
SISMOGRAMMES SYNTH�TIQUES DANS LES MILIEUX
STRATIFI�S PR�SENTANT UNE ISOTROPIE PLANE

Le but des pr�sents travaux est de calculer la r�ponse des milieux
stratifi�s pr�sentant une isotropie plane � lÕexcitation dÕune source
enterr�e ou de surface, de fa�on � obtenir une m�thode qui puisse
aider � lÕinterpr�tation des sismogrammes r�els. 

Le calcul expos� ici, dans un domaine de fr�quence f et de nombre
dÕonde k, est bas� sur la m�thode de r�flexion de Kennett. Les
d�placements dans lÕespace et dans le temps sont calcul�s par une
int�gration num�rique (transform�e de Fourier-Hankel) de la r�ponse
en fr�quence et en nombre dÕonde. La r�ponse num�rique de surface
dÕun demi-espace � isotropie plane et � deux marqueurs excit�s par
une source de surface est ici pr�sent�e. Les propri�t�s m�caniques
du demi-espace propos� correspondent � celles de la gamme des
s�diments marins. La fr�quence et le d�calage du domaine propos�
correspondent � ceux employ�s dans la prospection g�otechnique.
Les effets de lÕanisotropie sont mis en avant en comparant les
r�ponses de lÕexemple anisotrope � celles de lÕexemple isotrope. 

SYNTHETIC SEISMOGRAMS IN TRANSVERSELY
ISOTROPIC PLANE LAYERED MEDIA

The purpose of the work presented in the paper, is to compute the
response of transversely isotropic plane layered media excited by
a buried or surface source, in order to obtain a method which can
help interpreting real seismograms.

The computation in frequency f and wavenumber k domain based
on the Kennett's reflectivity method is exposed. Displacements in
space and time are calculated by numerical integration (Fourier-
Hankel transform) of the response in frequency and wavenumber
domain. The numerical surface response of a transverse isotropic
two-layered half space excited by a surface source is presented.
The mechanical properties of the proposed two-layered halfspace
falls within the range of marine sediments. The frequency and
offset proposed domain correspond with geotechnical surveys.
Effects of anisotropy are put forward by comparing the responses
in anisotropic case to the responses in isotropic case.

SISMOGRAMAS SINT�TICOS EN MEDIOS DE ESTRATIFICACIîN
PLANA TRANSVERSALMENTE ISOTRîPICOS

El objetivo del trabajo presentado en este art�culo es computar la
respuesta de medios de estratificaci�n plana transversalmente
isotr�picos cuando son estimulados por una fuente bajo tierra o
superficial con el fin de obtener un m�todo que pueda ayudar a
interpretar sismogramas reales.
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Se presenta el c�mputo en el �mbito de la frecuencia f y del
n�mero de onda k en base al m�todo de reflectividad de Kennett.
Los desplazamientos en el espacio y en el tiempo son calculados
mediante integraci�n num�rica (transformaci�n de Fourier-Hankel)
de la respuesta en el �mbito de la frecuencia y del n�mero de
onda. Se presenta la respuesta superficial num�rica de un semi-
espacio de dos capas transversalmente isotr�pico estimulado por
una fuente superficial. Las propiedades mec�nicas del semi-
espacio de dos capas propuesto queda comprendido dentro del
rango de los sedimentos marinos. El �mbito de frecuencia y de
compensaci�n propuesto corresponde al de las prospecciones
geot�cnicas. Se destacan los efectos de la anisotrop�a
comparando las respuestas en un caso anisotr�pico con las
respuestas en un caso isotr�pico.

INTRODUCTION

Offshore geotechnical engineers are in a crucial need
of knowledge of marine sediments properties. Technical
tools exist which can provide accurate seismic
informations. The gap is now between acquisition and
interpretation. Direct and inverse modelling are
therefore the only tools that can help in this way.
Therefore two approaches are needed.
– Experimental approach: seismic wave experiments

on the sea floor, performed at a very specific scale
corresponding to geotechnical surveys are carried out
(Krone, 1996, 1997). Seismic SH-waves are
generated by applying a shear strain parallel to the
sediment surface with an orientation perpendicular to
the direction of propagation. Scholte waves are
generated by applying a vertical strain to the
sediment.

– Numerical approach: a seismogram computation
code is developped. The computation is based on the
Kennett's reflectivity method (Kennett 1983). Its
main advantage is to allow the computation of the
complete response of the layered medium to a point
source, including all the free surface and interlayers
multiples. It has been used in various applications
(Booth, 1983; Fryer, 1984, 1986; Mallick, 1988;
Meunier, 1990; Guennou, 1996).

Since marine sediments are strongly anisotropic
(Bachman, 1979, 1983) and since anisotropy of marine
sediments results mainly from bedding, marine
sediments, as any lamellate medium (composed of
different isotropic layers that are much thinner than a
seismic wavelength), are supposed to exhibit transverse
isotropy with an axis of symmetry orthogonal to the
layering. So, in this paper, the Kennett's reflectivity
method for computing seismograms is adapted to the
study of marine sediments, by extending it in the case
of tranverse isotropy. Within each solid layer, being a
viscous linearly elastic homogeneous medium, the
wavespeeds in directions perpendicular to the
symmetry axis of the stratification (axis z) are all the
same but differ from those parallel to the axis. The
attenuation is handled with complex wave velocities.
Fluid layers bounding or within the stratification can be
taken into account.
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1 THEORY

1.1 The Transversely Isotropic
Homogeneous Medium

In the absence of sources, the incremental
displacement u, induced by the propagation of a
seismic wave in a homogeneous medium is governed
by the equation of motion:

where r is the density of the medium, [s] the stress
tensor, and the second derivative of the considered
quantity with respect to time.

In a linearly elastic medium, under small
perturbations, the relationship between the linearized
strain tensor [e] = 1/2 (grad u + gradt u) and the stress
tensor [s] is the following:

where [C
~
] is the elastic modulus tensor. The latter

tensor, in which each component is constant,
completely characterizes the elasticity of the medium.
Its simplest form arises for isotropic media.

For Transversely Isotropic media (axis z), the elastic
modulus tensor [C

~
] has five independant components:

with 
A cylindrical set of coordinates (r, q, z) is chosen.

The displacement u may be represented in terms of its
components: 

u (r, q, z) = ur er + uq eq + uz ez

using the orthogonal unit vectors er, eq , and ez.

A set of combined variables for displacements and
stresses is introduced in order to decouple P-, SV-waves
and SH-waves:

Indeed, by isolating the z derivatives in the equations
of motion and in the equations characterizing the
elasticity of the medium, we obtain six equations which
are separated into two decoupled sets:

where is the horizontal Laplacian defined by:

The first set couples P waves to SV shear waves. The
second set includes only SH shear waves.

1.2 The Change of Domain

It is now convenient to operate a change of domain
in order to transform partial derivative equations into
ordinary second order differential equations. The
change of domain is made by applying a Fourier
transform with respect to time t, followed by a Hankel
transform.

The latter transform allows a change of domain from
polar coordinates (r, q) to wavenumber k and azimuthal
order m domain:
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For each azimuthal order m, the column vectors
BPSV = (U, V, S, P)t and BSH = (W, T)t are introduced.
U, V, W, P, S, T are variables related to the transforms of
the new displacement and stress variables previously
defined:

(w is the circular frequency arising in the Fourier
transform).

At last, if we work in terms of horizontal slowness
p = k/w rather than with the horizontal wavenumber k,
the two transformed sets take a very convenient form:

AA AA

where AAPSV and AASH are respectively 4 x 4 and 2 x 2
matrices depending on the density, the elastic modulus
of the medium and the horizontal slowness p, and
defined by:

AAPSV =

AASH = 

From now on, we omit to precise the index PSV and
SH, as the two decoupled problems PSV and SH are
now easily solved by applying the same method.

We name D the eigenmatrix for A (see the
mathematical annex for the analytical expression of the
matrix D). The matrix D is independent of the depth z
(A is independent of z), so the relation ¶zB = w AB is
equivalent to:

( DD –1B) = w DD –1 AA B = w L ( DD –1B)

where L = DD –1 AA DD is the diagonal matrix whose
entries are the eigenvalues of AA (see the mathematical
appendix for the analytical expression of the
eigenvalues of AA).

The components of vector V = DD -1 B are the
solutions of the latter equations. Each of these
components might be interpreted as an upgoing or
downgoing wave according to its dependency on the z
coordinate.

1.3 The Reflectivity Method

Kennett's method relies on the continuity of the
stress displacement vector B at any depth of the
stratification. If we name z+ the depth just below an
interface and z– the depth just above the same interface,
the continuity of vector B at depth z allows us to write:

V (z+) = ( DD+ ) –1 DD- V (z–)

or, by using the Kennett's notation:

where the indices U and D mean “up” and “down” for
upgoing and downgoing waves.

By comparing the latter relationship to the following
one introducing reflection (R) and transmission (T)
coefficients of the interface:

we are able to relate the reflection transmission
coefficients to the coefficients Qij.

In the isotropic case, for a suitable normalisation of
eigenvectors, the analytical expression of the matrix
DD –1 is easily deduced from the analytical expression of
matrix DD, and the reflection transmission coefficients
are symmetrical (Kennett, 1978). This trick is
conserved in the case of transverse isotropy.

We introduce the partitions of the matrix DD:
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If we have áMU, MDñ = iI (PSV - problem), where I
is the identity matrix, and áMU, MDñ = i (SH-problem),
then:

A recursive algorithm allows us to generate a
propagator matrix that relates the wave vectors at two
different depths of the stratified medium.

The point source is introduced as a discontinuity of
the stress-displacement vector B across the source plane
(depth zs). By using the matrix DD -1 (zs), an alternative
approach is to consider the source as giving rise to a
discontinuity across the source plane in the
wavevector V.

The boundary conditions imposed on the seismic
wavefield are: vanishing stresses at the free surface
(z = 0), the half space is assumed to be uniform below
depth zL, and in this region, only downgoing waves are
present.

The Ancalsis code computes, in the (f, k) domain,
from the addition rules of reflection-transmission
coefficients and the boundary conditions, the matrix
relating the wavevector at receiver plane (depth zr) to
the discontinuity in the wavevector V across zs. Stresses
and displacements at receiver plane, are recovered by
computing the product DD (zr) V (zr). They depend on
the azimuthal order m.

1.4 Recovery of the Response in Space
and Time

The last step of the computation is to inverse the
Fourier and the Hankel transforms in order to recover
displacements and stresses at depth zr in space and time.
The computation of the m-order Hankel transform:

for m ­ 0, is solved by computing the equivalent
combination of a m-order Abel transform and a

Fourier transform. The m-order Abel transform is
defined as:

where Tm (x) = cos (m (a cos x)) is the Chebyshev
polynomial of the first kind, order m. By using the
development of functions Tm, the relationships between
zero-order Abel transform and higher-order Abel
transforms are obtained:

The fast zero-order Abel transform algorithm
described in Hansen (1985) is used in the Ancalsis
code.

The inverse Fourier transform with respect to
frequency f is computed, or not, after a convolution
with a spectrum of a signal source. The time
seismogram is then filtered.

2 RESULTS

2.1 The Chosen Data

Numerical seismograms are presented, in the case of
a layer overlying an uniform half-space which
mechanical properties are given in the Table 1.

The viscosity of the two-layered half space is taken
into account by introducing complex wave velocities
defined by:

This example of stratified medium is very simple,
it has been chosen on purpose to show the correctness
of the computation. Nevertheless, the chosen
velocities belong to the range of velocities appearing
in Hamilton's studies about the geoacoustic modeling
of the sea floor (Hamilton, 1980; Nolet, 1996).
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Figures 1 and 2 present the slownesses of P-, SV-
and SH-waves within, respectively the upper layer
and the half-space, as functions of the horizontal
slowness p.

Figure 1 shows that, within the upper layer, the
SV-wave velocity is smaller than the SH-wave velocity
in all the directions of propagation (except the vertical
direction).

Figure 2 shows that, within the uniform half-space,
there is an other direction of propagation, different of
the vertical direction, for which the SV- and SH-
waves velocities are the same. And between this
particular direction and the vertical direction, the
SV- wave velocity is faster than the SH-wave velocity.
Figures 1 and 2 obviously show the critical
slownesses for P-, SV- and SH- waves in a vertical
transverse isotropic medium which are respectively:

Figure 1

Slownesses of P-waves (solid line), SH-waves (dashed line)
and SH-waves (dotted line) as functions of the horizontal
slowness p within the upper layer.
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TABLE 1

Parameters of the anisotropic model

TIV model Layer (5 meters depth) Half space

Density r 1200 kg/m3 1500 kg/m3

Vertical compressional velocity 1500 m/s 1700 m/s

Horizontal compressional velocity 1800 m/s 2200 m/s

Vertical shear velocity 400 m/s 560 m/s

Horizontal shear velocity 500 m/s 800 m/s

Additional velocity 1530 m/s 1500 m/s

Thomsen parameters

0.220 0.337

0.281 0.520

0.122 -1.127d =
+( ) - +( )
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C C C C C

C C C
13 33 13 33 44
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Figure 2

Slownesses of P-waves (solid line), SH-waves (dashed line)
and SV-waves (dotted line) as functions of the horizontal
slowness p within the half-space.

The source is assumed to be a point force, located
at a point S on the surface of the stratification.
The displacements are computed for points R such
that:

where n is an integer, Dr the distance between two
consecutive points, and nDr the variable called the
“offset”, that is to say the distance between a point R
and the axis (S, ez) perpendicular to the surface. A
configuration of usual seismic experiments is then
respected.

2.2 Intermediate Results: the Needed
Reflection Coefficients

In this case, the one and only reflection coefficients
needed for computing the complete surface response by
using the reflectivity method, are the downgoing waves
reflection coefficients at the one and only interface of
the stratification. It is the reason why the latter
coefficients, coming directly from the code, are
discussed now, in order to validate them with respect to
Daley 's work (Daley, 1977).

The reflection coefficient as function of the
horizontal slowness p simply increases (Fig. 3). The
behaviour is simple and is always real.
Its amplitude reaches the value 1 at (here
1.250 s/km, the critical slowness for SH-waves in the
half-space), and keeps the value 1 for .

The behaviour of the reflection coefficients relative
to the coupled P-SV system is more complicated
(Fig. 4a, 4b, 4c, 4d).

At vertical incidence, there is neither conversion
from P to SV-waves nor conversion from SV- to
P-waves.

For (0.455 s/km in the example, critical
slowness for the P-wave in the half-space) all the
reflection coefficients for the P-SV system are real. For

, they are all complex.

At (0.556 s/km, critical slowness for
P-waves in the upper layer), the P-waves are travelling
horizontally in the upper layer and the coefficient

drops to the real value 0 and the coefficient
reaches to real value 1.

Figure 3

Coefficient at the interface as a function of the
horizontal slowness p, (solid line: real

part, dashed line: imaginary part, dotted: amplitude).
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The coefficients and are highly

influenced by the P-wave behaviour, the real and
imaginary parts of these coefficients have an inflexion
at critical slownesses of P-waves.

The curves of the real and imaginary parts of the
coefficient also exhibit an inflexion point for
(1.786 s/km, critical slowness for SV-wave in the

half-space), and for p larger than this value, the
amplitude of is equal to 1.

At last, at (2.500 s/km, critical slowness
for the wave in the upper layer), the SV-wave travels
horizontally in the upper layer and the coefficient

drops to the real value 0 and the coefficient
reaches to the real value 1.RD
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2.3 Numerical Seismograms: Effect of
Anisotropy

By using only an analysis of velocities, there are two
ways for observing the effects of transverse isotropy on
seismograms. The first way is to compute the
displacements for different directions of propagation. It
is possible, in particular when source and receiver
horizontal plane are not at the same depth.

When source and receivers are at the same depth, at
the surface for example (as it was the case during the
Ifremer seismic waves experiments, and as it is the case
for the presented synthetic seismograms), the one and
only direction between source and receivers is
horizontal. Although, the effects of anisotropy can be
observed by changing the direction of the source force.
When the point force is horizontal and equal to Fq eq,
only the SH-waves are generated, only the orthoradial
displacements uq do not vanish (Fig. 5). When the point
force is vertical, located at the surface, P- and SV-
waves are generated, and there are no orthoradial
displacements.

Two examples of numerical seismograms are
presented: 
– The first one (Fig. 7a), is the radial response, in the

(f, k) domain, at the surface of the two-layered
medium excited by a vertical point force Fzez,

Figure 5

Orthoradial displacements, in time and space, at the free
surface of the two-layered half-space excited by a surface
source (source = horizontal force  Fq eq).

placed at the surface. The surface wave (Rayleigh
wave) and SV-waves are observed. The Rayleigh
wave velocity is slightly slower than the SV-wave
velocity. The P-waves are also present, but their
amplitude are insignificant. They can be observed
when their attenuation is very small compared with
the shear wave attenuation.

– The second one (Figs 7b and 5), is the orthoradial
response, respectively in the (f, k) domain and in
space and time, at the surface, of the two-layered
medium excited by a horizontal point force Fq eq,
always placed at the surface.
Figure 7b shows the Love wave dispersion curves.

The classical results about Love wave propagation can
be observed:
– the Love wave velocity v is restricted to 

– the successive modes of Love waves have a lower
cutoff in frequency;

– at high frequencies, the Love wave dispersion curves
have the asymptotic value 
Figure 5 shows the temporal numerical seismogram,

not filtered in frequency, directly obtained by applying
a numerical inverse Fourier-Hankel transform to the
results in frequency and wavenumber domain. The
traces are normalized.

The latter numerical seismograms are compared to
those (Figs 6a and 6b), obtained in the isotropic case
(the geometry of stratification and localisation of source
and receivers are identical) (Table 2).

One of the primary effects of transverse isotropy
can be observed with a simple analysis of velocities. 

TABLE 2

Parameters of the isotropic model

Layer
Isotropic model Half-space

(5 meters depth)

Density g 1200 kg/m3 1500 kg/m3

Compressional velocity
1500 m/s 1700 m/s

Shear  velocity 
400 m/s 560 m/s

VS = C44 / r

VP = C33 / r

VS,h
(1).

VS,h
(1)  <  n  <  VS,h

(2)
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In the anisotropic case there is a difference
between the velocity of shear waves generated with a
vertical point force and velocity of shear waves
generated with a horizontal point force. This
difference is a mesure of anisotropy recovered in the
Thomsen parameter g. Of course, in the isotropic
case, this difference vanishes.

CONCLUSION

One key-point in interpreting S-wave seismograms,
recorded in shallow waters at very high resolution
(mean frequency 200 Hz) is to recognize incoming
surface waves, and to distinguish dispersion due either
to guided propagation modes or to viscoelaticity.
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Figure 6

Radial displacement (source = vertical force Fzez) (a) and orthoradial displacement (source = horizontal force Fq eq) (b), in the frequency and
wavenumber domain, at the free surface of the two-layered half-space (isotropic model) excited by a surface located at the surface.

Figure 7

Radial displacement (source = vertical force Fzez) (a) and orthoradial displacement (source = horizontal force Fq eq) (b), in the frequency and
wavenumber domain, at the free surface of the two-layered half-space (TIV model) excited by a surface located at the surface.

a b

a b



The seismogram computation code, presented in this
paper, was validated using specific scale corresponding
to geotechnical surveys. Therefore it provides a unique
tool for interpreting real seismograms in the domain of
offshore geotechnical engineering.
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Mathematical Appendix

1 EIGENVALUES FOR AA

1.1 PSV Propagation

The four eigenvalues are :
-igP (upgoing P-wave), -igSV (upgoing SV-wave), igP
(downgoing P-wave) and +igSV (downgoing
SV-wave), with:

with:

1.2 SH Propagation

The two eigenvalues are :
-igSH (upgoing SH-wave) and +igSH (downgoing
SH-wave) where:

2 EIGENVECTORS FOR AA

2.1 PSV Propagation
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