymer hydrophobicity, in addition to several other factors including 

presentation of oxygen-rich molecular patterns and structural features, influenced innate 

immune responses.343

5 CONCLUSIONS

As shown by the many examples covered in this review, nanoparticle technologies offer a 

great breadth of new ways to tune specific immune responses for prevention or treatment of 

disease. Many of these new strategies for vaccines and immunotherapy were inspired by the 

availability of novel nanomaterials with new functionalities and capabilities. This trend 

should continue for the foreseeable future as many classes of new materials have yet to be 

studied in depth and may have great potential in this field. Examples include DNA 

nanostructures that can present complex, three-dimensional multivalent motifs to engage and 

organize immune cell receptors344–346, nanoparticles with the capacity to embed within or 

penetrate cell membranes347,348, and novel self-assembling materials that can form 

complex, hierarchical nanoparticles.349–351 While still in its infancy, the field of immune 

engineering, with nanoparticle technologies as key tools, is moving rapidly with a number of 

technologies moving beyond small animal models to non-human primate testing or other 

large animal models and small early-stage clinical trials.121,309,352–356 Important lessons for 

this effort can be gleaned from the field of cancer nanotechnology, chief among these being 

the importance of manufacturing– elegant materials that cannot be produced reliably or at 

large scale by commercial processes cannot survive the translation to clinical 

implementation. The availability of robust synthesis strategies must be a driving 

consideration right from the earliest stage of devising new concepts. These considerations 

will ensure that the field of synthetic nanoparticles for vaccines and immunotherapy reaches 

its full potential for clinical impact in public health and medicine.
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Figure 1. 

Examples of the impact of vaccination on disease burdens in the United States. (A) 

Poliomyelitis before and after introduction of the polio vaccines.12 Reprinted form reference 

12. (B) Measles cases before and after introduction of the measles vaccine.13 Reprinted from 

Center for Disease Control and Prevention: Vaccines and Immunizations Publications. 

Parents guide to childhood immunization http://www.cdc.gov/vaccines/pubs/parents-guide/

downloads/parents-guide-part3.pdf#page=10 (accessed Feb 1, 2015).
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Figure 2. 

Delivery of idinavir (IDV) nanoparticles loaded into bone marrow derived macrophages 

(BMDMs) results in increased serum and tissue drug concentrations. (A) Sections of spleen 

from mice at day 5 after the transfer of rhodamine-labeled idinavir nanoparticle loaded bone 

marrow derived macrophages (IDV-loaded BMDMs). Sections were stained for CD11b and 

examined by fluorescence microscopy. Higher magnification inserts demonstrate the co-

localization of BMDM-IDVs (Red) with the cytoplasm of CD11b+ cells (Green). BMDMs 

appear yellow in the merged panel and nuclei are stained in blue. (B–E) IDV distribution in 

targeted tissues and body fluids was assessed in mice treated with a single dose of (B) IDV 

free drug solution (C) Cell- free IDV nanoparticles (D–E) BMDM-IDVs. IDV 

concentrations in mice treated with BMDM-IDVs were increased and prolonged over 14 

days. Data represent mean ± SEM for n = 4 mice per group per time point. Magnifications 

are (originals) × 100 and (insets) × 400.37 Reprinted with permission from reference 37. 

Copyright 2006 American Society of Hematology.
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Figure 3. 

siRNA LNP is primarily engulfed in small vesicles by Kuppfer cells within the mononuclear 

cell pool. Representative images of cell stained with a surface lineage marker (Yellow), 

DAPI (Blue), and siRNA LNP (Red) are depicted (n = 3 per group). DAPI: 4’,6-

diamidno-2phenylindole; DC: Dendritic Cell; IU: Infectious Unit; KC: Kuppfer Cell; LNP: 

Lipidoid nanoparticle; LSEC: Liver Sinusoidal Endothelial Cell.52 Reprinted with 

permission from reference 52. Copyright 2013 American Society of Gene & Cell Therapy.
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Figure 4. 

Mannosylated liposomes are targeted to macrophages in the tumor microenvironement. (A) 

Schematic diagram of DOTA containing plain liposomes (B) Schematic diagram of DOTA 

containing mannosylated liposomes (Man-Lipos) (C and D) Strong fluorescence signal 

associated with PEG liposomes and Man-Lipos is localized to lung tumors. However, 

compared to Man-lipos, PEG liposomes exhibit a higher background signal and poor tumor 

contrast.63 Reprinted with permission from reference 63. Copyright 2012 Elsevier Ltd.
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Figure 5. 

Different nanoparticle based strategies to improve adoptive T-cell transfer (A) Schematic of 

iron-dextran nanoparticles functionalized with T-cell activating proteins (nano-APCs) 

stimulating T-cell receptor signaling in the absence or presence of a magnetic field (B) 

Adoptive transfer of magnet-enhanced nano-APC activated T cells increased survival 

compared to no magnet and control groups. Mice were censored if dead or tumors were > 

150 mm2. (p<0.001 by Mantel Cox log-rank test)74 Reprinted with permission from 

reference 74. Copyright 2014 American Chemical Society. (C) Schematic of maleimide-

based conjugation to cell surface thiols. MBP-PE: 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[4– (p-maleimidophenyl)butyamide] (D) Confocal microscopy 
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images of CD8+ effector T-cells immediately after conjugation with fluorescent 1,1-

dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine (DiD)-labeled multilamellar lipid 

nanoparticles (top) and after 4 days of in vitro expansion (bottom) (D) Scale bar, 2 µm (E) 

Survival of mice after adoptive T-cell therapy is enhanced with nanoparticle conjugated T-

cells illustrated by Kaplan-Meir curves (n=6 per group)79 Reprinted with permission from 

reference 79. Copyright 2010 Nature America, Inc. (F) T-cell targeted liposome with surface 

attached anti-Thy1.1 or IL-2Fc (G) Representative histograms of liposomes labeling 

antigen-specific adoptively transferred or endogenous CD8+ T-cells 48 hours after adoptive 

transfer and 24 hours after liposome injection.83 Reprinted with permission from reference 

83. Copyright 2013 Elsevier B.V.
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Figure 6. 

Antigens bound to the surface of liposomes generate a significantly higher antibody tire. 

Mice were immunized with liposomes containing 2 µg MPLA associated with peptide. (a) 

no peptide (b) 60 µg peptide internally encapsulated in 5 µmol lipid (c) 65 µg peptide 

internally encapsulated in 1 µmol lipid (d) 60 µg peptide covalently bound to liposome 

surface (I µmol lipid) (e) 60 µg peptide co-injected with liposomes (1 µmol lipid) to which 

no peptide is bound (f) peptide conjugated to ovalbumin in Freund’s complete adjuvant with 

boosters in Freund’s incomplete adjuvant. IgG titer was measured after the third injection 

with an interval of three weeks between each injection.115 Reprinted with permission from 

reference 115 Copyright 1993 Pergamon Press Ltd.
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Fig. 7. 

Relationship between molecular weight and uptake into lymphatics following subcutaneous 

injection for a series of globular proteins and small molecules in a sheep model. Data for 

fluorodeoxyuridine (FuDu), inulincytochrome (CyC), interferon-α (IFN), human growth 

hormone (hGH), soluble insulin, r metHu-Leptin (Lep), an analogue of Leptin (Lep*), 

epoietin alfa (EPO), darbepoetin alfa (DA) and a high molecular weight protein (HMwP) 

Reproduced from Kaminska and Porter133 with permission. Reprinted with permission from 

reference 133. Copyright 2011 Elsevier B.V.
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Figure 8. 

Vaccination with PLGA-αCD40 nanoparticles prolong survival after tumor inoculation. 

Vaccines consisted of immunization in the right flank with 10 µg OVA encapsulated in 

nanoparticles displaying αCD40 mAb (NP-CD40), or isotype control antibody (NP-iso) at 7 

days prior to tumor inoculation in the prophylactic model (A), or 7 and 17 days post-tumor 

inoculation in the therapeutic model (B). Tumor inoculations consisted of 2×105 B16-OVA 

tumor cells injected s.c. in the left flank. Adapted from Rosalia et al.156 Reprinted with 

permission from reference 156. Copyright 2014 Elsevier Ltd.
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Figure 9. 

Nanoparticles targeted to lung DCs enhance vaccine uptake and protect against infection 

challenge. (A & B) C57BL/6 mice were immunized intratracheally with OVA in lipid 

nanoparticle (ICMV) or soluble formulations. Representative cryosections after intratracheal 

immunization with fluorescent OVA (red) from lungs on day 1 (A; scale bars, 50 µm) and 

mediastinal draining lymph nodes (mdLNs) on day 4 (B; scale bars, 200 µm). (C) C57BL/6 

mice were immunized intratracheally or subcutaneously with a peptide vaccine in 

nanoparticle (ICMV) or soluble forms on days 0 and 28, then challenged by intratracheal 

administration of vaccinia virus (1×106 PFU) on day 42; body weight changes were tracked 

over time. Adapted from Li et al.169 Reprinted with permission from reference 169. 

Copyright 2013 American Association for the Advancement of Science.

Irvine et al. Page 65

Chem Rev. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 

Cationic nanogels facilitate effective delivery of vaccine antigen into the nasal mucosa. 

Antigen (Clostridium botulinum type-A neurotoxin BoHc/A) was administered intranasally 

in cationic nanogels (cCHP-BoHc/A) or in soluble form (BoHc/A) and nasal epithelium 

tissue sections were collected over time. Green fluorescence refers to the antigen, BoHc/A, 

red fluorescence refers to the nanogels, and nuclei are represented in blue. Adapted from 

Nochi et al.172 Reprinted with permission from reference 172. Copyright 2010 Macmillan 

Publishers Ltd.
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Figure 11. 

Carbon nanoparticles for oral vaccination. (A) Schematic of carbonization mechanism for 

formation of mesoporous carbon nanoparticles (C1). (B) Mean serum anti-BSA IgG profile 

of mice after: i.m. administration of BSA emulsified in Complete Freund’s Adjuvant (FCA), 

oral administration of soluble BSA, or oral administration of BSA loaded in carbon 

nanoparticles (C1). Prime and boost immunizations were spaced three weeks apart. Adapted 

from Wang et al.193 Reprinted with permission from reference 193. Copyright 2011 Elsevier 

B.V.
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Figure 12. 

Distribution of solid lipid nanoparticles (SLN) and PEGylated solid lipid nanoparticles 

(pSLN) in small intestinal villi viewed at different magnifications. Blue fluorescence 

indicates the nuclei of small intestinal cells and green fluorescence indicates nanoparticles. 

Adapted from Yuan et al.209 Reprinted with permission from reference 209. Copyright 2013 

American Chemical Society.

Irvine et al. Page 68

Chem Rev. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 13. 

MPPs are retained in the cervicovaginal tract. (A) Overlay of particle fluorescence intensity 

and photographic images for conventional nanoparticles (CPs) and mucus-penetrating 

particles (MPPs) in the entire cervicovaginal tract tissue. (B) Percent of particles remaining 

over time on the basis of quantification of particle fluorescence in (A). Adapted from Ensign 

et al.219 Reprinted with permission from reference 219. Copyright 2012 American 

Association for the Advancement of Science.
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Figure 14. 

Anti-OVA mouse serum IgG response to 100 µg OVA in ddy mice (n = 5 mice) after 

transcutaneous application of OVA in S/O nanodispersions or in PBS with (+) or without (-) 

polyarginine (R6), or OVA and R6 in separate nanodispersions (OVA S/O and R6 S/O), 

compared to subcutaneous injection of 100 µg soluble OVA in PBS. Adapted from Kitaoka 

et al.227 Reprinted with permission from reference 227. Copyright 2013 Elsevier B.V.
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Figure 15. 

A schematic view of antigen processing and presentation in dendritic cells (DCs). DC 

activity is initiated by pathogen-associated molecular patterns (PAMPs) and/or danger-

associated molecular patterns (DAMPs) that are recognized by pattern recognition receptors 

(PRRs) on the DC surface. As depicted on the right, antigen and adjuvant containing 

nanoparticles are internalized by DCs through cell internalization pathways such as 

phagocytosis. Exogenous antigen is processed by proteases in endocytic vesicles 

(endosomes) and eventually loaded onto MHC Class II molecules found in vesicles targeted 
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to endosomes that carry potential ligands. Once peptide is loaded onto MHC II molecules, 

the peptide-MHC II complex is trafficked to the cell membrane where it presents the antigen 

to CD4+ T-cells bearing a cognate T-cell receptor (TCR). Activated CD4+ T-cells can 

further initiate B-cell activation and other immune effector functions. Depicted on the left 

are the two alternate pathways through which antigens can be loaded onto MHC Class I 

molecules. In the classical MHC I loading pathway, cytosolic or endogenous antigens are 

processed through the proteasome. Resulting peptide fragments are transported to the 

endoplasmic reticulum (ER) where they are loaded onto MHC Class I molecules. In certain 

DCs, exogenous antigens can be loaded onto MHC Class I molecules (‘cross-presented’) 

when antigens from endosomes are released into the cytoplasm or when trafficked to special 

vacuoles (not depicted). Resulting peptide-MHC l complexes are similarly trafficked to the 

membrane where they can interact with CD8+ T-cells bearing cognate TCRs. Activated 

CD8+ T-cells have cytotoxic activity and can kill infected cells that present cognate peptide-

MHC I complexed antigens. DCs also express MHC Class I-like molecules called CD1d 

which present lipid antigens like a-galactosylceramide (a-Gal-Cer) to invariant TCRs on 

NKT cells. On the lower right side, nanoparticles carrying α-Gal-Cer are internalized, 

processed and lipid antigen is presented on CD1d to TCRs on NKT cells. NKT activation 

further leads to NK cell transactivation.
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Figure 16. 

Liposomes with surface-displayed B cell epitope (membrane-proximal external region, 

MPER) and encapsulated T-cell epitope (HIV30) promote strong B-cell responses against 

MPER while minimizing off-target responses against the helper epitope. (A) Schematic of 3 

forms of T-helper epitope incorporation in MPER liposomes. Only in the case of TCEP 

cleaved external HIV30 is the T-helper epitope displayed solely intrastructurally. (B) Mice 

were immunized with 150 nm MPER liposomes with soluble or incorporated HIV30 with 

co-delivered adjuvant-containing liposomes. Shown are serum anti-MPER and anti-HIV30 

IgG titers 7 days post-boost. Liposomes with “hidden” T helper HIV30 epitopes (cleaved 

HIV30) elicited greatly reduced antibody responses against the helper sequence. Adapted 

from Hanson et al.142 Reprinted with permission from reference 142. Copyright 2014 

Elsevier Ltd.
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Figure 17. 

(A) Schematic describing chemical and physical differences between solid-core NPs and 

water-core polymersomes (PS). Mice were immunized s.c. 3 times at 2-week intervals with 

various OVA formulations. One week after the final immunization, splenocytes, lymph 

nodes cells and lung leukocytes were isolated and restimulated ex vivo with OVA for 6 

hours. PSs were more effective than NPs in inducing cytokine-secreting CD4+ T-cells (B) 

while NPs were more effective in inducing cytokine-secreting CD8+ T-cells (C). Co-

administration of both particle types elicited T-cell immunity characteristic of the two 
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particles at the same time. Adapted from Stano et al.256 Reprinted with permission from 

reference 256. Copyright 2013 Elsevier Ltd.
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Figure 18. 

Sustained-release PLGA nanoparticles induce stronger immune responses than fast-release 

liposomes. (A) OVA release profiles from liposomes and PLGA nanoparticles incubated in 

PBS at 37°C. (B) Splenocytes from mice (n=3)—immunized subcutaneously on day 0 and 

challenged on day 90 with i.v. 5 ×104 CFU of OVA-expressing L. monocytogenes —were 

collected on day 7 post-challenge and pulsed with SIINFEKL. Activated antigen-specific 

CD8+CD44+ T-cells were determined using a SIINFEKL tetramer. Adapted from Demento 

et al.280 Reprinted with permission from reference 280. Copyright 2012 Elsevier Ltd.

Irvine et al. Page 76

Chem Rev. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 19. 

Immunization with two TLR agonists induces persistent germinal centers and long-lived 

antibody-forming cells in draining lymph nodes. C57BL/6 mice were immunized with OVA 

encapsulated in nanoparticles with TLR-4 agonist (MPL) and TLR-7 agonist (R837) plus 

antigen. (A) Antibody titers 4 weeks post-prime. (B) Germinal centers (GCs) were counted 

in draining lymph node (LN) sections over time. (C) ELISPOT assay quantification of 

antibody-secreting cells in lymph nodes over time. Adapted from Kasturi et al.309 Reprinted 

with permission from reference 309. Copyright 2011 Macmillan Publishers Ltd.
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Table 1

Synthetic nanoparticle characteristics for immunological applications

Nanomaterial Advantages Challenges Size
range

Refs

Gold nanoparticles • Inert, biocompatible

• Possess optical properties that 
can be used for diagnostic and 
photothermal applications

• Prolonged retention in 
hepatobiliary system (may 
lead to long-term toxicity)

• Non-biodegradable

10–100nm a, b, 335

Carbon nanotubes • Ability to bind 
macromolecules like proteins 
and oligosaccharides so can 
act as antigen carriers

• Unique optical properties

• Require functionalization to 
ensure solubility and reduce 
cytotoxicty

• Some functionalized CNTs 
can cause activation of the 
innate immune system and 
inflammation

• Non-biodegradable

50–400nm c, 230

Dendrimers • Enhanced drug solubility and 
bioavailability

• Multivalent surfaces to carry 
ligand molecules

• Flexibility of design

• Ease of handling

• Low cost

• High molecular weight 
dendrimers have limited 
tissue permeability

• High generation amino 
dendrimers cause 
inflammation and 
complement activation

10–30nm d, 131

Solid polymer particles • Wide range of tunable surface 
properties depending on 
polymer selection and 
functionalization

• Highly versatile in size and 
aspect ratio

• Potential for high drug/ 
antigen loading

• Degradation products may be 
inflammatory

• Encapsulation likely to lead to 
antigen degradation

• Generally difficult to produce 
monodisperse preps without 
additional technologies (such 
as PRINT)

Varies e, 139, 
254, 257

Polymer micelles • Self-assembly-based particle 
formation

• Small size for efficient tissue 
penetration

• Moderate drug loading

• Poor translation of micelle 
platforms between various 
protein antigen cargos

10–100nm e, 256

Liposomes • Low immunogenicity

• High biocompatibility

• Antigen/immuno-modulator 
protection

• Versatile chemistry

• Poor stability

• Poor drug loading efficiency

30–200nm f, g, 110
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