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inconsistencies

Johan Barthélemy∗, Philippe L. Toint†,
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Abstract

The advent of microsimulation in the transportation sector has created the need for extensive

disaggregate data concerning the population whose behaviour is modelled. Due to the cost of col-

lecting this data and the existing privacy regulations, this need is often met by the creation of a

synthetic population on the basis of aggregate data. While several techniques for generating such a

population are known, they suffer from a number of limitations. The first is the need for a sample

of the population for which fully disaggregated data must be collected, although such samples may

not exist or may not be financially feasible. The second limiting assumption is that the aggregate

data used must be consistent, a situation which is most unusual because this data often comes from

different sources and is collected, possibly at different moments, using different protocols.

The paper presents a new synthetic population generator in the class of the Synthetic Reconstruc-

tion methods, whose objective is to obviate these limitations. It proceeds in three main successive

steps: generation of individuals, generation of household type’s joint distributions and generation

of households proper. The main idea in these generation steps is to use data at the most disaggre-

gate level possible to define joint distributions, from which individuals and households are randomly

drawn. The method also makes explicit use of both continuous and discrete optimization and used

the χ
2 metric to estimate distances between estimated and generated distributions.

The new generator is applied for constructing a synthetic population of approximately 10,000,000

individuals and 4,350,000 households localized in the 589 municipalities of Belgium. The statistical

quality of the generated population is discussed using criteria extracted from the literature, and its

is shown that the new population generator produces excellent results.

Keywords

Synthetic population, microsimulation, limitations of iterative proportionnal fitting based procedures,
sample-free generator.

1 Introduction

Synthetic population generation has recently received considerable attention in the literature (see, for
instance, Müller and Axhausen (2010)). It is often motivated by the observation that micro-simulations,
such as activity-based travel demand models in transport, usually involve a large number of agents,
and that it may be impossible or too expensive to obtain a fully disaggregated data set describing
the agents of interest. Moreover, if such a data set were available, its use may also be problematic in
some countries due to stringent privacy laws. A way to address these issues is to construct an artificial
population starting from known data about the true one. As it is obvious that the representativeness
of the synthetic population is critical for the simulations accuracy, a synthetic population generator
should therefore produce a population approximating the correlation structure of the true population as
accurately as possible.
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Techniques for synthetic population generation typically belong to either the Synthetic Reconstruc-
tion techniques (SR) or the Combinatorial Optimization (CO) methods. The SR methods generate a
synthetic population given joint-distributions of the population’s attributes, generally using a sample
of the population and the iterative proportional fitting procedure (IPFP) to generate the desired joint-
distributions (see Willson and Pownall (1976) and Beckman, Baggerly and McKay (1996)). The CO
category is far less common. The CO methods divide the area of interest in mutually exclusive zones for
which a set of marginal distributions of the desired attributes is available. Then a sub-set of a sample
taken over the whole population is fitted to the given set of margins for each zones. We refer the reader
to Voas and Williamson (2001) and Huang and Williamson (2002) for a formal and complete description
of the latter methods.

However, both SR and CO approaches usually make strong assumptions on the data used in the
process, and it is not always possible to ensure that they can be satisfied in practice. In particular, this
caused significant difficulties in the generation of a synthetic population for Belgium. These difficulties
motivates the research presented here, where a new type of SR generator is developed, obviating these
data-related issues.

The remainder of this paper is organized as follows. In Section 2, we first present the standard
approach for building a synthetic population, from which the others Synthetic Reconstruction techniques
are derived. Section 3 then describes an alternative method, belonging to the SR family, obviating the
limitations of the conventional generation methods. We next present in Section 4 the results of this new
methodology applied to the generation of a synthetic population for Belgium. Section 5 then compares the
new generator with an IPFP-based methodology. Concluding remarks are finally discussed in Section 6.

2 The standard approach

To date, the standard approach for building synthetic populations is based on the method developed
by Beckman et al. (1996), whose main idea consists in merging aggregate data from a source covering
the whole population with disaggregated data from a sample in order to get a disaggregated data set
for the population of interest. Typically the aggregate data set is extracted from an existing census and
the disaggregated data set is drawn from a survey over a sample of the population. The aggregate data
consists in a set of marginal distributions for the characteristics of interest of the true population: we
refer to these distributions and variables as target and control variables. The disaggregated data provides
full information about the attributes of interest, but only for a sample of agents and is referred to as the
seed.

The population synthesis procedure usually starts with identifying the relevant (categorical) socio-
demographic variables of the agents. Assuming that there are n attributes of interest in the seed and
denoting by V = {v1, v2, ..., vn} the vector of variables representing these attributes, each combination
of values of vi’s therefore defines a socio-demographic group. The synthetic population is then generated
by a two steps procedure:

1. Starting from the seed, estimate the k−way joint-distribution of the true population, where k ≤ n is
the number of control variables, such that the resulting distribution is consistent with the marginal
distributions (margins) of the target and preserves the correlation structure of the seed.

2. Select agents from the sample and copy them in the synthetic population in a proportion derived
from the distribution computed in the previous step.

These steps are discussed in the next two subsections, followed by a description of the limitations of this
first approach and the proposed improvements obviating these limitations.

2.1 Estimating the attributes joint-distribution using IPFP

The most popular way to estimate a k−way joint-distribution table based on known marginal distri-
butions and on a sample is the well-known iterative proportional fitting procedure (IPFP) originally
described by Deming and Stephan (1940). This procedure is detailed below for k = 2, but can easily be
extended to higher dimensions.
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Assume that a 2-way contingency table is built from the seed with initial components πij ∈ IR+.
Assume also that desired marginal distributions {xi•, x•j} (the target) are known. The IPFP then
iteratively updates the cells’ values depending on the marginal distributions of the target until the
margins of the computed table match the target’s ones, i.e. π∗

i• = xi• and π∗
•j = x•j where the π∗

ij ’s are
the component values at the last iteration. The adjustments at iteration l are computed by the equations

πl′

ij = πl−1
ij .

x•j

πl−1
•j

∀i, j;

πl
ij = πl′

ij .
xi•

πl′

i•

∀i, j.

In order to produce an accurate estimate of the true distribution, the procedure requires an initial
representative sample of the true population for building the initial multiway table. This requirement is
important since Mosteller (1968) pointed out that the procedure preserves the interaction structure of
the sample as defined by the odd ratios

πij .πhk

πik.πhj

=
πl
ij .π

l
hk

πl
ik.π

l
hj

at each iteration l. Moreover according to Ireland and Kullback (1968), the IPFP also produces the
constrained maximum relative entropy estimator of the true contingency table

∑

i

∑

j

π∗

ij ln

(

π∗
ij

πij

)

.

Finally, Little andWu (1991) have demonstrated that the IPFP results in a maximum likelihood estimator
of the true contingency table.

2.2 Generating the synthetic population

Once the expected numbers of agents in every socio-demographic groups are estimated, each sampled
agent is associated with a probability of being selected in the synthetic population. This probability
typically depends on the agent’s sampling weight and the expected number of similar agents in the true
population. Based on these probabilities, agents are randomly drawn from the sample using a Monte-
Carlo procedure until the expected number of agents is reached for each socio-demographic group. When
a sampled agent is drawn, then all its attributes, including the uncontrolled ones, are pasted in a new
synthetic agent who is added to the synthetic population.

2.3 Limitations and improvements of the approach

Recent mobility surveys such as EGT (Direction Régionale de l’Équipement d’̂Ile-de-France, 2005), MO-
BEL (Hubert and Toint (2002)) or NTS (Office of UK National Statistics, 2010) suggest that the travel
behaviour of an individual is significantly influenced by the type and composition of his/her household.
This points to a first limitation of the conventional approach: it is very unlikely that analysts have access
to a single dataset detailing the joint-distribution of individuals’ and households’ attributes simultane-
ously. Since the estimation step of the algorithm described in Section 2.1 is designed to deal with a single
contingency table, the conventional approach can consequently account either for individual-level or for
household-level control variables but not for both. In other words this process results in a synthetic
population where either the households or individuals joint-distributions match the desired ones but not
both. Note that households’ distributions accuracy has often been preferred Ye, Konduri, Pendyala,
Sana and Waddell (2009).

This strong limitation lead several authors to propose interesting improvements to this basic al-
gorithm. Guo and Bhat (2007) propose a method to overcome this problem by simultaneously con-
trolling the individual- and household-level variables. Their algorithm generates a population where the
household-level distributions are close to those estimated using the IPFP, while simultaneously improving
the fit of person-level distributions. Arentze, Timmermans and Hofman (2007) propose another method
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using relation matrices to convert distributions of individuals to distributions of households, such that
marginal distributions can be controlled at the person level as well. Ye et al. (2009) further built on these
contributions and propose a practical heuristic approach called Iterative Proportional Updating (IPU),
based on adjusting households’ weights such that both household- and individual-level distributions can
be matched as closely as possible.

However these improved approaches remain based on the IPFP and thus rely on the same assumptions
on data quality, i.e. that the aggregate data of the target is consistent in the sense that margins extracted
from available but different joint-distributions are equal. This is critical for practical convergence of IPFP
iterations. They also assume that a significant sample of the population of interest is available at the
desired level of disaggregation, from which synthetic agents can be extracted an duplicated. For example
if a class of agents is not represented in the seed then this particular class will remain unpopulated in
the final synthetic population(1).

These three strong requirements unfortunately limit the applicability of the IPFP in real situations,
such as the generation of a synthetic population for Belgium at the municipality level. Indeed these
requirements could not be met in the case of point. Firstly, a representative sample at the municipality
level (which is the desired spatial disaggregation level) is not available. A second problem is that all
necessary informations, i.e. distributions, are not available from a single source (which would hopefully
guarantee consistency), but has to be extracted from different datasets, typically produced by different
institutions and/or using different protocols or data cleaning mechanisms. This results in significant
differences between margins, as illustrated in Table 2.1 (extracted from Cornélis, Legrain and Toint,
2005) for the Charleroi district.

Joint-distribution Data Source Margins Prop.

municipality × gender × age GéDAP, 2001 405.491 1,00
municipality × household type GéDAP, 2001 380.653 0,94
municipality × education level GéDAP, 2001 426.372 1,05
municipality × activity status GéDAP, 2001 396.594 0,97
district × household type × age INS, 2001 357.884 0,88
district × education level INS, 2001 398.582 0,98

Table 2.1: Inconsistencies between margins extracted from different sources

In this table, the total number of inhabitants in the district using the most reliable of the data sources
(first row of the table) is compared with the same statistic extracted from other data files to be used
in the population synthesis (row 2 to 5). One immediately notices inconsistencies between the different
estimations with differences up to 10%, irrespective of the data source. These inconsistencies prevent the
IPFP process to converge. This could possibly be cured by considering the frequencies rather that the
number of agents themselves, but the issue of the missing sample nevertheless remains. These difficulties
motivate our proposal for an alternative population synthesis tool which would not suffer from the lack of
a representative sample at the most disagregated level and/or from (moderate) inconsistencies between
different data sources. This is the object of Section 3.

3 A new population synthesis technique

We start the presentation of our proposal by outlining its main steps before the more formal description.
Our general philosophy is to construct individuals and households by drawing their characteristics

or members at random within the relevant distribution at the most disaggregate level available, while

maintaining known correlations as well as possible. The algorithm implementing this principle consists
in a 3-steps procedure:

1. a pool of individuals is generated, which we denote by Ind;

2. the households’ joint-distribution is estimated and stored in the contingency table Hh;

(1)Introducing small initials values in the unpopulated classes remains unsatisfactory as this procedure introduces un-
wanted bias.
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3. the synthetic households are constructed by randomly drawing individuals from the individuals’
pool Ind. This is achieved while preserving the distribution computed in the second step. Once a
household has been built, it is added in the synthetic population.

We now provide detailed information on each of these successive steps.

3.1 Step 1: Generating the pool of individuals

The first step aims at building the Ind pool of synthetic individuals, by generating them one by one.
In our method, each individual is characterized by a vector of attributes V = (V1, . . . , Vn), whose
components may take a discrete set of values. We denote by vi the value taken by the characteristic Vi for
a particular individual. We would like to draw each vi from known empirical distributions. However, not
every distribution for Vi is known at the most disaggregate level, and we thus face a hierarchy of levels.
Our first step is then to merge the various distributions available at the same disaggregation levels using
the IPFP technique (Frick and Axhausen (n.d.) and Guo and Bhat (2007)), possibly substituting less
reliable values by their frequencies to handle inconsistent margins. This results in a set of distributions
V k, where k denotes the level of disaggregation (in our case, municipality, district, nation). In accordance
to the general principle stated above, our idea is then to use, for each such characteristic, the most
disaggregate level available.

Specifically, a table V 0 corresponding to the numbers of individuals with the attributes (v01 , . . . , v
0
n0
)

is first constructed from the most disaggretated data available (at municipality level in our case). The
missing attributes for each individual in this table are then determined by finding the most disaggregate
level at which a joint distribution for the missing attribute and some already know characteristic of
the considered individual is available. The first of these is then determined by a random draw in this
(conditional) distribution. Once all characteristics of an individual are defined, the pool Ind is updated.

Since some of the individuals’ characteristics are determined by draws from distributions at aggregate
levels, the margins extracted from the pool Ind for these particular characteristics may be inconsistent
with the known true ones. A correction is then made to Ind to make it consistent with the margins
at the level 0. This correction is computed by suitably shifting some of the attributes’ value of certain
individuals. Only shifts between two contiguous modality are allowed.

3.2 Step 2: Estimating the households’ joint-distribution

We now consider the second step of our population synthesis procedure. Denote by W = (W1, . . . ,Wm)
the vector the of household-related attributes and by wj the value taken by a particular household for the
jth such attribute. Now that a pool of individuals has been built, the next step is to find an estimator
of the households’ type contingency table, denoted by Hh, given data provided by several different
sources. Each cell of Hh thus corresponds to a number of particular household of a type specified by
a combination of the wj ’s (which we call a household type). This problem is solved in two steps: a
maximum entropy estimate of Hh is first generated and is subsequently improved by using a tabu-search
optimization process.

3.2.1 Entropy maximisation of the estimator

In our algorithm, the initial estimation of Hh is obtained as the solution of an optimization problem,
where the entropy is maximized under the (linear) constraints implied by the known margins on house-
holds types. This approach has the advantages of producing a more reasonably spread-out distribution
amongst all types while keeping the constraints satisfied than would be produced by a least-squares
formulation, say. The entropy maximization approach is introduced here in an intuitive way inspired by
Bierlaire (1991) and Ortúzar and Willumsen (2001). For a more formal description, see Wilson (1974).

Consider a system consisting of a large number of distinct elements. A full description of such a
system requires the complete specification of each micro-state of the system which involves in our case
completely identifying each household. At this stage, we are however, interested in a more aggregate
level called the meso-state, corresponding to the households’ distribution Hh. Typically one meso-state
can be associated with different micro-states. For instance if two household heads with similar attributes
are exchanged, then the meso-state is unchanged but the associated micro-states are different. Finally,
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the last and highest level of aggregation called the macro-state is the available data on the system as a
whole.

The basic idea of the method is to accept that, unless we have information on the contrary, all micro-
states consistent with the macro-state are equally likely. This consistency is enforced, in our approach,
by imposing equality constraints given by the macro-state. If x = (x1, . . . , xp) is the vector of unknown
cells of Hh, Wilson (1970) showed that the number of micro-states E(Hh) associated with the meso-state
Hh is given by

E(Hh) =
(
∑

i xi)!
∏

i xi!
. (3.1)

The function E(·) is called the entropy function. As it is assumed that all micro-states are equally likely,
the meso-state corresponding to the largest number of micro-states (and thus the most likely) is that
maximizing (3.1). Using the natural logarithm and Stirling’s short approximation (Dwight (1961) and
Kreyszig (1972)), the corresponding objective function of this problem can then be approximated by

min
x

∑

i

xi ln(xi)− xi (3.2)

under the constraints on households types given by the macro-state.
Unfortunately, due to the inconsistent nature of the available data, as exposed in Section 2.3, the

constraints of this optimization problem are also formally in inconsistent. Our approach is then to impose
only a subset Ω of them corresponding to the data of highest quality as strict constraints, the others
being then incorporated in the objective function in a form penalizing their violation. Each of these
latter constraints p is affected with a weight defined by npσ where σ is a penalization parameter and np

is the number of households involved in p.
Denoting by A and b the matrix and the vector derived from the subset of the scaled inconsistent

constraints, the new objective function can now be formulated as

(EN) min
x

‖Ax− b‖22 +
∑

i

xi ln(xi)− xi (3.3)

and the minimization is then carried out under the constraints in the set Ω only. In general the solution of
this optimization problem yields a non-integer solution, which is unsuitable for representing households
numbers. The solution’s components of this optimisation problem are then rounded and the value

fEN (x̂) =
∑

i

wi|ĉi − ci|+
∑

i

x̂i ln(x̂i)− x̂i (3.4)

is computed, where x̂, ĉi, ci and wi denote the rounded solution of (EN), the computed and the desired
value of the ith constraint and the associated weight depending on the quality of the associated data
source, respectively. This value can be seen as a performance measure describing how well the rounded
integer solution fits the whole set of initial constraints. We then loop over a set of values for the
penalization parameter σ, and the best rounded solution x∗ associated with the lowest value of fEN is
determined. This solution is finally used as the starting point of a combinatorial optimization problem
using a tabu-search algorithm in order to get a final estimation of Hh. Details on this process are
provided in the next subsection.

3.2.2 Improvement of the estimator using tabu-search

Tabu-search is a local-search meta-heuristic originally proposed by Glover (1986), which can be used for
solving combinatorial optimization problems. This procedure iteratively moves from one solution x to
a solution x′ ∈ N (x), a neighbourhood of x containing a list of candidate solutions, until a stopping
criterion (such as a given number of iterations N) has been reached. In order to avoid cycling, the
neighbourhood N (x) is modified to exclude some solutions encountered in previous iterations (these
solutions constitute the “tabu list”). For a complete description of this optimization technique, we refer
the reader to Glover (1989), Glover (1990) and Glover and Laguna (1997).
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In this paper, the tabu list is a list T of size n, which contains the solutions visited in the last n
iterations. If we denote by xi the candidate solution at iteration i > 0, x0 being x∗ i.e. the rounded
solution computed above, N (xi) is then defined as follow:

N (xi) =
{

xi
j± = (xi−1

1 , . . . , xi−1
j ± 1, . . . , xi−1

p ) | j = 1, . . . , p
}

,

where the notation xi−1
j ± 1 stands for two variations of the j-th component around its value xi−1

j . The
following steps are then executed iteratively N times:

1. define a new candidate by randomly drawing xi ∈ N ∗(xi−1) such that xi /∈ T ;

2. if fEN (xi) < fEN (x∗) then x∗ = xi;

3. replace the oldest component of T by xi and go back to Step 1.

This procedure results in an updated and improved estimate x∗ of Hh. Note that the quality of the
improvement depends on the size of the tabu list and the number of iterations allowed. These parameters
must therefore be chosen to obtain a reasonable trade-off between computing cost and quality of the
estimate.

3.3 Step 3: Households’ generation

Individuals’ and households’ distributions being estimated, the last step of our generator consists in gath-
ering individuals into households by randomly drawing households’ constituent members. We proceed
in two successive stages: the first is to select a household type and the second to draw the individuals
to form a household of this type.

The selection of the household type is performed in order to keep the distribution of already completed
households statistically close to the estimated one. The goal is achieved by choosing the type of the next
household to assemble such that the distribution Hh′ of the already generated households (including the
household being built) minimize the observed χ2 distance between the Hh and Hh′, which is given by

dχ2(Hh′, Hh) =

p
∑

i

(x′
i − xi)

2

x2
i

.

This minimization is extremely simple because the number of household types is very limited. Once the
household type is selected, household’s members are generated as follows: a household head is first drawn
from the pool of individual Ind, and then, depending on the household’s type, additional individuals are
also drawn from the pool if relevant. All these draws from Ind are made without replacement.

We now provide some detail on this last drawing process. If we assume that a household is made of
a head and possibly a mate, children and additional adults, the construction starts with the selection of
its head. Depending on the type, the head’s attributes are either randomly drawn according to known
joint-distributions on couple formation, or obtained directly (for instance for an isolated man). More
formally, this selection procedure is organized in 3 steps:

1. Determine the desired attributes values (i.e. the vi’s) for the household head:

• some can be derived directly from the current household type;

• the remaining missing attributes are either randomly drawn according to known distributions
or, if different values are feasible and equally likely for Vi, determined in order to minimize
the χ2 distance between the generated and estimated distributions.

2. Add the head to the household being generated:

• if the corresponding individual’s class is still populated in the individuals’ pool, extract an
individual from this class and make it the household’s head;

• else find a suitable household head by random search in the constituents members of the
previously generated households. This last individual is then replaced with an appropriate
one randomly drawn in the pool of the remaining individuals. If the generator fails to find a
head, then the generation is ended.
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3. The estimated and generated contingency tables are updated according to the actions performed
in Step 2.

Depending on the household type, the generator may pursue the construction of the current household
by selecting a head’s partner, children and additional adults. The corresponding selection procedures
are similar to the head’s one, with the only exception that individuals’ characteristics may no longer be
determined by the household type only.

The household generation for the current municipality terminates if all households have been con-
structed, or the generator fails to find a household member, e.g. if the pool of individuals is empty or if
it is impossible to find a suitable individual in the previously generated households.

When the procedure stops after exhausting either the pool of individuals or the pool of households,
inconsistencies of two types may remain in the generated population: in the first case the final number
of households is smaller than anticipated, while the final number of individuals is smaller than estimated
in the second case.

4 Generating a Belgian synthetic population

The procedure outlined in the previous section has been used to generate a synthetic population of
10,637,107 individuals gathered in 4,334,281 household for the 589 municipalities of Belgium in 2001. The
municipalities (NUTS-5 level) themselves belong to 43 districts (NUTS-3 level) containing between 2 and
35 municipalities each. Table 4.2 presents basics statistics on these municipalities. The individuals and
households attributes are respectively described in Tables 4.3 and 4.4. Data available at the municipality
or district aggregation levels is provided from the following sources:

• Directorate-general Statistics and Economic information of the Belgian Federal Government (2001);

• Service public fédéral Mobilité et Transports of the Belgian Federal Government (2000);

• GéDAP (2) centre of the University of Louvain-la-Neuve (Belgium) (2001);

• the MOBEL mobility survey (Hubert and Toint (2002)).

Min Max Mean

Individuals 85 461,115 18,059.6
Households 35 212,707 7,358.9

Table 4.2: Basic statistics for municipalities

Attribute Values

Gender male ; female
Age class 0-5; 6-17; 40-59; 60+
Activity student; active; inactive
Education level primary; high school; higher education; none
Driving license ownership yes; no

Table 4.3: Individuals’ characteristics

The synthetic population generator has been implemented in a single threaded program written in
the Perl 5.10 programming language and executed on a desktop computer running with an 3Ghz CPU
and 3Go of RAM under a 32 bits Linux environment. The generation process took around 16 hours and
30 minutes to treat all the 589 municipalities.

(2)Groupe d’étude de démographie appliquée
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Attribute Values

Type

single man alone
single woman alone
single man with children (and other adults)
single woman with children (and other adults)
couple without children (and other adults)
couple with children (and other adults)

Number of children 0 to 5
Number of other adults 0 à 2 (mate not included)

Table 4.4: Households’ characteristics

4.1 Verification of the household generation procedure

4.1.1 Absolute percentage difference

Having generated a synthetic population, one is then faced to the question of estimating its quality.
As in Guo and Bhat (2007), one possible performance measure to assess the generator accuracy is the
absolute percentage difference (APD) between the estimated contingency tables computed in the first
steps (Steps 1 and 2) of the generator and the corresponding ones resulting from the household generation
step (Step 3). This measure is calculated for a particular cell (u1, . . . , up) as follow:

APDT,T ′(u1, . . . , up) =

∣

∣

∣

∣

T ′[u1] . . . [up]− T [u1] . . . [up]

T [u1] . . . [up]

∣

∣

∣

∣

where T and T ′ denote respectively the estimated (Steps 1 and 2) and the generated (Step 3) tables.
The lower the APD, the better the generated fits the estimated one. Results are reported in Table 4.5.

Estimated Generated Difference APD

Individuals 10,637,107 10,635,691 1,416 < 0.001
Households 4,334,281 4,333,448 833 < 0.001

Table 4.5: Generated agents

First note that the procedure was able to generate 10,635,695 individuals gathered in 4,333,425
households, meaning that it could build a synthetic population where the number of households and
individuals are very close to the estimated ones and differs less than 0.1% for the number of agents. This
is highly encouraging.

Table 4.6 presents some basic statistics (maximum, minimum, standard deviation and mean) on
the average APD values (AAPD) of the cells of the generated distributions computed across all the
municipalities. As one can easily see, all these statistics also seem to indicate that the generator produces
an accurate synthetic population. The maximum AAPD value forHh′ is associated with the municipality
of Herstappe, which contains only 85 inhabitants gathered in 35 households. Due to its small size, a
small deviation from the desired Hh can easily, in this case, result in a relatively large AAPD of 8.2%.
Table 4.7 presents the same statistics of Table 4.6 where we have neglected this problematic municipality,
showing it can be considered as a statistical outlier.

Distribution Min Max Std dev Mean

Ind′ 0.000 0.005 < 0,001 < 0,001
Hh′ 0.000 0.082 0,003 < 0,001

Table 4.6: AAPD statistics

At a more disaggregate level, Figures 4.1 and 4.2 illustrates the AAPDs’ repartition for the individ-
uals’ and households’ types across the Belgian municipalities and give some evidence of the synthetic
population’s accuracy in term of AAPD and spatial coherence. Figures 4.3 and 4.4 gives a representation
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Figure 4.1: AAPDs’ repartition for the individual’s types
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Figure 4.2: AAPDs’ repartition for the household’s types
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Distribution Min Max Std dev Mean

Ind′ 0.000 0.005 < 0,001 < 0,001
Hh′ 0.000 0.003 < 0,001 < 0,001

Table 4.7: AAPD statistics without Herstappe

of the APD’s mean and the standard deviation of each individual and household type over the 589 mu-
nicipalities. Again, these figures suggest that the generator produces relatively small APD on average.
Moreover, these APDs are associated with small standard deviations, meaning that APD values are
relatively stable across the municipalities.

The synthetic population associated with the worst AAPD value for the individuals and the house-
holds are respectively Herezée and Herstappe. The details of these municipalities are described in Table
4.8. They clearly indicate that, even if these entities are the less accurate ones, the generated distri-
butions are still reasonably close to the estimated ones: in average, the APD between the estimated
and generated distributions for a given individual class is less than 0.5% while it less than 8.2% for a
given household type. Moreover the generator produces a population having < 0.1% less individuals
and 7.9 less households than the estimated one. These results are illustrated on Figures 4.5 and 4.6
representing the number of agents generated against the number of desired of estimated one for each
class of agents. As one can easily see, the contingency tables produced by the generator fits the initial
ones quite accurately, given the initial level of data inconsistencies.

Herezée Herstappe

Distribution (D) Ind Hh
Agents Estimated (E) 2,885 38
Agents Generated (G) 2,869 35
Difference 16 3
APD(E,G) < 0.001 0.079
AAPD(D,D′) 0.006 0.082

Table 4.8: Herezée and Herstappe

4.1.2 Freeman-Tukey goodness-of-fit test

Finally, we evaluated the goodness-of-fit of the distributions produced by households generation proce-
dure to the estimated ones at Steps 1 and 2. This comparison is achieved by using the Freeman-Tuckey
statistic defined by

FT (T, T ′) = 4
∑

i

(

√

Ti −
√

T ′
i

)2

where T and T ′ are respectively the estimated and generated (household or individual) distribution.
This test, suggested by Voas and Williamson (2001), has the advantage over the classic Pearson χ2

test that it allows the presence of zeros in the cells of the distributions. The FT statistic follows a
χ2 distribution with a number of degrees of freedom equal to one less than the number of cells in the
compared distributions. The results of this goodness-of-fit test are highly promising as all generated
distributions were statistically similar to the estimated ones at a 95% level of confidence.
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Figure 4.3: AAPDs’ mean and standard deviation for each individual type
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Figure 4.4: AAPDs’ mean and standard deviation for each household type
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Figure 4.5: Estimated × generated individuals for Herezée
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Figure 4.6: Estimated × generated households for Herstappe
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5 Comparison with a IPFP-based generator

In order to further assess the reliability and accuracy of the generator detailed in this paper, we now
compare it with an IPFP-based synthetic population generator, namely the extended IPFP generator
described by Guo and Bhat (2007). The results obtained by this generator are strongly influenced by a
parameter denoted by PDTS, whose value has been set to 0.10 for the comparison experiments(3).

Assuming that the population generated in the previous subsection is a real population, we generate
two synthetic populations by using the two generators. As the true population is known, the required
data by the two generators can easily be extracted, i.e. on one hand a significant sample of households
for each municipality and a set of margins for Guo and Bhat’s generator, and, on the other hand, various
joint-distributions at the muncipality and district level for the new generator. Since the entire true
population is known, the extracted data used is clearly consistent and the IPFP-related assumptions are
met. The comparison can then be done without loss of accuracy. Due to its small size, the municipality
of Herstappe is not considered in this test.

Table 5.9 shows that both procedures are able to produce a synthetic population having a number
of agents (both households and individuals) close to the real ones. However, we observe that the new
generator’s figures are closer to their correct values.

True
New Generator Guo and Bhat

Generated APD Generated APD
Individuals 10,637,022 10,634,902 < 0.001 9,731,686 0.085
Households 4,334,246 4,420,209 0.020 4,126,054 0.048

Table 5.9: Generated agents by generator

The same statististics as that described in Table 4.7 computed across the 588 municipalities are
presented for the two generators in Table 5.10. These results indicate that our new method compares
very favourably with Guo and Bhat’s.

Hh Ind

New generator Guo and Bhat New generator Guo and Bhat
Min 0.000 0.006 0.000 0.072
Max 0.005 1.575 0.006 1.298
Mean < 0.001 0.175 < 0.001 0.262
Std dev < 0.001 0.106 < 0.001 0.074

Table 5.10: AAPD statistics

The goodness-of-fit of the distributions produced by both households generation procedures with
respect to the estimated ones is considered in Table 5.11. This table gives the proportion of municipalities
for which the generated distribution of the agents’ attributes is statistically similar to the estimated one
at a 95% level of confidence. The Freeman-Tuckey statistic has been used to test the similarity. As one
can see, both generator produce individuals’ attributes joint-distributions for each municipality fitting
accurately the estimed ones. This observation unfortunately no longer holds for the households’ attributes
joint-distributions. Indeed, while the distributions generated the new generator still match the estimated
ones, the IPFP-based approach performs poorly: less than 25% of the generated distributions adequately
fit the estimated ones.

Hh Ind

New generator 100.0% 100.0%
Guo and Bhat 23.8% 100.0%

Table 5.11: Proportions of municipalities statistically similar to the estimation (α = 0.05)

(3)This value is recommended by Guo and Bhat (2007) and our experience also shows that it worked best with our data.
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Considering a more disaggrate level, figures 5.7 and 5.8 illustrate the distribution of APDs’ means
and standard deviations for each individual and household type by generator. Note that the scale of
these figures is logarithmic. These provide some evidence that the new generator outperforms that of
Guo and Bhat by several order of magnitude in terms of APD between the estimated and the generated
agents’ attribute joint-distributions.
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Figure 5.7: AAPDs’ means and standard deviations for each individual type
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Figure 5.8: AAPDs’ means and standard deviations for each household type
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6 Conclusions

We have described a new synthetic population generation technique, belonging to the class of SR methods,
which is designed to overcome some limitations of IPFP-based methods. In particular, the generator is
sample-free and can handle (moderate) data inconsistency which is common when data is extracted from
several sources. Furthermore, its sample-free nature implies that it does not require an expensive survey
to obtain the data needed for the generation.

The generator has been used to produce a synthetic population for Belgium at the municipality level.
The results of the validation tests conducted on the households generation procedure and the comparison
with a more conventional approach indicate that the methodology has real potential to produce reliable
synthetic populations. Ongoing research covers a more detailed comparison of this generator with IPFP
techniques in the (restrictive) case where the latter apply, but this is beyond the scope of this paper.
Coping with evolution of the database is also being investigated, and will undoubtedly test the stability
and practicality of the new algorithm further.
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