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Synthetic Seismogram Computation 
by Expansion in Generalized Rays* 
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Summary 

The exact formulation of generalized ray theory computations of synthetic 
seismograms for realistic Earth models is relatively complex and expensive. 
The expense can be reduced considerably by a proper organization of the 
computational procedures. The expense is reduced far more dramatically 
by introducing an approximation of the transmission coefficients and a 
careful selection of the rays to be included. The incorporation of such 
procedures leads to programmes which are economically feasible to use as 
an aid in the interpretation of body waves and near source surface and 
leaky mode waves. 

Introduction 

Several recent studies (Helmberger & Wiggins 1971; Gilbert &. Helmberger 1972; 
Helmberger 1972; Wiggins & Helmberger 1973) have described interpretations of 
seismic observations by making comparisons with synthetic seismograms. The 
theoretical basis for the computation of such synthetic seismograms has been described 
by Helmberger (1968) and Gilbert & Helmberger (1972) but the computational 
procedures and approximations necessary for an efficient implementation have never 
been published. This paper seeks to rectify this situation by reviewing the theoretical 
formulas, describing the computational procedures and illustrating the effects of 
various approximations. 

Theory 

In this section we will briefly review the integral formulae used to calculate the 
response of a flat layered half space to a point source. Then we will review the trans- 
formation from spherical to flat geometry to show how the case of a point source in a 
radially heterogeneous sphere may be treated. 

As an introduction to the method we consider the propagation of a simple 
spherical wave in a homogeneous material with wave velocity c(. The displacement 
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7 4  R. A. Wiggins and D. V. Helmberger 

potential for a point source assuming a delta function time history can be written 

@'(x,z ,  t )  = (Yo/R)  a( t -R /a )  ( 1 )  
where R = (x2+z2) ' l2  and Yo is a constant with units of volume. The Laplace 
transform of ( 1 )  is 

@(x,  z ,  s) = (Yo/R) exp [ - sR/a]  (2)  
where s is the Laplace transform variable. Using the Sommerfeld (1909) integral, 
we can write 

Changing variables k = - i sp ,  we obtain 
c+ i m  

@(x ,  z ,  s) = y o  (2 /n )  s ~m j { ~ , ( s p x )  ~ X P  [-sI]azlp/Va~ d p  (4 )  
0 

where I].: = ( l / a2 -p2) ' l2 .  The branch cuts introduced by qa are given in Fig. 1. The 
integral is convergent in the domain - l /a  < c < l / a .  The evaluation of (4 )  is 
simplified considerably by expanding Ko(spx)  in an asymptotic series 

( 5 )  K,(spx) = ( 7 ~ / 2 s p x ) ' / ~  exp [ - s p x ]  {I - 1 / 8 ~ p x + O ( s p x ) - ~ }  

and using only the first term. We then obtain 
i m  

~ ( x ,  z ,  s) = ~ ' , ( 2 s / n x ) l / 2 1 r n  j {exp [ - s ( p x + 7 ) 1 1 p * 1 q ~ d p  (6 )  
0 

where 7 = ZI],. We now make a simple change of variable t = p x + 7 ,  based on an 
observation by Lamb (1904) that allows us to apply the method of Cagniard (1939, 
1962) and de Hoop (1960) to find the transient solution by inspection. Since 

@(x,  z ,  s) = exp [ - st ]@(x,  z ,  t)dt 
0 i 

f 

FIG. 1. The Cagniard path and branch cuts for finding the response of a homo- 
geneous fluid to a line source. 
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Synthetic seismogram computation 75 

we can find @ ( x , z ,  t )  by deforming the p contour of (6) into the first quadrant in 
such a way that t (p )  = p x + r  is real and increasing. This contour is known as the 
Cagniard path (see Fig. 1). Along such a path we can write 

I 

2 

I 
2 
3 

I 1 

t 
i h i  i+ I 

q x ,  z ,  t )  = Y0(2/7rX)”2 [L 239 * H ( t ) ]  
dt J t  

5 

(7) 

where U ( t )  is the Heaviside step function, * denotes convolution and 

H ( t )  = Im [dP(t)/dt P”2(t)/v,(t)l.  

For the homogeneous problem we can solve for p( t )  directly 

p( t )  = t x /R2- (R2 /a2- t2 ) ’ /2 . z /R2  t < R / a  

= t x / R 2  + i(t’- R’/u2)’/’ z/R’ t > R/a. (8) 
The critical points of the contour are located at p = -z/aR ( t  = 0)  and p = x/uR 
(t = R/a) .  We know from (1) that @(x,  z ,  t )  = ( 1 / R )  d(t - R/a) so that this provides a 
simple check on numerical methods used in the evaluation of Wx, z ,  t ) .  

Now consider the generalization to multiple layers. Fig. 2 illustrates the geometry 
of the medium. We consider a half space divided into homogeneous layers of thick- 
ness h i  with P wave velocity air S wave velocity p i  and density pi.  For simplicity we 
will place the point source Q at the origin and the receiver P at a cylindrical radius x 
and depth z .  

The Laplace transform of the displacement potential for an explosive point source 
is given by (Strick 1959; Helmberger 1968) 

i m  

@(x ,  Z ?  s) = ~ 0 ( 2 s / n ) ~ m  1 Ko(spx)  (P, s) (Plrl.)dP (9) 
0 

where 

p is the seismic ray parameter sin i/u where i is the angle between the ray and 
the vertical and u is the velocity; 

W is a function determined by fitting the boundary conditions between the 
layers and at the surfac.e. These boundary conditions are based 011 con- 
tinuity of displacement and normal stress. 
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76 R. A. Wiggins and D. V. Helmberger 

Helmberger (1967) has demonstrated that W can be expanded in terms of rays for the 
case of a layer embedded between two half spaces. Cisternas, Betancourt & Leiva 
(1973) have demonstrated a general method for expanding W for a spherical model 
with many layers. We can write such an expansion symbolically as 

W S ’  PI = 7 W i h  PI (10) 

is the directivity function at the receiver. The vertical u, and radial u, dis- 
placements can be expressed in terms of the potential solution by taking the 
time derivative of the potential solution and multiplying by the appropriate 
directivity function (Gilbert & Knopoff 1961): 
= 1 for the potential solution; 
= 2qa(qp2 - p z ) / b z ~ ( p )  for u, from a P wave or for u, from an s wave arrival; 
= 4pqa q s / B z ~ ( p )  for u, from a P wave or for u, from an s wave arrival 
whereq,= (a , -2 -p2) ’ /2 ,qp=  (/?i-2-p2)1/2and D(p)=  (qb2-p2)2+4pZqaqp 
(the Rayleigh function). 
are plane wave transmission coefficients across layer boundaries producted 
over all boundaries crossed by the i’th ray. 
are plane wave reflection coefficients at all layer boundaries at which the i’th 
ray reverses direction. 
is the number of times the ray crosses the l’th layer. 
is the layer thickness. 
= (uI-2-p2)1/2 where ul = ctl forp waves or ul = for S waves. 

We will normally write this in compact form 

The parameter z is the ‘ reduced time ’ f - p x  of geometrical ray theory. The reflection 
and transmission coefficients R ,  and TI are assumed to be selected properly to account 
for any conversions from P to S or from S to P waves at layer boundaries. Helm- 
berger (1968) gives detailed expressions for the coefficients. 

Helmberger (1968) evaluated the integral (9) exactly to find the response of a 
layered half space. Introduction of the asymptotic expansion (5) for KO simplifies the 
computations considerably. Gilbert & Helmberger (1972) estimate that such an 
approximation should be adequate in upper mantle studies for p wave pulses shorter 
than 40 s. Barker (1970) used the first two terms to study near source behaviour of 
surface waves in a layer over a half space. He studied arrivals at distances up to 10 
times the layer thickness (1 km) and examined periods less than 10-20 s. Generally he 
found that the second term contribution was negligible (private communication). 

Substituting (5),  (lo), (12) and (13) into (9) we have 
iw 

~ i ( x ’ z ,  S) = ‘ Y O ( ~ S / Z ~ ) ~ ’ ~ I ~  j’ {exp [ - S ( P ~ + ~ J I  Ri(p)lp+l/qa)dp* (14) 
0 
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Synthetic seismogram computation 77 

If we now make the change of variable t i  = px+Ti and deform the path of integration 
to the Cagniard path, we find 

m 

where U ( t )  is the Heaviside step function and * denotes convolution. If the source 
had a shape F(t )  rather than an impulse we would also need to convolve with F(t). 

Let us now consider some geometrical aspects of the problem. According to ray 
optics, the distance x and travel time t associated with a particular ray with ray 
parameter p is 

x(P> = F 4 hl P/?l (17) 

= p x + r .  (18) 

If we consider only P wave propagation then = (a l -2-p2)1 /2 .  Let po be the value 
of p for the reflected arrival; i.e. the value of p such that (17) gives the desired x. 
Also, let to = t(po).  The Cagniard contour begins at the origin and follows the real 
axis for p < po.  At p = p o  the contour leaves the real axis and moves upward into the 
first quadrant. If the deepest penetration of the ray is to layer L then the branch 
point of R(p)  nearest the origin is p1 = 1/amax where a,,,,, = max (a1, a2 ... aL+l) .  
If p1 < po let t,, = t ( p , )  and there is a head wave arrival before the reflected arrival. 
For p < p1 and real, the integrand of (15) is real and the response is zero. Examples 
will be given in a following section. 

Many of the applications for synthetic-seismogram calculations have been for 
arrivals from the upper mantle. For such applications the sphericity of the model 
will significantly effect the results and must be accounted for. Miiller (1971) intro- 
duced the standard ray-theory Earth flattening transformations for a and B based 
on physical arguments. Gilbert & Helmberger (1972) demonstrate that these trans- 
formations provide an excellent approximation for the calculation of body waves 
by the Cagniard4e Hoop method. Chapman (1973) has re-examined the problem 
to try to determine the optimum transformation to use for various modes of propa- 
gation. He concludes that a transformation such as proposed by Biswas & Knopoff 
(1970) is best for SH or SV propagation but was unable to discover an ideal trans- 
formation for P wave propagation in a solid. 

The ray-theory Earth-flattening transformation that we use is 
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where a is the outer radius of the sphere; 

r is the radius of some point within the sphere, 0 < r < a; 
A is the distance measured in degrees; 

R. A. Wigglns and D. V. Helmberger 

= a / u w .  
Since we consider only homogeneous layers in the flat model, the velocity within the 
layers of the spherical model must be proportional to r .  Generally, we apply the same 
transformation for density as for the velocities. In addition to transforming the 
radial velocity and density functions, Gilbert & Helmberger (1972) also modify the 
amplitude by (8/sin @ ’ I 2  (0 = An/180) to correct for geometrical spreading. 

The above summary of the formulae for finding the response of a layered medium 
is all that is necessary, in principle, to write a computer program. We give here a 
brief outline of the computational steps. These steps will be elaborated and illustrated 
in the following sections. 

(1) Apply an Earth-flattening transformation to a radially heterogeneous Earth 
model and then approximate the velocity- and density-depth function with homo- 
geneous layers. 

(2) Prescribe the subset of all possible rays for which the calculation should be 
made. 

(3) For each ray perform the following steps: (A) find points along the Cagniard 
contour in the p plane for which t ( p )  remains real; (B) find t(p) and H(t (p ) )  for each 
of the points on the contour; (C) sample H ( t )  at regular intervals and add to a 
storage buffer. 

(4) Convolve the buffer containing the summed responses of all the rays with 
G ( t )  and F(r). 

Computational procedures 

In this section we describe a number of computational procedures which have 
proven to be very useful for increasing the efficiency of the computations. These 
procedures can be grouped into three categories: (1) finding the contour, (2) sampling 
the amplitude response function, and (3) performing the convolutions. 

Finding the contour 
For each Cagniard path one must first locate the point po,  possibly p1 and points 

along the Cagniard path. At each of these points one must then find t and dt/dp. 
Such searches involve the time consuming evaluation of large numbers of complex 
square roots. The efficiency of the calculations can be improved enormously by ex- 
panding t in a Taylor series. 

The travel time t for a ray parameter p and distance x is 
0) = PX+ c n1 hl ‘ I1 

I 

where ql = ( o I - 2 - p 2 ) 1 / 2 .  Let us consider a change of variables q2 = u , , , - ~ - P ’  
(dqldp = - p / q )  where urn is the velocity in the bottom layer penetrated by the ray. 
Also define ul-’ = u , - ~ - u , - ~ ,  then 

‘Il = ( q - 2 - p 2 ) 1 / 2  

= (0,-2 - u m - 2 + q y 2  

= (u, -2+q2)1/2 
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Synthetic seismogram computation 79 

and we expand with respect to q.  The first six derivatives of t with respect to q 
evaluated at q = qo are given by 

a0 = C n , h , r l ,  

a,  = c nr $ 4 / 4  

1 

a, = c n, h, ~ , - ~ / r 1 , ~  

a, = - 3 ~ n , h , v r - Z ( v , - 2 - 4 q 2 ) / r ~ r 7  
a, = 1 5 C n , h l q  ~ , - ~ ( 3 ~ , - ~ - 4 q ~ ) / q , ~  

CIS  = -3Cn,h ,q  u I - ~ / ' ~ , ~  

a6 = 4 5 C n l h , ~ , - ~ ( v , - ~ - 1 2 ~ ~ , - ~ ~ ~ + 8 q ~ ) / ~ , " .  
With these coefficients we can evaluate all of the variables needed 

t =  PX+ Cnrh,r l ,  
= p x + a o + a l  A q + a ,  Aq2/2!+a3 Aq3/3!+a,  Aq4/4!+a5 Aq5/5!+a6 Aq6/6! 

d t /dp  = x - p  C n, hl/q, (fixed x )  
= x-p/q(a,  + a2 Aq + a3 Aq2/2! + . . .) 

d2t/dpZ = - (l/q +p2/q3  (a ,  + a,Aq +a3Aq2/2 ! + . . .) 
+p2/qZ(az +a3 Aq +a4 Aq2/2! + . . .) 

X ( P )  = P c " r  h,/% 
= P/q(a l+a ,Aq+a3Aq2/2!+  ...) 

dx/dq = ( - I / p - p / q 2 ) ( a l + a ,  Aq+a ,  Aq2/2!+ ...) 

+p/q(a,+a3 Aq+a,  Aq2/2!+ ...) 
The usual technique is to expand t about some value qo and then use the series for 
values q = qo + Aq near qo. Experimental calculations indicate that the error can be 
estimated quite adequately by the magnitude of a6 Aq6/6!. 

There are two distinct searches. First, given x, the distance to be used for the 
calculations, we must search for the value po where the Cagniard path leaves the real 
axis. This search can be made very rapidly using the derivative dx/dq. Once po is 
located then one must search for the contour by finding points for which Im(t) = 0. 
At each of these points (as well as between p ,  and po ,  if p ,  < po)  the value of Re(t)  
and dt/dp must be found to be used as components of H ( t ) .  

Sampling the response 
The procedure outlined above can be used to find values of H ( t )  at irregularly 

spaced intervals in time except at p o .  At po,  the derivative dt /dp  = 0 and the response 
becomes infinite. We can find an adequate approximation for the behaviour at  the 
critical poict po by expanding t in a Taylor series about to 

t = tO+dt/dp(p-p0)+0*5 d2t /dp2(p-po)2+ ... 
Thus, to first order in p - p o ,  we have 

dp/dt x ( t -  to)-'" (2d2r/dpz)-1~'  

H( t )  z ( to  - t ) - ' /2 fm{R(po)Jpo [2Re dZt/dp2];L/,2} t < to 

x ( t -  to)-"ZIrn{R(po)Jpo [21nz d2t/dp'];=!/~} t > to 

t - to  z 0.5 d2t /dpZ (p-po)' 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/37/1/73/678198 by guest on 21 August 2022



80 R. A. Wiggina and D. V. Helmberger 

The last two expressions reflect the change of direction of the Cagniard path at po.  
Of course, only the second expression is necessary if there is no head wave arrival. 
The final ' Re ' and ' Zm ' included in the above terms emphasize the fact that the 
contour bends 90" at p = po.  

In practice, we can never represent the exact shape of the arrival near t = to. 
We can, however, find an adequate representation. Since the response function must 
ultimately be convolved with functions having a finite frequency bandwidth, we need 
preserve the shape of the response only for low frequencies. Thus, if we compute the 
shape exactly for times outside a narrow window about to and then replace the 

dependence inside the window by a triangular dependence with the same 
area, we will have preserved the low frequency characteristics. Such an approximation 
is illustrated in Fig. 3. The curved line is a layer response H ( t )  that includes a head 
wave arrival. The dotted lines indicate how the function goes to f c o  at to. The 
solid line has been drawn in such a way that the area between the curve and the axis 
is preserved. 

Once we have determined the response H(t) ,  say by making a spline interpolation 
of the irregularly spaced time intervals, we are faced with the task of sampling this 
function at regularly spaced intervals in a way that will avoid aliasing the high 
frequencies. Such a sampling is necessary if we are to sum the responses of many 
layers; and since we are dealing with many responses, the sampling must be performed 
efficiently. 

The most obvious sampling method would be first to sample the response at very 
small increments of time, apply a bandpass filter, and then to decimate. When many 
layers are being treated this is too time consuming. The sampling process would 
take longer than generating the functions H(t) .  Our solution is to bandpass filter by 
convolving analytically with a triangular function such as one of the ones shown at 
the bottom of Fig. 3. When the triangular function is just twice the length of the 
digitization increment, the frequency characteristic is sin' o/02 where o = R is the 
Nyquist frequency. This filter is very easy to apply and gives a maximum relative 

I I - 
298 96 299.00 ,[ 299.04 299.08 t 

FIG. 3. Sampling functions. Illlistration of the technique used for sampling a 
typical function H(r)  to avoid frequency aliasing. The infinite discontinuity in 
H(r) at t = ro is replaced by a function that preserves the area in a small finite 
window around the discontinuity. The continuous function is then smoothed with 
the triangular functions shown at the bottom before being sampled. The sampled 

values are illustrated by vertical bars. 
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Synthetic seismogram computation 81 

aliased power of less than 0.01 for frequencies near o = 42 .  In actual practice, the 
convolution is evaluated only at those times for which a sample value is desired. 
Thus to obtain the sampled value at time 299.00 s in Fig. 3 we multiply the function 
H ( t )  by the triangle located between 298.96 and 299.04s and integrate to find the 
sampled value indicated by the bar. This process is repeated at each sample time. 
Thus we obtain a band-limited representation of H(r). 

Convolutions 
The responses H,( t )  must be convolved with G(t) and F(t )  in order to obtain the 

final form of the synthetic seismic response. Since both G(t)  and F(r) are independent 
of the geometry of the ray paths and since convolution is associative, the most 
efficient procedure is to perform the summation H(r) = CH,(r) for all the ray paths 
and then perform the convolution once for the entire seismogram. This convolution 
is most conveniently performed by multiplying the Fourier transforms 

(see for example Stockham 1969). The Fourier transform of C(O) is of course just 

If, for some reason, one wishes to examine the individual ray responses the most 
efficient method for convolving G(?) with H,(r)  is to find a rational operator expansion 
of G(t) .  Shanks (1967) describes methods for making such approximate expansions. 
The Z transform of a very good approximation is 

or, in the discrete time domain 

This type of computation can be carried out more rapidly than the function H , ( t )  
can be sampled at equally spaced intervals. 

F ( o )  G(o) H ( o )  = O(X, Z, 0) 

Y0(2iw/nx)”2. 

G(z) = 3*7658-5.3409~+ 1 * 6 2 0 1 ~ ~ - 0 ~ 1 3 7 5 8 ~ ~ + 0 ~ 1 1 8 6 9 ~ ~ / ( 1 - 0 * 8 1 6 3 6 ~ )  

4i = 3.7658hi - 5.3409hi- 1 + 1 *6201hi- 2 - 0.13758hi- 3 + 0.1 1869hi-4 + 0.816364,- 

Examples 

Most of the examples considered in this paper are based on the model shown in 
Fig. 4. It is very similar to model HWB of Wiggins & Helmberger (1973). 

The model was found by a trial and error search of (p, A) curves such as shown 
by the thick smooth line in Fig. 4(b). Each trial curve is first integrated to find the 
ray theoretical travel times. When a curve is found that is consistent with the travel- 
time observations it is integrated by the Gerver & Markushevich (1966) modification 
of the Wiechert-Herglotz integral to find a smooth model of P wave velocity versus 
radius such as is shown in Fig. 4(a). Suitable S wave and density models are com- 
bined with the P wave model and the Earth flattening transformations given in the 
last section are applied. The models are next converted to a stairstep structure so 
that the Cagaiard-de Hoop technique can be used to calculate the dynamic response 
to a point source. 

The layered structure shown in Fig 4(a) is the unflattened representation of the 
stairstep model. Layers, that were homogeneous in the Earth flattened representa- 
tion, now have velocity proportional to r. Except near discontinuities in the smooth 
model, the layers shown are 20 km thick in the flattened geometry. The (p, A) curve 
corresponding to the stairstep model is shown in Fig. 4(b). Except at discontinuities 
the stairstep (p, A) curve forms a kind of a halo about the original curve. 

The dotted lines in Fig. 5 show examples of Cagniard paths for one of the small 
layers immediately below the low velocity zone. The distances for which these were 
computed are less than, equal to, and greater than the critical distance x1 = 18.5”. 

The amplitude functions determined for the layer considered in Fig. 5 are shown in 
Fig. 6. The seismograms have been aligned for the display. As noted by Miiller 

F 
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82 R. A. Wiggins and D. V. Helmberger 
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FIG. 4. Velocity-depth and p-delta curves for an upper mantle model that is used 
for most of the examples. The stairstep velocity structure has steps 20 km thick. 

Re (10) 

FIG. 5 .  Cagniard paths for the response of a layer just below the low-velocity zone 
in Fig. 4. The dotted lines show the paths followed for various radial distances 
from the source. The solid lines show how the paths are modified by inserting a 
small high-velocity layer so that the layer in question is in a shadow zone. x ,  is 

the critical distance for rays corresponding to the dotted lines. 

(1970), Fuchs & Miiller (1971), cerveni & Ravindra (1971) and Muller (1973), 
among others, the arrivals gradually alter from a delta function for distances much less 
than the critical angle to a first derivative operator in time for distances much beyond 
the critical angle. There is no special amplitude feature associated with the critical 
angle. At some distance beyond the critical angle a separate head wave disassociates 
from the arrival. The distance depends on the frequency bandwidth of the signal. 
For very high frequencies (e.g. > 500 Hz) the separation can be detected immediately. 
For frequencies near 1 Hz the separation does not become distinct until beyond 
x = 2x, .  
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Synthetic seismogram computation 83 

5 

0 6.5 n 

5 

FIG. 6. Potential responses of a layer with a small velocity jump as a function of 
distance relative to the critical distance x, .  These responses correspond to the 
dotted Cagniard paths in Fig. 5 .  Notice that in the filtered (low-pass with cutoff 
at 1 Hz) representation there is no noticeable change of amplitude or shape 

associated with the critical distance x i .  

The amplitude functions for a large velocity step are qualitatively similar to those 
for a small velocity step. The responses in Fig. 7 are from the discontinuity near a 
depth of 430 km. The principal differences are that the amplitude maximum is much 
sharper near the critical distance (xI = 12.5") and the head wave separates from the 
reflected wave much more quickly. 

An interesting example of the generality of the computational procedure is the 
computation of waves diffracted from a layer within a low-velocity zone (Fig. 8). 
For this example we modified the velocity-depth function shown in Fig. 4(a) by 
adding a 2-km layer immediately below the low-velocity zone with a velocity slightly 
greater than that associated with the arrivals illustrated in Fig. 6. This has the effect 
of placing the layer in question within a low-velocity zone that does not totally mask 
its response. The solid lines in Fig. 5 are the Cagniard paths as they are modified by 
introducing the thin high-velocity layer. The layer and distances used are the same as 
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84 R. A. Wiggins and D. V. Helmberger 

I 
10 0 5 

FIG. 7. Potential responses of a layer with a large velocity jump as a function of 
distance relative to the critical distance xl. 

were used for the dotted lines. The paths all leave the real axis to the left of l/amax 
where ama, is the velocity of the high-velocity layer. They then bend over and are 
displaced to the right until they can follow a path nearly parallel to the dotted lines. 
The major energy in the responses shown in Fig. 8 is associated with the region of the 
contour where it is bending away from the real axis. Notice that the computed 
responses contain primarily low-frequency energy and that there is little or no phase 
distortion. 

Another example of generalized ray computations is the generation of Rayleigh 
waves. For this example we consider a point source located 10 km below the surface 
of a homogeneous half space. This problem is similar to a problem considered by 
Pekeris et al. (1965). Fig. 10 shows the vertical and radial displacements computed 
using only the direct ray. Some of the corresponding Cagniard paths are illustrated 
in Fig. 9. The development of the Rayleigh wave is directly related to the nearness of 
the contour to the Rayleigh pole that is introduced by the directivity function. It is 
surprising to see the Rayleigh wave beginning to develop even for x = 25 km. A 
similar phenomenon can be seen in the results of Pekeris. 

Each record in Fig. 10 has been multiplied by the radial distance x. The Rayleigh 
wave is dying off proportional to l/x. The ratio of radial to vertical displacement is 
about 0.67 and is very close to the theoretical value for locked Rayleigh waves of 
0.68 (for Poisson’s ratio of 0.25). The P pulse is decaying faster than I/x because of 
the behaviour of the directivity function (see Knopoff et al. 1957). 

For economical computation of such arrivals, it is very important to be able to 
sample the time function at irregular intervals. The interval should be very short near 
the P wave and Rayleigh wave arrivals but may be much longer for the rest of the 
response. 
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Fro. 8. Potential responses of a layer with a small velocity jump that is inside a 
shadow zone. The responses correspond to the solid Cagniard paths in Fig. 5. 
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Fro. 9. Cagniard paths, branch cuts and Rayleigh pole for the computation of a P 
first arrival and the Rayleigh arrival for an infinite half space. 
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FIG. 10. Vertical and radial displacement responses corresponding to the Cagniard 
paths shown in Fig. 9. 

Approximations 

The efficiency of' the computation of complete short-period synthetic seismograms 
for plausible Earth models can be improved considerably by introducing a number of 
approximations. To illustrate the effects of these approximations we have computed 
complete responses at  several distances for the model shown in Fig. 4. 

First let us consider the result of summing the generalized ray responses for all 
the layers at  a particular distance. This process is illustrated in Fig. 1 1. The principal 
feature of this seismogram is that the response shape is dominated by the arrivals 
from the major discontinuities. The arrivals from the many small steps make a sig- 
nificant contribution only if there is constructive interference from nearly simultaneous 
arrivals. 

The seismogram for A = 18" shown in Fig. 11 is repeated in the left two 
columns of Fig. 12. The seismograms in the two right columns are for A = 21". 
I t  is interesting to compare the relative effects of the caustic located between p values 
of 9.5-10.0 s deg-'. For A = 18" this caustic produces a broad low-frequency arrival 
spread between 5 and 7 s. For A = 21" the arrivals from the caustic interfere con- 
structively to produce the large first arrival. 

The responses (a), (b) and (c) of Fig. 12 show the effect of varying the size of the 
steps. Although the step-size changes the appearance of the high-frequency plots, 
the low-frequency displays are all quite similar. One may argue that the 20-km steps 
are too large even at  low frequencies. 

The discussion above leads one to suspect that the seismogram shape would not 
be altered much if non-constructively interfering responses were not included. An 
easy way of effecting such an exclusion is to include only rays from those layers for 
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FIG. 1 1 .  Illustration of how responses from individual layers are summed to 
obtain thecomposite seismogram shown at the bottom. All the responses that were 
smaller than 10 per cent of the maximum size were enlarged for the individual 
layer response plots. The model used for these calculations is that shown in Fig. 4. 

which the critical distance falls within a certain range from the distance being 
calculated. Suppose that we are computing a seismogram at distance A. If the 
critical distance for two layers are both located at distance A - A, then the responses 
for the rays will interfere constructively. The offset A, is given by the distance between 
the smooth ( p ,  A) curve and the critical distances of the curves corresponding to the 
model with velocity steps. The example shown in Fig. 4(b) indicates that A, E 3" for 
20-km layers. We then exclude any ray that falls outside the window A - A, f kAw 
where k is the ratio of the velocity jump of this layer relative to the median velocity 
jump of the model. The amplitude associated with any particular layer is roughly 
proportional to the velocity jump at the base of the layer. Thus the inclusion of the 
factor k means that we take a much wider window for major discontinuities. The 
responses (d) and (e) in Fig. 12 were computed for A, = 5" and 2", respectively. The 
(d) seismograms are barely distinguishable from those containing all possible rays. 
The (e) seismograms are almost acceptable except for the first arrival at A = 18". 
The .Aw = 5" window excluded from 40 to 83 per cent of the responses; the A, = 2" 
window excluded from 50 to 93 per cent of the responses depending on the distance 
for which the calculation was made. 

The discussion above is concerned entirely with primary reflections. It is important, 
of course, to also consider the effect of multiple reflections. The (f) responses are the 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/37/1/73/678198 by guest on 21 August 2022



88 R. A. Wiggins and D. V. Helmberger 

(low pass) (low pass) 

FIG. 12. Illustration of composite seismograms for A = 18" and 21". The low- 
frequency versions were obtained by low-pass filtering with a cutoff of 1 Hz. The 
responses (a), (b) and (c) were obtained by summing the primary reflection from 
models with 5-, 10- and 20-km steps respectively. The responses (d) and (e) were 
obtained by deleting certain responses by setting A,, = 5" and 2", respectively 
(see text for definition of Aw). The responses (f)are first multiples and theresponses 
(9) are primaries and first multiples. The responses (d), (e), (f) and (g) were all 

computed for models with 10-km steps. 

first multiples for a model with 10-km layers. To estimate the contribution of first 
multiples, we included all rays that are reflected twice at each Iqyer and once at any 
of the layers above. The (g) responses show the effect of summing the multiples with 
the primaries. The seismograms with multiples are barely distinguishable from those 
without. Other experiments indicate that multiples were somewhat larger for 20-km 
layers and were very much smaller for 5-km layers. Thus we conclude that multiples 
may be important only for reflections between major discontinuities. 

A major cost in the computation of ray responses for models with many layers is 
involved in the computation of the transmission coefficients T,(p). Since these 
coefficients do not vary rapidly with changing p we have found that an excellent 
approximation is to compute only T,(po) and assume that it remains constant for the 
entire ray. Computational experiments indicate that the amplitudes determined may 
be in error by 2-3 per cent with this approximation. The seismogram shapes were 
indistinguishable from those shown in Fig. 12. 

An even cheaper approximation is to assume that for all transmissions T, 7 1. 
This may result in amplitude errors of as much as 10 per cent for short-penod 
responses. The error may be much larger for long-period calculations. 
An intermediate approach would be to compute the transmission coefficients only at the 
major discontinuities. 

The final approximation does not improve the efficiency of the calculations in 
any way but is quite revealing about the physics of body-wave propagation. In 
addition to specifying the P wave velocity model, one must also specify the density 
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and S wave velocity models. For the examples shown here, we selected a repre- 
sentative density model and an S model that has the same Poisson's ratio as standard 
Earth models. To check the influence of the density model on the results we replaced 
the standard model with a model having a uniform density of p = 1 g ~ m - ~ .  The 
change in maximum amplitude was less than 0.5 per cent and the response shapes 
were indistinguishable! In the next experiment we kept the uniform density and 
replaced the S wave velocity model with one having a constant velocity p = 1 km s-'. 
In this case the overall amplitude changed by less than + 5  per cent, and once 
again the shapes were indistinguishable. In fact, nearly all of the amplitude variation 
could be traced to the directivity function Ri. Thus we are led to the conclusion that 
since the seismogram shape is dominated by arrivals coming from near the critical 
distance, the reflection coefficients for rays near the critical distance are not dependent 
on either p or 8. 
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