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Abstract: Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic 

substances noncovalently for their effective delivery to various affected areas of the body. 

Due to the well-defined structure of the protein, containing charged amino acids, albumin 

nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged 

molecules, such that substantial amounts of drug can be incorporated within the particle, due 

to different albumin-binding sites. During the synthesis procedure, pH changes significantly. 

This variation modifies the net charge on the surface of the protein, varying the size and 

behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a 

desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates 

are components of various plants and have been used for medication with anti-inflammatory, 

antibacterial, and antifungal properties. However, when administered orally to adults (usual 

dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there 

has been a search for some time to develop new systems to improve the bioavailability of 

SA and salicylates in the human body. Taking this into account, during synthesis, the pH 

was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the 

formed NPs. The samples were analyzed using field-emission scanning electron microscopy, 

transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic 

light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in 

phosphate-buffered saline solution. The results of chemical morphology characterization and 

in vitro release studies indicated the potential use of these NPs as drug carriers in biological 

systems requiring a fast release of SA.

Keywords: albumin nanoparticles, drug delivery, salicylic acid entrapped, nano-carriers

Introduction
Nanoparticle (NP) and microparticle carriers present an important drug delivery poten-

tial for the administration of therapeutic drugs. Systems with controlled release offer 

numerous advantages over conventional dosage forms, since they have better efficiency 

and low toxicity and provide convenience to the patient.1 The use of nanomaterials as 

pharmaceutical drug carriers to increase antitumor efficacy has been studied for more 

than 30 years.2 Initial clinical studies with liposomal nanocarriers were conducted in 

1970.3 Currently, the use of nanoscale materials for drug delivery and diagnostics is 

in the forefront of medicine, since the encapsulation of a drug into NPs significantly 

improves its release profile in cells or tissues. By a proper synthesis, these nanomateri-

als can interact selectively with particular types of cells, passing through physiological 

barriers and penetrating deep into the tumor sites.4,5
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In general, the use of nanocarriers can protect drugs 

from degradation and improve their function by facilitating 

the absorption and diffusion across the epithelium, modify-

ing the distribution and pharmacokinetic profile of drugs 

in tissues and/or improving penetration and intracellular 

distribution.1,4–6 Several drug nanocarrier systems have been 

investigated in cancer treatment to minimize side effects and 

improve antitumor efficacy.

The performance of NPs depends on dimensionality, 

surface charge, surface modification, and hydrophobicity, 

which can affect the reactivity and physical and chemical 

properties of the material.1 Nanocarriers with optimized 

physical, chemical, and biological properties can penetrate 

the cells, where other larger materials would not be taken 

up or eliminated from the body. Smaller sizes (50–300 nm) 

enable interaction with biomolecules in the cell or on the 

cell surface, and thus nanocarriers can potentially affect 

cellular responses.7

Systems based on proteins have been studied for 

medicinal drug delivery, nutrient bioactive peptides, and 

probiotic organisms.7 Proteins are interesting materials 

since they possess the advantages of synthetic polymers, 

high adsorption capacity, low toxicity, biodegradability, and 

non-immunogenicity.

Human serum albumin (HSA) has a long history of 

pharmaceutical applications as a biodegradable carrier for 

the delivery of drugs. It is the most abundant protein in blood 

plasma, representing 52%–62% of total plasma proteins.8 It 

is a globular protein with dimensions of 4 × 4 × 14 nm spher-

oids, containing ~585 amino acids with a molecular weight of 

~66,500 Da. The isoelectric point (IEP) of albumin is 4.5–5.0 

and its surface is not charged. The main physiological func-

tion of albumin is to maintain the osmotic pressure and pH of 

the blood and still play an important role in the transport of a 

variety of endogenous and exogenous compounds, including 

fatty acids, metals, amino acids, steroids, and therapeutic 

drugs.9,10 Among other physiological functions, HSA controls 

the transport of drugs and nutrients through the human body 

and is also responsible for the effective deposition of drugs. 

It is easily available, stable, and of low cost. Historically, 

albumin has been extensively used as a biodegradable carrier 

of anticancer drugs due to its excellent biocompatibility and 

high stability in the blood and can accumulate in malignant 

or inflamed tissues.6

Bovine serum albumin (BSA) is highly water soluble 

and binds drugs and inorganic substances noncovalently. In 

addition, its structure is homologous to the three-dimensional 

structure of HSA. The main difference lies in the number of 

tryptophans (Trps). BSA has two Trps, while HSA has only 

one. This difference is useful in the context of its study by 

spectrofluorimetry, since this amino acid is the main one 

responsible for the intrinsic fluorescence of proteins.11–13

Microparticles and NPs of albumin can be obtained by 

the precipitation method in organic solvents, followed by 

a process of cross-linking with glutaraldehyde molecules 

(desolvation method).14

Transportation systems based on albumin NPs represent 

an important strategy since significant amounts of drug can 

be incorporated within the particle, depending on the drug-

binding sites.12–17 Due to the well-defined structure of the 

protein containing charged amino acids, albumin NPs could 

favor the electrostatic adsorption of negatively or positively 

charged molecules, inside or on the surface, and the presence 

of hydrophobic cavities may facilitate the incorporation of 

water-insoluble drugs.18–20 BSA particles are small com-

pared to microparticles and generally have more controlled 

properties for drug delivery when compared to liposomal 

nanocarriers.6,21,22

The first commercial product based on albumin NPs 

used in oncology was a 130 nm particle with bound pacli-

taxel.23,24 Currently, some studies have reported that par-

ticles of 20–200 nm are effective carriers for hydrophobic 

compounds.14

Salicylic acid (SA) and salicylates are components of 

various plants and have been used for medications with 

anti-inflammatory, antibacterial, and antifungal properties. 

Among its properties, SA has been considered a promising 

drug for the prevention of cardiovascular disease and can-

cer.25–27 SA and salicylates are the active metabolite of aspirin 

(acetyl SA) and have been used since the fifth century. How-

ever, these salicylic-derived drugs have a 50% bioavailability 

if orally administered, as they lose this activity following the 

initial step of deacetylation to SA.28–30

Recent reports in the specialized literature demonstrated 

that SA may be encapsulated or entrapped in different poly-

mer matrices, and its release can be controlled by degrada-

tion and subsequent reabsorption of the polymer matrix of 

the sample by the human body.31–38 Thus, sustained and slow 

releasing of SA may be more appropriate for reducing the risk 

of cancer and cardiovascular diseases. The rapid release of 

SA may be desired for antimicrobial and anti-inflammatory 

applications, such as treatment of infections. Whereas 

release is totally dependent on the encapsulating matrix, the 

bioaccessibility of SA can be modified in the encapsulation 

process since it is related to and dependent on the chemical 

interaction between SA and the matrix.36,39
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In this context, it is important to study and optimize these 

nanocarrier systems to better understand how to control drug 

release and its dependence on functional and biological 

aspects. As the interaction between the drug and albumin is 

limited by the surface aspects of these NPs, such as charge, 

binding sites, and amino acids, it is important to have a high 

ratio of drug to albumin, which may increase the drug con-

centration in target organs or tissues by decreasing the dose 

of drugs and toxic side effects.40 Furthermore, albumin has 

an unusual ability to bind various compounds, making it an 

excellent candidate for nanotechnology applications.

For the abovementioned reasons, the study of the syn-

thesis and in vitro release of BSA NPs containing SA as the 

active agent was conducted. BSA NPs were synthesized by 

the desolvation method, where the size and surface charge 

of the NPs could be controlled by altering the pH in syn-

thetic process. Therefore, the pH effect was evaluated on 

NP synthesis and the in vitro release of SA. The NPs were 

characterized by ultraviolet (UV)–visible, fluorescence and 

Fourier transform infrared (FTIR) spectroscopy. The analysis 

of zeta potential and dynamic light scattering (DLS) was used 

to investigate the physiochemical properties, namely size and 

charge for the SA–BSA NPs synthesized at different pHs. 

The structural surface morphology of BSA NPs and SA–

BSA NPs was examined by field-emission scanning electron 

microscopy (FE-SEM) and transmission electron microscopy 

(TEM) showing a spherical smooth surface and SA entrapped 

in BSA NPs. The amount of unloaded SA and the release 

experiments were evaluated by fluorescence spectroscopy. 

The chemical and morphological characterization results 

and the in vitro release studies indicated the potential use of 

these NPs as drug carriers in biological systems requiring a 

fast release of SA.

Materials and methods
Reagent and chemicals
BSA (lyophilized powder, 66,000 kDa), 8% aqueous glu-

taraldehyde and SA were purchased from Sigma-Aldrich. 

Absolute ethanol was obtained from Synth. All chemicals 

were of analytical grade and were used without any further 

purification. All aqueous solutions were prepared in Milli-Q 

water. The pH of aqueous solutions was adjusted with 0.1 M 

HCl or 0.1 M NaOH using an Orion PerpHecT pH meter.

Preparation of BSA NPs and SA–BSA 
NPs
BSA NPs and SA–BSA NPs were prepared by the desolva-

tion process.34,35

BSA NPs

BSA (200 mg) in 2 mL Milli-Q water (approximately pH 

7.4) was stirred at 500 rpm at room temperature (25°C) for 

10 minutes. The dissolved protein was transformed into NPs 

by the continuous addition of ethanol (1 mL/min), forming 

a turbid suspension. After 5 minutes, 0.16 mL of 8% (v/v) 

aqueous glutaraldehyde was added to cross-link the desol-

vated BSA NPs, and the reaction was kept under constant 

magnetic stirring for 18 hours. Next, the NP suspension 

was purified by three cycles of centrifugation at 12,000 rpm 

(Hermle Labortechnik GmbH) for 20 minutes to remove 

non-desolvated BSA, glutaraldehyde and ethanol. For each 

centrifugation step, NPs were redispersed in the same volume 

of deionized water (10 mL) by using an ultrasonication bath 

for 5 minutes. The obtained samples were then dried with 

nitrogen obtaining a nanosized powder.

SA–BSA NPs

In this procedure, 20 mg SA was dissolved in 2 mL Milli-

Q water with the pH adjusted (5.4; 7.4; or 9), and 200 mg 

BSA were then added, followed by stirring for 10 minutes. 

Subsequently, the desolvating agent (absolute ethanol, 8 mL) 

was continuously added dropwise (1 mL/min) in solution 

with constant magnetic stirring at 500 rpm, resulting in the 

formation of a spontaneous opalescent suspension. After the 

addition of ethanol, 0.16 mL of 8% (v/v) aqueous glutaralde-

hyde was added to cross-link the desolvated BSA NPs, and 

the reaction was kept under constant magnetic stirring (500 

rpm) for 18 hours at room temperature.

The resulting colloidal suspension was centrifuged at 

12,000 rpm (Hermle Labortechnik GmbH) for 20 minutes. 

The supernatant was removed to obtain the particles. The 

samples obtained were purified by three cycles of centrifuga-

tion at 12,000 rpm for 20 minutes to remove non-desolvated 

BSA, free drug, glutaraldehyde, and ethanol.

For each centrifugation step, NP samples were redispersed 

in the small volume of deionized water (10 mL) by using an 

ultrasonication bath for 5 minutes. The samples were dried 

by solvent evaporation, resulting in an NP powder.

Synthesis yield and entrapment efficiency 
(EE%)
To determine the percent yield of synthesis, the NP powder 

sample obtained was weighed, and the percent yield was 

calculated using the following equation 1:




Percent yield (%) = 




Weight of the nanoparticles

Total weight of drug + BSA
* 100

 (1)
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The amount of drug adsorbed or encapsulated in the 

albumin NPs was determined from the amount of free SA 

(weight [W]) in the supernatant after the centrifugation pro-

cess, determined by fluorescence spectroscopy.

A standard calibration curve of peak maximum of fluo-

rescence versus concentration, using known concentrations 

of SA in water, was plotted to determine free SA. The amount 

of SA loaded was determined using equation 2:

SA entrapped in BSA (%) (weight of the total SA weight 

o

= −[

ff SA in supernatant) weight of the total SA]  / * 100 (2)

“In vitro” drug release experiments
To evaluate the release behavior of SA from the NPs, drug 

release experiments were performed in vitro. NPs (12 mg) 

were re-dispersed in 7 mL of phosphate-buffered saline 

(PBS, pH 7.4) incubated at 37±0.5°C under stirring at 100 

rpm. At different times, 0.5 mL of the release medium was 

removed and another 0.5 mL of fresh PBS was supplied to 

maintain the total volume of the original solution at 7 mL. 

The aliquots removed were centrifuged, and the supernatant 

containing the drug (SA) was analyzed by fluorescence 

spectroscopy (excitation 330 nm), and all measurements 

were performed in triplicate. The cumulative drug release 

was plotted against time.

Characterization techniques
Physical characterization was performed using DLS and zeta 

potential, which measured size and surface charge of BSA 

NPs, respectively, using a Zetasizer Nano (Malvern, ZS 10, 

Malvern, UK) ZEN3601, with He–Ne laser, 633 nm. For 

measurements, BSA NP powder was suspended in absolute 

ethanol and Milli-Q water. Both dispersions were sonicated 

for 10 minutes to obtain uniformly dispersed NPs. The mea-

surements were performed in triplicate at room temperature.

The structural morphology of BSA NPs was determined 

by FE-SEM (JSM-7500F; JEOL, Tokyo, Japan) and TEM 

(CM 200 Philips; Eindhoven, the Netherlands). For SEM 

measurements, NP solutions in ethanol (20 µL) were dripped 

and converted into powder on the surface of silicon substrates. 

Prior to analysis, samples were gold coated to make them 

electrically conductive and suitable for SEM.

For TEM analysis, 20–30 µL of the NP solutions in 

ethanol was dripped on a 200-mesh copper grid coated with 

carbon. The copper grid was allowed to dry for 2 hours at 

room temperature before observation.

UV–visible spectroscopy was used to analyze the NPs in 

aqueous solution (0.05 mg/mL), and the maximum absorption 

peak was measured by scanning 190–800 nm with a quartz 

cuvette of 1 cm path length, using a Shimadzu UV–visible 

spectrophotometer (UVmini-1240; Shimadzu, Kyoto, Japan).

Fluorescence spectroscopy was used to determine the 

presence and amount of free drug in solution to evaluate 

drug release. The fluorescence spectra were obtained using 

a microplate spectrofluorometer (Synergy H1 Hybrid reader; 

BioTek, Winooski, VT, USA) at room temperature, with 

excitation at 330 nm and emission in the range of 350–450 

nm and with a fixed slit width of 5 nm. A standard calibration 

curve, fluorescence intensity at 405 nm versus concentration, 

was plotted to correlate fluorescence and concentration of 

free SA. The molecular structure and conformational changes 

in BSA due to interaction with SA were analyzed by FTIR 

spectroscopy. These measurements were performed using a 

Bruker Vertex 70 (Bruker; Ettlingen, Germany) in the region 

between 4000 and 400 cm−1, at room temperature in attenu-

ated total reflectance (ATR) mode.19

Results and discussion
As discussed earlier, protein NPs have recently been the 

focus of research involving the interaction between albumin 

and other hydrophobic drug substances. The drug-binding 

properties of albumin NPs are clearly important for the 

understanding of reaction mechanisms, which provide a path 

for pharmacokinetic and pharmacodynamic mechanisms of 

these substances in various tissues. Studies conducted by 

Weber et al41 demonstrated that the process of protein NP 

formation depends on the amount of added desolvation agent, 

pH of the starting solution and amount of cross-linking agent 

(glutaraldehyde). The ethanol amount and pH of the solution 

directly alter NP size. Changing the amount of ethanol or 

rate of its addition in the process modifies the solubility of 

proteins, consequently altering the size of the NPs formed. 

Studies by Langer et al42 indicated that varying size of the 

NPs can be attributed mainly to the manual and dropwise 

addition of ethanol. Burns and Zydney43 investigated the 

effect of solution pH and showed that the loading surface 

has a strong effect on protein adsorption.

Changing pH significantly alters the net charge on the 

protein surface, since it consists of hydrogens of amino 

acids that interact with different ions in solution. The IEP 

of albumin is around 4.9, and at this pH the net charge on 

the protein surface is zero.44–46 At pH 4.9, there is a lack of 

electrostatic repulsion, and thus amorphous aggregates are 

readily formed through nonspecific interactions, mainly 

hydrophobic in nature.

At other pHs, positive charges may be generated by 

protonation of primary amino groups (particularly lysine), 

while negative charges are generated from deprotonation of 
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carboxylic acid groups (glutamate and aspartate).44 Charges 

are generated on the whole surface of the protein, leading 

to greater electrostatic repulsion between molecules and 

decrease in hydrophobic interactions, thereby reducing 

aggregation and favoring a structural reorganization of the 

protein. Moreover, they can significantly alter the interaction 

and/or binding of compounds (drugs).

At pH above the IEP, negative charges and electrostatic 

forces dominate over hydrophobic interactions.45,46 Another 

important component in the process of NP formation is the 

amount of cross-linking agent (glutaraldehyde) added. Glu-

taraldehyde does not change the size of the NPs but signifi-

cantly alters the charge on the surface of the NPs obtained.42 

Glutaraldehyde is a low-cost, water-soluble bifunctional 

reagent with high reactivity. The cross-linking of proteins 

or between protein molecules occurs by nucleophilic attack 

of the ε-amino groups of lysine and arginine residues in the 

protein by the two carbonyl groups of glutaraldehyde, form-

ing Schiff bases in solution.47,48 The Schiff bases are unstable 

under acidic conditions but very stable at basic pH, aiding 

in the NP formation process. In addition, the lysine residues 

generally are not involved in the binding site, resulting in 

moderate preservation of the conformation of the protein and 

thereby the biological activity of the protein. As the amount of 

glutaraldehyde is linked to the number of free amino groups 

on the surface, it was kept constant during the study, since 

the amount of charge on the surface is associated with the 

efficacy of the interaction with the drug.48–51

For comparison purposes, the synthesis of drug-free NP 

albumin was also carried out at pH 7.4, according to the 

procedure described in the “Materials and methods” section. 

The protein NPs were obtained by the known process of 

desolvation. To do that, initially, BSA was placed in aqueous 

solution with the desired pH. In the case of the synthesis of 

NPs containing drugs, SA was also added to the albumin 

solution and allowed to interact using a magnetic stirring for 

10 minutes. In this step, the charges formed on the surface of 

proteins by changing the pH could now interact differently 

with SA added. Ethanol (8 mL) was then added as desolva-

tion agent at a controlled rate of 1 mL/min, which gradually 

decreases the solubility of proteins in solution leading to 

agglomeration. In this step, it was already possible to observe 

the formation of NPs, where some were partially soluble and 

stabilized in solution. To obtain NPs stabilized in solution 

with definite shape, glutaraldehyde was added, acting as a 

cross-linking agent. In this process, through covalent bonds, 

cross-linking agent was part of the protein surface NPs. The 

glutaraldehyde inserted into the protein, during the cross-

linking process, has no toxicity, and the obtained NPs are 

non-toxic.45,47,48 However, the free compound in solution may 

exhibit toxicity. So, unreacted glutaraldehyde remaining in 

the solution was removed by centrifugation and purification 

of the NPs obtained.45,47,48,52

The purified NPs were dried by solvent evaporation under 

nitrogen flow. The yield of NPs and the entrapment efficiency 

(EE%) obtained were determined according to Equations 1 

and 2, respectively, and are shown in Table 1.

The low yield obtained for the reactions at pH 5.4 indi-

cated that charges generated on the protein surface (close to 

BSA IEP) hampered drug entrapment into NPs.

Physical, chemical, and morphological 
characterization of NPs
After drying, pure BSA, BSA NPs, and SA–BSA NPs were 

analyzed by UV–visible absorption and fluorescence spec-

troscopy. These techniques provided physical characteriza-

tion of the formation of the synthesized albumin NPs and 

presence of SA.

The UV–visible spectra of pure BSA, BSA NPs, and 

SA–BSA NPs were significantly different (Figure 1A) tak-

ing into account the position of maximum absorption peaks, 

when a spectral scan was evaluated between 190 and 800 nm. 

Figure 1B shows the fluorescence spectra, using an excitation 

wavelength of 280 nm and emission range of 310–450 nm 

during evaluation.53

Figure 1A shows that pure BSA had two absorption peaks 

at 192 and 278 nm. The intense peak at 192 nm is associated 

with the BSA backbone absorption, while the peak at 278 nm 

is associated with weak absorption of the aromatic amino acids 

phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp).53,54 

SA exhibited a strong absorption bands at 205, 228, and 296 

nm. With the formation of BSA NPs, there was a strong 

decrease in the intensity and a blue shift for the absorption 

peak of 192 nm, and a slight increase for the peak at 278 nm, 

revealing that the changes related to the formation of BSA NPs 

mainly occurred in the BSA backbone bonds. It is noteworthy 

that the decrease in intensity in the SA may be linked to the 

Table 1 Percent yield and EE% of synthesis of BSA NPs and SA–

BSA NPs

Sample Percent yield (%) EE%

BSA NPs 97±1.2 –

SA–BSA NPs synthesized at pH 5.4 18±3.0 –

SA–BSA NPs synthesized at pH 7.4 77±6.5 57.5±2.5

SA–BSA NPs synthesized at pH 9.0 65±4.0 55.5±1.5

Abbreviations: BSA, bovine serum albumin; EE, entrapment efficiency; NPs, 
nanoparticles; SA, salicylic acid.
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Figure 1 UV–visible absorption and fluorescence emission spectra of pure BSA, BSA NPs, SA-BSA NPs and salicylic acid.
Notes: (A) UV–visible absorption spectra of pure BSA, BSA NPs, SA–BSA NPs, and salicylic acid (0.05 mg/mL aqueous solution). (B) Fluorescence emission of pure BSA, 

BSA NPs, SA–BSA NPs, and SA (0.05 mg/mL aqueous solution).

Abbreviations: BSA, bovine serum albumin; NPs, nanoparticles; SA, salicylic acid; UV, ultraviolet.

fact that for concentration pure SA (0.05 mg/mL) and even 

SA–BSA NPs at a concentration of 0.05 mg/mL do not have 

the same amount of SA available. These results indicated that, 

in the formation of BSA NPs, glutaraldehyde modified mainly 

the BSA backbone amino acids, maintaining the aromatic 

amino acids Phe, Tyr, and Trp for drug interaction.53,54

According to chemical analysis, in the process of drug 

interaction with the NPs, the following can be considered: 

1) SA interaction with BSA initially occurs in water at pH 

adjusted and 2) in the next step, cross-linking with glutar-

aldehyde occurs.

It is known that the main drug-binding region of BSA 

is localized in hydrophobic cavities of the IIA and IIIA 

subdomains, which exhibit similar chemical properties and 

are called sites I and II. These sites are mainly composed of 

amino acids to which molecules may bind on hydrophobic 
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or positively charged surfaces. Thus, these two subdomains 

can specifically interact with negatively charged molecules 

or delocalized negative charges, such as heterocyclic ligands 

or carboxylic acids.53,54

Initially, when SA was added to the reaction medium, 

there was interaction at sites I and II, mainly with Tyr, Trp, 

and Phe, which absorb in the region of 278 nm.

SA–BSA NPs exhibited signif icant spectroscopic 

changes. They showed absorption in the regions of 202, 

230, and 295 nm, while absorption at 278 nm decreased 

substantially, indicating the binding of SA to BSA in the 

NPs obtained.

As shown in Figure 1B, the fluorescence data corrobo-

rated the UV–visible results. It is known that BSA shows an 

optimal excitation wavelength at 278 nm, with maximum of 

emission around 350 nm, attributed to the amino acid residues 

of Tyr, Trp, and Phe. In contrast, some studies indicate that 

the intrinsic fluorescence can be attributed to Trp in BSA 

chain when the excitation is between 285 and 290 nm.55 In 

the BSA chain, there are two different types of Trp (134 and 

212), localized in sites I and II, which can interact or bind 

with ligands. Trp-134 is localized on the protein surface and 

Trp-212 in the hydrophobic cavity of subdomain II. Thus, for 

pure BSA, BSA NPs, and SA–BSA NPs,56 the fluorescence 

wavelength changes were indicative of conformational and 

chemical changes in the BSA structure.57,58

The intrinsic fluorescence of BSA and SA, when excited at 

280 nm, was obtained at 335 and 405 nm, respectively. Thus, 

according to the fluorescence spectra, the formation of BSA 

NPs leads to a decrease in the fluorescence intensity at 335 

nm with a slight associated blueshift, indicating a conforma-

tional modification related to changes in the protein surface 

chain due to interaction with glutaraldehyde. The addition of 

SA at the beginning of the synthesis process leads to a strong 

decrease in the fluorescence intensity around 334 nm and an 

increase at 408 nm, characteristic emission of SA.11,59–63

The BSA NPs and SA–BSA NPs obtained were ana-

lyzed by FTIR spectroscopy. This technique has been used 

to evaluate the chemical and conformational changes that 

occur when NPs are formed or when they interact with other 

compounds through the slight shift in characteristic bands in 

the spectral regions of amide I and amide II.39 Figure 2 shows 

the FTIR spectra of pure BSA, BSA NPs, and SA–BSA NPs 

synthesized at pH 7.4 and 9.0.

Figure 2 shows the FTIR spectrum analysis, where it was 

possible to observe the major bands of pure BSA at 3280 cm−1 

(amide A, related to N–H stretching), 2970 cm−1 (amide B, 

N–H stretching of NH
3

+  free ion), 1643 cm−1 (amide I, C=O 

stretching), 1515 cm−1 (amide II, related to C–N stretching 

and N–H bending vibrations), 1392 cm−1 (CH
2
 bending 

groups) and ~1260 cm−1 (amide III, related to C–N stretching 

and N–H bending). The most intense bands are associated 

with the secondary structure and conformation of proteins. 

The spectra of BSA NPs and SA–BSA NPs exhibited these 

characteristic bands of the protein and SA structure shifted 

slightly as shown in Table 2.45,64,65
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Figure 2 Pure BSA, BSA NPs, and SA–BSA NPs FTIR spectra.

Abbreviations: BSA, bovine serum albumin; FTIR, Fourier transform infrared; NPs, nanoparticles; SA, salicylic acid.
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A small shift, of the absorption bands, was observed 

when compared to pure BSA with BSA NPs and SA–BSA 

NPs. The related changes in the amide I, II, and III bands 

confirm the formation of NP albumin and SA-loaded NP. In 

addition, some bands showed intensity differences (Figure 2), 

since it was possible to note a strong decrease intensities in 

the amide B (59% decrease) and amide III (40% decrease) 

bands, indicating changes in the C–N and/or NH bonds, due 

to interactions of different groups on BSA.

As discussed earlier, the pH change and the glutaraldehyde 

addition modify the surface charge of NPs, changing the elec-

trostatic potential and colloidal stability of the protein NPs in 

solution.18,56,65 Thus, the electrostatic potential and the particle 

size were evaluated by zeta potential and DLS measurements by 

dispersion of the NPs in water and absolute ethanol. SA–BSA 

NPs synthesized at pH 7.4 showed respective zeta potential and 

DLS values of −6.45±1.23 mV and 182.20±12.20 d⋅nm for NPs 

dispersed in water and −33.2±1.90 mV and 81.48±0.9 d⋅nm for 

NPs dispersed in ethanol. For the SA–BSA NPs synthesized at 

pH 9, these values were 9.25±1.63 mV and 125.25±1.75 d⋅nm 

for NPs in water, and 32.8±4.3 mV and 76.54±0.46 d⋅nm for 

NPs in ethanol.18,56

The type of solvent used for dispersion strongly changes 

the colloidal stability of NPs. The NP solution in absolute 

ethanol exhibited a greater zeta potential and lower DLS 

value than the aqueous NP solution. The water pH changes 

the NP charge surface leading to the agglomeration of BSA 

NPs. A higher zeta potential value causes the particles to 

become stable by preventing their aggregation.

Morphological analysis of BSA NPs and SA–BSA NPs 

was carried out with FE-SEM, and the images obtained are 

shown in Figure 3A–C. Both types of synthesized NPs had a 

spherical morphology and an average size on a micrometric 

scale for BSA NPs (600±60 nm) and nanometric average, 

110±7 nm and 138±6 nm, for SA–BSA NPs synthesized at 

pH 7.4 and 9.0, respectively. Furthermore, BSA NPs showed 

a greater nonuniform distribution, widely differing in size 

when compared to SA–BSA NPs.

Drug encapsulation by the protein during the synthesis 

process was also investigated by TEM, and the result obtained 

is shown in Figure 4. SA–BSA NPs showed a spherical 

morphology, as demonstrated by FE-SEM. Furthermore, it 

was possible to note the presence of structures with irregular 

surfaces inside these NPs, believed to be the encapsulated SA.

“In vitro” release studies
SA release from the protein NPs was analyzed by fluores-

cence measurement of suspensions of SA–BSA NPs in PBS, 

simulating a physiological environment at pH 7.4, and the 

results are shown in Figure 5.

The values of the release rate of NPs synthesized at pH 

7.4 and 9.0 are provided in Table 3.

Table 2 Bands of amides A, B, I, II, and III for the samples, according to the FTIR spectra

Assignation Pure BSA (cm–1) BSA NPs (cm–1) SA–BSA NPs (cm–1) pH 7.4 SA–BSA NPs (cm–1) pH 9.0 

Amide A 3280 3272 3288 3284

Amide B 2970–2931 2960–2932 2962–2933 2960–2931

Amide I 1643 1631 1652 1650

Amide II 1517 1521 1542 1540

CH
2 
bending 1452 1390 1388 1388

Amide III 1245 1240 1252 1253

Abbreviations: BSA, bovine serum albumin; FTIR, Fourier transform infrared; NPs, nanoparticles; SA, salicylic acid.

A B

1 µm 100 nm 100 nm

C

Figure 3 Representative images for (A) BSA NPs (magnification =25,000×), (B) SA–BSA NPs at pH 7.4 (magnification = 30,000×), and (C) SA–BSA NPs at pH 7.4 in detail 

(magnification =190,000×).

Abbreviations: BSA, bovine serum albumin; NPs, nanoparticles; SA, salicylic acid.
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A similar release behavior was seen for the samples 

obtained with the two synthesis procedures used, where there 

was an immediate release of SA, followed by a high release 

rate up to 120 minutes. Later, the release rate decreased and 

remained approximately constant from 400 minutes.

Conclusion
SA-loaded BSA NPs were synthesized with the desolvation 

process using glutaraldehyde cross-linking at different pHs. 

The pH change suggests that the process is associated with 

protein surface charges, generated at the beginning of the 

synthesis, and that this directly influences the entrapment 

process of SA, since synthesis was ineffective at pH 5.4. How-

ever, the pH slightly alters the release of SA from the protein 

NP. The release of SA occurs immediately, progressing to 

~120 minutes. From this time, the release making constant 

is greatly reduced making constant starting 400 minutes, and 

these NPs may be applied in biological systems that require 

a rapid anti-inflammatory response.
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