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Summary. We present a new method to calculate the SH wavefield produced 
by a seismic source in a half-space with an irregular buried interface. The 
diffractiog interface is represented by a distribution of body forces. The 
Green’s functions needed to  solve the boundary conditions are evaluated 
using the discrete wavenumber method. Our approach relies on the introduc- 
tion of a periodicity in the source-medium configuration and on the discreti- 
zation of the interface at regular spacing. The technique developed is 
applicable to boundaries of arbitrary shapes and is valid at all frequencies. 
Some examples of calculation in simple configurations are presented showing 
the capabilities of the method. 

Key words: seismology, synthetic seismograms, diffraction, vertical seismic 
profiles. 

Introduction 
The discrete wavenumber method (Bouchon & Aki 1977; Bouchon 1981) is a powerful 
technique of simulation of wave propagation in a viscoelastic flat-layered medium. Our aim is 
to develop the generalization of this method to a laterally heterogeneous medium. This 
problem is of crucial interest for geophysical prospecting purposes as well as for the interpre- 
tation of earthquake data. In the last decade seismologists have devoted a lot of work to 
these studies. A large number of techniques have been used including finite differences 
(Boore 1972; Kelly et al. 1976; Virieux 1985), finite elements (Smith 1974) and frequency- 
wavenumber methods (Aki & Larner 1970). High-frequency asymptotic ray theory has also 
been applied following different formulations (Cerveny, Molotkov & PlenEik 1977; Hong & 
Helmberger 1978, MacMechan & Mooney 1980; Haines 1983) including the Gaussian beam 
method (Cerveny 1983; Cerveny & PSenEik 1984; Novak & Aki 1985). Finally, boundary 
integral equations have been used to  compute the complete response of an irregular free 
surface (e.g. Sanchez-Sesma & Esquivel 1979; Sanchez-Sesma 1983) or of an irregular buried 
interface (Dravinski 1983). 

In this paper we present a method of representation of the scattered wavefields by distri- 
buting sources along the diffracting interface (Huyghens’s principle). We follow the approach 
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308 
proposed by Bouchon (1985) to calculate the response of a topographic profile to an incident 
plane wave. This method is valid at any frequency. We shall restrict the topic to the calculation 
of synthetic SH seismograms in a two-dimensional half-space with one irregular interface. 

M. Campillo and M. Bouchon 

Description of the problem 

We consider the two-dimensional problem of the response of an irregularly layered elastic 
medium to a seismic excitation. We assume the medium to consist of a layer and a half-space 
separated by an irregular interface C (Fig. 1). Vl, p1  and V2, p2 represents respectively the 
wave velocity and the density of the layer (1) and of the half-space (2). For a source located 
in the layer (l), the displacement at a location r (x, z) may be written as: 

v( ' ) (x ,  z )  = v$)(x, z )  + v,(x, z ) ;  

P y x ,  z)  = @(x, z); r E ( 2 )  (1) 

r ~ ( 1 )  

where V$) represents the displacement associated with the field diffracted at the interface 
in medium (i) and V, denotes the displacement radiated directly by the source. 

The diffracted field V g )  may be represented by the radiation of a specific distribution of 
seismic sources (forces) Ff ')along C. This representation will be exact for the entire zone (1) 
if the radiation is calculated with an accurate Green's function and if the boundary condi- 
tions are complied with. For region (1) the free surface condition implies the use of the 
homogeneous half-space Green's function while the boundary conditions to be complied 
with are on C. The diffracted field V?) will be represented by the source distribution F(') 
on C. In this case only the infinite space Green's function is required. 

This approach implies the consideration of two different virtual media to represent the 
'real' medium: region (1)  is part of the virtual half-space A and region (2) is part of the 
virtual homogeneous infinite space B. 

FREE SURFACE X 

21 
Figure 1 .  Geometry of the problem. The interface C has an arbitrary shape. 

Boundary conditions 

The source distributions F ( ' )  and F ( 2 )  on C are determined by the boundary conditions at 
the interface itself. These distributions are consistent with a particular choice of the Green's 
functions (i.e. with a particular choice of the virtual regions in which these sources act). 
The boundary conditions are, for any (x, z) on C: 
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where p1 and p2 are the Lam6 coefficients in mediums 1 and 2, and n (nx, nz)  represents the 
normal vector to  C a t  r (x, z) .  

Let G(’)(x, z ;  x’, z ‘ )  and Gt2)(x,  z ;  x’, z ’ )  be the Green’s functions of virtual media A and 
B for the particular frequency w/2n. The displacements are given by: 

v y x ,  Z)’ s, W ( x ‘ ,  Z’)G(’)(X, z ; x :  z ‘ )d i  + V,(X, z )  

V(2)(x, z ) =  s, F(2)(X‘,Z’)G(2)(X,Z;X’, z ’ )d i  ( 3 )  

with $ = (x’, z’). 
The use of these expressions in equations (2) yields two integral equations which give 

theoretically the distributions F ( ’ )  and F(’) through the Green’s functions of the virtual 
media and their spatial derivatives. We have now to discretize the integrals over C and t o  
obtain a suitable formulation for the Green’s functions. 

Evaluation of the Green’s functions for a discretized interface 

To this end we assume that the source medium configuration is periodic in the x-direction 
with a spacial periodicity L. We shall now use the discrete wavenumber method (Bouchon & 
Aki 1977) t o  evaluate the Green’s functions. We assume that the problem may be resolved 
by  representing the irregular interface by an array of  2 M  + 1 discrete points regularly spaced 
in x (Fig. 2), where forces are applied and where the boundary conditions are matched. The 
abcissae of these points are given by:  x ,  = ( m  - 1)L/(2M t 1).  The value of M is chosen 
such that the following condition of  sampling is satisfied: L/(2M + 1) < nPl/w where is 
the lowest wave velocity of the medium and w the angular frequency. 

The SH displacement C’ produced at  r (x,  z )  by a transverse line force F acting at  (x’, z ‘ )  is 
given by (Lamb 1904): 

F [+” exp [ - i k ( x - x ’ ) - i y l z - z ’ I ]  
V ( x ,  z )  = - dk 

4npi J-, Y 

with 

where 0 denotes the shear wave velocity. 

(4) 

Figure 2. Introduction of a periodicity in the medium geometry and discretization of the interface at 
regular spacing. 
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For an infinite array of periodic sources equation (4) becomes: 

F exp [- ik,  ( x  ~ x') - i y ,  I z ~ z' I] 
V(x ,  z ) =  ~ c 

2Lip ,=-= Yn 

with 

Using equation (3) we can evaluate the displacement produced by the entire distribution 
F(')  in medium i. I t  comes: 

M 

, =- M 

1 + -  exp [- ik, (x - x,) - iy', I z - z ,  I] 
7; 

c V $ y X ,  z )  = c F(')  __ m 2iLpi , = - la 

This expression defines V$)  for all the positions Y (xn2, z,) on C 
Its Fourier transform over x ,  is given by: 

1 M  
@j(kp, Z )  = ~ z 

2M + l ; = - ~  
f16)(xi. z )  exp ( ikpxj)  

with 

2n 
k,=p -. 

L 

Using equation (7) this expression becomes: 

M \ 

where we have: 

M 2 M + 1  i f n = p  

j = - M  0 if n f p .  
exp [ 2 i n ( p  - n) j / (2M+ l ) ]  = 

Therefore equation (8) is simply: 

With this expression it appears that the field radiated by the entire set of forces is not simply 
decomposable into plane waves. As we have assumed the interface to  be correctly described 
by a discrete set of regularly spaced points, we can assume the system of boundary conditions 
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to  be matched with a corresponding spacial resolution. This suggests that the expression of 
Vc needed t o  resolve the discrete boundary conditions system is obtained by truncated 
Fourier series in the form: 

The hypothesis of  discretization of the interface has led t o  the use of a truncated series in 
place of the actual Green's function. Inhomogeneous waves, however, are included in the 
solution as we have seen with equation (9). Using equatation (2) and writing the boundary 
conditions at each points of the contour C leads t o  a system of 4M + 2 linear equations in 
Fk) .  After resolution of this system we are able t o  evaluate the elastic field anywhere in the 
medium. The calculation is made for each frequency and the results are synthetized in the 
time domain. The unwanted effect of source-medium periodicity is avoided by giving the 
frequency a small constant imaginary part (Bouchon & Aki 1977) and removing its 
attenuation effect from the time domain solution. 

A test of the method: a flat layer over a half-space 

As a way to  test the accuracy of our approach we compute synthetic seismograms in the case 
where the interface Cis flat and we compare them with the results obtained by the flat-layer 
discrete wavenumber method. 

The source considered is a transverse horizontal line force Fo and its radiated displacement 
is given by : 

Fo exp [- ik,(x - xo) - iy, Iz - zoI]  
V,(X, z )  = ~ c 

2iLp ,=-- 7n 

where x o  and zo  denote the source coordinates. The source problem configuration and the 
synthetic seismograms obtained by the two methods are displayed in Fig. 3. The calculations 
are done for frequencies between 0 (static) and 16 Hz. The periodicity length is 4 km and the 
interface is represented by an array of 119 points. The source function used is 

sinh [(onto/4)] 

with to = 0.06 s. 
The results obtained by both techniques are in good agreement. The waveshapes are 

exactly superposable while the amplitudes show differences which d o  not exceed 3 per cent. 
This discrepancy may be attributed t o  the representation of  the continuous interface by a 
set of discrete points. This example shows the validity of our approach. 

Simulation of a vertical seismic profile near a dipping interface 

In this section we first present a calculation of synthetic seismograms along a vertical seismic 
profile located on  the flank of a sine-shaped dome. The geometry and the parameters of the 
medium are shown in Fig. 4. We have investigated the two following cases: 

Case I: the source is a t  position A, 10 m below the surface. The receivers are located along 
a line which passes through B and are distributed at  regular intervals between the depths of 
150 and 850 m. 
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Figure 3. Source-receiver geometry used and comparison between our results (left part) and synthetic 
seismograms obtained by the discrete wavenumber method using Thomson-Haskell propagators 
(DWN + TH). Each seismogam is normalized independently. Numbers on the left of each trace indicate 
the maximum amplitude. The source depth is 10 m. 

Figure 4. Sourceieceiver positions and geometry of the medium used to investigate the effect of a dipping 
interface on a vertical seismic profile (see text). 
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Figure 5 .  Synthetic seismograms produced in the two cases described in the text. Each seismogram is 
normalized to its maximum amplitude given at  the left of each trace. 

Case 11: the x-coordinates of the source and the receiver-line are interchanged. 
The seismograms are displayed in Fig. 5 .  The parameters of the calculation are identical 

to the ones used in the last section. In case I, we observe reflected and refracted waves. As 
the incidence angle is small the pulse shape of  the transmitted wave in medium 2 is similar to  
the one of the direct wave. In the method, the transmitted wavefield is represented by the 
radiation of the sources distributed along the curved interface. The validity of the approach 
is pointed out by the quality of the pulse shape of the transmitted wave. 

The profile obtained in case I1 shows the large distortion of  the refracted and reflected 
pulses which occurs when the direction of propagation of the wave is close to  the dip of the 
interface. For a receiver location far below the interface the incidence angle decreases and 
the source radiated pulse shape reappears. In these two cases up-going and down-going multi- 
reflected waves are present. 

We consider now a simple model of graben (Fig. 6). In this case the horizontal distance 
between source and receivers is now 160 m and the value of to (which defines the source 
function) is now 0.08 s. The other parameters remain identical t o  the ones used in the 
previous calculations. The interface presents a very rough shape with angular points. We can 
identify numerous arrivals on  the synthetics but we will focus our attention on the waves 
reflected on  the different parts of the interface. The wave reflected at the bot tom of the 
graben is denoted by ‘b’, the reflection on the left side by ‘1’ and the one on the right side 
by ‘r’. The last two reflected waves have large apparent velocities. In this case, the lateral 
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Figure 6 .  Geometry of the simple model of graben used and synthetic vertical seismic profile. 

propagation plays an important role on the vertical seismic profile obtained. Multiple reflec- 
tions at the sides of the graben and at  the free surface are responsible for later arrivals. In the 
lower medium, the pulse shape presents an important distortion due t o  interference between 
the pulse transmitted through the bot tom of the graben and a pulse refracted along its right 
flank. 
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Figure 7. Geometry of a surface layer of periodically varying thickness. The location of the source and of 
the receivers is indicated. 
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Figure 8. Synthetic refraction profile obtained for distances from the source between 120 and 880 m. The 
medium considered is represented in Fig. 7. 
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Simulation of a refraction profile 

As another example of application we consider the case of a surface refraction profile. The 
configuration is chosen to  investigate the effect of a weathered zone of varying thickness. 
The interface is centred on a depth of  l 0 0 m  and its shape is a sine function with period of 
400 m and amplitude of 40 m (Fig. 7). The source is 40 m below the surface and the receivers 
span the horizontal distance range between 120 and 8 8 0 m .  The synthetics are depicted in 
Fig. 8. The other calculations parameters remain unchanged. They show complex and 
varying wave-shapes due to  the interaction of direct, reflected and refracted waves. The 
refracted first arrival displays a very weak amplitude. Its apparent velocity changes with the 
position of the receiver and reflects the variations of the basement depth. The progressive 
decrease of the thickness of the weathered layer produces a strong amplification effect at a 
distance of around 400 m. 

M. Campillo and M. Bouchon 

Conclusion 

We have presented a new method t o  compute the complete SH wavefield produced in a 
two-dimensional half-space with an irregular interface. This method may be considered as a 
propagation technique associated with the discrete wavenumber representation of the 
seismic source radiation. The comparison of our results with calculations done using the flat- 
layer discrete wavenumber method shows, in the case of a plane interface, the validity of our 
technique. We have presented examples of synthetic seismograms computed for simple con- 
figurations in presence of an irregular interface. The formulation of this method does not 
rely on the shape of the diffracting interface or on the frequency range considered. 
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